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Abstract

This thesis contains four papers concerning (I) the evolutionary conservation
of drug targets and its potential use in environmental risk assessments, (II)
RNA degradation as a control mechanism during osmotic stress in the yeast
S. cerevisiae, (III) the localization and effects of the gene DDIT3 encoding
a key regulator of stress response, and (IV) the integration and analysis of
transcriptional and metabolic data to identify active metabolic pathways.

Environmental risk assessments are needed for the approval of new pharmaceu-
tical compounds. To date, the risk assessments have mainly been focused on
organisms like algae and Daphnia. The conservation of drug targets in species
relevant for ecotoxicity testing is a key aspect in developing more targeted test
strategies on higher organisms like fish or amphibians. With information on
predicted proteomes for a wide range of species it is possible to extract data
on evolutionary conservation for drug targets. In paper I, orthology data is
compiled and analyzed for a set of human drug targets in several species, and
the result evaluated based on an extensive literature search.

mRNA degradation can be investigated on a genome-wide scale with the use
of a transcriptional inhibitor and subsequent hybridization of RNA pools, iso-
lated at a set of time-points, to microarrays. Due to the complexity of the
microarray methodology in this context, the data are in need of processing
and transformation to deduce relevant information on changes in degradation
rates. In paper II, mRNA degradation is investigated as a post-transcriptional
control effect in connection to hyperosmotic stress. We conclude that mRNA
degradation mechanisms are important regulatory keys in the stress response.

The gene DDIT3 encodes a protein acting as a regulator of the stress response
within human cells. For example DNA damage, hypoxia, and starvation are
stress types inducing DDIT3 transcription. DDIT3 is a transcription factor
and has mainly been reported as a nuclear protein. In paper III, the effects
and target genes of DDIT3 are investigated using techniques like microarrays,
RT-qPCR, and various bioinformatical and statistical methods. We report
that DDIT3 also can be localized to the cytoplasm, and induces or represses
different genes compared to the nuclear form. The cytoplasmic form of DDIT3
is involved in migration, and inhibits the migratory effects of fibrosarcoma cells.

The development of different ’omics’ technologies in molecular biology has re-
sulted in several methods to characterize cells and tissues, for example mi-
croarrays to characterize the transcriptome (collection of gene transcripts) and
spectrometry techniques like NMR to describe the metabolome (collection of
small molecules). Interpretation of different ’omics’ data is usually done sepa-
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rately, and often with respect to pathways, which are sets of reactions involving
genes, metabolites, and proteins. A common research question is to deduce
which pathways are active (regulated) when comparing two or several condi-
tions. In paper IV, we propose a model to make such pathway level decisions
by integrating transcriptomic and metabolomic data.
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Chapter 1

Introduction

This chapter will introduce concepts in microarray analysis, bioinformatics,
and metabolomics. The information can be useful as a reference in reading the
forthcoming chapters.

1.1 Microarrays

The microarray technology was introduced fifteen years ago in a landmark pa-
per (Schena et al., 1995). The array described in the paper contained merely
45 genes, although the authors recognized the potential of the technology and
mentioned arrays with over 20,000 spots. The spots on the glass slide con-
tained complementary DNA (cDNA) from Arabidopsis, as well as three control
cDNAs from other organisms. Differential expression of the Arabidopsis genes
under investigation were detected with competitive two-color fluorescence hy-
bridization of two RNA sources.

The microarray technology has developed fast since its introduction and several
different microarray platforms are available today, many of which offer arrays
with very high spot density. Parallel to the technological development of mi-
croarrays, a lot of data analysis methods have been presented to deal with the
statistical problems connected to microarray data analysis.

1



2 1. Introduction

1.1.1 The Microarray Technology

The array briefly described above was a spotted cDNA array, which today
still are commonly used. The microarray itself is a glass slide with material
(sometimes referred to as probes), usually cDNA clones or PCR products,
spotted onto the slide in a grid pattern. mRNA from two sources of interest
(e.g., cancer and normal cells) are reverse transcribed into cDNA and labeled
with two different fluorescent cyanine dyes, commonly Cy3 and Cy5. The two
labeled cDNA sources are then hybridized to the microarray in a competitive
manner.

After hybridization, the microarray is scanned with a laser scanner at two
different wavelengths designed to excite the fluorophores Cy3 and Cy5 into
emission of green and red light, respectively. The two images produced in the
scanning step are overlaid, giving a pseudo-image, which shows spots as either
yellow, red, or green.

To extract more detailed information on the expression status for each gene,
further analysis of the microarray images is needed. The processing can be di-
vided into three parts: gridding, segmentation, and intensity extraction (Yang
et al., 2001). Briefly, gridding, or addressing, concerns locating and giving
coordinates to each spot, segmentation deals with assigning pixels as either
within the spot or as background, and intensity extraction means calculating
red and green intensities for each spot. In the last step, quality measures of
the spot are usually also extracted.

The two-color spotted microarray technique is frequently used throughout the
research community. Many research groups manufacture in-house arrays which
usually are cheaper than commercialized platforms, but may suffer from quality
problems (Bammler et al., 2005). Such quality issues are for example dye-
biases, degradation of fluorescense signals, and poor reproducibility between
replicates.

As a contrast to the the cheaper spotted arrays, several commercial microarray
platforms are available. The perhaps most popular type is the single chan-
nel oligonucleotide Affymetrix arrays. Oligonucleotides, or oligos for short, are
short stretches of nucleotides designed to match a specific sequence or group of
sequences, most common genes or gene families. The array is built up of mul-
tiple probes (typically 11-20) of length 25 for each gene, which are synthesized
directly on the array. With the Affymetrix technology, only one RNA source is
hybridized onto an array, using only one fluorescent dye, and comparisons be-
tween RNA sources have to be made with several hybridizations onto different
arrays.
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The more customizable Agilent technology is based on single 60-mer oligonu-
cleotides and work in the two-color competitive hybridization fashion. The
probes are synthesized on the array using inkjet printing, which is cheaper
than the method employed by Affymetrix.

Another commercial technology is the Illumina bead array platform. The sup-
port for the DNA material consists of microscopic beads, instead of a solid
(glass) surface. In general, the strength of the commercial platforms are their
ready-made protocols and support, as well as overall high quality (Bammler
et al., 2005; Irizarry et al., 2005).

1.1.2 Microarray Data Preprocessing and Analysis

For a two-color array, the red and green intensities for each spot on the array
are further processed to extract relevant information on differential expression.

Preprocessing of the microarray data involves background correction and dif-
ferent normalization steps. Background intensities for each spot are extracted
in the image analysis step with the foreground red and green intensities. A
common assumption is that the background intensities are additive to the fore-
ground intensities:

Rg = R
f

g −R
b

g and Gg = G
f

g −G
b

g

R
f
g and R

b
g symbolize the red foreground and background intensities for gene g

respectively (and similarly for the green intensities). In a review paper (Ritchie
et al., 2007), eight different background correction methods were compared
with different estimates for R

b
g and G

b
g and variants of subtraction. To simply

subtract the background intensities from the foreground intensities proved to
be even worse than no background correction at all. An improvement of the
stabilization of the variance as a function of intensity characterized the best
performing methods.

A plethora of normalization methods exists for microarray data. The normal-
ization step is crucial to remove intensity dependent trends and to achieve
comparability between arrays. To apply different normalization methods, the
R and G intensities are usually transformed to M = log2 R − log2 G and
A = (log2 R + log2 G)/2. M is called the log2-fold change and A the aver-
age log2-intensity.

The most common method for within-array normalization is probably the loess
normalization. In its simplest form, a locally-weighted polynomial regression is
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used to adapt a smoothing curve to the A-values and each M -value is normal-
ized by subtracting the value of the loess-curve at the given average intensity.

To ensure comparability between arrays, or sets of arrays, between-array nor-
malization is sometimes applied. A quite simple normalization of this type is
scale-normalization, which results in a series of arrays having the same median
absolute deviation.

A large set of different methods for normalization and background correction
exists for single-channel microarray data. Different methods, including MAS5
and gcRMA, are compared in Qin et al., 2006.

Ensuing the preprocessing steps, different ranking methods can be used to
assess differential expression for the genes on the arrays. Assume that we
are interested in finding differentially expressed genes between two conditions.
A set of n replicate arrays are hybridized to assess this difference. Let µg

denote the true log2-fold change in expression for gene g. We want to test the
hypothesis

H0 : µg = 0 vs. H1 : µg �= 0

for each gene. The number of genes, N , is typically large (thousands) while the
number of replicate arrays n rarely exceeds ten. Let Mgj denote the log2-fold
change for gene g on array j and sg the gene specific standard deviation over
the replicate arrays. The ordinary t-statistic for differential expression is in
this setting

tg =
Mg.

sg/
√

n
,

where Mg. is the average log2-fold change over the replicate arrays. The prob-
lem in using the ordinary t-statistic in microarray experiments is that the num-
ber of replicates is quite small, and a small variance might occur by chance even
if the log2-fold changes Mgj are small. Several methods have been proposed to
circumvent this problem. The Efron t-statistic is a slight modification of the
ordinary t-statistic:

tg =
Mg.

(a0 + sg)/
√

n

where a0 is the value of the 90%-quantile of all the gene specific standard
deviations s1, . . . , sN (Efron et al., 2001). Other offset statistics have also been
proposed, for example the statistic used in the S-test which is implemented in
the SAM software (Tusher et al., 2001).

The development of the regularized t-test (Baldi and Long, 2001) and the B-
test (Lönnstedt and Speed, 2002) marked a more model-based approach to
assess differential expression. The B-test was a log-odds test and was later
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reformulated and generalized into a moderated t-test (Smyth, 2004). To deduce
the moderated t-statistic, an empirical Bayes approach is adopted with the
following distributional assumptions:

Mgj |µg, σ
2
g ∼ N(µg, σ

2
g)

s
2
g|σ2

g ∼
σ

2
g

dg

χ
2
dg

A model is fit to every gene, and to use this parallel structure, a hierarchical
model is adapted with priors for the hyperparameters. The prior distribution
on σ

2
g , describing how the variances vary across genes, is

1
σ2

g

∼ 1
d0s

2
0

χ
2
do

,

with d0 degrees of freedom and s
2
0 the prior estimate of the variance (using

Γ-distributions, d0 may be interpolated). Under this hierarchical model, the
posterior mean of σ

−2
g given s

2
g is

s̃
2
g =

d0s
2
0 + dgs

2
g

d0 + dg

and the moderated t-statistic is defined as

t̃g =
Mg.

s̃g/
√

n

Under the null hypothesis, the moderated t-statistic follows a t-distribution
with dg + d0 degrees of freedom. An effect of this model is a shrinkage of the
observed variances towards the prior values, depending on the observed and
prior degrees of freedom. The moderated t-test and the underlying hierarchi-
cal model is formulated in a more general context as linear combinations of
parameters from a linear model in Smyth, 2004.

The moderated t-statistic is implemented in the package LIMMA (Smyth, 2005)
in R as a part of the Bioconductor suite. Several different normalization meth-
ods and other functions developed to deal with microarray data are also im-
plemented in the package.

1.1.3 Applications

Gene expression analysis and transcriptional profiling were the starting points
of the microarray technology, for example in Schena et al., 1995, where the ex-
pression (levels of mRNA) between root and leaf were compared in Arabidopsis
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for 45 genes. Another example of early usage of the microarray technology was
the identification of cell cycle regulated transcripts in yeast (Spellman et al.,
1998). Today, microarrays are routinely used in many studies to address a wide
range of scientific questions.

Besides ’standard’ gene expression profiling, adaptations of the microarray tech-
nology have been made to measure other transcriptional features like mRNA
stability (e.g., Wang et al., 2002) and polysomal association to transcripts as
a measure of translational activity (e.g., Preiss et al., 2003). General problems
with mRNA decay measurements using microarrays are discussed in Chapter 2.

A different version of a microarray is a tiling array, where a whole-genome, or
a segment of the genome, is represented by oligonucleotide probes at a certain
spacing (resolution). Both the Affymetrix, Agilent, and Nimblegen platforms
offer commercial tiling arrays. A characterization of the transcriptome (bound-
aries, structures, and levels of coding and non-coding transcripts) have been
made in yeast using tiling arrays covering the whole yeast genome (David et al.,
2006). The study identified complex transcriptional patterns, and also mapped
the untranslated regions (UTRs) of expressed transcripts. Whole-genome tiling
arrays have also been used in several studies on Arabidopsis, for example to in-
vestigate the transcriptional pattern associated with circadian rhythms (Hazen
et al., 2009).

The ENCODE (ENCyclopedia Of DNA Elements) project was launched in
2003 to identify all functional elements in the human genome, and a pilot
study was published three years ago (The ENCODE Project Consortium, 2007).
The pilot study, involving (among many other methods) tiling arrays covering
1% of the human genome, brought more understanding on transcription start
sites and regulatory mechanisms, as well as further understanding of chromatin
structure.

Array-based comparative genomic hybridization (array-CGH) is another mi-
croarray format which is used to analyze DNA copy number variations (CNVs)
and larger genomic gains and losses. The array can be either a spotted, or
a tiling array, and genomic material from sample and control are hybridized
together. The array-CGH technology was for example combined with whole-
genome sequencing data to profile 30 Asian females in order to develop a com-
prehensive common CNV map for Asian populations (Park et al., 2010).

In contrast to CNVs, which are large (1000 bp or more) structural variations
in the genome, single nucleotide polymorphisms (SNPs) are variations that
occur in a single nucleotide. Different versions of SNP arrays are available,
for example from Illumina. The Illumina SNP array technology is based on a
probe which targets the genomic location adjacent to a SNP site (LaFramboise,
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2009).

Chromatin immunoprecipitation (ChIP) combined with microarray analysis (so
called ChIP-on-chip), is another application of the microarray technology (Ren
et al., 2000). ChIP-on-chip is used to investigate interactions between DNA
and proteins, and can be employed to identify transcription factors. Briefly,
the method consists of extracting proteins by epitope binding via an antibody
and the DNA bound to the protein is purified, labeled, and hybridized to an ar-
ray. Replacing the array technology by next generation sequencing techniques,
creating a technique called ChIP-seq, has proved to be more cost-efficient. The
ChIP-seq technology generally also requires less input material and offers a
rapid analysis pipeline (Mardis, 2007).

1.2 Bioinformatics

In short, bioinformatics is the development and application of computational
and statistical tools to biological or medical data in some form. Areas falling
under the bioinformatics umbrella include sequence analysis, structural bioin-
formatics, comparative genomics, and phylogenetic studies, just to mention a
few.

1.2.1 Biological Databases

Biological databases play a crucial role in the bioinformatics field. Nucleic Acids
Research publishes a yearly database issue (Cochrane and Galperin, 2010), now
listing over 1200 publicly available databases, of which only a few are briefly
described below. The database issue covers databases on nucleotide sequences,
protein sequences, structures, metabolomic and signaling pathways, and whole
genomes.

GenBank is a large database (Benson et al., 2008) which has been avail-
able for more than 25 years. The database, hosted by the National Cen-
ter for Biotechnology Information (NCBI), contains nucleotide sequences for
more than 260 000 different species (the June 15 release of 2010 reports that
120 604423 sequences are available). GenBank can be accessed through a so-
phisticated retrieval system called Entrez, which also integrates data from other
major databases.

Other large and frequently used databases are for example Ensembl (Hubbard
et al., 2009) and Uniprot (The UniProt Consortium, 2010). Ensembl is a



8 1. Introduction

genome database, with information on more than 50 eukaryotic species, and
with the pre-release of the baboon genome its newest addition. The UniProt
database is a resource on protein sequences and functional annotation. A part
of UniProt is a manually curated protein knowledge database.

The Gene Ontology (GO) (The Gene Ontology Consortium, 2010) is a widely
used resource of controlled and consistent vocabularies for annotation of gene
products. The three main ontologies consist of a terminology describing the
molecular function of gene products, their associated biological processes, and
their cellular localization. The GO Consortium also manages and integrates
annotation information of gene products, i.e., connecting gene products to dif-
ferent terms in the ontologies, and develops tools for GO annotation.

The Kyoto Encyclopedia of Genes and Genomes, KEGG for short (Kanehisa
et al., 2010), is a collection of pathway information for a large set of species.
A pathway is made up of a set of reactions involving genes, metabolites, and
proteins. The pathways can be viewed as functional modules describing the
network of molecular interactions in the cell.

1.2.2 Sequence Analysis

Automated genome annotation and comparative genomics are heavily reliant on
sequence analysis. A large part of sequence analysis is concerned with sequence
alignments.

The Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1997; Altschul
et al., 1990) was first introduced twenty years ago. It has become a hugely
popular tool to search and compare both protein and DNA sequences against
query databases. BLAST searches for segments of sequences in a database
that matches segments of the query sequence by optimizing a local similarity
measure. The search algorithm uses a modified version of the Smith-Waterman
algorithm (Smith and Waterman, 1981) and is considerably faster, which has
greatly contributed to its popularity.

The BLAST algorithm can shortly be divided into three steps:

1. Find word pairs of a specified length W with scores above a certain thresh-
old T . A word pair is a ’hit’ between a subsequence of length W in the
query sequence and a subsequence in the database with score larger than
T .

2. Represent the query sequence and the database hit in a matrix, with a
word hit on the diagonal. Multiple hits on the same diagonal within a
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certain distance will be extended into high scoring pairs (HSPs).

3. The highest scoring HSPs are extended, including gaps, until their overall
score fall under a threshold.

Mutation of individual nucleotides, and in effect changes of amino acids, com-
bined with insertions and deletions, make up the basis for sequence evolution.
Substitution matrices are commonly used to measure similarity between di-
verged sequences. Such a matrix gives a score to every substitution that is
possible in a protein or DNA sequence. For proteins, some substitutions of
amino acids are more likely than others, due to similar chemical properties of
the amino acids.

The scoring scheme in BLAST, used to assess scoring for word pairs and ex-
tended hits, is based on substitution matrices and also includes penalties for
gaps. The default matrix for protein comparisons used in the current versions of
BLAST is the BLOSUM62 matrix (Henikoff and Henikoff, 1992) but other ver-
sions of the BLOSUM matrices may be used, as well as PAM matrices (Dayhoff
et al., 1978). The similarity matrix for comparisons between DNA sequences is
of a much simpler type, with all mismatches scored identically (Altschul et al.,
1990).

In contrast to the local similarity algorithm in BLAST, which identifies high-
scoring subsequences in a database to a query sequence, global similarity al-
gorithms aim to maximize a similarity score for an overall alignment between
two sequences. A global alignment algorithm for pairs of sequences is the
Needleman-Wunsch algorithm (Needleman and Wunsch, 1970) which uses dy-
namic programming and guarantees an optimal alignment given a substitution
matrix and gap penalties.

Clustal is one of the most used tools in bioinformatics to perform multiple
alignments. Although it is not guaranteed to find the highest scoring alignment,
the method is quite fast. The most recent version of Clustal is in the 2.0 series
(Larkin et al., 2007), but the original Clustal program was introduced more
than 20 years ago (Higgins and Sharp, 1988). The multiple alignment algorithm
is a more heuristic approach than the Needleman-Wunsch algorithm: first,
all pairs of sequences are aligned pairwise to calculate a matrix of distances
between the sequences. Second, a phylogenetic tree is calculated based on
the distance matrix, and thirdly, the sequences are progressively aligned in
turn (using consensus sequences in the intermediate steps), according to the
branching order in the tree.

Clustal can be downloaded as command-line version (ClustalW) or a graphical
user interface (ClustalX). Clustal is also available as a web-service via several
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different mirrors.

1.3 Metabolomics

In analogy to other ’omics’ fields, like genomics and proteomics, metabolomics
is the analysis and study of the set of metabolites in a cell, organ, or tissue. A
metabolic profile is, in parallel to a transcriptional profile, a characterization
of concentrations of different molecular species. Instead of measuring levels
of mRNA transcripts from genes, a metabolic profile holds information on
concentrations of different small molecules (metabolites) in the cell, e.g., sugars,
amino acids, organic acids, and vitamins.

1.3.1 Separation and Detection Techniques

To detect and quantify metabolites, separation techniques like gas or liquid
chromatography, followed by quantification by mass spectrometry (GC-MS,
or LC-MS) are often used. Nuclear magnetic resonance spectroscopy (NMR)
is also frequently employed and has some appealing properties. The NMR
technique is non-destructive, in the sense that it does not "destroy" the samples
during the analysis process. Hence, NMR is useful when analyzing tissues or
when sequential analysis of samples is required (Nicholson and Lindon, 2008).

In order to use the separation based technique GC-MS, the samples need to
be derivatized (gaseous form), and may thus introduce some bias towards de-
tection of certain types of compounds. The LC-MS technique offers very good
sensitivity, but is unfortunately not quantitative in the same was as NMR or
GC-MS (Wishart, 2010). In general, the mass spectrometry based methods do
offer more sensitivity than NMR.

The result from detection of metabolites in a sample, with either of the tech-
niques, is a spectrum. In the case of NMR, the spectrum is the Fourier trans-
form of a mixture of decaying sinus like waves. The spectrum consists of peaks
of varying height and width. A specific molecule can correspond to one or
several peaks, and the peaks are sometimes overlaid onto each other. The area
under the different peaks correspond to, in an ideal setting, the concentration
of the different metabolites.

The identification of metabolites in a spectrum is not trivial, especially since
the positions (shifts) of the peaks can vary relative to each other with varying
experimental conditions. These non-linear peak shifts need to be adjusted for
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in order to compare different samples. Preprocessing in the form of baseline
and phase corrections, and reference peak adjustment need to be performed as
well.

Mapping the different peaks uniquely to metabolites involves matching against
reference spectra of some kind. Such spectra can either be derived sepa-
rately in additional experiments, or collected from databases like the Hu-
man Metabolome Database (HMDB), which contains information on over 7900
metabolite entries (HMDB, 2010; Wishart et al., 2009). Although the database
is extensive, the identification of individual metabolites is usually a very time-
consuming task. Due to this, the number of uniquely identified metabolites
in an experiment ranges from 50 to 200 metabolites, significantly less than for
example the number of transcripts identified in a microarray experiment.

1.3.2 Analysis Methods

Since the identification of metabolites is such a difficult task, a common way
to process metabolomics data is instead to analyze a compressed version of the
original spectrum with multivariate methods like PCA or PLS. The spectrum
is compressed by binning (integration of the spectrum signal in small segments)
resulting in data of lower dimensionality, but also with lower resolution. The
purpose of a PCA or PLS analysis is to prove that there are differences between
different groups of samples, and to try to identify a smaller set of variables that
explain differences between groups. One problem with this type of analysis is
that the smaller set of variables identified by for example PCA is hard to
interpret.

The interpretation of variables differing between samples that have been pro-
filed is important in order to map them to interesting functional groups or bio-
chemical pathways. This can be achieved in part by the use of correlation maps
(Steuer, 2006). The correlations between the metabolites (within a sample) can
be used to elucidate if certain enzymes are highly variable (and therefore induce
negative correlations between their substrate and product metabolites). Com-
parisons of several experimental groups can be made with the correlation maps,
as different groups should show different correlation fingerprints A drawback
to this methodology is that the resulting correlation maps are very sensitive to
data analysis issues, and spurious high correlations can appear if the different
samples are not normalized properly against each other.
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1.3.3 Applications

In plants, and especially the model organism Arabidopsis, metabolomics data
has been used to address a number of scientific questions, among them char-
acterization of the freezing tolerance response, and the downstream effects of
transgenic manipulation of the transcription factor MYB1 (Last et al., 2007).
Studies have also been published in which transcription data and metabolite
data are correlated in order to achieve a more global understanding of the cel-
lular processes (Gibon et al., 2006). This is in fact a very interesting research
problem, which we address in paper IV.

An novel application of metabolite data is to genome-wide association (GWA)
(Gieger et al., 2008). By measuring around 300 metabolites in male sub-
jects, association of single nucleotide polymorphisms were found to variations
in metabolite homeostasis, suggesting that common polymorphisms generate
differentiations in the metabolome of the human population.

Recently, more efforts have been focused on understanding the metabolome of
cancer cells, in order to gain understanding of the cellular physiology and bio-
chemical activity of tumors (Abate-Shen and Shen, 2009). The prostate cancer
metabolome was for example characterized by comparing normal prostate to
prostate cancer in its metastatic form, and the analysis identified sarcosine as
a potential biomarker (Sreekumar et al., 2009).



Chapter 2

Technical Aspects of mRNA
Decay Measurements

Many papers have been published on mRNA degradation pathways and mecha-
nisms in different model organisms during the last few years. Examples include
the characterization of important deadenylases in yeast (Tucker et al., 2001)
and the discovery of a functional link between decapping and deadenylation of
mRNAs in mammalian cells (Yamashita et al., 2005).

A comprehensive review (Garneau et al., 2007) highlights the complexity and
variation in the mRNA degradation signals and machinery. Six, partly overlap-
ping, pathways of mRNA decay have been described. Three pathways monitor
and execute the degradation of normal mRNA molecules, while the remain-
ing three pathways degrade aberrant mRNA transcripts. The effect of RNA
binding proteins (RBPs) on mRNA decay is also touched upon.

The importance of mRNA degradation as a mechanism of post-transcriptional
regulation has been investigated on a genome-wide scale in a handful of studies.
Studies on decay rates for mRNA molecules are usually carried out by treating
cells with a transcriptional inhibitor followed by harvesting of mRNA at a set of
time points, and hybridization onto microarrays or some other blotting method.

Quite a few articles have been published analyzing global decay rates in Bac-
teria and Archae. Studies have been performed with the antibiotic agent acti-
nomycin D as a transcriptional inhibitor on Plasmodium falciparum (Shock
et al., 2007), Halobacterium salinarum (Hundt et al., 2007), and Sulfolobus
(Andersson et al., 2006), whereas the bacterial RNA polymerase inhibitor ri-

13
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fampicin has been employed in studies on Escherichia coli (Bernstein et al.,
2002; Selinger et al., 2003), Bacillus subtilis (Hambraeus et al., 2003), and
Lactococcus lactis (Redon et al., 2005).

Actinomycin D has also been used as a transcriptional inhibitor in the same
type of study on human T lymphocytes (Raghavan et al., 2002), as well as on
human HepG2 cells and Bud8 primary cells (Yang et al., 2003).

In the yeast Saccharomyces cerevisiae, the chelating agent thiolutin and the
temperature-sensitive rpb1-1 allele, with a mutation in the catalytic subunit of
Polymerase II, have been used in a couple of studies (Guan et al., 2006; Wang
et al., 2002). Other transcriptional inhibitors, such as 1,10-phenanthroline, as
well as the two mentioned above were used in Grigull et al., 2004.

Finally, a similar study in Arabidopsis thaliana employed the RNA synthesis
inhibitor 3’deoxyadenosine (cordycepin) (Gutiérrez et al., 2002). Decay rates
in Arabidopsis have also been investigated with Actinomycin D (Narsai et al.,
2007).

At a first glance, these different methods of transcriptional inhibition pose
obvious problems. Using the temperature sensitive rpb1-1 allele is dependent
on a temperature shift, which inevitably triggers the heat shock response in
yeast cells (Grigull et al., 2004). Chelating agents like phenanthroline and
thiolutin also have a stress effect on the cells, in addition problems with non-
specificity.

Another problem with all these approaches is that, at transcriptional inhibition,
the pool of mRNA consists of both young and old transcripts (Meyer et al.,
2004). The effect of this is a heterogeneity of the pool of mRNA as well as a
non-stationarity in population localization.

An indirect approach to estimating mRNA decay rates, in connection to ox-
idative stress in yeast, has been presented (Molina-Navarro et al., 2008). With
this methodology, steady state levels of mRNAs are measured, as well as tran-
scription rates using Genomic run-on, which allows for indirect estimates of
mRNA decay rates.

2.1 Agents used for transcriptional arrest

Global analysis of mRNA decay rates is performed in order to investigate the
mRNA degradation processes and its effects on gene expression. One goal is
to find out which types of transcripts, for example grouped in Gene Ontology
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categories, that have fast respectively slow decay rates under normal conditions.

One problem with the methods based on transcriptional arrest is that we cannot
exclude the possibility that the transcriptional shut-down does not itself affect
the decay rates of transcripts, as reported with thiolutin in yeast (Pelechano
and Pérez-Ortín, 2008). Another problem is that the conditions under which
decay rates usually are examined are far from normal.

Decay rates for transcripts in yeast were examined with the use of several tran-
scriptional inhibitors, and compared accordingly in Grigull et al., 2004. The
authors also compared the expression for decay rate profiles (log2-ratios ranked
at the different time points) in their data set with a large set of microarray
profiles from the literature. The conclusion was that the ranked mRNA decay
expression patterns were most similar to expression patterns from microarray
experiments on heat shock and nutrient starvation.

Since the use of the rpb1-1 allele in mRNA decay experiments in yeast requires
a temperature shift, the similarity with heat shock expression profiles is not
surprising. The stress response in the cells might be post-transcriptional, but
may also be transcriptional due to the fact that the shut-down of transcription is
incomplete (which has been shown to occur for other transcriptional inhibitors
as well, for example phenanthroline).

In many of the studies on mRNA decay, conclusions are drawn that stress
response genes connected to heat shock are stable, while ribosomal transcripts
are highly unstable. Under the stress response that the transcriptional inhibitor
elicits, this is very likely, but not necessarily so in non-stressed conditions.
Generally it is hard to make a statement, that stress genes are stable, and
ribosomal genes are unstable under these circumstances. What might be of
interest, is that the stress genes become stabilized during a stress response, as
described in paper II.

2.2 mRNA Decay Models

Several models for the process of mRNA decay are plausible. Most mRNA de-
cay analysis experiments are analyzed using a simple exponential decay model.

Assume that we are observing a single mRNA species, with N(0) copies in
normal conditions. We are interested in observing the change of the number of
copies over time, denoting this with N(t). A simple exponential decay model
is

N(t) = N(0)e−λt
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where λ is a decay constant. The half-life, t1/2, of an mRNA transcript is often
referred to in the literature. The meaning of the half-life is the amount of time
that passes until the amount of a transcripts has dropped to half of its initial
value. For our model we have t1/2 = ln(2)/λ and substituting the half-life for
the decay constant in the expression above will produce

N(t) = N(0)2−t/t1/2 .

Ideally, in a decay experiment of a competitive hybridization fashion (and indi-
rectly in one-channel experiments), the quantity wanted is N(t)/N(0), giving

N(t)
N(0)

= 2−t/t1/2 .

In a microarray experiment, transformations on a log2-scale are often used, and
transforming the above quantity would give

log2

�
N(t)
N(0)

�
= − t

t1/2
. (2.1)

2.3 Using Microarrays to Measure mRNA Decay

The microarray technology has been used in all of the studies mentioned ear-
lier to investigate decay rates on a genome-wide scale. Different microarray
technologies were used, for example Affymetrix microarrays, two-color cDNA
arrays, and nylon filter arrays.

2.3.1 Experimental setups

A common experimental setup for an mRNA decay experiment using cDNA
arrays is illustrated in Figure 2.1.

Cell samples are harvested before, and at a set of time points, here denoted
t1, . . . , t4, after the addition of a transcriptional inhibitor, alternatively after a
temperature shift when the rpb1-1 allele is used. Ideally, this setup allows for
direct comparisons of decay slope coefficients between different mRNAs, and
also between two time series experiments under different conditions. As an
exception, in Wang et al., 2002, genomic DNA was used as a reference with
filter arrays.

mRNA degradation experiments using single-channel techniques like Affymetrix
are naturally different, with no competitive hybridization scheme. Instead, cells
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Figure 2.1: Experimental setup

harvested before and after transcriptional inhibition are separately hybridized
onto arrays, e.g., in Guan et al., 2006; Raghavan et al., 2002.

In an ideal setup with measurements of the expression before and after the
addition of a transcriptional inhibitor at a set of time points, our measurements
of the quantity given in Equation 2.1 would produce decay profiles, from which
we could quite easily extract a median half-life. Unfortunately, a lot of noise is
added to each of the time point measurements, and the normalization methods
and/or hybridization scheme lead to a shift of the expression values in each
time point.

The situation is not hopeless, however. By hybridizing replicate arrays, repro-
ducible signals will be amplified despite the presence of noise. In Paper II, we
also chose to rely on the strength of such multi-parallel time series comparisons.
When using this approach, the global behavior over each time series is assumed
to be unchanged (which is not an overall unreasonable assumption). To detect
transcripts with changing stability profiles, the profiles were compared over the
time series to produce a change in stability index. By performing this analysis,
systematic errors within each series are likely to cancel out. By using parallel
series the number of experiments are increased, giving more degrees of freedom
and hence power in the statistical procedures.
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2.3.2 Hybridization schemes

With two-color microarrays, cDNA from two sources is labelled and co-hybridized
to an array. The same amount of RNA should be hybridized from the two
sources onto the array. In order to achieve this, one measures the amount of
total RNA, of which rRNA constitutes the major part, and hybridizes the same
amount from the two sources. Another method is to measure the amount of
mRNA and hybridize equal amounts from the two sources onto the array.

In mRNA decay investigations, the first method of hybridizing the same amount
of total RNA onto the arrays, really means that substantially different amounts
of mRNA are used in the two pools. If the rRNA remains relatively stable, the
RNA pool from the cells treated with a transcriptional inhibitor will contain
less mRNA than the reference pool.

The problem with this approach is that two-color mRNAs are not made for
comparisons of this type. All normalization methods, designed for example to
remove intensity dependent effects, are based on the prerequisite that there is
no dependence between log2-ratios of the two channels, to the mean intensity
in both channels, i.e., that an MA-plot has a cloud centered around zero.

In an experiment measuring mRNA decay, performing these types of normal-
ization procedures, will remove trends between mRNA length and decay rate, if
such trends exist. On the other hand, not performing any normalization might
mean that technical artifacts are mistaken for true signals. All this leads up
to the fact that mRNA decay rates, for example half-lives, cannot easily be
computed from the experimental data. Substantial data transformation and
calculations have to be performed in order to extract the interesting informa-
tion, and even then it becomes highly dependent on the methods used.

2.3.3 Normalization

As mentioned above, the standard normalization methods might not be appro-
priate for mRNA degradation data. Dependencies, which of course are hard to
investigate, may exist that disappears upon data preprocessing.

Another aspect is that arrays from different time points (e.g., 5 and 30 minutes)
have very different orders of magnitude for log2-ratios (M-values). Performing
global scale normalization will then remove this information, and give erroneous
estimates of decay rates. Using Affymetrix arrays and normalizing with for
example RMA will give the same problem.
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2.3.4 Data transformation

To extract approximate half-lives for individual mRNAs from the type of mi-
croarray experiments described here, some kind of transformation of the data
is required. Several methods have been used in the studies published in the
literature.

Spike-in controls can be used in both one-color and two-color microarray ex-
periments. For a two-color array, a set of control sequences (e.g., clones) are
printed onto the array. The control sequences are commonly rDNA or gene frag-
ments from a different organism than the array is designed for. Labeled control
genes (sequences meant to hybridize to the control sequences) are also added,
in equal known concentrations, to the biological sample pools. In one-color
experiments, control oligos are added to the array, and known concentrations
of one or several control genes are hybridized to the array with the biological
sample.

Spike-ins are quite common in the standard microarray experiments, for exam-
ple to evaluate different normalization methods, or to use directly as a means
for normalization. In experiments designed to measure mRNA decay, spike-ins
can be used to estimate a common base-line for the arrays in the time series
measuring the expression after the addition of the transcriptional inhibitor.
The base-line is used to shift the M-values for time points to achieve a decay
profile.

The spike-in data transformation method was used in for example E. coli with
64 rDNA spots to compute the base-line (here referred to as the normalization
constant) (Bernstein et al., 2002) and in H. salinarium with a single E. coli
gene fragment as a control spot.

As a general rule, the more spiked-in control spots that are used, the better
the information concerning the base-line expression. If the spike-ins also are
to be used as basis for normalization of the array, for example to remove in-
tensity dependent trends in the data, it is important that the spike-ins have
a good spread over the intensity range. However, spike-in data cannot solve
the inherent problem of pooling of genomic material from several cells that is
needed in the microarray experiments. The microarray data is interpreted on
a per cell basis, although several cells were pooled to achieve the effect. The
fact that cells are pooled to collect mRNA also induces a heterogeneity since
the sampled cells can be in different phases of the cell cycle.

To achieve a decay profile, it is also possible to use computational methods
which can be applied under certain assumptions concerning the decay profiles
for a subset of genes. In Andersson et al., 2006, a given proportion (10%) of
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the transcripts were assumed to be stable. The individual decay profile slopes
were normalized by subtraction of the average profile slope in the stable group.
A similar computational method was applied in Guan et al., 2006, but the
set of stable transcripts was instead identified from an external data set and
additional information from Northern Blot data was used.

Instead of assuming that a group of transcripts are stable, a mean half-life can
be assumed for all the transcripts. In yeast, this method was applied by a re-
weighting of the decay profile slopes to a mean half-life of 23 minutes (Grigull
et al., 2004). The mean half-life value was taken from (Wang et al., 2002), but
since the setup of the experiments were somewhat different, this assumption
might not be valid.

Finally, a transformation of the data can be achieved by choosing a base-line
given by an internal gene (Hambraeus et al., 2003; Raghavan et al., 2002). For
this method to work, the base-line gene has to be stable over the time course
experiment, which is of course always an approximation.



Chapter 3

Evolutionary Conservation
Studies

Studies of evolutionary conservation are important tools in genomics. Here,
terminology and methods are introduced that are utilized in this field.

3.1 Homology, Orthology, and Paralogy

In its most general definition, homology describes common evolutionary descent
between entities. Concerning genes, two genes are called homologous if they
derive from a single ancestral gene. Orthologs are genes in different species
that derive from a single common ancestral gene, i.e. resulting from splitting
of lineage via a speciation event (also called vertical descent). Paralogs, on the
other hand, originate from gene duplication events within a genome (Webber
and Ponting, 2004; Koonin, 2005; Sonnhammer and Koonin, 2002; Jensen,
2001).

Orthologs are not simply genes with gene products that have the same catalytic
function in different species and neither are paralogs simply homologs within
an organism (Sonnhammer and Koonin, 2002; Jensen, 2001). In fact, par-
alogs are also defined between species, and can be divided into in-paralogs and
out-paralogs (Sonnhammer and Koonin, 2002; Koonin, 2005). Out-paralogs
are genes resulting from duplication events preceding a speciation event. In-
paralogs, on the other hand, are paralogous genes that are formed by a lineage

21
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specific duplication event, i.e. a duplication event subsequent to the last speci-
ation event.

In Figure 3.1 a quite complex situation with paralogs and orthologs in human,
worm, and yeast is depicted (Sonnhammer and Koonin, 2002). After the speci-
ation (lineage-split) of animals and fungi, a duplication event has taken place,
giving two forms A and B of a gene. After the lineage split of worms and
humans, additional duplications in the A form took place in both the human
and worm lineages. From the figure we can deduce the following orthologous
and paralogous relationships:

i) The yeast gene is homologous to all genes in both the worm and human
lineages, and these genes are called co-orthologous to the yeast gene.

ii) Comparing the human and worm genes, the HA genes are co-orthologous
to the WA set of genes.

iii) The HA genes are in-paralogs when comparing to the worm lineage.

iv) The HB gene and the HA genes are out-paralogs when comparing human
to worm.

v) The HA set and HB , and the WA set and WB , are all in-paralogs in
comparing with yeast.

The division of paralogs into subgroups may be useful to exactly describe evo-
lutionary events and connections but it also becomes quite complex to under-
stand. In Figure 3.2, a simpler case is depicted. Orthologs of the α-version and
β-versions of the globin gene are present in all three species of interest (frog,
chicken, and mouse). The paralogs in the figure (mouse lineage only indicated)
are all out-paralogs.

Although speciation and duplication can be thought of as the primary forces
of evolution (Koonin, 2005), several other events complicate the picture of
genome evolution. Horizontal gene transfer is a phenomenon where genes have
been transferred between species. A gene and its transferred version in another
species are called xenologs. In addition, gene loss and gene fusion or fission
events complicate the process of identifying orthologs and paralogs in gene
families.

Sequence similarity is not necessarily evidence of orthologous relationships be-
tween genes, but is in many cases a good indicator. The same is true for
structural similarity - similarities in three-dimensional structure of proteins,
including binding sites - may as well be a good indicator. The problem with
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Figure 3.1: Concepts of homology (adapted from Sonnhammer and Koonin,
2002).

structural similarity is that relatively few proteins have known 3D-structures
and computational prediction is difficult. Working with two-dimensional struc-
ture components like loops and sheets might also be useful.

Purpose of Orthology Prediction

Although homologous relationships are evolutionary connections and not func-
tional connections, a highly used method for functional prediction is homology
(Gabaldón and Huynen, 2004). The reason for this is naturally that orthologous
genes (sharing a single common ancestor) are likely to have similar function.

The Ensembl database (Hubbard et al., 2009) utilizes a pipeline to assign both
orthologous and paralogous relationships as an aid in their automated anno-
tation procedure. As an example, if an orthologous group of genes is found
between three species, and one of these genes has functional annotation infor-
mation, this function can be inferred to the genes in the other species in the or-
thologous group as well. Inferred functional annotation is also common between
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Figure 3.2: Concepts of homology, simpler case.

yeast species, where, for example, functional annotation for the fission yeast
S. pombe is often inferred from the more studied budding yeast S. cerevisiae.
Although the evolutionary distance between the two yeasts is large, orthologs
between the two species are present and possible to identify. As of July 2010,
2163 of the 5036 protein coding genes for S. pombe in GeneDB (Hertz-Fowler
et al., 2004) have a functional role inferred from homology (compared to 1873
protein coding genes with annotation status experimentally characterized or
published).

After a speciation event, the different orthologous proteins are independently
subject to mutation events. The mutation events must be weighted against
functional constraints, i.e., the function of the protein must be retained. In a
study on evolutionary rates for orthologous proteins in the three domains of life
(Jordan et al., 2001), a small percentage of the genes exhibit accelerated evo-
lution. Classification of orthologs into groups, together with rate of evolution
studies may thus be used to indicate adaptive diversification.

In the comparative genomics field, orthology is essential since it allows for
comparison of genomes in terms of gene content (Gabaldón and Huynen, 2004).
In general, comparisons of genomes over orthologous groups is an important
tool in evolutionary biology, for example in the tree of life project (Delsuc et al.,
2005).
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3.2 Ortholog Prediction

A large set of different ortholog prediction methods and procedures have been
published. A comparison and categorization of several methods into phylogeny-
based methods, BLAST-based methods, and methods based on evolutionary
distance measures is presented in (Chen et al., 2007).

In predicting orthologs, the sequence information used is of vital importance.
Predicting orthologs for non-fully sequenced organisms will produce incomplete
clusters with possibly missing orthologs and paralogs. Even if the genome of an
organism is fully sequenced, the genome information can be of varying quality,
which will affect the ortholog prediction.

The information usually needed are lists of proteins or nucleotide sequences
from two or several genomes in an easy format. If the species used in the or-
thology prediction procedure are distantly related, protein sequences are used.

3.2.1 Phylogeny-based Methods

RIO (Resampled Inference of Orthologs) (Zmasek and Eddy, 2002) and Or-
thoStrapper (Storm and Sonnhammer, 2002) are methods using phylogenetic
trees to infer groups of orthologous proteins or genes within a family. To build
phylogenetic trees, high quality multiple sequence alignments are usually re-
quired. RIO uses for example alignments and profile HMMs from the Pfam
database.

3.2.2 BLAST-based Methods

RBH (Reciprocal Best BLAST Hit) is a common first step in the BLAST
based ortholog identification procedure, as well as a part in the RSD method
mentioned below. BLAST is a commonly used algorithm for local alignments of
protein and DNA sequences (see Section 1.2.2). A reciprocal best hit between
two sequences (e.g., genes) in two genomes means that a BLAST search for the
first sequence in the second genome produces the second sequence as the best
hit and vice versa.

The Inparanoid program (Remm et al., 2001) uses a reciprocal best hit strategy
as a first step to identify putative ortholog pairs, which in a second cluster step
is used to add-on additional orthologs and paralogs. The cluster step is rule
based, and assumes that all orthologs have an equal evolutionary rate.
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COG (Clusters of Ortholog Groups), see for example (Tatusov et al., 2000)
is a very well known database of ortholog groups. The procedure used to
identify the COGs starts with an all-against-all BLAST search followed by
identification of genome-specific best hits (BeTs). The BeTs are triangles of
mutually consistent genome-specific best hits where related BeTs are merged to
produce COGs. The COGs are manually curated in different ways to exclude
false-positives and find groups with multidomain proteins.

The OrthoMCL algorithm (Li et al., 2003) is also based on an all-against-
all BLAST search as a first step, in which putative ortholog pairs as well as
recent paralogs are identified. The connections between sequences, both within
and between genomes, are represented as a graph and clustered. The Markov
clustering step is based on the MCL algorithm (Enright et al., 2002).

3.2.3 Methods based on Evolutionary Distance

The RSD (reciprocal smallest distance) algorithm was developed to improve
upon the reciprocal best BLAST hit procedure to identify orthologs (Wall et al.,
2003). The improvement consists of an additional step of pairwise global se-
quence alignments and estimation of evolutionary distances between putative
(reciprocal) ortholog pairs using maximum likelihood.

3.2.4 Synteny information

Homologene is a database hosted by NCBI which contains homology infor-
mation for a large set of sequenced genomes. The detection procedure is
partly based on BLAST searches but information concerning synteny, i.e. co-
localization of genes (or other chromosomal regions) on chromosomes is also
utilized.



Chapter 4

Regression Models and
Shrinkage Methods

4.1 Regression Models

The aim of the univariate linear regression model is to explain the variability in
a response variable y with a set of predictors x1, . . . ,xp. The response variable
has n data points; y = (y1, . . . , yn)T , and n is hence also the dimension of each
predictor xj . The model explains the responses with a linear combination of
the predictor variables

yi = β0 + β1xi1 + · · · + βpxip + εi

for i = 1, . . . , n, and εi denoting the error random variables, often assumed to
be Gaussian. In matrix form, with X = (1,x1, . . . ,xp) and β = (β0, β1, . . . ,βp),
the equations can be formulated as

y = Xβ + ε

When minimizing the squared deviations of the observations from the model
we get the least-squares solution

β̂OLS = argmin
β

n�

i=1

(yi − β0 −
p�

j=1

xijβj)2

under the restriction that XT X is non-singular, and the solution in matrix
form is given by β̂ = (XT X)−1XT y (Hastie et al., 2009). We observe that the
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number of replicates n needs to exceed the number of predictors p in the model
for a unique least-squares solution to exist. In fact, the closed form solution to
the ridge regression problem (see below) was first introduced to alleviate the
problem of a singular XT X matrix.

In regression modeling, situations can occur when we want to, or have to, im-
prove upon the least-squares solution to the regression problem. Two such rea-
sons are prediction and interpretation (Hastie et al., 2009). The least-squares
estimates have low bias but large variance. The prediction can sometimes be
improved by accepting a larger bias for a gain in the form of lower variance.
Interpreting models with a large set of predictors can be hard, and it is some-
times preferable to select a smaller subset of variables that show the strongest
effects. Also, in many applications, for example biology with genome-wide
association studies, the number of predictors p can be much larger than the
number of observations n. Since the full model is not estimable in this setting,
some kind of regularization or selection on the predictor matrix is necessary to
find influential predictors.

4.2 Selection Methods

To resolve the issue with p � n or improving the interpretability of the model,
some kind of subset selection on the predictors can be done.

Best-subset selection, involves for each size k = 1, . . . , p, to find the best subset
of predictors with size k (e.g., the set that minimizes the quadratic deviations).
As p increases the problem becomes more difficult to handle, since the number
of subsets increases rapidly (Hastie et al., 2009). An alternative to searching
through all subsets, is to search for a path of predictors by sequentially adding
the predictors one by one. Such a method is forward stepwise selection (Hastie
et al., 2009) in which a predictor is added if it is the one that improves most
upon the fit. A related method is the backward stepwise regression in which
predictors instead are eliminated from the full model. Based on this description,
it is easy to conclude that backward stepwise regression is only possible if n > p.

4.3 Shrinkage Methods

An alternative to subset-selection methods is to use shrinkage methods. In
a regression model, constraints can be imposed on the sizes of the regression
coefficients, which induces shrinkage.
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4.3.1 Nonnegative Garrote and Ridge Regression

The nonnegative garrote was introduced as a better alternative to subset se-
lection (Breiman, 1995). The least-squares estimates (OLS estimates) of the
regression coefficients are shrunk by nonnegative factors, under the condition
that the sum of these factors are constrained.

β̂garrote = argmin
β

n�

i=1

(yi − β0 −
p�

j=1

xijcj β̂
OLS

j )2

subject to cj ≥ 0,

p�

j=1

cj ≤ t

The nonnegative garrote cannot be used in the p > n setting since it requires the
least-squares estimates of the regression coefficients. If some of the predictors
are highly correlated, the OLS estimates of the coefficients (if they can be
found) may perform badly, and has an equally bad influence on the garrote
(Tibshirani, 1996).

A related shrinkage method is ridge regression, in which the sizes of the squared
regression coefficients are constrained. The resulting constrained optimization
problem can be written

β̂ridge = argmin
β

n�

i=1

(yi − β0 −
p�

j=1

xijβj)2

subject to
p�

j=1

β
2
j ≤ t

which can be rewritten in Lagrangian form as (see below for an explanation of
the connection between t and λ)

β̂ridge = argmin
β

� n�

i=1

(yi − β0 −
p�

j=1

xijβj)2 + λ

p�

j=1

β
2
j

�
.

The coefficients in the ridge regression are shrunk towards zero (and conse-
quently towards each other). The ridge regression has an explicit solution
given by β̂ridge = (XT X + λI)−1XT y (Hastie et al., 2009). The ridge regres-
sion is not scale invariant, and usually, the predictors are scaled to have mean
0 and variance 1.
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4.3.2 The Lasso

By replacing the L2 constraint on the regression coefficients in the ridge re-
gression by an L1 penalty constraining the absolute values of the coefficients,�p

j=1 |βj | ≤ t, we get the lasso (Tibshirani, 1996):

β̂lasso = argmin
β

� n�

i=1

(yi − β0 −
p�

j=1

xijβj)2 + λ

p�

j=1

|βj |
�

The constraint on the parameters, t, can be mapped one-to-one to λ in the
Lagrangian form of the lasso problem. Provided that β̂(λ) is a solution to the
Lagrangian form, then it also solves the constrained version of the lasso with
t =

�p

j=1 |β̂j(λ)| (Friedman et al., 2007).

In contrast to ridge regression, the lasso penalty will often force some coeffi-
cients to be set to zero. Figure 4.1 (adapted from (Tibshirani, 1996)) illus-
trates why this occurs in the two-predictor case. The ridge constraint region
β

2
1 + β

2
2 ≤ t is spherical, while the lasso constraint region |β1| + |β2| ≤ t is

rhomboid. The elliptical contours of the least-squares solution will more often
hit a point where some coefficients are exactly zero with the lasso constraint.

Figure 4.1: Ridge constraint region (left) and lasso constraint region (right)
with the elliptical contours of the least-squares solution with two predictors.

The lasso (unless the predictors are orthonormal) does not have a closed form
solution, as opposed to ridge regression, but it is a convex optimization prob-
lem, and hence has a unique minimum. The Least-Angle Regression (LARS)
algorithm was introduced as a new model selection algorithm (Efron et al.,
2004) and is related to the forward stepwise regression in which variables are
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entered sequentially. LARS, in contrast to forward stepwise, does not neces-
sarily enter the full variable in the fit, but just enough until another variable
has the same correlation with the current residual. A small modification to the
LARS algorithm produces lasso solutions to a regression problem and is based
on the fact that the lasso paths are piecewise linear.

The lasso problem is usually approached by estimating the coefficients as the
penalty factor λ is varied across a relevant range, producing what we refer to as
the lasso paths. The paths are the trajectories of the regression coefficients as
the penalty parameter λ changes, and an illustration is given in Figure 4.2. The
penalty parameter λ is large for small values of the L1 norm of the coefficient
vector and decreases along the x-axis until it is zero, and we end up with the
OLS estimates of the coefficients (since we here have the p < n situation).
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Figure 4.2: Lasso paths for the regression coefficients in the diabetes data
(Efron et al., 2004). The data set includes a response vector and ten predictor
variables for 442 patients. The x-axis shows the L1 norm of the coefficient
vector, as a fraction of the maximal L1 norm:

�p

j=1 |βj |/ max{
�p

j=1 |βj |}.

The solution paths can be easily produced for relevant choices of lambda via
the LARS algorithm or by coordinate descent (Friedman et al., 2010). The
problem is then to choose a suitable value of λ to define the final model. Small
values of lambda means little regularization and hence a complex model, while
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large values indicate a heavy penalty and a sparse model.

Model selection criteria like Mallow’s Cp, the Bayesian Information Criterion
(BIC) or Akaike’s Information Criterion (AIC) can be used to select λ in the
lasso under certain circumstances. The AIC and BIC select models based on
the log-likelihood under a trade-off with the number of parameters (the degrees
of freedom) needed to achieve the likelihood. For a fitted model with responses
y and fitted values µ̂ we define

BIC(µ̂) = −2 · loglik + log(n) df(µ̂)
AIC(µ̂) = −2 · loglik + 2 df(µ̂)

and choose the model with the minimum BIC or AIC. In Gaussian models,
the criteria can be rewritten to illustrate the dependence on the residual sum
of squares and the sample variance, where the log-likelihood term (and the
constant) can be shown to be �y − µ̂�2/σ

2, and the resemblance to the Cp

criterion is clear.
Cp(µ̂) = �y − µ̂�2 + 2 df(µ̂) σ

2

Choosing one of the model selection criteria is not trivial. The BIC has attrac-
tive properties like consistency when the sample size n →∞, which is not the
case for AIC, as its choices tend to be too complex for large n. However, BIC
has a tendency to choose too sparse models for smaller n (Hastie et al., 2009).

In the lasso context, using any of the criteria is a bit more complicated, espe-
cially when it comes to estimating the degrees of freedom of the fitted model,
since the lasso is a technique that in a way searches through the set of predic-
tors. An unbiased estimate of the degrees of freedom of a lasso fitted model
with parameter λ is the number of predictors included in the model for that
particular λ (Zou et al., 2007).

Another problem that arises is in the p � n context when the lasso selects as
many variables as possible (giving a saturated model), and then terminates.
Naturally the models having as many parameters as (or close to) the number
of observations n will have very small residual sum of squares, and hence a
very big likelihood. The likelihood will dominate in the BIC or AIC criterion
and hence the most complex model will almost always be chosen. The Cp is
difficult to apply in the p > n context as well, since it includes an estimate of
the model variance. In the BIC with the lasso this usually means the variance
for the OLS model, but if p > n this is not available.

An alternative which seems to work well for the lasso in general is cross-
validation. By dividing up the data into K bins, and in turn excluding the
kth bin, adapting the models, and estimating the predictive power on the ex-
cluded bin, an average prediction error for a sequence of λ’s can be estimated.
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The λ showing the smallest prediction error is chosen. One drawback with the
cross validation technique is that it can be unstable, especially if the sample
size is small.

4.3.3 Other Shrinkage Methods

Since the publication of the original lasso paper, and especially the LARS
paper, many more papers have been published that explore, apply, or develop
shrinkage and lasso type methods.

The elastic net (Zou and Hastie, 2005) is a compromise between ridge regression
and the lasso, in which the penalty on the regression coefficients is a linear
combination of the ridge and lasso penalties:

�p

i=1(αβ
2
j
+(1−α)|βj |) ≤ t. The

penalty is designed to shrink variables in a ridge-like fashion, while selecting
variables according to the lasso. The elastic net has some attractive properties,
like the ability to include more predictors than the number of replicates, unlike
the lasso. If there are highly correlated predictors present, the lasso tends to
pick one of them (and ignore the others), while the elastic net allows for highly
correlated predictors to be included in the model together by shrinking their
coefficients towards each other. One additional issue with the elastic net is the
need to choose the parameter α determining the trade-off between the ridge
and the lasso penalties (Zou and Hastie, 2005; Hastie et al., 2009).

The grouped lasso (Yuan and Lin, 2006) was introduced to address the problem
of adding predictors in a grouped fashion in the lasso. The predictors are
gathered into predefined groups, and if such a group is chosen to be in the
model, all of its members will be included. This type of variable selection
is imposed by a penalty combining a lasso type L1 penalty between groups,
and ridge type L2 penalty within groups. In order to compensate for different
group sizes, a scaling constant can be included in the penalty. It turns out that
the solution paths in the grouped lasso are not piecewise linear, so a LARS
type algorithm cannot be used. Instead algorithms based on block coordinate
descent can be used to solve the group lasso (and other more complicated
regression models with lasso type penalties) (Friedman et al., 2007; Friedman
et al., 2010).

The Composite Absolute Penalties (CAP) family of penalties is a generalization
of the group lasso penalty, in which the between groups and within groups
penalties can be used with different norms. One important application they
present is hierarchical selection of variables, which may be useful in regression
models with interaction terms. Hierarchical selection of variables can be useful
when it is reasonable to include an interaction term only if both of the main
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effects also are included (Zhao et al., 2009).

In the graphical lasso (Friedman et al., 2008) estimation of sparse graphs is
done via a lasso penalty on the inverse covariance matrix in a Gaussian model.
The reasoning behind this is that if the ij

th element of the inverse covariance
matrix is zero, the variables i and j are conditionally independent.

4.3.4 Dantzig

The Dantzig selector is somewhat different in flavor to the lasso based methods.
The constrained optimization problem solved by the Dantzig is

min
β

�XT (Y −Xβ)�∞

subject to
p�

j=1

|βj | ≤ t

in which the maximum inner product of the current residual with the predictors
is minimized (Candes and Tao, 2007). The constraint region is identical to the
constraint region in the lasso, but the objective function is not ellipsoid but
box-shaped (Meinshausen et al., 2007), which in certain circumstances results
in multiple solutions to the minimization problem. The Dantzig selector has
some appealing theoretical properties but has been shown to sometimes produce
erratic coefficient paths and suffer from poor predictive accuracy (Hastie et al.,
2009).

4.4 Model Selection via Rate-Distortion

In the information theory field, rate-distortion theory builds the foundation for
data compression, and has many uses in for example video and image encoding.
Generally, the aim in applying rate-distortion in image compression is to repre-
sent a source with as few bits as possible (Ortega and Ramchandran, 1998). In
the compression of an image, the total number of bits RT (i.e., the coding rate)
is restricted. For efficient compression, it makes sense to code separate parts
(units) of the image with different number of bits, for instance in allocating
few bits to background parts of the image. The distortion of the image, mea-
sured with for example mean squared error, naturally decreases with increasing
number of bits allowed in the compression for the different units.

Suppose we have N units with M different operating points (different ways
to allocate bits). For each unit i and operating point j, we have a rate rij
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and a distortion dij . The optimization problem that is to be solved consists of
minimizing the overall distortion D =

�N

i=1 dij under the constraint that the
total number of bits allocated to different units must not exceed RT =

�N

i=1 rij .
We wish to find the operating points of each unit that satisfies the optimization
problem.
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Figure 4.3: Rate distortion curves for two units. The dashed lines correspond
to a fixed slope constraint.

Figure 4.3 illustrates the rate-distortion curves for two units with the dashed
lines corresponding to a fixed slope constraint ∆. For a fixed ∆, it can be
shown that the optimization problem is satisfied by selecting the points for
each unit that is first "hit" by the slope constraint wave with the total rate
RT =

�N

i=1 rij(∆) (Ortega and Ramchandran, 1998). By closer examination,
the resemblance to the optimization problem solved by the lasso is apparent,
and we can also formulate the rate-distortion problem in a Lagrangian form.

The rate-distortion theory can be adjusted to work as a model selection criterion
in significance testing or cluster analysis on high-dimensional data like gene
expression (Jörnsten, 2009). Suppose we have N genes that act as responses,
each observed in a replicated microarray experiment. For each gene we have a
set of predictors from which we would like to select a subset of features that
influences the gene expression the most. The predictors can for example be
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binding site affinities for transcription factors. Employing the lasso or some
other shrinkage method of choice, we produce a set of different models for each
gene by varying the penalty parameter λ. For each λ we can calculate the
residual sum-of-squares (SSR) for the model for each of the genes.

In the rate-distortion setting, we let the genes be units, the distortions be the
SSR for the genes indexed by lambda, and the rate for each gene be model
complexity (proportional to the inverse of lambda). Simultaneous model se-
lection for all the genes can now be performed by choosing a slope constraint
∆. In effect, we wish to minimize the overall residual sum-of-squares under
the restriction that the number of parameters allowed is limited. The slope
constraint can be chosen by for example cross-validation.



Chapter 5

Summary of Papers

Paper I:
Evolutionary Conservation of Human Drug Tar-
gets in Organisms used for Environmental Risk
Assessments

This paper deals with identifying orthologs for human drug targets in a set of
species in order to assess if human drugs potentially can affect these species
by means of a drug-drug target interaction. The paper proposes the use of
more targeted test strategies in ecotoxicity testing based on predicted orthology
information in 16 different species.

Unintentional exposure of pharmaceutics is a risk for a wide range of species in
their natural habitats, although the pharmaceutical residues appear in quite low
concentrations. In the approval of new pharmaceutical products, environmental
risk assessments are compulsory. However, the testing procedures required are
mainly based on Daphnia (waterflea) and algae, and not on higher organisms,
like fish or amphibians, in a specific way.

The conservation of drug targets in species relevant for ecotoxicity testing is a
key aspect in developing such targeted test strategies. Since complete genome
information, with predicted proteomes, is available for a wide range of species,
it is possible to extract and compile data on evolutionary conservation for drug
targets. One method to do this is to predict orthologs for the human drug

37
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targets in a set of species of interest.

With the OrthoMCL algorithm (see Section 3.2.2 and Li et al., 2003), orthologs
were predicted in 16 species. The parameters of the prediction method were
chosen with respect to control cases with known orthologs.

The drug targets were classified into five quite large groups based on the Gene
Ontology (GO). Since the GO classifies genes and gene products into non-
exclusive groups, some drug targets were annotated into several groups, see
Figure 5.1. Over-representation and under-representation for the GO-groups
were performed in the ortholog groups in all the species, using one-sided ver-
sions of Fisher’s exact test. The general trend was that proteins annotated
as receptors were statistically under-represented, while proteins annotated as
enzymes were over-represented.
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Figure 5.1: Venn diagram over the drug target inclusions in the different GO
groups defined in Paper I. The ’other’ category is not included.

Supporting information in the literature is presented in the paper, indicating
reliability in the ortholog prediction procedure. The presented orthology pre-
dictions can be used as a guide to prioritize test species for a certain drug,
interpret the relevance of existing ecotoxicity data or to deduce which pharma-
ceuticals may pose an increased risk to a certain organism group.
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Genome annotation is, for the most part, performed automatically, giving pre-
dictions of genes, proteins, and transcripts. Errors may arise during the au-
tomated annotation process, such as failure to recognize proper start sites for
open reading frames or problems in the identification of intron-exon boundaries.
Also, the sequence coverage might not be adequate in the sequencing process,
resulting in errors in the annotation. Searching for proteins with similarity in
other species, might therefore fail because a putative ortholog has been wrongly
annotated as a pseudogene, or missed all together in the sequencing and anno-
tation pipeline. The genome sequence reliability for the different species used
in the analysis is varying. Some species have quite stable genome sequences,
while the genomes for other species were quite recently determined. The dif-
fering quality of the sequence data must be considered in interpreting the data
from this study.

Contributions to Paper I

The current author contributed to the work by performing the data prepro-
cessing, including proteome data processing and drug target annotations, the
ortholog prediction procedures, the GO annotations, and the statistical anal-
ysis. The current author prepared the artwork, the supplementary material,
and contributed to the writing and discussion in the paper together with the
other authors.
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Paper II:
mRNA Stability Changes Precede Changes in Steady-
State mRNA Amounts During Hyperosmotic Stress

This paper concerns the hyperosmotic stress response in S. cerevisiae and its
dependence upon the stabilization and destabilization of certain transcripts.

During the different phases of the stress response; shock, adaptation, and re-
covery, cells need to optimize the amount and activity of large numbers of
gene products. The regulation of transcription rates must be harmonized with
turnover and translation efficiencies of mRNAs.

Using microarrays with the transcriptional inhibitor 1,10-phenanthroline, we
analyzed mRNA turnover (decay) changes in relation to mRNA steady-state
levels following hyperosmotic shock. The changes in decay rates between stress
conditions were modeled with differences in decay slope coefficients (in the
paper called stability indices, and denoted kS), as described in Section 2.2.
Although the method does not provide absolute estimates of mRNA half-lives,
valuable information can be extracted based on the slope coefficient differences,
as exemplified below.

Based on the measurements on both steady state levels and decay changes, we
found that regulation of mRNA stability precedes the changes in steady state
levels, both regarding the early upregulation and the later downregulation of
stress induced genes. The corresponding but inverse behavior was observed for
the downregulated genes.

At the peak of the stress response (in Paper II estimated to be approximately
30 minutes after the addition of salt), we observed a stability decrease for the
100 most upregulated genes. Assume that the difference in stability between 6
minutes and 30 minutes after stress is estimated to ∆kS . How does this change
affect the removal of transcripts? Let N(t)i indicate the number of transcripts
t minutes after the peak time point if the stability index is unchanged. Let
similarly N(t)ii indicate the number of transcripts when we have an altered
stability index. Assuming an exponential decay model, the log2 fold-change of
the number of transcripts after t minutes between the two scenarios is

log2

�
N(t)i

N(t)ii

�
= ∆kS · t

Despite the naive model, the measurements on the decay indexes are in quite
good correspondence with the steady state level data presented in the paper.
At the 60 minute time-point after the addition of salt, the amount of transcripts
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(in reference to unstressed conditions) for the 100 most upregulated mRNAs
is reduced in half compared to the peak levels. The model indicates a log2

fold-change of approximately 0.038 ∗ 30 � 1.1 (based on data from Figure 3 in
the paper).

In addition to using wild-type strains under different stress conditions, two
mutant strains, hog1∆ and rck2∆, which lack components of the HOG path-
way, were included. The MAP kinase Hog1 was seen to affect stability as well
as steady state levels of stress-responsive transcripts while the Hog1-activated
kinase Rck2 mainly played a part in the regulation of steady state levels.

Using functional categorization with both the Gene Ontology (GO) and the
MIPS functional catalogue, several functional mRNA groups were found to be
regulated during the phases of the stress response, allowing timely tuning of
their steady-state levels. The destabilization of mRNAs at the peak steady-
state levels during adaptation, allows the cell to prepare for the subsequent
recovery phase during which these transcripts are down-regulated. Conversely,
stabilization of stress-repressed mRNAs permits their rapid accumulation in
the late phase of the stress response.

Please note that there is a methodological error in the paper connected to
Figure 3. Of course, a t-test is not valid for the comparison of wild-type
and hog1∆ cells for the 30 minute time point, as the genes were selected for
differential expression in these time points. The comparisons for the other time
points however, are valid.

Contributions to Paper II

The current author contributed to this paper by performing the microarray
preprocessing and analysis, as well as the modeling of mRNA stability. The
comparisons with data from other publications, the GO annotations, and most
of the artwork and supplementary material was also prepared by the author.
The current author contributed to the writing and discussion in the paper
together with the other authors.
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Paper III:
Subcellular Localization and Effects of DDIT3/
GADD153/CHOP

This paper deals with the molecular effects induced by the protein DDIT3, also
known as GADD153, or CHOP. DDIT3 has been indicated as a regulator in
stress response, where for example stress types like ER stress and starvation
induce transcription of DDIT3. Previously, DDIT3 has mainly been reported
as a nuclear protein, but this paper shows that DDIT3 also can be localized to
the cytoplasm, and that the two forms regulate different sets of genes.

We analyzed cultured normal human fibroblasts and sarcoma cells carrying am-
plified DDIT3 or tamoxifen inducible DDIT3 expression constructs. The effects
of DDIT3 were investigated via a range of methods, including expression pro-
filing with microarrays, real-time qPCR, immunoblotting, confocal microscopy
and live imaging, and a migration assay. The design of the microarray exper-
iment was such that both analysis of cytoplasmic and nuclear DDIT3 effects
could be investigated. The genes differentially expressed due to cytoplasmic
DDIT3 effects, were involved in cell movement, cell death, and cellular growth
and proliferation processes.

The cell migration effects were tested in a migration assay experiment in which
cells of different types were allowed to grow and migrate together with wild type
(control) cells. The novelty of this assay is the use of co-migration with control
cells, aimed at reducing variability and proliferation giving rise to migration
rate differences. By using a mathematical model and subsequently a Wilcoxon
test, differences in migration rates for the different cell types could be deduced,
as described in the supplementary information accompanying the paper. We
plan to further investigate interesting properties of the method, like the effect
of the approximation with the use of the Wilcoxon test, and the sensitivity to
the different estimated rate ratios, in a future paper.

For the nuclear form of DDIT3, we found that categories like cell death and
cellular growth and proliferation, as well as cell cycle were predominant among
the regulated genes. Indeed, we could observe a transient cell cycle arrest and
an accumulation of cells in the G1 phase of the cell cycle in cells treated with
tamoxifen (which induces the nuclear translocation of DDIT3).

DDIT3 is a leucine-zipper transcription factor of the C/EBP family, but cannot
bind DNA in a homodimer form. Instead it has been reported that DDIT3
functions as a negative factor (i.e., blocking transcription) when binding to
DNA in a heterodimer form with other C/EBP factors. DDIT3 can also induce
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gene transcription when binding with other lecuine-zipper factors, and we were
hoping to discover such interaction partners in this study. We attempted to
predict transcription factor binding sites and identify enriched sites among
our regulated genes, both with a novel and a traditional scoring method (see
supplementary information to the paper). However, we were not successful,
perhaps due to the fact that our set of regulated genes is quite small, but more
likely due to the fact that DDIT3 may divergently bind several different factors,
and induce transcription by binding several different sites.

Contributions to Paper III

The current author contributed to the paper by performing the microarray data
preprocessing and analysis, as well as the functional annotation and network
analysis of differentially expressed genes. Comparisons of array data with data
from qPCR experiments were also performed by the author. Prediction of
transcription factor binding sites and the subsequent enrichment analysis, as
well as the migration assay modeling was developed and performed by the
author. The artwork and supplementary material was prepared by the author,
and the manuscript and discussions therein written together with the other
authors.
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Paper IV:
Transcriptional and Metabolic Data Integration
and Modelling for Pathway Identification

This paper deals with two research questions (i) how to combine transcriptional
and metabolic data, and (ii) how to use these data to draw conclusions about
activities of (metabolic) pathways. Pathways are sets of reactions involving
genes, metabolites, and proteins, highlighting functional modules in the cell.
The pathways of course partly overlap and are connected to each other, but it
may still be very important to find modules of the cell metabolism that appear
to be perturbed when comparing two conditions with each other (for example
comparing cancer tissue with matched normal). Figure 5.2 shows a small part
of the overall metabolic pathway system described and depicted in the KEGG
database (Kanehisa et al., 2010).

Figure 5.2: Part of the map over metabolic pathways provided in KEGG.
Different pathways make up the overall metabolic system.
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We propose a model that integrates gene and metabolite expression data in
order to make pathway level based decisions. We adopt a modeling scheme
in which we view the gene expression data as explanatory for the metabolite
data. Modeling the data like this makes sense since metabolites can be seen
as end-points of perturbations happening on the gene level (Abate-Shen and
Shen, 2009).

We adapted a stepwise procedure to sequentially select pathways that the data
and the model indicate are the most perturbed, or active, when comparing two
conditions.

For the genes, the model and estimation procedure considers how a certain
pathway explains the differences between the two conditions for its member
genes. If the expression for a gene is sufficiently explained by the treatment-
group difference, we estimate a coefficient for this effect, and let the gene be
active, i.e. contribute to the "explanatory" power of the pathway. We choose
which genes to include by rate-distortion under a Bayesian Information Crite-
rion (BIC) (see Section 4.4).

For the metabolites in a given pathway, we allow genes to influence the expres-
sion if the gene is active and a member of the pathway under consideration.
We select the genes to include as predictors for the metabolites by an elastic
net penalty, and choose the model complexity via cross-validation (CV).

The purpose of using a rate-distortion selection criterion in combination with
either BIC or CV, is to choose models that do not overfit to the data, so that
large pathways with many genes automatically explain the metabolite data well.
Even though there are many genes in a pathway, all of them may be excluded
as predictors for the metabolites in the pathway if they do not significantly
contribute to explain the data.

The benefits of the proposed model model compared to methods like enrich-
ment on the individual data sets, is that in trying to incorporate the pathway
decision into the modeling, we pick up a specific causal relationship between
the different data sources. We avoid the problem of combining p-values from
separate analyses, and can handle moderate amounts of missing data in the
modeling. The method seems to perform slightly better in detecting pathways
containing genes and metabolites with moderate differential expression, which
can be a problem with rank-based enrichment methods.

For future versions of the paper we intend to test the model a sharp data set (not
yet publicly released), as well as improving the penalty parameter selection by
using an FDR based criterion instead of cross-validation. The overall pathway
scoring scheme, now based on R

2 values, is also planned to be investigated
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further.

Contributions to Paper IV

The current author contributed to the paper by implementing and jointly de-
veloping the model, performing the literature review, designing the simulations,
and writing up the paper.
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Pharmaceuticals are typically found in very low concentrations
in the aquatic environment. Accordingly, environmental
effects clearly assigned to residual drugs are consistent with
highaffinity interactionswith conservedtargets inaffectedwildlife
species rather than with a general toxic effect. Thus,
evolutionarily well-conserved targets in a given species are
associated with an increased risk. In this study orthologs for 1318
human drug targets were predicted in 16 species of which
several are relevant for ecotoxicity testing. The conservation
of different functional categories of targets was also analyzed.
Zebrafish had orthologs to 86% of the drug targets while
only 61% were conserved in Daphnia and 35% in green alga.
The predicted presence and absence of orthologs agrees well
with published experimental data on the potential for specific
drug target interaction in various species. Based on the
conservation of targets we propose that aquatic environmental
risk assessments for human drugs should always include
comprehensive studies on aquatic vertebrates. Furthermore,
individual targets, especially enzymes, are well conserved
suggesting that tests on evolutionarily distant organisms would
be highly relevant for certain drugs. We propose that the
results can guide environmental risk assessments by improving
the possibilities to identify species sensitive to certain types
of pharmaceuticals or to other contaminants that act through
well defined mechanisms of action. Moreover, we suggest
that the results can be used to interpret the relevance of existing
ecotoxicity data.

Introduction
A range of organisms are unintentionally exposed to a large
number of pharmaceutical residues in their natural habitats
(1–4). Since many drugs are designed to affect specific protein
targets at relatively low doses, pharmaceuticals may become

a potential environmental hazard even at low concentrations.
To date there are only a few examples where the presence
of pharmaceuticals in the environment has been clearly linked
to adverse effects on wildlife. For example, the analgesic
diclofenac fed to livestock has caused a dramatic decline in
the populations of vultures in India and Pakistan (5, 6).
Furthermore, the synthetic estrogen in human contracep-
tives, 17-R-ethinylestradiol (EE2), strongly contributes to the
feminization of fish observed downstream from sewage
treatment works (7–12). The environmental effects of EE2

and diclofenac (feminization and renal failure) would hardly
have been predicted from the current standard tests applied
in the human or veterinary risk assessment procedures
(13–15). On the contrary, both these examples were identified
in retrospect through field observations of specific, known
effects of these drugs (5, 7, 12, 16). This suggests that pro-
spective testing could be made more powerful by including
targeted test strategies, i.e., a selection of species, tests, and
end points based on the known pharmacological properties
of the tested pharmaceutical (17).

For about ten years, environmental risk assessments have
been compulsory for the approval of new pharmaceutical
products in the United States and the European Union
(13, 15). Only acute tests are required in the United States
and tests on fish are not mandatory (15). In 2006, acute tests
were abandoned from the European risk assessment pro-
cedures for human drugs, and replaced by chronic toxicity
tests with Daphnia and algae, and semichronic early life stage
tests with fish (13). Despite these new EU guidelines requiring
more relevant chronic toxicity data, there is still little focus
on targeted test strategies.

Pharmaceuticals are typically found in the aquatic en-
vironment at ng/L to low µg/L concentrations. Adverse effects
in nontarget species are therefore most likely to occur as a
consequence of specific drug target interactions rather than
via an unspecific mode of action, such as narcosis. Conse-
quently, evolutionarily well-conserved drug targets are likely
associated with an increased risk for pharmacological effects
of a given drug in exposed aquatic organisms. Indeed, several
authors have pointed out that information on conservation
of drug targets is a key aspect for the development of more
efficient test strategies (17–19). For the majority of newly
developed pharmaceuticals, the molecular human drug
targets are known (20). Since complete genomes for a wide
range of species are now available, it is possible to compile
data on the evolutionary conservation of drug targets. Pre-
diction of orthologs, i.e., proteins derived from a common
ancestral protein at the time of speciation, is a common way
to link functionally similar proteins among different species.
Although orthology does not guarantee common function,
the value of predicting orthologs has already been recognized
in the field of pharmacology (21).

We propose that orthology data of human drug targets
can add important information in order to direct future
research efforts to assess the ecotoxicological risks posed by
pharmaceuticals. In this study, we have therefore predicted
orthologs for 1318 human drug targets in seven species
commonly used for ecotoxicity testing (Xenopus laevis,
Xenopus tropicalis, Danio rerio, Gasterosteus aculeatus,
Daphnia pulex, Chlamydomonas reinhardtii, and Synecho-
coccus elongatus) and in nine diverse species with well-known
genomes (Mus musculus, Gallus gallus, Drosophila mela-
nogaster, Caenorhabditis elegans, Arabidopsis thaliana, Dic-
tyostelium discoideum, Tetrahymena thermophila, Saccha-
romyces cerevisiae, and Escherichia coli).
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Materials and Methods
Definition of Human Drug Targets. Information concerning
all human drugs approved by the U.S. Food and Drug
Administration (FDA) with specified drug targets were
downloaded from DrugBank (22) (April 2008). Annotations
for the drug targets were updated using the Uniprot/SwissProt
(23) collection of human proteins (18886 sequences from
release 55.1), resulting in 1318 unique human targets for a
total of 1152 drugs. Consequently, many drugs have more
than one target. The order of targets listed in DrugBank
generally reflects their importance regarding therapeutic
indication or physiological effect (22).

Ortholog Prediction. The OrthoMCL algorithm (24, 25)
was used to predict orthologs for all human drug targets in
the selected species (Table 1). All protein sequence data were
downloaded in April 2008. With the OrthoMCL algorithm
(25), putative ortholog pairs and paralog pairs (sequences
within the same genome that are reciprocally most similar
to each other) were first identified via BLASTP (26) as
reciprocal best hits in and between the species of interest.
The MCL algorithm (27) was then used to cluster the different
protein sequences. The E-value score, used as a cutoff in the
similarity searches, was the OrthoMCL default value 10-5.
The parameter governing cluster tightness, the Markov
inflation index, was set to 1.3. Next, the clusters containing
the human drug targets were extracted. For each cluster, all
orthologs were aligned with the corresponding human drug
target using Clustal W (v. 2.0) (28). Based on the alignments,
a sequence similarity score (percent similarity) was calculated
by a count of all matching amino acids divided by the length
of the human drug target. For the species represented in
each selected cluster, the orthologs with the highest sequence
similarity to the human drug target were extracted. For groups
of proteins within a species, the median sequence similarity
is reported.

Simple Best BLAST Hits. One-way similarity searches for
all drug targets were also performed with BLASTP to identify
possible high-scoring nonorthologous matches. Each drug
target was compared against the protein collections for all the
chosen species in turn. Similarity scores were calculated for the
best BLAST hit to each target using Clustal W alignments in the
same way as in the ortholog prediction procedure.

Gene Ontology Classifications. The human drug targets
were classified into five different functional categories:
enzyme, receptor, ion channel, transporter, and “other” based
on the Gene Ontology (GO) (29). The enzyme group consisted

of drug targets annotated to six different GO categories and
their children: oxidoreductase activity (GO:0016491), trans-
ferase activity (GO:0016740), hydrolase activity (GO:0016787),
lyase activity (GO:0016829), isomerase activity (GO:0016853),
and ligase activity (GO:0016874). The receptor group con-
sisted of all drug targets assigned to the receptor activity
category (GO:0004872) and its children, while the transporter
group was defined as all drug targets annotated to transporter
activity (GO:0005215) and its children, excluding ion channel
activity (GO:0005216), which was defined as a separate group
in a similar manner. The remaining drug targets not anno-
tated to any of the given groups were assigned as “other”.
In total, 135 of the drug targets were assigned to more than
one category. The two largest intersections were found
between the receptor and enzyme groups and between the
receptor and ion channel groups, respectively, sharing 53
and 41 drug targets. Annotations to two child terms of
receptor activity, ligand dependent nuclear receptor activity
(GO:0004879) and rhodopsin-like receptor activity (GO:
0001584), were also studied. All GO assignments for the drug
targets were made using the Gene Ontology Annotation (GOA)
Database at EBI (version 62.0 of GOA Human from http://
www.ebi.ac.uk/GOA/).

Statistical Analysis. Tests for over-representation and
under-representation were performed for the conservation
rates of the five functional GO categories (comparing each
group with the overall conservation rate of the other drug
targets in the study) in all of the investigated species. One-
tailed versions of Fisher’s exact test were used (30).

Results and Discussion
Ortholog Prediction. Figure 1 gives an overview of the
number of predicted orthologs and their median sequence
similarity compared to the human drug targets for all the
investigated species. Orthologs for 1292 drug targets were
identified in mouse with a similarity of 87% while chicken
had 1151 orthologs with a similarity of 70%. In the aquatic
vertebrates X. tropicalis, D. rerio, and G. aculeatus, 1137, 1136,
and 1160 orthologs were predicted, respectively, with a
similarity above 60%. Although the orthologs in X. laevis had
a similarity of 65% (in agreement with the similarities in the
other aquatic vertebrates), the number of orthologs was less
than expected [940], probably due to the lack of full genome
sequence information. The number of orthologs in Daphnia
and Drosophila [808 and 755, respectively] were roughly the
same but fewer than in the vertebrates. The similarity for the

TABLE 1. Protein Information for the Species Used in the Ortholog Identification Procedure

species
(common name)

reported proteins
in database database reference

Arabidopsis thaliana (thale cress) 32825 TAIR 8a (54)
Caenorhabditis elegans (nematode) 23693 Wormpep 188b (55)
Chlamydomonas reinhardtii (unicellular green alga) 14598 JGI Chlamy v3.0c (56)
Danio rerio (zebrafish) 31743 Ensembl release 49d

Daphnia pulex (water flea) 30940 JGI Daphnia pulex v1.0e

Dictyostelium discoideum (cellular slime mold) 13488 DictyBase release 080330f (57)
Drosophila melanogaster (fruit fly) 21017 FlyBase r5.6g (58)
Escherichia coli K12 (enterobacterium) 4285 CMR data release 1h (59)
Gallus gallus (chicken) 22195 Ensembl release 49d (60)
Gasterosteus aculeatus (three-spined stickleback) 27577 Ensembl release 49d

Mus musculus (mouse) 39276 Ensembl release 49d (61)
Saccharomyces cerevisiae (baker’s yeast) 5801 GENEDB version 2.1i (62)
Synechococcus elongatus PCC 6301 (cyanobacterium) 2524 CMR data release 16h (63)
Tetrahymena thermophila (ciliate) 24071 TGD release Oct 07j (64)
Xenopus laevis (African clawed frog) 29943 Xenbase 2.1k

Xenopus tropicalis (western clawed frog) 27711 Ensembl release 49d

a http://www.arabidopsis.org. b http://www.sanger.ac.uk/Projects/C_elegans/WORMBASE/current/wormpep.shtml. c http://
genome.jgi-psf.org/Chlre3. d http://www.ensembl.org. e http://genome.jgi-psf.org/Dappu1. f http://dictybase.org. g http://flybase.bio.
indiana.edu. h http://cmr.tigr.org. i http://www.genedb.org/. j http://www.ciliate.org. k http://xenbase.org/.
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orthologs in the two arthropods to the human drug targets
was about 42%. C. elegans had slightly fewer orthologs [734]
and a lower similarity of 38%. A. thaliana [461], the green
alga [464], D. discoideum [461], the yeast [358], the ciliate
[371], E. coli [244], and the cyanobacterium [185] all had
relatively few orthologs, with a similarity of less than 37%
(Figure 1 and Table S1 in the Supporting Information).

Among the evaluated species currently used for aquatic
environmental risk assessments, fish and frog were predicted
to have by far the greatest number of human drug target
orthologs, with the highest degree of similarity. Therefore,
it is more likely that low levels of residual drugs would result
in a specific pharmacological target interaction in aquatic
vertebrates than in the other species used for aquatic
environmental risk assessments. Hence, we propose that
aquatic toxicity testing for human pharmaceuticals should
always include comprehensive tests with fish or amphibians.
Tests on nonvertebrates would be particularly valuable for
pharmaceuticals that have drug target orthologs in species
more distantly related to man. In Table S1 in the Supporting
Information we have compiled orthology predictions for 1318
human drug targets in species commonly used for environ-
mental risk assessments and some additional species for
comparative purpose. These data can be used to prioritize
environmental risk assessment efforts and to interpret the
relevance of existing ecotoxicity data.

Classification of Orthologs. The distribution of orthologs
among different functional groups (enzymes, receptors, ion
channels, transporters, and “others”) for all the evaluated
species as well as the human drug targets is illustrated in
Figure 2. The most notable characteristic is that the propor-
tion of receptors decreases while the proportion of enzymes
increases with the evolutionary distance to man. In fact, drug
targets annotated as receptors are under-represented within
the ortholog groups in all tested vertebrates except mouse
(G. gallus p ) 0.02, X. tropicalis p ) 4 × 10-7, X. laevis p )
3 × 10-15, G. aculeatus p ) 1 × 10-3, D. rerio p ) 2 × 10-3).
The under-representation of ortholog receptors is even more
clear in the remaining species (all p-values < 3 × 10-12).
Proteins annotated as enzymes are over-represented in the
aquatic vertebrates (X. tropicalis p ) 3 × 10-6, X. laevis p )
9 × 10-13, G. aculeatus p ) 4 × 10-7, D. rerio p ) 8 × 10-7)
and weakly over-represented in mouse and chicken (p )
0.03 for both groups). The over-representation of ortholog
enzymes is highly significant in all the remaining species (all
p-values < 2 × 10-16).

Pharmacologically important subgroups of the receptor
drug targets were further studied. For example, 101 of the
drug targets had rhodopsin-like G-protein coupled receptor
(GPCR) activity in human and at least 72 of these targets had
orthologs in the aquatic vertebrates, while roughly 30
orthologs were found in the nematode or in the arthropods.
Only one rhodopsin-like GPCR ortholog was found in the
green alga and in the cyanobacterium, respectively. Similarly,
almost all of the 23 drug targets with ligand-dependent
nuclear receptor activity had orthologs in the aquatic
vertebrates, whereas the nematode and the two arthropods
had less than six orthologs for this category. The plant, the
green alga, D. discoideum, E. coli, and the cyanobacterium
all had one nuclear receptor target ortholog.

Receptors, especially GPCRs, constitute the most promi-
nent family of validated pharmacological targets. Approxi-
mately 40% of all FDA approved drugs elicit their therapeutic
effects by targeting rhodopsin-like GPCRs and nuclear
receptors (31). The receptors were the least conserved drug
target type (with low p-values for under-representation in
all of the investigated species used for ecotoxicity testing,
Figure 2) which compares favorably with previous results.
For example, rhodopsin-like receptors occur in vertebrate
genomes twice as frequently as they do in invertebrates, with
the exception of odorant receptors (32). Thus, the choice of
test species is particularly important for drugs that have
receptors as targets.

Environmental Risk Assessments. The evolutionary
distances between the studied species and man indicated in
our results are not reflected in the current ecotoxicity testing
relevant for new authorizations of pharmaceuticals within
either the United States or the EU. No tests on vertebrates
are required in the tier one ecotoxicity test in the United
States (15). The assessment factor used to extrapolate toxicity
to other species could be too small if a drug-target ortholog
is absent in the test species. In the EU, semichronic, early
life stage tests but no life cycle tests, are required on fish (13).
However, chronic tests are demanded for Daphnia (repro-
duction test) and green alga or cyanobacteria (13). Ankley et
al. (17) suggest that exotoxicity testing should be focused in
two ways: (1) identification of drugs with the most potential
to elicit adverse effects, and (2) determination of which
species and end points should be used for testing.

Support for the Ortholog Prediction in Published
Experimental Data. We argue that orthology prediction can
be used as a method to deduce possible interactions between

FIGURE 1. Median similarity and the number of predicted
orthologs in all investigated species compared to the human drug
targets. The boxes indicate 25% and 75% quantiles. Note that the
ortholog prediction in X. laevis is based on comprehensive EST
data and not on a fully sequenced genome.

FIGURE 2. GO categories for the drug targets in human and in
all the investigated species. Some drug targets were annotated
to more than one functional category. Note that the ortholog
prediction in X. laevis is based on comprehensive EST data and
not on a fully sequenced genome.
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a human drug and target orthologs in species distantly related
to man. We have listed examples from the literature (Table
2 and below), adding empirical support to this presumption.

Aldehyde dehydrogenase and inosine-5′-monophosphate
dehydrogenase (IMPDH) are drug targets that were predicted
to be well conserved. Accordingly, disulfiram inhibits alde-
hyde dehydrogenase in man as well as in a bacterium and
in a plant (33). Similarly, functional IMPDH is described in
a range of species from bacteria to mammals. Mycophenolic
acid inhibits microbial IMPDH, albeit poorly (34), whereas
it is a potent inhibitor in a fungus (35) and other eukaryotes.

Orthologs were predicted in almost all of the eukaryotic
species for the statin drug target, HMG-CoA reductase. HMG-
CoA reductase activity is described in eukaryotes, archaea,
and in certain true bacteria. The drugs simvastatin and
atorvastatin strongly inhibit growth of some fungal species
and their effect can be reversed by providing metabolites
(downstream from HMG-CoA-reductase in the cholesterol
biosynthesis) to the growth-medium (36). Statins also inhibit
HMG-CoA reductase activity in plants (37) and in inverte-
brates (38).

The 5HT transporter (sodium dependent serotonin trans-
porter) and the voltage dependent sodium channels are drug
targets for which orthologs were predicted in the two
arthropods but for example not in the plant or the bacteria.
The 5HT transporter is inhibited by selective serotonin
reuptake inhibitors (SSRIs), e.g., in zebrafish (39), in Droso-
phila (40), and in a flatworm (41). To our knowledge, no 5HT
transporter has been described in any fungi, plant, or algae.
Indeed, a very high concentration of fluoxetine (1 mg/L) has
no effect on either wet weight, frond number, chlorophyll,
or cartenoids in a plant (42). The neuroactive compound
lidocaine, acting on voltage dependent sodium channels in
man, increases intracellular sodium concentration through
the same mechanism also in a pond snail neuron (43).
Lidocaine also blocks nerve conduction in crayfish (44) and
affects sodium channels in eel (45).

The estrogen receptor and the type-1 angiotensin II
receptor are examples of drug targets for which orthologs
were predicted only in the vertebrates. EE2 potently binds to
the estrogen receptor (46) and induces effects at concentra-
tions below 1 ng/L (47, 48). To our knowledge, no estrogen
receptor has conclusively been characterized in any crus-
tacean and a gene loss of the estrogen receptor is predicted
in the arthropod lineage (49). The effects of high concentra-
tions of estrogen in different crustaceans do not seem to be
mediated through a specific steroid receptor target (50). A
type-1 angiotensin II receptor (AT1) is described in teleost
fish but experiments with the specific AT1 receptor antagonist
losartan gave inconsistent results in fish, often acting as a
partial agonist or as an inhibitor at high concentrations (51).
Little is known about angiotensin receptors in invertebrates.
In insects, angiotensin II receptors appear to be absent or
at least very different from those in mammals (51).

The presence of a drug target ortholog in a species does
not guarantee that a functional interaction with the drug
can occur. Vice versa, functional interactions between a drug
and other nonorthologous proteins are also possible. For
example, an estrogen receptor ortholog has been described
in a few mollusks but it is not activated by estradiol or other
vertebrate steroids (49). However, EE2 can induce reproduc-
tive responses in mollusks at low ng/L concentrations (52).
This suggests that EE2 could mediate its effect via either a
nonortholog receptor or possibly via a noncharacterized
ortholog. A more precise prediction of a potential drug target
interaction might be possible with better knowledge about
drug binding domains and the three-dimensional structure
of the target proteins. However, drug binding domains are
not extensively characterized and predicting the three- TA
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dimensional structure from an amino acid sequence alone
is a nontrivial undertaking.

Methodological Considerations. The physiological func-
tion of drug targets and the detoxification systems differ
between species. The risk of a significant drug exposure may
also vary between organisms as they occupy separate
ecological niches. Therefore, it is a complex task to predict
which species are the most sensitive. Thus, if orthologs are
present in several groups of organisms, there is an incentive
to test species from all groups if a significant exposure is
plausible. Although not within the scope of this study, it
should be pointed out that pharmaceuticals which have drug
targets in bacteria or eukaryotic parasites should be com-
prehensively tested on organisms with a higher degree of
similarity to those organisms. Accordingly, cyanobacteria,
instead of green algae, are recommended by the European
Medicines Agency for testing of antimicrobials, as they are
more sensitive to these compounds (13).

The prediction of orthologs can be difficult, especially
when the true ortholog has been lost or duplicated (paralogs)
since speciation. The orthology data should therefore be
interpreted carefully on an individual basis, especially when
several paralogous genes are present in humans (Tables S1
and S2 in the Supporting Information). However, the
OrthoMCL algorithm has previously been shown to perform
well on a divergent set of eukaryotic genomes (53). Another
uncertainty is the varying genome sequence reliability for
the species used in our analysis. For example, the genome
of X. laevis is not fully sequenced and the Daphnia’s and the
green alga’s genomes have quite recently been sequenced.
The annotations might therefore be less reliable in these
genomes. To add confidence to the results, species with better
studied genomes were included. A different challenge is that
pharmaceuticals can have multiple targets at their therapeutic
level. Some drugs have several targets through which their
intended therapeutic activities are mediated, while other
drugs show unintended polypharmacology (“dirty drugs”).
The exact definition of a drug’s targets is therefore debated.
For example, Overington et al. (31) uses a strict definition,
resulting in 266 targets for all FDA-approved drugs, while
DrugBank, which uses a wider concept, contains more than
five times as many targets (22).

We have compiled orthology predictions for all human
drug targets defined by DrugBank in species commonly used
for environmental risk assessments and some additional
species for comparative purpose (Table S1 in the Supporting
Information). When evaluating possible sensitive species for
a certain drug both the primary and alternative drug targets
should be considered. We suggest that the presented or-
thology predictions can be used as a guide to prioritize test
species for a certain drug, to interpret the relevance of existing
ecotoxicity data, or to deduce which pharmaceuticals may
pose an increased risk to a certain organism group. A more
comprehensive understanding of the mechanism of actions
of drugs in wildlife at environmentally relevant concentra-
tions would be valuable to assess the full potential of the
proposed approach.
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ABSTRACT

Under stress, cells need to optimize the activity of a wide range of gene products during the response phases: shock, adaptation,
and recovery. This requires coordination of several levels of regulation, including turnover and translation efficiencies of
mRNAs. Mitogen-activated protein (MAP) kinase pathways are implicated in many aspects of the environmental stress response,
including initiation of transcription, translation efficiency, and mRNA turnover. In this study, we analyze mRNA turnover rates
and mRNA steady-state levels at different time points following mild hyperosmotic shock in Saccharomyces cerevisiae cells. The
regulation of mRNA stability is transient and affects most genes for which there is a change in transcript level. These changes
precede and prepare for the changes in steady-state levels, both regarding the initial increase and the later decline of stress-
induced mRNAs. The inverse is true for stress-repressed genes, which become stabilized during hyperosmotic stress in
preparation of an increase as the cells recover. The MAP kinase Hog1 affects both steady-state levels and stability of stress-
responsive transcripts, whereas the Hog1-activated kinase Rck2 influences steady-state levels without a major effect on stability.
Regulation of mRNA stability is a wide-spread, but not universal, effect on stress-responsive transcripts during transient
hyperosmotic stress. By destabilizing stress-induced mRNAs when their steady-state levels have reached a maximum, the cell
prepares for the subsequent recovery phase when these transcripts are to return to normal levels. Conversely, stabilization of
stress-repressed mRNAs permits their rapid accumulation in the recovery phase. Our results show that mRNA turnover is
coordinated with transcriptional induction.

Keywords: mRNA turnover; Saccharomyces cerevisiae; stress-activated MAP kinase; HOG pathway

INTRODUCTION

In order to maintain viability and proliferation during
increasing turgor and concomitant molecular crowding,
cells need to recognize and rapidly adapt to changes in
extracellular osmolarity. In the yeast Saccharomyces cerevi-
siae, the required adaptation to hyperosmosis is mainly
initiated by the high osmolarity glycerol (HOG) pathway.
The HOG pathway consists of a stress-activated mitogen-
activated protein (MAP) kinase (SAPK) core module upon
which two independent upstream branches, the Sln1 and
the Sho1 branches, converge. Activation of any of these
branches by hyperosmotic stress leads to rapid phosphor-

ylation of the MAP kinase kinase Pbs2, which in turn
phosphorylates and activates the MAP kinase Hog1. In the
initial shock phase following mild salt stress, a major
fraction of phosphorylated Hog1 quickly (within 1 min)
translocates to the nucleus (Maeda et al. 1994), where it
resides for about 10 min. In the adaptation phase, nuclear
phosphorylated Hog1 in turn induces, as well as represses,
transcription of osmoresponsive genes (Gasch et al. 2000;
Posas et al. 2000; Rep et al. 2000; Causton et al. 2001;
Krantz et al. 2004) through interactions with different
transcription factors, including Hot1, Sko1, and Smp1
(Rep et al. 2000; Proft et al. 2001; de Nadal et al. 2003),
as well as through recruitment of the Rpd3 histone
deacetylase (de Nadal et al. 2004). The genes induced by
Hog1 are involved in stress defense processes, such as
production of the osmolyte glycerol (Albertyn et al. 1994),
ion homeostasis (Marquez and Serrano 1996), and redox
metabolism (Schüller et al. 1994; Krantz et al. 2004). By
contrast, genes repressed by Hog1 are mainly involved in
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translation, ribosome biogenesis, and amino acid synthesis
(Mager and Varela 1993; Gasch et al. 2000). These
responses essentially reflect a redirection of cellular resour-
ces from growth to stress adaptation. The levels of the
stress-responsive mRNAs change transiently with a timing
that depends on the severity of the stress (Rep et al. 1999).
After treatment with 0.7 M NaCl, the levels of induced
mRNAs peak after 45 min (Rep et al. 2000), while after 0.4
M of NaCl stress the peak appears as early as after 10 min
(Posas et al. 2000). After adaptation, cells eventually resume
growth in the recovery phase, which is characterized by
lower levels of stress proteins and increased translational
activity (Warner 1999).

Under hyperosmotic stress, Hog1 also phosphorylates
substrates not known to have a role in transcription.
Within 5 min of 0.4 M NaCl treatment, activated Hog1
targets the plasma membrane ion channels Nha1 and Tok1
(Proft and Struhl 2004). Cell cycle arrest is mediated by
activated Hog1 after 10 min of treatment with 0.4 M NaCl
in G1 through phosphorylation of the CDK inhibitor Sic1,
or in G2 (Escote et al. 2004) through phosphorylation of
the protein kinase Hsl1 (Clotet et al. 2006), respectively.
Furthermore, activated Hog1 phosphorylates the MAP
kinase activated kinase (MAPKAP kinase) Rck2 (Bilsland-
Marchesan et al. 2000), which has been implicated in
regulation of translation (Teige et al. 2001; Swaminathan
et al. 2006). Both Hog1 and Rck2 contribute to cellular
hyperosmotic and oxidative stress tolerance (Brewster et al.
1993; Bilsland et al. 2004; Swaminathan et al. 2006). In
other eukaryotes, there is also evidence for the involvement
of SAPK homologs in translational control. Thus, activa-
tion of the mammalian SAPK p38 stimulates translation of
tumor necrosis factor a mRNA (Kontoyiannis et al. 2001;
Hitti et al. 2006). The fission yeast SAPK, Sty1, binds to
translation factors (Asp et al. 2008), and sty1 mutants have
defects in recovery of translation after stress (Dunand-
Sauthier et al. 2005; Asp et al. 2008).

Messenger RNA levels are determined not only by
transcription rates but also by degradation rates. Hence,
regulation of degradation rate in response to different
stimuli is a potentially important stress response mecha-
nism. For example, mammalian gene transcripts encoding
interleukins and containing A/U-rich elements (AREs),
which are involved in inflammation, are stabilized follow-
ing signaling from the p38 or JNK SAPK pathways (Winzen
et al. 1999; Chen et al. 2000). Similarly, the mammalian
Rck2 homolog MAPKAPK-2 regulates mRNA stability
through phosphorylation of the ARE-binding protein
tristetraproline (Hitti et al. 2006). The stability of large
functional mRNA groups can be co-regulated via mRNA
sequence elements, such as the iron responsive element
(IRE) in yeast (Puig et al. 2005).

Genome-wide analysis of intrinsic mRNA stability has
been performed in S. cerevisiae using microarrays (Wang
et al. 2002; Grigull et al. 2004; Duttagupta et al. 2005; Puig

et al. 2005). In this study, we have used microarrays to
investigate global changes in transcript stability in response
to mild (0.4 M) NaCl stress in yeast. We find that the
changes in mRNA stability during the adaptation and
recovery phases are of a magnitude that could account
for a major fraction of the overall changes in mRNA steady-
state levels. The stability changes are most pronounced in
the latest (recovery) phase of the stress response. During
this phase, previously induced mRNAs encoding proteins
involved in stress survival undergo a distinct loss of
stability. Conversely, mRNAs that are transcriptionally
repressed in the early adaptation phase, principally encod-
ing growth-related functions, e.g., protein translation, are
markedly stabilized in the recovery phase. Thus, stability
changes precede changes in steady-state mRNA levels. We
also find that most of these changes are dependent on Hog1
and, in some cases, on Rck2.

RESULTS

Several gene categories are affected at the stability
level upon osmotic stress

Transcript steady-state levels are determined not only by
transcription rate but also by mRNA stability. The impor-
tance of transcriptional regulation in response to salt stress
has been well studied. In order to investigate the impor-
tance of a regulation of mRNA stability in response to
stress, we collected global data on mRNA stability and
steady-state levels from unstressed cells and after mild
hyperosmotic (0.4 M NaCl) shock (Fig. 1A). 1,10-Phenan-
throline (Phen) blocks de novo synthesis of transcripts by
inhibiting RNA polymerase II (Brown 1994). Hence,
changes in transcript levels in Phen-treated cells may be
assumed to be due exclusively to transcript degradation
(Rodriguez-Gabriel et al. 2003; Grigull et al. 2004; Lackner
et al. 2007). On the basis of mRNA levels measured at
different time points after Phen treatment, relative slope
coefficients representing stability were calculated (stability
indices, kS) (see Materials and Methods). Positive and
negative kS values indicate transcripts more stable and
unstable than the average transcript. Positive differences in
stability indices (DkS) indicate stabilization (with an
unknown scale since absolute half-lives were not mea-
sured), while negative differences indicate destabilization.
Genome-wide stability indices (kS) were calculated in
unstressed cells and after 6 and 30 min after NaCl exposure.
The amplitudes of the DkS indicate that the overall
contribution of stress-induced changes in mRNA stability
on steady-state levels is considerable (see Materials and
Methods, section Modeling mRNA Stability).

Figure 1B shows the average stability indices (kS) for the
38 Gene Ontology (GO) Slim categories of biological
processes in wild-type (wt) and hog1D cells before and
during stress. In wt cells, the mean mRNA stability of
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several GO Slim categories increases after 6 min of stress,
whereas after 30 min of stress almost all of these stabilized
categories are destabilized to a level similar to or even
below the original. These stabilized categories already tend

to have a relatively high mean stability before stress. This
includes processes such as ‘‘response to stress,’’ the ‘‘car-
bohydrate metabolic process,’’ and ‘‘cellular homeostasis.’’
On the other hand, transcripts belonging to categories that
already are unstable in unstressed conditions, such as
‘‘ribosome biogenesis and assembly’’ (RiBi) (Jorgensen
et al. 2004), and the ‘‘RNA metabolic process,’’ increase
in stability in the later phase after stress. Before stress, wt
and hog1D cells have very similar stability profiles (Fig. 1B).
After stress, however, the mRNA stability response of the
hog1D mutant clearly is weaker than that of the wt. Stability
in the category ‘‘conjugation’’ stands out as misregulated in
the hog1D mutant, indicating that the improper activation
of the mating pheromone MAPK pathway observed in this
mutant (O’Rourke and Herskowitz 1998) also extends to
the mRNA stability regulation level.

Changes in mRNA stability precede changes
in steady-state levels after hyperosmotic shock

Since there was a sharp decrease in mean stability after 30
min of stress of virtually all initially stabilized categories,
indicating a narrow time frame of regulation, the temporal
relationship between salt-induced changes in transcript
stability (DkS) and changes in steady-state transcript levels
(DtTOT) were investigated (Fig. 2A–D). We marked the 100
most up-regulated genes at 30 min in red in Figure 2, A–D.
This group is dominated by genes known to be functionally
important in the salt response (GO overrepresentation,
Fisher’s exact test: stress response [P = 3 3 10!16],
carbohydrate metabolic process [P = 6 3 10!6], and
sodium ion transport [P = 0.0027]).

Interestingly, the relative contribution of changes in
transcript stability to the overall changes in transcript levels
showed drastic temporal variations following salt addition.
After 6 min of salt adaptation, a strong positive global
correlation between DtTOT and DkS was observed (Fig. 2A),
suggesting that changes in transcript stability account for a
large fraction of the total salt-induced changes in transcript
levels. Stability changes after 6 min also correlated posi-
tively with steady-state changes after 30 min, indicating
that early stabilization influences later steady-state level
changes (Fig. 2B), which demonstrates an expected lag in
the effects of stabilizing mRNAs.

In contrast to the findings above, no correlation between
DkS and DtTOT was seen after 30 min of salt adaptation (Fig.
2C), nor when comparing DkS (30) to DtTOT (60) min (Fig.
2D). Interestingly, however, at 30 min a group of genes
corresponding to the red-colored salt-induced genes
(including well-known salt targets such as the glycerol
dehydrogenase GPD1, the glycerol phosphatase HOR2, and
the aldose reductase GRE3) are still induced on a steady-
state level, but now display a strongly reduced stability.
This suggests that regulation of steady-state levels has a
temporal dependency to mRNA stability through the

FIGURE 1. Several functional transcript categories are regulated at
the stability level after salt stress. (A) Study design. Transcript steady-
state levels were investigated at 6, 30, and 60 min after 0.4 M NaCl
shock. Stability was investigated at the time points 0, 6, and 30 min by
the addition of Phen. Aliquots were harvested at 15, 30, and 60 min
after Phen addition to monitor mRNA decay and stability indices (kS)
were calculated. (B) mRNA stability in functional categories before
and after stress. All 38 GO Slim broad functional categories (biological
process) were ranked from most (top) to least stable (bottom) based
on the mean kS of unstressed wt cells (left-most column). Unstressed
wt and hog1D cells have similar mean kS for most categories. After 6
min of stress, categories that are initially stable tend to get more
stabilized in the wild type, while initially unstable categories are
further destabilized. After 30 min, the reverse is true, as stabilized
categories are destabilized and vice versa. In the hog1D mutant, both
steps in this response at the stability level are less pronounced.
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phases of shock, adaptation, and recovery, and that
increased mRNA degradation underlies the decline from
the peak of steady-state levels in the late recovery phase.
The indicated genes would correspond to transcripts that
are required at high levels for salt adaptation, but not for
recovery from salt stress. Out of the 100 most steady-state-
induced genes at 30 min, 81 have significantly (moderated
t-test: P < 0.05) reduced transcript stability at the same time
point, indicating that a reduction in stability is the most
common fate among this group of mRNAs. Also, the
changes in stability between 6 and 30 min correlate with

the changes in steady-state levels between 30 and 60 min
(Spearman rank correlation r2 = 0.149, Spearman rank test
P = 4 3 10!176) (data not shown), strongly indicating that
late in the salt response, mRNA turnover is a major factor
driving changes in mRNA levels.

The 100 most down-regulated genes at DtTOT (30) are
colored blue in Figure 2, A–D. This group includes ribosomal
protein genes and the RiBi regulon encoding nucleolar
proteins involved in ribosome biogenesis (GO overrepre-
sentation, Fisher’s exact test: translation [P = 3 3 10!3],
ribosome biogenesis and assembly [P = 3 3 10!14]). These

FIGURE 2. Transcript regulation at the stability level precedes the regulation at the steady-state level. Scatter plots of changes in mRNA stability
(DkS) versus changes in steady-state levels (DtTOT) at various times after stress. The 100 most highly induced genes after 30 min at the steady-state
level [DtTOT (30)] are colored in red, and the 100 most down-regulated genes at the same time point are colored blue. Ten well-known stress-
responsive genes and three down-regulated genes required for protein synthesis are indicated by arrows (including the six genes verified by qPCR:
HOR2, GRE3, GPD1, IMP3, RPS17A, and RPL6B). The alterations in steady-state levels and mRNA stability correlate positively when comparing
stability after 6 min [DkS (6)] with steady-state levels after 6 min [DtTOT (6)] (A), as well as with steady-state levels after 30 min [DtTOT (30)] (B).
The change in stability after 30 min [DkS (30)] was not globally correlated with the difference in steady-state levels after 30 min [DtTOT (30)] (C),
but a group of outliers consisting of the most induced genes at the steady-state level (marked in red) show an inverse relationship, indicating that
these salt-responsive genes are now destabilized. After 60 min of stress, the steady-state levels are lower for the salt-responsive genes (D). For
information about the correlation test, see Materials and Methods.
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genes show an inverted, but less pronounced behavior
compared to the up-regulated transcripts (Fig. 2, in red).
Among these are the genes encoding the ribosomal proteins
Rps17A and Rpl6B and the rRNA processor Imp3, for which
the expression profiles were confirmed with quantitative
PCR (qPCR) (Fig. 6C, see below).

Hence, at 6 min, transcription initiation and transcript
turnover are in phase, stabilizing and transcribing tran-
scripts critical for adaptation, whereas at 30 min the same
transcripts are no longer stabilized, while still at a high
steady-state level. Transcript turnover is at this time already
preparing the entry into the recovery phase, suggesting a
turning point of the response between 6 and 30 min.

Hog1 influences both early and late changes
in mRNA stability

It is well established that the major part of the transcrip-
tional initiation response following osmostress is mediated
via the HOG pathway and its key component Hog1 (Posas
et al. 2000; Proft et al. 2001; de Nadal et al. 2004). To
investigate to what extent Hog1 also controls the regulation
of transcript degradation during osmoadaptation, we com-
pared the pattern of changes in transcript stability follow-
ing 0.4 M NaCl stress in wt and hog1D mutant cells.

Confirming the function of Hog1 in transcriptional
adaptation, we find that the average DtTOT (30) of the

100 most induced salt-responsive genes is significantly
(Student’s t-test, P = 3 3 10!27) lower in hog1D than in
wt cells (Fig. 3A, upper panel). Correspondingly, for the
100 most repressed genes, the average DtTOT (30) is
significantly higher in the hog1D mutant (Student’s t-test,
P = 6.9 3 10!11) (Fig. 3B, upper panel). Interestingly
however, at 60 min the levels of these down-regulated genes
have recuperated in the wt, while in the hog1D mutant, the
levels keep declining until significantly lower than in the wt
(Student’s t-test, P = 5 3 10!25). Hog1 also has a clear
effect on mRNA stability, especially with regard to the up-
regulated genes. While similar in stability in unstressed
cells, after 6 min of salt stress the top 100 salt-induced
genes (Fig. 3A, lower panel) are stabilized in the wt but
significantly less so in the hog1D mutant (Student’s t-test,
P = 2 3 10!4). Even more apparent is the difference in
destabilization of these genes taking place between 6 and 30
min (Student’s t-test, P = 1.6 3 10!7). As for the top 100
salt repressed genes, hog1D displays only a marginally
enhanced destabilization after 6 min (Student’s t-test, P =
0.037; Fig. 3B, lower panel), while the later stabilization is
somewhat more affected (Student’s t-test, P = 5.5 3 10!5).
Hence, it is clear that Hog1 plays a critical role not only in
regulating transcription initiation, but also transcript deg-
radation rate in response to salt exposure, and most
specifically so with regard to transcripts that are in high
demand during the salt adaptation phase.

FIGURE 3. Hog1 affects both steady-state levels and stability. Average stability index (kS) and steady-state log-fold changes (DtTOT) of the 100
most up-regulated (A) and down-regulated (B) genes at the steady-state level at 30 min in the wild type against time in wt and hog1D cells. Zero
on the y-axis is indicated by a reference line (dotted black). These groups of genes display a distinct temporal pattern where changes in stability
precede changes at the steady-state level. Hog1 influences both the changes in stability and at the steady-state level for both groups. Two-sample
t-tests were used to calculate P-values for the average differences between the strains in all panels (see Materials and Methods).
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The functional roles of mRNAs constrain
their temporal profiles with regard to stability
and steady-state levels

The temporal profile of stability and steady-state levels led
us to define the intervals between 0 and 6 min (the ‘‘shock’’
phase), 6 and 30 min (the ‘‘adaptation’’ phase), and 30 and
60 min (the ‘‘recovery’’ phase). In order to investigate the
impact of changing mRNA turnover rates in different
functional categories in more detail, we utilized the highly
resolved GO tree of the MIPS functional catalog (http://
mips.gsf.de/genre/proj/yeast/), and ex-
amined the 200 most affected genes in
the different phases with respect to DkS
and DtTOT (Fig. 4). All categories exhib-
iting a significant enrichment in any of
the intervals were included to get an
overview of how the different categories
behaved during the stress response. The
categories that display the turning-point
behavior seen in Figure 3A include ‘‘C
(carbon)-compound and carbohydrate
metabolism,’’ ‘‘glycolysis and gluconeo-
genesis,’’ and ‘‘stress response’’ (Fig. 4,
blue dots). The transcriptional induction
of genes in these categories during salt
stress is well established. Carbohydrate
metabolism, glycolysis and gluconeo-
genesis are important both for the pro-
duction of the osmolytes glycerol and
trehalose, as well as for glycogen, and
for regulation of the energy needs of the
cell. Stress response includes genes
involved in sodium transport, redox
metabolism, and heat shock proteins,
all of which are known to be up-
regulated after salt stress, but also sev-
eral genes included in the carbohydrate
metabolism processes mentioned above.
Protein degradation (Fig. 4, violet dot)
and related categories display a turning-
point behavior at the steady-state level,
while there is an immediate decrease in
stability during the shock phase, which
is continued into the adaptation phase.
A plausible explanation is that the initial
increase in steady-state levels is accom-
plished through transcription without
an accompanying increase in stability.
As can be seen in Figure 1B, the initial
mean stability for the corresponding
GO Slim category (‘‘protein catabolic
process’’) is very high, possibly negating
a need for further stabilization in
response to stress. An inverse behavior

is seen for the categories involved in ribosome biogenesis
(see below). Categories involved in amino acid metabolism
(Fig. 4, yellow dot) show a tendency to be up-regulated in
the recovery phase. It has previously been shown that salt
stress causes starvation for amino acids through inhibition
of their uptake, which in turn induces genes involved in
their biosynthesis (Norbeck and Blomberg 1998; Pandey
et al. 2007). The categories ‘‘DNA processing’’ and ‘‘cell
cycle’’ are underrepresented throughout the response, indi-
cating that those gene products are not in increased de-
mand during the response. Categories involved in protein

FIGURE 4. Functional categories have different temporal regulation profiles at the steady-
state and the stability levels. Enrichment analysis (using hypergeometrical distribution) of
functional categories on the 200 most up-regulated (left panel) and down-regulated (right
panel) transcripts in the different phases of the response: the shock phase (0–6 min), the
adaptation phase (6–30 min), and the recovery phase (30–60 min) in the wt. In each panel, the
first three lanes show changes in steady-state levels, and the last two lanes show changes in
stability. Only the categories significantly over- or underrepresented in any of the conditions
(P-value < 0.01, Bonferroni corrected) were included in the plot. Red indicates over-
representation and green indicates underrepresentation. Functional categories emphasized in
the text are bracketed and marked with colored dots.
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synthesis, such as rRNA processing, RiBi, and ribosomal
proteins (Fig. 4, green dot) mirror the profiles seen in
Figure 3B, although an early destabilization in the shock
phase is not so apparent. Together, these observations
imply that the temporal dependency of the steady-state
levels to the stability regulation is a part of the response of
several functional categories, first and foremost those
involved in carbohydrate metabolism, response to stress,
amino acid synthesis, protein degradation, and protein
synthesis.

A subgroup of stress response genes is responsible
for the distinct turning-point behavior

Hierarchical clustering of all 5551 genes reveals a subgroup
of 338 genes with a turning-point behavior similar to the
one seen in Figure 3A (data not shown). This is the most
striking subgroup, with the biggest response magnitude
both with respect to the steady-state and stability levels. GO
enrichments include most categories mentioned above,
including the ‘‘trehalose metabolic process’’ (P = 9.6 3
10!7), catabolic process (P = 4.8 3 10!5), and response to
stress (P = 0.0008).

To provide a higher resolution of the stress-responsive
transcripts, the 430 genes of the GO Slim category response
to stress, encompassing a wide diversity of functions, were
hierarchically clustered according to their profiles during
the different phases at the steady-state as well as the
stability levels in the wt and shown in Figure 5A. A group
of 113 genes are responsible for the ‘‘turning-point’’ profile,
while the rest of the genes show only a small or no
response. This cluster consists of two subgroups that
mainly differ in that one ‘‘early stabilized’’ cluster is
stabilized in the shock phase, while the other, ‘‘destabi-
lized’’ cluster is destabilized in the shock phase. The early-
stabilized cluster contains well-known osmotic stress response
genes such as the methylglyoxal reductase GRE2, the
glycerol phosphatase RHR2, the aldehyde dehydrogenase
ALD3, the dihydroxyacetone kinase DAK1, and the treha-
lose phosphate phosphatase TPS2. The destabilized cluster
contains genes less well known in this context, but includes
several chaperone-coding genes, such as SSA1, HSP104,
HSP78, and HSC82 (protein folding; GO enrichment,
Fisher’s exact test, P = 0.007).

The mean steady-state and stability changes in all phases
were calculated for the two clusters for wt and hog1D, as
well as for rck2D (Fig. 5B). In the wt, the early stabilized
cluster has a stronger response at all time points, especially
on the stability level where it displays a very clear turning-
point behavior between 6 and 30 min. A similar turning-
point behavior was observed on the steady-state level
between 30 and 60 min, again reflecting the temporal
difference between stability and steady-state level regula-
tion. Hog1 affects both levels of regulation for this cluster,
while in rck2D mutants, effects are seen mainly on the

steady-state level. Contrary to expectations, this links Rck2
to transcription rather than stability regulation. This is
especially true regarding the shock and adaptation phases,
as the destabilization during the recovery phase is only
mildly affected in the rck2D mutant. The stability indices
and steady-state levels of three genes involved in the stress
response (HOR2, GRE3, and GPD1) were confirmed with
qPCR (Fig. 5C). Agreement between the qPCR data and the
microarray data is very good, and the turning-point
behavior, which is severely hampered in the mutants for
these three genes, is clearly seen. qPCR confirmation of the
steady-state level changes is also well in agreement with
microarray data (Supplemental Fig. S3), although the
microarray data give consistently lower responses (‘‘signal
compression,’’ a well-known phenomenon) (see Materials
and Methods).

In addition, the GO Slim categories ‘‘carbohydrate
metabolism,’’ ‘‘amino acid metabolism,’’ and ‘‘proteasomal
catabolism’’ were clustered (Supplemental Fig. S4A–C). All
three categories contain groups of stress-responsive genes
with an increase in steady-state levels along with a distinct
destabilization during the adaptation phase (a turning-
point behavior). The turning-point cluster from carbohy-
drate metabolism contains 28 genes, which are involved
mainly in trehalose metabolism (trehalose metabolic pro-
cess, Fisher’s exact test, P = 1.35 3 10!16) and glucose
transport (P = 3.55 3 10!5). This cluster shares 11 genes
with the two clusters from response to stress of which nine
are from the early stabilized cluster. The category amino
acid metabolism mainly contains transcripts, which are
weakly stabilized in the adaptation phase and up-regulated
in the recovery phase (which is the behavior seen in Fig. 4),
but a cluster of 33 genes instead has a turning-point profile.
GO enrichment analysis of this group as compared to the
rest of the category reveals that several of the genes in this
group are involved in catabolic processes (catabolic pro-
cess, P = 1.44 3 10!10) including the amino acid derivative
catabolic process (P = 1.66 3 10!6), proline catabolic
process (P = 4.91 3 10!5), and acetyl-CoA catabolic
process (P = 6.8 3 10!5). A large cluster from protein
catabolism (67 genes) is homogenous but does not have a
prominent early stabilization. See Supplemental Table S5
for cluster gene lists.

Increased transcript stability contributes to
restoration of ribosomal components in the
recovery phase after NaCl exposure

Genes with ribosomal functions display quick and strong
variations in transcript levels during the salt stress response
phases (Gasch et al. 2000; Yale and Bohnert 2001). Our
data show heterogeneity within this functional group with
respect to changes in transcript stability (DkS) and tran-
script steady-state levels (DtTOT) concerning timing and
strength of the shifts. A hierarchical clustering was performed
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of the GO Slim category ‘‘translation,’’ which contains 137
cytoplasmic (cRP) and 77 mitochondrial (mRP) ribosomal
proteins along with slightly more than a hundred different
translation factors and other proteins involved in the
process of translation (all denoted TFs). The clustering
resolved the translation genes into three large and two
smaller groups with different expression profiles during the
three phases of stress (Fig. 6A; see Supplemental Table S5
for lists of genes within each cluster). The mean DtTOT and
DkS of the three large clusters across the different phases in
wt, hog1D, and Drck2 cells were calculated (Fig. 6B). The
first cluster (‘‘destabilized cRPs’’) contained mainly cRPs

and TFs and displayed an initial destabilization in the shock
phase with a later increase in stability in the adaption
phase. At the steady-state level, this cluster is repressed in
the shock as well as in the adaption phase in the wt, while it
is clearly up-regulated between 30 and 60 min, presumably
reflecting the increase in stabilization. The cluster ‘‘stabi-
lized cRPs’’ contains most of the remaining cRPs, along
with a smaller proportion of TFs. This cluster is immedi-
ately stabilized in the wt, and even more so between 6 and
30 min, while the changes at the steady-state levels are less
pronounced than for the destabilized cRPs cluster. Pre-
sumably this strong stabilization cluster corresponds to

FIGURE 5. Cluster analysis of the GO Slim category Response to stress. (A) The genes in the GO Slim category response to stress were
hierarchically clustered (uncentered Pearson correlation metric) with respect to the behavior of the transcripts in the wt during the phases of salt
stress response. Genes with more than one missing value were omitted. To obtain value ranges comparable between steady state and stability, the
stability indices were multiplied by 30 to approximate the log-fold differences 30 min after transcription inhibition (see Materials and Methods).
The two clusters (‘‘Early stabilized’’ and ‘‘Early destabilized,’’ shown magnified to the right) include genes responsive to 0.4 M NaCl stress. GPD1
fell outside the two clusters because of its fast up-regulation at the steady-state level. (B) Mean changes in steady-state and stability levels were
calculated for the two clusters defined in (A) across the strains (wt, hog1D, and rck2D) shows that Hog1 influences both steady-state levels and
stability, especially for the early stabilized cluster, while Rck2 mainly influences steady-state levels without major effects on stability. Error bars
denote 95% confidence intervals. (C) Stability indices were confirmed by qPCR for three genes (HOR2, GRE3, and GPD1). HOR2 and GRE3 are
part of the early-stabilized cluster, while GPD1 fell outside the clusters. Spearman rank correlation between array and qPCR data: 0.9 (see
Materials and Methods).
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cRPs that are critical for the very early recovery from salt
stress. The cluster ‘‘mRPs’’ contains about equal amounts
mRPs and TFs but almost no cRPs. This cluster displays
only marginal changes in stability and steady-state levels
during the stress response, which is in line with earlier
observations of mRP mRNA level responses to other
stresses (Ihmels et al. 2002; Ihmels et al. 2005; Swaminathan
et al. 2006).

The behavior of both cRP clusters was partially depen-
dent on a functional HOG pathway. This is most apparent
in the recovery phase where both the stabilization and the
steady-state level induction are affected in both hog1D and
rck2D, although the failure to up-regulate the steady-state
level in the recovery phase is more apparent in the hog1D
mutant. Hence, at least a part of the cRP mRNA regulation
following NaCl exposure is dependent on a functional
HOG pathway. To verify the expression profiles of cRPs

following salt exposure, we quantified the decay rates of
two cRP transcripts, RPS17A and RPL6B, independently
and individually using qPCR. The relative trends were
essentially confirmed, showing a marked stabilization of
both transcripts at 30 min after salt exposure (Fig. 6C).
Although these two genes belong to the destabilized cRP
cluster, neither appeared destabilized in the shock phase
either by arrays or qPCR. Instead, both displayed a very
small stabilization. The qPCR data show that both these
genes appear to be slightly more stable in the mutants in
unstressed cells, but are destabilized during the shock phase
in both hog1D and rck2D mutants. During the adaptation
phase, however, they are not stabilized to the extent of the wt.
IMP3, a gene belonging to the functional category ribosomal
biogenesis and assembly (RiBi) was also included in the qPCR
analysis. Genes belonging to RiBi behaved in the wt essen-
tially like translation (named ribosomal proteins in theMIPS

FIGURE 6. Cluster analysis of the GO Slim functional category translation. (A) The genes in the GO Slim category Translation were
hierarchically clustered according to transcript behavior in the wild type, and the DkS values were multiplied by 30 as in Fig. 5 (genes with >1
missing value omitted). Five clusters were defined, highly enriched for cytoplasmic ribosomal proteins (cRPs), mitochondrial ribosomal proteins
(mRPs), and translation factors (TFs), respectively, as shown in bar diagrams to the right. Note that the composition of clusters 2 and 3 are shown
in the same diagram. (B) The mean log fold change at the steady-state and stability levels of the three RP-enriched clusters are plotted. The mean
changes across the conditions were calculated for wt, hog1D, and rck2D cells. The mRPs cluster show only small changes during stress, while the
cRPs are divided into two clusters, which differ in their regulation at the steady-state as well as the stability level. Especially the recuperation in the
recovery phase is affected in both mutants to a similar extent. Error bars denote 95% confidence intervals. (C) The stability indices of two cRPs
(RPS17A and RPL6B) were confirmed by qPCR, along with a gene in the RiBi group (IMP3). Spearman rank correlation between array and qPCR
data: 0.9 (see Materials and Methods).
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functional catalog) (Figs. 3, 4), with a strong stabilization in
the adaptation phase, but IMP3 does not seem to be affected
in a hog1Dmutant, except that the initial stability appears to
be higher, as is the case for the cRPs.

DISCUSSION

Stability regulation precedes changes
in steady-state levels

We have found that almost all genes known to be induced
by salt shock at the steady-state level are also regulated at
the stability level, suggesting that regulation of mRNA
stability is a general and integral part of the regulation of
transcript levels, and that most stress-responsive mRNAs
have a dynamic range of half-lives that can be modulated to
fit the situation, in line with earlier studies of the response
to diauxic shift (Garcia-Martinez et al. 2004). The changes
in stability can be fast and dramatic, exemplified by such
well-known salt stress induced genes as GPD1, GRE3, and
HOR2, which are stabilized early on after stress (0–6 min,
the shock phase) and then greatly destabilized between
6 and 30 min (the adaptation phase). In fact, the relative
stability of many salt-induced genes drop from being
among the most stable in the shock phase to being among
the least stable in the entire transcriptome during the
adaptation phase. The steady-state levels of these genes
only start to fall after 30 min (the recovery phase),
indicating that the regulation at the stability level precedes
the changes at the steady-state level. Genes that are repressed
at the steady-state level display an inverse pattern with a
similar temporal difference in regulation. It might be
argued that within the population of induced transcripts,
those species transcribed early would age and become
susceptible to later degradation. However, this would not
provide a satisfactory explanation for the behavior of
repressed transcripts, which instead become stabilized late
in the response. A recent study (Shalem et al. 2008) where
fast destabilization of induced mRNAs was also observed,
led to the seemingly paradoxical conclusion that changes in
transcript abundance and stability in yeast cells were
counterdirectional at a particular time point in two stress
conditions. We believe that this paradox is resolved by
considering the delay that occurs between a change in
stability and resulting change in steady-state level for an
mRNA: A stability change at an earlier time point is
homodirectional with a change in abundance at a later
time, as seen in our work.

It is important to emphasize, however, that although the
phenomenon of a contribution from stability changes to the
stress-induced increases or decreases in steady-state level is
wide-spread, it does not apply to all stress-regulatedmRNAs.
This is noticeable for certain functional groups: among the
stress-induced genes, there is no stability increase in the early
destabilized cluster (Fig. 5). Similarly, for the cluster enriched

for gene products with a role in protein catabolism, there is
no mRNA stabilization despite a marked increase in steady-
state mRNA levels (Supplemental Fig. S4).

Functional characteristics of the mRNA
turnover response

In response to salt stress, the cell up-regulates the expres-
sion of genes involved in processes such as glycerol and
trehalose metabolism, glycolysis and ion homeostasis, in
order to relieve the stress. mRNAs encoding proteins
involved in all these processes display the behavior seen
for the above-mentioned genes, GPD1, HOR2, and GRE3,
suggesting that the processes that are induced have an as
well-defined and common regulation at the mRNA stability
level as they do at the level of transcription initiation.
Additionally, groups of genes with a role in amino acid
metabolism and protein catabolism show a similar behav-
ior. The pattern of an increase in steady-state levels and a
decrease in stability during the adaptation phase followed
by a decrease in steady-state levels in the recovery phase is
common to all these genes, but there are differences in the
stability regulation during the shock phase. This could
reflect a difference in the timing or the intensity of tran-
scriptional activity during the shock phase.

The production of osmolytes potentially involves several
parts of the cellular metabolism; aside from the direct
production of glycerol and trehalose, sugar transport and
glycolysis, and thus, energy metabolism is affected since the
metabolites involved are in constant flux. This should also
affect amino acid synthesis, which shares much of the same
metabolites, and this may be the explanation why amino
acid catabolic processes are transiently up-regulated in
response to stress. The slow up-regulation and stabilization
of the majority of the mRNAs annotated to amino acid
synthesis might reflect a recovery process, or it could reflect
the amino acid starvation induced by hyperosmotic stress
caused by an impaired ability to import amino acids
(Norbeck and Blomberg 1998; Pandey et al. 2007). A group
of mRNAs involved in protein catabolism is transiently up-
regulated, but not stabilized in response to stress. This could
be an effort to remove damaged or unwanted proteins, or a
response to amino acid starvation, elevating recycling of
protein. The early destabilization might indicate that
changes in transcription rate are more important than
changes in stability for this group. It should be noted that
this group of genes have a very high initial stability (before
stress), which might mean that transcripts can accumulate
even though the stability declines.

In response to osmotic stress, the cell down-regulates the
steady-state levels of transcripts involved in protein syn-
thesis, cRP, and RiBi mRNAs. These transcripts are
stabilized during the adaptation phase and their steady-
state levels increase during the recovery phase. The cRPs
follow a common trend, but differ considerably with
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respect to the amount and timing of stabilization. The fact
that heterogeneity exists among the cRPs indicates that
functional differences exist within this group, where a
specific subgroup could be required early in recovery.

Generally, categories that are up-regulated during stress
such as response to stress and carbohydrate metabolism
tend to have a high mean stability already before stress. We
find that categories with a high relative stability in the
unstressed condition (most ‘‘stress genes’’) tend to get
further stabilized in the shock phase, while categories with a
low stability before stress (most growth-related genes
including cRP and RiBi) tend to get destabilized.

A recent paper (Molina-Navarro et al. 2008) estimated
the regulation of transcriptional rate during oxidative stress
in S. cerevisiae (‘‘genomic run-on’’), and from this inferred
the regulation at the stability level. The authors demon-
strated that regulation of mRNA stability was a wide-spread
feature of the response also to that stress condition. The
results concerning genes involved in stress response and
ribosome biogenesis were well in agreement with our direct
measurements, although in our case the switch from
adaptation to recovery (the turning point) is more dra-
matic. This could be because of different stress conditions,
of time frames, or as a consequence of the methodology
used. Block of RNA polymerase II, as in this paper,
provides direct estimates of mRNA degradation rates, while
genomic run-on only provides an indirect measure of
transcript turnover. The authors express concern that the
combination of Phen with stress would not be feasible.
However, the apparent specificity of the regulation of
stability in response to stress in our experiments, and the
elimination from our analysis of genes previously shown to
be Phen dependent (Grigull et al. 2004), give confidence
that the use of Phen as a transcription inhibitor allows for a
sensitive and convenient method of measuring mRNA
stability, also in the presence of stress.

Hog1 dependency

Previously it has been shown that the osmostress-induced
MAPK Hog1 affects mRNA levels through regulation of
transcription. We have shown that Hog1 also regulates the
stability of almost all transcripts that are up-regulated at
the steady-state level after 30 min, both during the shock
and adaptation phases. Hog1 also influences stability of the
down-regulated transcripts, although to a lesser degree. The
MAPKAPkinaseRck2was suspected tobe involved in stability
regulation since the mammalian homolog MAPKAPK-2 is
involved in the regulation of interleukin mRNA stability.
Surprisingly however, Rck2 seems to influence steady-state
levels of stress-responsive transcripts, with only minor
effects on stability. This suggests a role for Rck2 in
transcriptional regulation rather that stability regulation.
It is noteworthy that the transcriptional response was
abolished in rck2D mutants after hyperosmotic shock (this

work), but not in oxidative stress (Swaminathan et al.
2006), indicating that the requirement for Rck2 is specific
for the hyperosmotic transcriptional response.

Future perspectives

Degradation of mRNA is accomplished through several
different mechanisms and regulated through mRNA bind-
ing proteins such as the poly A-binding proteins Pab1 and
Pub1 and the RNA-binding proteins Puf1-5. mRNA deg-
radation is also tightly coupled to translation, acting as a
regulatory mechanism for mRNAs that are not properly
translated. Since mammalian p38 acts on mRNA stability
through RNA binding proteins like TTP and Hur, it is
conceivable that this applies also to Hog1. Transcripts
binding to both Pub1 and Puf1-5 have been investigated
(Gerber et al. 2004; Duttagupta et al. 2005), but we have
not found any obvious connection to our data, except that
RiBi mRNAs are bound by both Puf4 and Pub1. If a
primary RNA binding protein is the Hog1-targeted effector
of mRNA stability regulation, it might be feasible to
investigate sequences of, first and foremost, the untrans-
lated regions of the mRNAs affected during stress. Another
possibility is that Hog1 primarily affects the translation of
the stress-responsive mRNAs and the stability only as a
consequence of that. MAP kinases have been shown to
regulate translation through phosphorylation of the initi-
ation factor eIF2a and the elongation factor EF2, and might
in this manner influence stability. A study of translational
regulation of mRNAs following hyperosmotic shock in
S. cerevisiae has recently been performed (Melamed et al.
2008). However, a preliminary comparison of that data set
with ours shows a low degree of overlap in the response
profile of steady-state total mRNA (not shown). This
indicates that the conditions studied in their work (1 h
after exposure to high salinity at 1 M NaCl) are too
different from ours to allow a detailed analysis of this
issue, especially in view of the strict time dependence
revealed in this work.

Studies of mRNA stability provide insight into yet
another layer of the complex regulatory network between
gene and protein production. Together with investigations
of transcription activity and translation, a picture can be
shaped of the intricate and interconnected pattern of
processes helping the cell to regulate its protein activity
in its interaction with the environment.

CONCLUSIONS

Changes in mRNA stability are known to be an important
regulatory mechanism in yeast, as well as in mammals.
Here we performed global measurements of mRNA stabil-
ity changes in the course of the response to hyperosmotic
stress in S. cerevisiae. We show that regulation of stability
makes general and substantial contributions to the changes
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in the steady-state level during transient stress. For certain
stress-regulated functional categories, changes in mRNA
stability are prominent, whereas for others, steady-state
levels are determined solely by transcription rate. The
changes at the stability level of stress-induced genes precede
and anticipate the changes at the steady-state level, and
display a distinct turning point before the peak of the
steady-state levels. Finally, the MAP kinase Hog1 is
required for most early as well as late changes in stability.

MATERIALS AND METHODS

Strains and growth conditions

S. cerevisiae strains used in the study were from the W303-1A
background (wt genotypes: MATa ura3-1, ade2-1, leu2-3,112,
trp1-1, his3-11,15; mutant genotypes: W303-1A, hog1TKanMX;
W303-1A, rck2TKanMX), and stored in 20% glycerol at !80°C.
Cells were precultivated for 24 h in rich medium (YPAD, 1.5%
peptone, 1% yeast extract, 2% glucose), inoculated to A595 nm =
0.05–0.1 in fresh medium (as above) and cultivated for 6–8 h to
A595 nm = 0.7, whereupon NaCl was added to a final concentration
of 0.4 M. Ten microliter samples were harvested by centrifugation
before (0 min) as well as after 6, 30, and 60 min of NaCl exposure.
Samples were divided in two; one of these was washed (twice) and
RNA was isolated as below, in the other, transcription was
stopped by the addition of the transcriptional inhibitor Phen
(Sigma-Aldrich) to a final concentration of 100 ng/mL. No
transcriptional inhibition was performed on samples collected
60 min post-NaCl shock. From transcriptionally inhibited sam-
ples, 2.5 mL aliquots were harvested by centrifugation and
washing (twice) at 5, 15, 30, and 60 min (the 5 min time point
was not included in the subsequent analysis due to the high
variability of the measurements). For rck2D mutants, aliquots
were harvested only 30 min after Phen addition. Cells were
disrupted and RNA extracted using the RiboPure-yeast kit and
instructions from the supplier (Applied Biosystems/Ambion).

Microarray hybridization

Labeling of samples and array hybridization were performed
essentially as previously described (Bilsland et al. 2007). Briefly,
cDNA was synthesized from 15 to 20 mg of RNA using Superscript
III reverse transcriptase and an 1:1 mixture of random primers
and anchored oligo dT (all from Invitrogen). Samples were labeled
with Cy5-dUTP (reference) or Cy3-dUTP (experiment sample)
(GE Healthcare). Post-labeling, RNA was hydrolyzed with NaOH
and labeled cDNA probes were purified using a CyScribe GFX
purification kit (GE Healthcare). Probes were dissolved in DIG
Easy hybridization buffer (Roche) and hybridized onto Yeast 6.4K
microarray slides (Microarray center, University Health Network)
overnight at 42°C. After washing, slides were scanned in a
VersArray Chipreader (Bio-Rad).

For quantification of steady-state transcript levels, RNA from
NaCl-stressed (experiment) samples were paired with RNA from
0 min, unstressed (reference) samples. For quantification of
transcript stabilities, RNA from each Phen time point (experi-
ment) sample was paired with a matching 0 min (before Phen
addition) sample (reference).

Microarray data processing

Array spot intensities were quantified using ImaGene v. 6.0.1
(BioDiscovery). Spots flagged as empty, poor, or negative by the
ImaGene software were removed. Data analysis was performed using
the open source statistical software R, and the LIMMA array analysis
package, which is available at the Bioconductor repository (http://
www.bioconductor.org/). A loess smoother was applied to remove
intensity dependent trends. For each gene on each array, the log(2)-
fold change (M-value) was calculated and retained for downstream
analysis. To ensure comparability within groups of arrays, scale
normalization was applied to create the same median-absolute-
deviation (MAD) across arrays within a group. The normalization
groups were (1) all arraysmeasuring non-Phen treated pools (steady-
state levels); (2) arrays measuring pools within the same Phen time
point across strains and stress conditions (i.e., three groups com-
prising arrays hybridized with mRNA from cells treated with Phen
after 15, 30, and 60 min, respectively). Annotations for all open
reading frames (ORFs) were taken from the Saccharomyces Genome
Database (www.yeastgenome.org/; February 2008). All dubious and
deleted ORFs were excluded (Supplemental Table S1). In addition, a
set of 31 Phen-induced genes previously identified by Grigull et al.
(2004) were removed in order to avoid inhibitor specific effects
(Supplemental Table S2). Five thousand five hundred and fifty-one
genes were retained.

Modeling mRNA stability

To model transcript stability, a simple exponential decay model
was adopted, implying that a regression line through the origin
can be fit to the log(2) scale M-values for individual mRNAs using
the different time points (15, 30, and 60 min after Phen addition).
Positive and negative values of the slope of the regression line
(denoted kS and referred to as the stability index) indicate
transcripts more stable and unstable than an average transcript.
The stability indices range from !0.135 to 0.138 for the least and
most stable transcripts, respectively, with median negative and
positive values of !0.0045 and 0.0047.
Comparisons of different transcriptional inhibitors in yeast

using microarrays have been published previously (Grigull et al.
2004). From this data set, arrays hybridized with Phen-treated
pools of mRNA after 12, 30, and 75 min were downloaded
(experimental design similar to the design in this study). All arrays
were normalized in the same way as described above, and stability
indices (kS) were calculated (only wild-type and unstressed
conditions). Mean values for kS within 38 GO Slim biological
process categories (see Functional Annotations) were found to be
similar in the two studies (Supplemental Fig. S1; r2 = 0.9).
For the rck2D mutant, samples were only collected after 30 min

of Phen treatment, and a reduced decay model was therefore
adapted. With the reduced model, stability is indicated by the
log(2)-fold changes (M-values) as compared to the corresponding
zero time point in all stress conditions. The reduced model was
also adapted for the wild-type and hog1D strains for validation
purposes. The full and reduced models in both strains were in
good agreement (Supplemental Fig. S2).
Assessing the impact of a stability change after, for example, 30

min can be achieved by multiplying DkS with 30. The magnitude
of this entity represents a log(2)-fold change contributable to the
alteration in stability for a given gene. For example, in Figure 3A
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(upper and lower panels), the change in stability from 6 to 30 min of
stress in the wt contributes to a depletion of half of the transcripts for
an average gene at the 60 min time point, as observed in the steady-
state levels. This example shows that that the magnitude of fold
changes induced by mRNA stability regulation is approximately at
par with the changes at the steady-state level. Although the aimof this
study was to compare relative changes and not to calculate absolute
half-lives, the spread of our stability indices suggests that the
average half-life would be less than 13.3 min in the wild type in the
unstressed condition [max kS(0) for wt: 0.074], which is lower
than the 23 min reported by Wang et al. (2002). We confirmed the
expression levels and calculated stability indices for eight genes
using qPCR. The trends were essentially confirmed although
changes in kS values calculated from qPCR data were of higher
amplitude than from the array data. Such signal compression is
commonly seen when comparing DNA arrays to quantitative
methods such as qPCR (Canales et al. 2006; Shi et al. 2006;
Arikawa et al. 2008). The signal compression was also apparent at
the steady-state level. This complicates the estimation of half-lives,
indicating that the spread is, in fact, larger than suggested from
the microarrays. Therefore, we use comparisons between stability
indices for our investigations of the effect of NaCl stress on mRNA
stability instead of absolute half-lives.

Statistical analysis

Differences between estimated coefficients were modeled and
ranked using the moderated t-statistic (Smyth 2004) in both
decay models and between estimated coefficients in the steady-
state level data. Gene-specific variances were estimated using all
available experiments.

Correlations between data sets were modeled and tested with
the Spearman rank correlation test. The r2-value, the coefficient of
determination, is a measure of explanatory power of the chosen
predictive variable.

Differences between mean values for groups of genes were
tested with the Welch two-sample t-test.

Gene clustering

Clustering was performed using Cluster 3.0 (Stanford University)
and an uncentered Pearson correlation metric (average linkage
mapping) and visualized using JavaTreeview (University of Tokyo).

Comparisons with previously published data
at the steady-state level

Comparisons were made with previously published data on
steady-state level changes of mRNA. Lists of osmoregulated genes
from five papers were compared (Posas et al. 2000; Rep et al. 2000;
Causton et al. 2001; Yale and Bohnert 2001; Krantz et al. 2004),
and the 73 genes that were found to be up-regulated in at least
three of the papers were selected as ‘‘common osmoregulated
genes.’’ Sixty-six of these were found on our arrays and compared
to our data (Supplemental Table S3).

Quantitative RT-PCR data generation, processing,
and analysis

Quantitative RT-PCR was performed to confirm results from the
microarray data both on steady-state levels and stability for eight

genes: RIB5 (YBR256C), ECM31 (YBR176W), IMP3 (YHR148W),
RPS17A (YML024W), RPL6B (YLR448W), HOR2 (YER062C),
GRE3 (YHR104W), and GPD1 (YDL022W). Steady-state levels
(tTOT) for all genes were examined 0, 6, 30, and 60 min after the
addition of 0.4 M NaCl in wild type and the hog1D and rck2D
mutants (Supplemental Fig. S3). All genes were also examined on
the stability level with the same design as in the microarray
experiment (Figs. 5C, 6C). cDNA synthesis was performed using
1.1–4.5 mg of total RNA. Random primers and Superscript III
reverse transcriptase (Invitrogen) were used. Primers were
designed using the Primer express 2.0 software (Applied Bio-
systems) using standard settings. RT-PCR reaction was performed
using SYBR Green detection in the Göteborg genomics core
facility (Swegene) in an ABI PRISM 7900HT Sequence Detection
system (Applied Biosystems). Two biological and three technical
replicates were used for each sample.
Both RIB5 and ECM31 were included as potential reference

genes, and since RIB5 proved to be stable over all conditions with
the smallest variance, all signals were normalized against this gene.
For each Phen time series, ratios were computed to the corre-
sponding Phen untreated pool (e.g., unstressed wt cells harvested
after 15 min of Phen against unstressed wt cells without Phen
treatment). Both the reduced and full decay models were adapted
to the data as in the microarray experiment. For the steady-state
level data, expression data were modeled similarly as in the
microarray experiment in order to make direct comparisons.
Spearman rank correlation between array and qPCR data: 0.9
using data for rck2D and transformed stability index data for wt
and hog1D. Fitting a regression line to the measurements with the
qPCR data as the independent variable will produce a small
intercept, indicating comparable normalization procedures
between the two sets.

Data availability at ArrayExpress

The microarray data from this study are available at the ArrayEx-
press repository with accession number XY-123 (E-TABM-622).

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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Additional files 

Additional file 1 – Supplementary figures. 

Figure S1 - Comparison of stability data with previously published data 

Stability data from untreated wt cells (this paper) were compared to previously published 

stability data (Grigull et al. 2004). The full mRNA decay model was applied to the raw data from 

Grigull et al. and means for all GO Slim-categories were compared to corresponding data from 

this study.  

Figure S2 - Comparison between the full and the reduced mRNA decay models 

The reduced decay model was compared to the full decay model for all stress conditions in the 

wild-type and hog1! mutant. In the reduced decay model, the log-fold change between 0 and 30 

min. after Phen addition represents relative stability. The k-values from the full decay model 

were multiplied by 30 to emulate the relative difference after 30 min. of Phen treatment. As a 

reference, a line (red) is drawn through the origin with slope = 1. The correlation between the 

reduced and the full model was good overall, although extreme values tend to get more 

pronounced in the reduced model. 

Figure S3 – RT-PCR verification of steady state level changes 

RT-PCR was performed to verify expression profiles for the same six genes as shown in Figs. 5 

and 6. Log-fold changes were calculated between each stress condition and the unstressed 

condition within each strain for comparison to array data. GRE3, HOR2 and GPD1 represent 

genes upregulated at the steady state level after 30 min. of stress. RPS17A, RPL6B and IMP3 

represent genes downregulated at this time point. One array data point is missing (GPD1 in 

hog1! after 30 min. of stress). Spearman rank correlation between array and qPCR data: 0.85 

(see Materials and Methods). 



Figure S4 – Clusterings of the GO Slim categories Carbohydrate metabolism, 
Amino acid metabolism and Protein catabolism 

The GO Slim functional categories Carbohydrate metabolism (A), Amino acid metabolism (B) 

and Proteasomal catabolism (C) were clustered (uncentered Pearson correlation metric) with 

respect to the wt. Genes with more than one missing value were omitted. Means of the changes 

during the phases of the stress response were calculated for the “turning point” clusters and 

compared to the rest of the genes in the category in wt, hog1! and rck2! cells. Error bars denote 

95 % confidence intervals. 

Additional file 2 – Supplementary tables. 

Table S1 contains the dubious or deleted ORFs that were removed from the gene set analyzed. 

Table S2 contains the ORFs whose expression has been shown to be affected by Phen and 

hence were removed from the gene set. 

Table S3 contains a list of 66 osmo-regulated genes identified from previous studies. 

Table S4 contains lists of genes up- and downregulated at !tTOT(30), respectively. 

Table S5 contains lists of the genes belonging to the different clusters of the GO Slim 

categories from Figs. 5, 6 and S4, along with the “turning point” cluster from a clustering of all 

5551 genes. 
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Abstract
DDIT3, also known as GADD153 or CHOP, encodes a key regulator of cellular stress 
response. DDIT3 is a basic leucine zipper transcription factor of the dimer forming 
C/EBP family. Originally described as a nuclear, dominant negative factor, it also 
binds DNA as heterodimers and induces transcription of target genes. The aim of the 
present investigation was to study the subcellular localization of DDIT3 and to 
identify target genes and functions regulated by cytoplasmic and nuclear DDIT3. 
Employing microarray, RT-qPCR, and immuno-techniques, we analyzed cultured 
normal human fibroblasts and sarcoma cells carrying amplified DDIT3 or tamoxifen 
inducible DDIT3 expression constructs. We report that DDIT3 is localized both in 
the cytoplasmic and nuclear compartments. Cytoplasmic and nuclear DDIT3 
regulated 94 and 84 genes respectively with only three genes overlapping. Functional 
annotation showed cell migration, proliferation and apoptosis/survival as the most 
affected categories. Cytoplasmic DDIT3 gave a migration inhibitory effect whereas 
nuclear DDIT3 induced a G1 arrest. No common DNA sequence motifs were 
identified in promoters of DDIT3 regulated genes. This may be explained by 
divergent sequence specificity of DDIT3 in heterodimers with different partners. We 
conclude that stress induced DDIT3 can be expressed both in the cytoplasm and the 
nucleus and that different genes are regulated by DDIT3 in these compartments.



Introduction
DDIT3 (DNA damage induced transcript 3) also known as GADD153 (G1 arrest and 
DNA damage 153) or CHOP (C/EBP homologous protein), encodes a key regulator 
of stress response. DNA damage, ER stress, hypoxia, and starvation induce DDIT3 
transcription and release translation of the DDIT3 encoding reading frame, resulting 
in DDIT3 protein accumulation (1-8). Forced expression of DDIT3 triggers cell cycle 
arrest and apoptosis, indicating a central role of DDIT3 in these stress effects (9-10). 
DDIT3 has recently been implicated in stress responses leading to death of pancreatic 
insulin producing β-cells and in neurodegenerative disorders (11-13).  DDIT3 is also 
involved in differentiation of specialized tissues and cells (14-15).
The DDIT3 encoded protein is a basic leucine zipper transcription factor of the dimer 
forming C/EBP family (16-17). Unlike other C/EBP transcription factors, DDIT3 
does not form homodimers but acts as a dominant negative factor that blocks the 
activities of its C/EBP dimer partners. However, it may also bind DNA as a 
heterodimer with other basic zipper transcription factors and induce transcription of 
down-stream target genes (18). 
DDIT3 has been considered to be a nuclear transcription factor but recently it was 
reported to be expressed as a cytoplasmic protein in erythroid leukemia and kidney 
proximal tubular epithelial cells (19-20). The cytoplasmic localization and the 
intrinsically disordered domain that mediates binding and interactions with proteins 
other than leucine zippers suggest that DDIT3 may have additional functions 
(21).These observations raise the questions whether different types of stress could 
induce controlled localization to the cytoplasmic or nuclear compartments and if 
nuclear and cytoplasmic DDIT3 trigger distinct responses.
To address these questions we studied the effects of ER and genotoxic stress in 
cultured normal human fibroblasts and in a liposarcoma cell line carrying a 
genetically amplified and constitutively expressed DDIT3 gene. The effects of 
cytoplasmic and nuclear DDIT3 protein was further studied in stably transfected cell 
lines that express high levels of DDIT3 fused to the ligand binding parts of the mouse 
estrogen receptor (mor) and tagged with the enhanced green fluorescence protein 
(EGFP). The mor part retains the recombinant protein in the cytoplasm and 
addition of tamoxifen induces a rapid translocation of the recombinant DDIT3 from 
cytoplasm to the nuclei of stably transfected cells. Employing microarray, RT-qPCR, 
immunofluorescence, and western blot methods we identified DDIT3 regulated 
downstream target genes. Our analysis shows that the cellular localization of DDIT3 
is determined by the inducing stress conditions and that cytoplasmic and nuclear 
DDIT3 induce distinct gene expression patterns indicating separate roles in stress 
response. 



Results
Cytoplasmic accumulation of DDIT3 in stressed human fibroblasts and 
GOT3 liposarcoma cells 
Native DDIT3 was previously reported to be expressed as a nuclear transcription 
factor (17). Here we show that DDIT3 accumulates as a cytoplasmic protein in 
tunicamycin and etoposide stressed human cultured serum deprived fibroblasts and 
GOT3 liposarcoma cells (Figure 1a). In contrast, transfection of GOT3 cells or 
normal fibroblasts with a DDIT3-EGFP expression vector (not containing the mouse 
estrogen receptor part), resulted in a nuclear localization of the recombinant protein 
(data not shown). To evaluate if stress conditions caused by the transfection 
procedure lead to nuclear DDIT3 expression, we transfected GOT3 cells with plasmid 
DNA and stained for the endogenous DDIT3.

Tamoxifen induces nuclear translocation of DDIT3morEGFP
Routine cultured HT1080 cells containing the pDDIT3mor-EGFP or pmorEGFP 
constructs showed a cytoplasmic expression of the recombinant proteins (Figure 1c). 
The DDIT3morEGFP recombinant protein translocated within 30 minutes to the 
nuclei (Figure 1b and Supplementary Film Clip 1) in tamoxifen treated cells whereas 
morEGFP showed no changed subcellular distribution in this time span 
(Supplementary Film Clip 2). Four or eight hours pre-inhibition of P38 kinase and 
casein kinase 2, known to phosphorylate DDIT3 at four different positions, gave no 
effects on the nuclear translocation of DDIT3morEGFP (data not shown).

Genes, functions, and networks regulated downstream of cytoplasmic 
DDIT3morEGFP 
Microarray experiments were made in two biological replicates and in two 
pDDIT3morEGFP-transfected and two morEGFP-transfected clones (Supplementary 
Figure 3). Analysis of the microarray data from cells expressing cytoplasmic 
DDIT3morEGFP revealed 94 genes that were regulated at least three-fold compared 
to their expression in morEGFP expressing cells (Supplementary Table 1a).  Of the 
94 genes, 33 genes were up regulated and 61 down regulated. 
Functional analysis showed that the functional categories cellular movement, cell 
death, cellular development, and cellular growth and proliferation were the most 
significantly affected (Figure 2), with some overlap between the genes annotated to 
the different categories (Supplementary Figure 1a). 
The 94 regulated genes were also matched to the gene/protein network constructed 
by Ingenuity Pathway Knowledge Base in attempts to identify affected networks and 
network hubs. Hubs are genes/proteins connecting several paths of the network. The 



most significant network associated with cytoplasmic DDIT3 did not depict any of 
the regulated genes as major hubs (Supplementary Figure 2a).

Cytoplasmic DDIT3 inhibits migration of HT1080 cells
In total 20 of 94 regulated genes were annotated to the functional category cellular 
movement (Supplementary Table 2a). For example, DSTN, an actin-depolymerizing 
factor important for remodeling of the cytoskeleton was down regulated and ATF3, 
which has been shown to block migration, was up regulated. Several extracellular 
matrix related genes such as FN1, fibronectin, HAS2, hyaluronan synthetase, and 
CSPG4, chondroitin sulfate proteoglycan 4, were downregulated. The adhesion 
molecule cadherin 11was also down regulated. Taken together, the cytoplasmic 
DDIT3 regulation of movement-associated genes suggested a negative effect on 
cellular movement/migration.  
This suggestion prompted an experimental analysis. Using a modified scratch wound 
migration assay we confirm that DDIT3morEGFP and DDIT3-EGFP expressing 
HT1080 cells had an impaired migration capacity compared to wild type and EGFP 
expressing HT1080 cells (Figure 3).

Genes, functions, and networks regulated by nuclear DDIT3morEGFP
To study direct effects of nuclear DDIT3, microarray analysis was performed two and 
eight hours after tamoxifen activation and cytoplasmic release of DDIT3 (for 
experiment overview, see Supplementary Figure 3). As only two or eight hours were 
allowed for accumulation or degradation of DDIT3 regulated mRNAs, a lower 
differential expression threshold was chosen (compared to the threshold used for genes 
regulated by cytoplasmic DDIT3). The analysis showed that 45 genes were up or 
down regulated at least two-fold compared to expression in cells with cytoplasmic 
DDIT3 (Figure 4a, Supplementary Table 1b). At eight hours after DDIT3 activation, 
several initially regulated genes were repressed back to their initial expression levels, 
but replaced by other response genes. In total 52 genes were regulated at eight hours 
after DDIT3 activation but only 13 of these genes were regulated after two hours 
(Supplementary Table 1b).  Most of the regulated genes were repressed compared to 
the control, supporting the hypothesis that DDIT3 acts as a dominant negative factor 
(17).
To confirm the accuracy of the microarray experiments, 32 genes were selected for 
RT-qPCR analysis. The results confirmed small changes, in most cases down 
regulation of selected mRNAs at two and eight hours after tamoxifen activation of 
DDIT3 (Supplementary Table 1c).
Functional analysis among the two-hour response genes for nuclear DDIT3 showed 
that the top enriched categories were cell death, cellular development, cellular growth 
and proliferation, and cell cycle (Figure 2), with large overlaps of genes between the 



categories (Supplementary Figure 1b).  Within each category, affected subgroups were 
for example apoptosis (p = 1 × 10-6), development of cells (p = 9 × 10-4), growth of 
cells (p = 3 × 10-5), and interphase (p = 8 × 10-6) (Supplementary Table 2b).
Cell death, gene expression, cellular development, and cell cycle were the most 
significant categories enriched among the eight-hour response genes of nuclear 
DDIT3, however all subgroups within cellular development contained only a small 
number of genes (Figure 2, Supplementary Table 2c). Genes of all categories 
overlapped, but not to same extent as for the categories in the two-hour time point 
(Supplementary Figure 1c). Within the cell death, gene expression, and cell cycle 
categories, enriched groups were for example apoptosis (p = 1 × 10-5), transcription 
(p = 2 × 10-5), and M phase of eukaryotic cells (p = 4 × 10-4), (Supplementary Table 
2c).
Network analysis based on the regulated genes from two and eight hours after nuclear 
transition of DDIT3 (Supplementary Figure 2b-c) show that EGR1 may work as a 
hub connecting several paths in the network.  No overrepresentation of the EGR1 
binding site could be found among the group of regulated genes, either at two or 
eight hours, suggesting that the downstream effects of EGR1 may appear at a time 
point later than eight hours after DDIT3 nuclear translocation. 

Cytoplasmic and nuclear DDIT3 regulate different genes and functions
Most genes affected by cytoplasmic DDIT3 remained at their initial levels after the 
nuclear translocation of DDIT3 (Supplementary Figure 4). Exceptions were ATF3 
and HSPA1A, which were up regulated, and TPO, which was down regulated in cells 
with cytoplasmic DDIT3. Thus, tamoxifen induced nuclear translocation of DDIT3 
partially or completely reduced the cytoplasmic DDIT3 effect on the expression of 
these three genes (Figure 4b). In addition to the genes and functions regulated by 
cytoplasmic DDIT3 (Figure 2, open bars) additional genes became regulated at two 
and eight hours after nuclear translocation (Figure 2, striped and solid bars, 
respectively). Thus, nuclear DDIT3 regulated new genes belonging to functional 
categories that were already significantly enriched among the genes regulated by 
cytoplasmic DDIT3. However, for the cellular movement category, the enrichment is 
notably more significant, suggesting that mainly cytoplasmic DDIT3 is involved in 
regulation of migration.

Tamoxifen activation of DDIT3morEGFP leads to a transient G1 arrest
Functional analysis of our microarray results suggested that DDIT3 regulated genes 
were involved in cell cycle control and apoptosis. Tamoxifen activation of 
DDIT3morEGFP lead to a transient growth arrest of HT1080 cells, accumulation of 
cells in G1 and depletion of cells in the S- and G2-phases (Figure 5) whereas no 
growth effects were observed in the morEGFP control transfected cells (data not 



shown). No increased level of apoptotic cells were observed in DDIT3 transfected cells 
before or after tamoxifen treatment (data not shown).

Transcription factor binding site enrichment for nuclear DDIT3 regulated 
genes
Genes regulated by nuclear DDIT3 at two hours were considered direct targets for 
DDIT3. Two different scoring methods for enrichment of predicted transcription 
factor binding sites (TFBS) using 652 position-scoring weight matrices (PWMs) were 
applied.  Ideally, hits to a PWM should be present in many of the regulated genes, 
while preferably not present in an overly large proportion of all genes. 
A few binding sites (for example V$AP2_Q6, V$SP1_Q2_01, V$CNOT3_01, and V
$SRF_01) show moderately low p-values for enrichment among the regulated genes 
with both scoring methods (Supplementary Table 3). However, several of the top 
scoring PWMs have putative binding sites in promoter regions of many genes along 
the genome, while a few top scoring PWMs instead are very rare. Follow up analyses 
including clustering and functional annotation failed to identify a common pattern of 
binding site occurrence in the promoters for the regulated genes. 
DDIT3 has been shown to form dimers with other C/EBP leucine zipper factors and 
act as a dominant negative factor or bind as heterodimers to specific sites (18). 
However, none of the C/EBP sites were scored as enriched among the regulated 
genes. Neither of the reported CHOP binding sites (18) were found to be enriched.
Twenty of the genes regulated by nuclear DDIT3 contained a cAMP responsive 
element (CRE) site in their promoter region. Despite difficulties in showing significant 
enrichment for these CRE sites, we decided to further investigate a possible 
interaction with DDIT3 since several CRE binding proteins belong to the basic 
leucine zipper family of transcription factors.  HT1080 cells expressing EGFP or 
nuclear DDIT3-EGFP were treated with the cAMP inducing agent forskolin and 
expression of responsive genes was analyzed by RT-qPCR. Six genes reported to be 
cAMP regulated were analyzed. Although the DDIT3 effects on forskolin induction 
varied between the genes, there was no general inhibition of the forskolin induced 
effect (Supplementary Figure 5). This indicates that there is no dominant negative 
effect of DDIT3 in cAMP regulated TF-complexes of these six genes.



Discussion
Mammalian cells recognize and process stress signals and respond with specific gene 
expression and protein activation programs evolved to minimize damage or induce 
apoptosis.  DDIT3 is a key regulator in stress response and may be triggered by 
several stress induced signal pathways (1-7, 22). DDIT3 accumulation is regulated 
both  at transcriptional and  translational  levels (23) and its biological activity is 
reported to be further modulated by phosphorylation by P38 kinase and CK2 in at 
least four different sites (24-25). 
The GOT3 liposarcoma cell line carries a strongly amplified region of chromosome 12 
that harbors the DDIT3 gene (26). This leads to a constitutive expression of 
cytoplasmic DDIT3, which is further up regulated in stress-exposed cells. In this 
study we show that cultured human fibroblasts and GOT3 cells accumulate 
cytoplasmic DDIT3 under tunicamycin and etoposide induced stress conditions 
(Figure 1a). Tunicamycin is an inhibitor of protein glycosylation and thus a potent 
inducer of ER stress without immediate genotoxic effects, whereas etoposide is a 
topoisomerase inhibitor causing multiple double strand breaks. The accumulation of 
cytoplasmic DDIT3 may thus be a specific response to ER stress and genotoxic 
double strand breaks in these cell types.
DDIT3 was originally described as a nuclear transcription factor but our data 
supported by reports from other investigations show that it is often expressed as a 
cytoplasmic protein (19-20). Most studies reporting nuclear localization of DDIT3 are 
made with cells transfected or transduced with DDIT3 expression plasmid or virus 
vectors. Transfection of fibroblasts and GOT3 cells with a DDIT3-EGFP expression 
vector showed, in agreement with results from other groups, a nuclear expression of 
the recombinant protein, indicating that the cells are capable of nuclear DDIT3 
localization. With these results we hypothesized that the stress induced by the 
transfection procedure could induce a nuclear DDIT3 expression. To test this 
possibility we made transient transfections of GOT3 cells with a plasmid. We 
conclude that stress conditions induced by the transfection procedure lead to 
increased nuclear accumulation of DDIT3 whereas tunicamycin or etoposide induced 
stress results in cytoplasmic DDIT3 expression.
The mechanism behind cytoplasmic versus nuclear localization of DDIT3 remains 
unexplained. Specific inhibition of the P38 and CK2 kinases that are known to 
phosphorylate DDIT3 showed no effects on tamoxifen induced nuclear translocation 
of DDIT3morEGFP protein, ruling out that phosphoprylation of these sites are 
controlling cytoplasmic/nuclear localization of DDIT3. Furthermore, inspection of our 
western blot results showed no detectable size difference between cytoplasmic and 
nuclear DDIT3, thus ruling out major protein modifications such as ubiquitinylation 
or sumoylation as a mechanism for the selective localization. 
The cytoplasmic DDIT3 has to be accounted for when biological functions of this 
protein is studied. We addressed the effects of cytoplasmic DDIT3 and nuclear 



DDIT3 by analysis of two stably transfected clones carrying recombinant DDIT3 
protein fused to the ligand binding parts of a mutated mouse estrogen receptor and 
EGFP. Under standard culture conditions, the recombinant DDIT3 is retained in the 
cytoplasmic compartment and 94 genes were down or up regulated three times or 
more compared to two morEGFP control clones. These downstream response genes 
are most likely regulated by several mechanisms and intermediary steps but not by 
DNA binding and transcription factor activity of DDIT3. DDIT3 may also bind other 
leucine zipper containing proteins in the cytoplasm and the recently discovered 
intrinsically disordered domain that mediates binding and interactions with proteins 
other than leucine zippers (21). 
ATF3 is a basic leucine zipper transcription factor that may form heterodimers with 
DDIT3 (27). ATF3 and DDIT3 are both up regulated by stress-induced ATF4, 
another basic leucine zipper transcription factor upstream in ER stress signaling. In 
the present work we show that cytoplasmic DDIT3 induce ATF3 transcription 
whereas nuclear DDIT3 reduces this effect suggesting a negative feedback loop on the 
production of ATF3.  These differential effects support our hypothesis that 
cytoplasmic/nuclear localization of DDIT3 has different roles in stress response.
Ontogeny analysis of the cytoplasmic DDIT3 regulated genes indicated that functions 
related to cellular movement and migration were affected and a migration assay 
showed an impaired migration thus confirming the ontogeny analysis. The assay 
showed an impaired migration also in HT1080 cells stably expressing nuclear DDIT3, 
indicating that the migration may be inhibited both by cytoplasmic and nuclear 
DDIT3. DDIT3 regulation of several migration/movement-associated genes may 
provide mechanistic explanations for the impaired migration (Table 1).  DSTN, an 
actin depolymerising protein was, for example, down regulated in DDIT3 expressing 
cells. We have previously shown that DDIT3 binds cyclin dependent kinase 2 (CDK2) 
and that CDK2 also binds cytoskeletal proteins such as myosin 9, myosin 10 and 
plectin in DDIT3 expressing cells (28). This binding of CDK2 to some cytoplasmic 
cytoskeleton proteins may be a part of mechanisms that affect migration capacity. 
 It is also interesting to note that well differentiated liposarcomas, regularly 
expressing DDIT3 due to gene amplifications, are slow growing non-aggressive tumors 
that rarely metastasize into surrounding tissues (26). These features may be an effect 
of the DDIT3 impaired migration. DDIT3 is also expressed in terminal adipocyte 
differentiation and inhibition of migration may be a part of this process.
Many of the genes regulated within the first hours after DDIT3 nuclear transition, 
are probably direct targets of DDIT3. Our results and ontogeny analysis confirm 
earlier notions that DDIT3 controls growth and apoptosis (13). Forced expression of 
DDIT3 was reported to induce a G1 cell cycle arrest (10) and our experimental 
system recapitulates this effect when the protein is translocated to the nuclei (Figure 
5).  A direct role in proliferation/cell cycle regulation was also pointed out as a 
significant functional category by our functional analysis. DDIT3 regulation of several 
genes/functions may execute the growth arrest but further investigations are needed 



to dissect the detailed mechanism. From our study of transfected HT1080 cells it is 
clear that nuclear but not cytoplasmic DDIT3 causes a G1 arrest. The stably 
transfected cell lines are, however the result of an extremely strong artificial selection 
for cells that can tolerate and grow in the presence of cytoplasmic DDIT3. The 
experiments in this study may therefore not give information on this issue and we 
cannot rule out that cytoplasmic DDIT3 could cause an anti-proliferative effect in 
other cells and conditions.
Several studies report DDIT3 induced apoptosis. We detected, however, no DDIT3 
induced apoptosis cells in our experiments although several apoptosis controlling 
genes were regulated by DDIT3. The apoptotic effect of DDIT3 is probably cell type 
dependent since the divergent reports are based on experiments with different cell 
types and stress agents. Our results showing that cytoplasmic accumulation of DDIT3 
is a normal response to tunicamycin induced ER stress may add insight to these 
conflicting reports. Thus, these differences in regulated genes/apoptotic functions may 
indicate distinct responses to cytoplasmic and nuclear DDIT3. Upon nuclear 
localization, apoptosis protective genes PAX2, PHLDA1, SGK1, SPRY2, and SYVN1 
were all down-regulated supporting a DDIT3 induction of apoptosis functions. But 
these effects may be balanced by the simultaneous down-regulation of the pro-
apoptotic genes KLF6, PLK2, RND3 and TXNIP in our HT1080 based experimental 
system.
The most up regulated DDIT3 induced genes was EGR1 (Supplementary Table 1b), a 
zinc finger type transcription factor involved in a variety of biological responses and 
effects (29). EGR1 has been linked to growth and apoptosis control (30). In some 
tumor types EGR1 is recurrently deleted or down regulated and reported to act as a 
tumor suppressor gene, while it is over expressed and considered an oncogene in 
others (29-31). We conclude from our study that EGR1 may be one of the most 
important immediate target genes for nuclear DDIT3. EGR1 forms a DNA binding 
complex with C/EBPB, which also is an important dimerization partner with DDIT3 
(32). 
Many of the genes regulated within the first hours after DDIT3 nuclear transition, 
are probably direct targets of DDIT3 and by investigation of the promoter regions it 
would theoretically be possible to identify DDIT3 DNA binding sites. Our attempts 
to identify recurrent DDIT3 binding sites failed however. A possible explanation is 
that DDIT3 forms dimers with several alternative partners and the alternative 
heterodimers could bind to different sites. 
We conclude that cytoplasmic DDIT3 has specific effects on migration. Except for 
migration, cytoplasmic and nuclear DDIT3 regulate the same functional categories of 
genes but nuclear DDIT3 adds more regulated genes to each category. Nuclear 
translocation thus leads to a step up of functions initiated by cytoplasmic DDIT3. 



Materials and methods
Expression vectors and transfections  
The full length coding regions of DDIT3 was cloned into the pEGFP-N1 vector 
(Clontech Laboratories, Inc.) in frame with the EGFP as previously described. 
morGFP and morEGFP vectors were constructed by an in-frame ligation of the 
morLBD construct immediately upstream of the gene encoding GFP. All constructs 
were confirmed by sequencing.
The mouse estrogen receptor ligand binding domain (MOR-LBD) construct was made 
by mutating the wild-type mouse oestrogen receptor (a kind gift from Dr. M. Parker). 
The ligand binding domain (DNA encoding amino acids 290-599) of the receptor was 
cloned using the primer set: MORLBD BamHI-U 
(5’TATGGATCCAGGAGACATGAGGGCTGCCAACCTTTG3’) and MORLBD 
BamHI-L (5’TATGGATCCATCGTGTTGGGGAAGCCCTCT3’). The G525R point 
mutation was introduced by PCR mutagenesis and amplification of circular DNA in  
vitro (33) using the primer set (5’-3’): (GGCACATGAGTAACAAACGCATGG) and 
MORLBD mut-L (ATGTTGTAGAGATGCTCCATGCGTTTGTT). The MOR-LBD 
G525R mutant is unable to bind estrogen, yet it retains affinity for a synthetic ligand, 
4-hydroxy-tamoxifen. For nuclear translocation of mutant MOR-LBD fused DDIT3-
GFP, 4-hydroxy-tamoxifen was added to the medium at a final concentration of 100 
nM (34).

Cell culture and growth conditions
The human fibrosarcoma cell lines HT1080, HT1080-EGFP and HT1080 DDIT3-
EGFP, were kept frozen in liquid nitrogen or cultured at 37° C and 5% CO2 in RPMI 
1640 medium with HEPES buffer supplemented with 2 mM L-glutamine, 50 U/ml 
penicillin, 50 μg/ml streptomycin and 8% FCS (Invitrogen). G418 (200 μg/ml, 
Invitrogen) was constantly added to cell lines HT1080 DDIT3-EGFP and HT1080 
EGFP to ensure stable expression of EGFP constructs in the cell population. 
RNA was extracted using RNAeasy extraction kit (Qiagen) from the cells at zero, 
two, and eight hours after addition of 4-hydroxy-tamoxifen and stored at -140oC. 
RNA from the cell samples and a common human universal reference RNA 
(Stratagene 740000) was used as templates for cDNA synthesis with Cy3 and Cy5 
labeled nucleotides according to the instructions for the Pronto Plus 6 labeling kit 
(Corning).
For experiments with forskolin treatment, cells were seeded in Petri dishes at a 
density of 180 000 cells / plate and a total volume of 4 ml/plate. One Petri dishes 
plate for each cell line and each test were done in triplets. Forskolin was added in a 
concentration of 1,8*10-5 M. The experiments were performed in three independent 
biological replicates. For kinase inhibition experiments, P38 kinase inhibitor 



SB-203580 Promega and Casein kinase II inhibitor I (Calbiochem) were added at 10 
μM and 50 μM respectively four hours before tamoxifen treatment.

Cell migration assay
Wild type and stably transfected HT1080 cells were seeded to petri dishes (35 mm in 
diameter) at a 1:1 ratio to a total of 100 000 cells/well. At 80% confluence a scratch 
wound was made in the monolayer. After two days of incubation the cultures were 
fixed in 4% formaldehyde and stained with ethidium bromide at a final concentration 
of 20 μg/ml. Wounded areas with cell densities suitable for counting were 
photographed on a fluorescence microscope and the number of ethidium bromide 
stained cells and EGFP stained cells were counted.  The ratio of cells stained with 
ethidium bromide (all cells) and cells stained with EGFP were counted in several 
non-wounded control areas. The experiment was repeated six times for each of the 
HT1080 cell lines transfected with EGFP, DDIT3-EGFP, and DDIT3morEGFP.  
A detailed description of migration assay modeling is provided in the Supplementary 
Information. Briefly, the ratios of migration rates for all EGFP stained cell types and 
migration rate for wild type cells can be deduced by using Bayes theorem. To 
compare migration rates for EGFP stained cells to the migration rate for wild type 
cells we used a sign test. A Wilcoxon test was employed to test the differences in 
migration rates between different EGFP-stained cell lines.

Microarray hybridization and feature extraction
Equal quantities of labeled cDNA and reference cDNA were hybridized to Agilent 
G4112F microarrays and the arrays were scanned using an Agilent G2565CA 
microarray scanner (Agilent Technologies, Palo Alto, CA). Feature extraction was 
performed with Agilent's Feature Extraction 10.4 Image Analysis Software. 

Microarray preprocessing and analysis
Data analysis was performed with the open source statistical software R using the 
LIMMA package available within the Bioconductor suite (35). A loess smoother was 
applied to each array to remove intensity dependent trends and the arrays were 
quantile normalized for comparability.  All spots not corresponding to human genes 
were removed before further analysis. The expression levels of duplicated probes were 
averaged.
Since the biological replicates were made with different clones, the within replicate 
similarities were assessed using Pearson correlations. The replicates exhibited a 
consistent high correlation (all > 0.85) and no systematic deviations were found 
within or between clones (data not shown).  



For each probe on the arrays, the normalized log2-fold changes (M-values) were 
calculated and retained for downstream analysis. To assess the changes in gene 
expression induced by cytoplasmic DDIT3, the M-values were compared for the zero 
time point in the DDIT3morEGFP cell line with the zero time point in the cell line 
with the morEGFP construct alone. Similarly, the differentially expressed genes 
induced by nuclear DDIT3 for the two and eight-hour time points were compared to 
the zero time point of the DDIT3morEGFP cell line (creating two so-called 
contrasts). The same procedure was employed in the control cell line, and all genes 
with a fold-change of 1.5 or higher in either contrast were discarded before further 
analysis, in order to remove any effects induced by the morEGFP construct alone. 
EGR1, with a regulation slightly larger than 1.5 fold in the morEGFP cell line, was 
also included because of a very large fold-change at the eight hour time point.  Genes 
regulated by the morEGFP construct alone were not removed from the analysis of 
cytoplasmic DDIT3 induced genes. 
Raw and normalized microarray data is available at the ArrayExpress repository with 
accession number E-MEXP-2709.

Functional annotation and network analysis
Probes on the microarrays were ranked according M-value (log2 fold-change). Since 
the responses induced by cytoplasmic DDIT3 were more pronounced, genes with a 
fold change of three or more were considered differentially expressed. For the genes 
induced by nuclear DDIT3, the cutoff was a two-fold regulation or more. The 
functional analysis of the regulated genes was generated through the use of Ingenuity 
Pathways Analysis (Ingenuity® Systems, www.ingenuity.com). Genes from the 
different dataset that met the above described expression criteria and were associated 
with biological functions and/or diseases in the Ingenuity Pathways Knowledge Base 
were considered for the analysis.
Enriched functional categories and subgroups within each category among the 
regulated genes were identified for all gene sets, and the four most significant 
categories representing fundamental cellular functions in each set were chosen for 
further study. The “cancer” category was omitted since we do not consider cancer as a 
cellular functional category.
Fischer’s exact test (36) was used to calculate a p-value determining the probability 
that each biological function and/or disease assigned to that data set is due to chance 
alone.
To generate functional networks, the differentially expressed genes were overlaid onto 
a global molecular network developed from information contained in the Ingenuity 
Pathways Knowledge Base. Networks of these focus genes were then algorithmically 
generated based on their connectivity.



Transcription factor binding site prediction
Transcription factor binding sites (TFBS) were predicted using the MATCH program 
(37) and a collection of 652 vertebrate positions-scoring weight matrices (PWMs) 
from the TRANSFAC database (38). Promoter sequences were extracted from the 
TRANSPro database, where 500 base pairs upstream and 100 base pairs downstream 
of the predicted transcription start site were selected for each gene. Matches to a 
PWM were considered a hit if either the core similarity score was 1.0 or the matrix 
similarity score exceeded 0.95 (conservative choice).
CRE sites present in the promoters of the nuclear DDIT3 regulated genes at two 
hours were predicted by counting hits for the following PWMs; V$CREBATF_Q6, V
$CREBP1CJUN_01, V$CREBP1_01, V$CREBP1_Q2, V$CREB_01, V
$CREB_02, V$CREB_Q2, V$CREB_Q2_01, V$CREB_Q3, V$CREB_Q4, V
$CREB_Q4_01, V$TAXCREB_01, V$TAXCREB_02. 

TFBS enrichment
The enrichment of all TFBS among the regulated genes at two hours was tested in 
two different ways. A hypergeometric test (or equivalently Fisher’s exact test) was 
used to compare the proportion of hits of TFBS among the regulated genes and the 
non-regulated genes. This method is standard procedure, but is highly dependent on 
the choice of cut-off value for regulation, and may also be sensitive to the fact that 
the number of regulated genes is relatively small. As a complement, a permutation 
test was applied to all the genes present on the arrays (i.e. not based explicitly on the 
regulation cut-off). Details concerning the design of the permutation test are given in 
the Supplementary Information. The permutation test works as a complement to the 
hypergeometric test, and ideally low p-values with both methods should indicate 
significant enrichment of TFBS. 

Fluorescence microscopy and western blot analysis 
Fluorescence microscopy and western blot analysis was preformed as previously 
described (39). A Leica DMI 600B microscope with a Leica DFC 360 FX camera was 
used for life imaging. The recording was made during a one-hour time span with an 
image taken every 20 seconds (tamoxifen was added after 5 minutes). The software 
used for recording was the Leica Application Suite AF. 

Reverse transcription quantitative real-time PCR (RT-qPCR)
For microarray validation the following protocol was used: Reverse transcription was 
performed on approximately 1µg total RNA using SuperScript III (Invitrogen) 
according to the manufacturers instructions, using a mixture of 5 μM oligo(dT) and 5 
μM random hexamers (both Invitrogen) as primers. Real-time PCR measurements 



were performed on a LightCycler 480 (Roche) using the iQ SYBR Green Supermix 
(Bio-Rad) with 400nM of each PCR primer. Primer sequences are available in 
Supplementary Table 4. 
Formation of correctly sized PCR products was confirmed by agarose gel 
electrophoresis for all assays and melting curve analysis for all samples. Gene 
expression data was normalized against PPIA and HPRT by geometric averaging 
(40). The reference genes were selected using the Human Endogenous Control Gene 
Panel (TATAA Biocenter) and GenEx software (MultiD Analyses).
For the Forskolin experiment QuantiTect Reverse Transcription Kit and QuantiTect 
SYBR Green Kit (both QIAGEN) were used for reverse transcription and real-time 
PCR respectively. Data was normalized against GAPDH.
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Titles and legends to figures
Figure 1. Subcellular localization of DDIT3. (a) Immunoblot analysis of nuclear 
(Nu) and cytoplasmic (Cy) extracts of human liposarcoma cell line GOT3 and normal 
human fibroblasts F470 following tunicamycin treatment. Cytoplasmic accumulation 
of DDIT3 is seen in both cell lines compared to untreated cells. GAPDH and Lamin 
A are cytoplasmic and nuclear markers, respectively. (b) Confocal microscopy (upper 
panel) of HT1080 cells containing DDIT3morEGFP before and after addition of 
tamoxifen. A translocation of the EGFP tagged recombinant DDIT3 protein from the 
cytoplasm to the nucleus can be seen after the addition of tamoxifen (see also 
Supplementary Film Clip). Immunoblot analysis (lower panel) of nuclear and 
cytoplasmic extracts. GAPDH and H1A were used as cytoplasmic and nuclear 
markers, respectively.

Figure 2. Enrichment of functional categories among genes regulated by 
DDIT3. Enrichment of functional categories among genes regulated by cytoplasmic 
DDIT3 (white bars), nuclear DDIT3 at two hours (striped bars), and nuclear DDIT3 
at eight hours (black bars). The categories are ordered by the significance among the 
cytoplasmic DDIT3 regulated genes. The y-axis shows -log10-transformation of 
enrichment p-values. 

Figure 3. DDIT3 affects cell migration.  (a) Ratios of migration rates for EGFP 
(black dots), DDIT3-EGFP (grey triangles), and DDIT3morEGFP (diamonds) 
compared to wild type cells for the six replicates within each of the three 
experiments. EGFP expressing cells migrate faster than wild type cells, while DDIT3 
expressing cells migrate slower (sign test, most extreme outcome of the statistic, p-
value ~ 0.03). (b) Pair wise ratios (of all replicates) of migration rates for DDIT3-
EGFP expressing cells compared to EGFP expressing cells (grey triangles) and 
DDIT3morEGFP expressing cells compared to EGFP expressing cells (black squares). 
The pair wise ratios are used to form the Mann-Whitney U statistic, which with the 
most extreme outcome gives a p-value ~ 0.002 for differences in migration rates of the 
two DDIT3 expressing cell types compared to EGFP expressing cells.

Figure 4. Genes regulated by cytoplasmic and nuclear DDIT3. (a) Nuclear 
DDIT3 up and down regulated genes at two and eight hours after the addition of 
tamoxifen (at least two-fold regulation compared). (b) Genes regulated both by 
cytoplasmic DDIT3 and nuclear DDIT3 (excluding genes regulated in the morEGFP 
cell line). White bars represent regulation by cytoplasmic DDIT3. Grey and black 
bars represent the regulation of nuclear DDIT3 compared to levels in cells with 
cytoplasmic DDIT3 at two and eight hours after tamoxifen addition, respectively.



Figure 5. Flow cytometry analysis of DDIT3 effects. pDDIT3morEGFP 
transfected cells cultured with and without tamoxifen were analyzed with flow 
cytometry. A transient growth arrest and accumulation in G1 and depletion of cells in 
S- and G2-phases was observed for tamoxifen treated cells. 
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Supplementary Figure Legends
Supplementary Figure 1: Overlap of gene content in functional categories. 
(a) Cytoplasmic DDIT3 induced genes. (b) Nuclear DDIT3 induced genes after two 
hours of tamoxifen addition. (c) Nuclear DDIT3 induced genes after eight hours of 
tamoxifen addition. 

Supplementary Figure 2: Interaction networks formed by the regulated 
genes. (a) Cytoplasmic DDIT3.  (b) Nuclear DDIT3 after two hours of tamoxifen 
addition. (c) Nuclear DDIT3 after eight hours of tamoxifen addition. Panels (b) and 
(c) indicate EGR1 as a possible network hub (node connecting several paths in the 
network). Red hues correspond to up regulation, while green hues correspond to down 
regulation (no coloring means no differential expression). Vertical diamonds, 
horizontal diamonds, vertical ovals, and horizontal ovals represent enzymes, 
peptidases, transmembrane receptors, and transcription factors, respectively. Squares, 
rectangles, up-pointing triangles, and down-pointing triangles denote cytokines, G-
protein coupled receptors, phosphatases, and kinases, in turn. Double circles, 
trapezoids, and single circles symbolize complexes, transporters, and finally, gene 
products with other functions. A dashed line corresponds to an indirect relationship, 
while a solid line represents a direct relationship.

Supplementary Figure 3. Overview of design and analysis of the 
microarray experiment. Genes regulated by cytoplasmic DDIT3 were extracted by 
making the comparison indicated with (1), comparing the expression between the 
morEGFP and DDIT3morEGFP cell lines before addition of tamoxifen. Genes 
regulated by nuclear DDIT3 were extracted with the comparisons indicated by (2) 
and (3) within the DDIT3morEGFP cell line, for two and eight hours after tamoxifen 
addition respectively. Genes regulated in the morEGFP cell line were removed before 
analysis of nuclear DDIT3 regulation. Each square corresponds to a microarray 
experiment replicate.

Supplementary Figure 4. Gene expression in morEGFP and    
DDIT3morEGFP cell lines – comparison of regulated genes. Expression 
within the morEGFP cell line, within the DDIT3morEGFP cell line, and between 
both cell lines for genes regulated by cytoplasmic DDIT3. Please note that genes 
showing differential expression in the morEGFP cell line were excluded in the analysis 
of nuclear DDIT3 regulation.  

Supplementary Figure 5. No DDIT3 inhibition of cre-binding factors in 
regulation of gene expression. Log2 fold-changes for six genes following treatment 



with the cAMP inducing agent forskolin in cells expressing EGFP or nuclear DDIT3-
EGFP.  The experiment was made with three biological replicates, and differences in 
induction between the two cell types were assessed with a two-sample t-test (* P-
value <0.05). Error bars indicate the standard error of the mean values. 
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Supplementary Table and Film Clip Legends
Supplementary Table 1. DDIT3 regulated genes. Differentially expressed genes 
induced by (a) cytoplasmic DDIT3, and (b) nuclear DDIT3 after two and eight hours 
of tamoxifen addition. (c) Validation of microarray expression with qPCR for selected 
genes (raw values and log2-fold changes compared with corresponding values in array 
data). 

Supplementary Table 2. Functional annotations for differentially expressed 
genes. Functional annotations (Ingenuity Pathway Analysis) for differentially 
expressed genes induced by (a) cytoplasmic DDIT3, (b) nuclear DDIT3 after two 
hours of tamoxifen addition, and (c) nuclear DDIT3 after eight hours of tamoxifen 
addition. The functional categories are divided into subgroups for which p-values for 
enrichment are given.

Supplementary Table 3. Enrichment of transcription factor binding sites.  
Enrichment of predicted transcription factor binding sites (TFBS) in the promoters of 
genes regulated by nuclear DDIT3 after two hours of tamoxifen addition. P-values 
reported for both a Fisher test and a permutation test.  A predicted TFBS in a 
promoter of a gene is referred to as a “hit”.  

Supplementary Table 4. Primer sequences used in RT-qPCR experiments.

Supplementary Film Clip 1. DDIT3morEGFP cells during 60 minutes incubation 
with tamoxifen (added after 5 minutes).

Supplementary Film Clip 2. morEGFP cells during 60 minutes incubation with 
tamoxifen (added after 5 minutes).



Supplementary Methods
Cell migration assay modeling
The experimental setup for the migration assay is described in the main text (six 
replicates for three separate experiments were performed).  The assay differs from 
traditional scratch wound assays by the use of two cell types that are seeded and co-
migrate together. The use of wild type cells as reference in the experiments decreases 
experimental variability and possible contributions of cell proliferation to the 
migration assay differences.
To model the migration rates (probabilities) for the different cell types (EGFP, 
DDIT3-EGFP, DDIT3morEGFP, and wild type), we make the following assumptions. 
Let the different proportions of EGFP-stained cells to wild type cells in the three 
experiments be denoted by Π=(π1, π2, π3) and let M denote the event that a cell has 
migrated into the scratch wound.  From each experiment i we can estimate the 
conditional probability that a cell is green given that it has migrated: p(i)G|M= P(G(i)|
M) simply as the proportion of green cells in the scratch(es). What we wish to 
investigate is the migration rate for the EGFP-stained cells in each experiment, i.e. 
the probabilities P(M|G(i)). We denote the migration probability for wild type cells 
with p and the migration probability for transfected cells with p+δ(i) in experiment i. 
We can now apply Bayes theorem.

where W denotes wild type cells and G transfected (EGFP-stained) cells. With some 
algebra we can by rearranging the terms in the above equality deduce

We estimate this quantity for all replications in each of the three experiments by 
plugging in the estimates for πi and p(i)G|M. 
If we wish to compare the migration probabilities of EGFP, DDIT3-EGFP, and 
DDIT3morEGFP to wild type cells we can use these ratios and assess significance 
with a sign test. By noting how many of the ratios are above one, we deduce that 
DDIT3morEGFP and DDIT3-EGFP cells migrate slower than wild type cells, while 
EGFP cells migrate faster (all p-values ~0.03) as indicated in Figure 3 in the main 
text. 

p(i)
G|M = P (G(i)|M) =

P (M |G(i))P (G(i))
P (M |G(i))P (G(i)) + P (M |W (i))P (W (i))

=
(p + δ(i))πi

(p + δ(i))πi + p(1 − πi)

p

p + δi
=

πi(1 − p(i)
G|M )

(1 − πi)p
(i)
G|M

.



To compare the migration rates of DDIT3-EGFP and DDIT3-MOR-EGFP with that 
of EGFP cells, we use all pair wise quotients of ratios deduced above for a given 
comparison. We estimate all 36 ratios for each of the comparisons as

By noting how many of the quotients are larger than zero, we get the Mann-Whitney 
U statistic and we can use the Mann-Whitney U test (equivalent to a Wilcoxon rank 
sum test). The hypotheses we test are whether observations from one population 
exceed the observations from another population or not, i.e. if the migration 
probability in one group exceeds the migration probability in another group. 
All 36 quotients of ratios between EGFP and DDIT3-EFGP, likewise for EGFP and 
DDIT3morEGFP, deviate from one in the same direction. This corresponds to the 
most extreme outcome of the statistic and gives a p-value of approximately 0.002. For 
the ratio between DDIT3mor EFGP and DDIT3-EGFP migration probabilities, we 
observe a p-value of 0.065. We can hence deduce that the migration probabilities 
between DDIT3morEFGP and DDIT3-EGFP most likely differ from the migration 
probability of EGFP cells, but we cannot on the 0.05 level claim that the migration 
probabilities are different in the two DDIT3 groups.

Permutation test for TFBS enrichment
The test to detect enrichment for TFBS among the regulated genes was based on a 
weighted statistic and significance assessed with permutation. We assume that we 
have expression values for a set of genes in two conditions. The genes are ranked for 
differential expression using for example log-fold change, or the moderated t-statstic. 
These gene level statistics are denoted by dg. We also have a set of scores for the 
occurrence of motifs in the promoter of each gene. The indicator Igj equals 1 if gene g 
contains motif j in its promoter and 0 otherwise. We use the following test statistic

with weights wgj. The weights score the values of the gene level between 0 and 1. If a 
gene is highly differentially expressed, it receives a score close to 1, otherwise it 
should receive a score close to 0. We use a logistic curve for the weights, for which we 
can vary the location and scale parameters according to the gene expression data.
If a motif is present in the promoter of several differentially expressed genes, the 
weights will be closer to 1 for these genes, and the test statistic u should be “large”. 
Conversely, if a motif is rarely seen in the promoters of the differentially expressed 
genes, it results in a small value of u. 

�p + δ(2)

p + δ(1)
=

π̂1(1 − p̂(1)
G|M )

(1 − π̂1)p̂
(1)
G|M

�
π̂2(1 − p̂(2)

G|M )

(1 − π̂2)p̂
(2)
G|M

u =
�

g

wgj(dg) · Igj



The significance of motif occurrence and high differential expression is tested with 
permutation on the indicators Igj. The motif occurrence is permuted 1000 times and 
the value of the test statistic u is calculated for each permutation. The p-value for 
enrichment of motif j among the differentially expressed genes is calculated as 

where up denotes the value of the statistic in permutation p. 
The parameter values for the location and scale parameters in the weigh functions 
have to be chosen by the user, but we recommend setting the location parameter to 
roughly the 80%-quantile of the gene level statistics. 
We compared our method with another common permutation procedure called Gene 
Set Enrichment Analysis (GSEA)1  using a simulation study previously described2. 
Briefly, the expression for 600 genes in 20 samples was simulated using a multivariate 
normal distribution (all with variance 1). 520 genes constituted the background set, 
and were simulated with a mean μ = 0 and correlation ! = 0. The remaining 80 
genes were simulated with different means and correlations mixed of values μ = (0.75, 
1, -1) and ρ=(0, 0.6, -0.6). Nine sets were used to test the enrichment methods, of 
which sets 1, 2, 6, and 7 should be detected by any well working method, and sets 4, 
5, 8, 9 ideally also should be detected (although only half of the genes were 
differentially expressed in these sets). Set 3 should work as a negative control2. 
We simulated 100 data sets, ranked the genes in each data set by log2 fold-change 
(absolute values) as well as by the moderate-t statistic (also absolute values), and 
tested each method on these sets. Our method was tested with three different values 
on the location parameter, corresponding to the 75, 80, and 85 percentiles of the gene 
level statistics. The scale parameter was set to 0.1. 

P =
�

p

I(up > u)

1 Subramanian et al. (2005). Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 
102(43):15545-50.
2 Ackerman and Strimmer (2009). A general modular framework for gene set 
enrichment ananlysis. BMC Bioinformatics. 10:47.



log-fold change moderated-t
set 1 0.62 0.63
set 2 0.93 0.93
set 3 0 0
set 4 0.47 0.47
set 5 0.45 0.43
set 6 0.89 0.89
set 7 1 1
set 8 0.71 0.73
set 9 0.85 0.84

Table 1: Enrichment results from GSEA. The values correspond to the proportion of p-values < 0.05 in 
the 100 data sets.

log-fold 
change (1)

log-fold 
change (2)

log-fold 
change (3)

moderated-t 
(1)

moderated-t 
(2)

moderated-t 
(3)

set 1 0.7 0.67 0.64 0.7 0.66 0.63
set 2 0.99 0.99 0.99 0.99 0.99 0.98
set 3 0 0 0 0 0 0
set 4 0.56 0.55 0.51 0.57 0.52 0.5
set 5 0.52 0.56 0.55 0.52 0.52 0.49
set 6 0.92 0.92 0.88 0.92 0.9 0.86
set 7 1 1 1 1 1 1
set 8 0.78 0.78 0.76 0.77 0.75 0.75
set 9 0.89 0.96 0.95 0.86 0.93 0.9

Table 2: Enrichment results from our permutation test. The values correspond to the proportion of p-
values < 0.05 in the 100 data sets. The location parameter was set to 0.6, 0.68, and 0.77 for the log-
fold change ranked data and to 1.35, 1.52, and 1.73 for the data ranked with the moderated-t statistic. 
The scale parameter was set to 0.1.

We observe that the results for the permutation test performs slightly better than 
GSEA on all data sets. The results seem to be quite robust to the choice of the 
location parameter. The scale parameter can also be varied, an influences how 
sharply the logistic curve switches from values close to zero to values close to one. 
The results seem quite robust also to the choice of this parameter (data not shown), 
but we recommend values in the range 0.05 - 0.2. According to our simulations, a 
good choice for the location parameter is in the range given above (75-85th 
percentiles of the gene level statistics). 
Our permutation method is very easy to implement and the better performance of 
our statistic u to the running sum in the GSEA is probably due to the fact that our 
statistic is not sensitive in the same way to the absolute gene ranking. Although there 
is a need to choose the extra location and scale parameters, our method offers more 



versatility in how the expression values are allowed to influence the results (we can 
choose to only use highly differentially expressed genes, or be more liberal and allow 
genes with moderate expression values to also influence the statistic). We can choose 
to apply the weights (the logistic curve) to absolute values of the gene level statistics, 
or to the original values. 
For the motif enrichment p-values presented in the paper (Supplementary Table 4), 
we ranked the genes by absolute log2 fold-change and chose the values 0.75 for the 
location parameter and 0.1 for the scale parameter. We also tested the method on the 
down regulated genes, with similar negative results (data not shown).
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TRANSCRIPTIONAL AND METABOLIC DATA INTEGRATION AND
MODELING FOR PATHWAY IDENTIFICATION

WORKING PAPER

ALEXANDRA JAUHIAINEN1,2, OLLE NERMAN1,2, GEORGE MICHAILIDIS3,
AND REBECKA JÖRNSTEN1,2

Abstract. With the growing availability of ’omics’ data generated to describe dif-
ferent cells and tissues, the modeling and interpretation of such data has become in-
creasingly important. Pathways are sets of reactions involving genes, metabolites, and
proteins highlighting functional modules in the cell. Therefore, to discover activated or
perturbed pathways when comparing two conditions, for example two different tissues,
it makes sense to use several types of ’omics’ data. We present a model that integrates
transcriptomic and metabolomic data in order to make an informed pathway level deci-
sion. We view the gene expression data as explanatory for the metabolite data model,
since metabolites can be seen as end-points of perturbations happening at the gene
level. With real data, we show that the transcript profiles can be used to explain the
metabolite data, and with simulations that the proposed model offers a better perfor-
mance in identifying active pathways than for example enrichment methods performed
separately on the transcript and metabolite data.

1. Introduction

The development of different ’omics’ technologies in molecular biology have resulted
in many ways to characterize cells and tissues. In addition to the complete sequence
of the genome, the overall collection of gene transcripts (the transcriptome), proteins
(the proteome), and metabolites (the metabolome) can be investigated with various
techniques. The end purpose of such a characterization is to find genes, metabolites, and
proteins that constitute networks which are perturbed in certain tissues or cell states.

Taking cancer as one particular example, cancer tumors originate from alterations in the
DNA sequence of cells which transform them into cancer cells. These alterations range
from point mutations (alterations in a single nucleotide) to large chromosomal aberrations
[1]. Whole-genome microarrays can be used to monitor changes in the transcriptome,
e.g., when comparing samples from cancer patients and matched normals. Recently, more
efforts have been focused on understanding the metabolome of cancer cells, in order to

1Mathematical Statistics, Chalmers University of Technology, Göteborg, Sweden
2Mathematical Statistics, University of Gothenburg, Göteborg, Sweden
3Department of Statistics, University of Michigan, Ann Arbor, MI, USA
E-mail addresses: alexandra.jauhiainen@chalmers.se, nerman@chalmers.se,

gmichail@umich.edu, jornsten@chalmers.se.
1



2 PATHWAY IDENTIFICATION VIA DATA INTEGRATION AND MODELING

gain understanding of the cellular physiology and biochemical activity of tumors. An
example is given in [2] where the authors investigate the metabolome in prostate cancer
progression.

A metabolic profile holds information on concentrations of different small molecules
(metabolites) in the cell, for example sugars, amino acids, organic acids, and vitamins,
in contrast to a transcriptional profile that characterizes mRNA transcript levels. Meta-
bolic profiles are generated via techniques like GC-MS (gas chromatography, followed by
mass spectrometry) or very commonly NMR (nuclear magnetic resonance). Identifying
metabolites from NMR or GC-MS spectra is a difficult task, and the resolution is usually
50-150 unique molecules, significantly less than the number of transcripts identified in
an array experiment. Since alterations on the genomic level often manifest themselves as
downstream variations in metabolite concentrations, the information on the (relatively
few) metabolites is still very important. The metabolites can be viewed as end-points of
perturbed pathways, often referred to as altered or active pathways [3].

The most common analysis of transcriptional data involves some type of functional an-
notation of differentially expressed genes. To this end, genes are mapped to functional
categories representing different cellular functions (or other groupings), and the func-
tional categories are analyzed for enrichment among the differentially expressed genes.
The Gene Ontology (GO) [4, 5] is a widely used resource for functional annotation and
contains controlled and consistent vocabularies for annotation of gene products. The
three main ontologies consist of a terminology describing the molecular function of gene
products, their associated biological processes, and their cellular localization. However,
as the name implies, GO contains annotation for gene products only, and not for metabo-
lites.

Pathways, which are sets of reactions involving genes, metabolites, and proteins, can be
viewed as functional groups with a more complicated structure than GO groups. The
reactions connect different metabolites and genes in an intricate network. The KEGG
database [6, 7] as well as the MetaCyc initiative [8, 9], are collections of pathway in-
formation for a large set of species. The pathway information can be used to perform
enrichment analysis with transcript, proteome, or metabolite data in the same way as
annotation to GO groups. As the availability of different transcriptomic data sets in-
creases, the combination of such data sets can be used to improve the power of enrichment
analysis in pathways [10].

Enrichment analysis of functional groups or pathways can be done in multiple ways.
Generally, using the terminology in [11], performing enrichment with gene expression
data consists of three steps. The first being individual gene scoring with e.g. fold-change
or t-statistic, followed by transformations of the calculated gene levels statistics to e.g.
p-values or ranks. Finally, an overall gene set statistic, which could be e.g. a sum,
a median, or any suitable summary statistic of the transformed gene level statistics,
is calculated and significance assessed. Over 250 methods for enrichment analysis are
compared in a general framework in [11].
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A standard and simple form of enrichment analysis is the hypergeometric test (Fisher

test) in which the proportions of genes in a gene set within the groups of differentially and

non-differentially expressed genes respectively are compared. Other common choices are

the more sophisticated Gene Set Analysis (GSA) [12] and Gene Set Enrichment Analysis

(GSEA) [13] methods that use the maxmean statistic and a running sum respectively, as

the gene set statistic.

The availability of multiple ’omics’ data sets in an experiment raises the question on how

to combine the data sets in an enrichment analysis context. For pathways in particu-

lar, a combined analysis of transcript and metabolic data may be very informative, as

the metabolites can be viewed as end-points of perturbations caused by changes in the

expression of key genes in the same pathway predominantly.

Previous studies working with an integrative approach for different types of ’omics’ data

include several studies on plants, particularly Arabidopsis thaliana [14, 15, 16], tomato

[17], and hybrid aspen [18], a study on the yeast Saccharomyces cerevisiae [19], and

studies on rat or mouse [20, 21, 22].

The two main approaches for data integration in these studies are correlation analysis

and/or unsupervised multivariate techniques like PCA and PLS (see e.g. [23]). In the

correlation approach, significant correlations between transcripts and metabolites are

extracted, followed by clustering and network visualization or functional annotation.

The functional annotation is generally limited to association of genes to GO groups (not

using the metabolites). Other studies rely on unsupervised techniques like PCA and PLS

to extract connections between the metabolome (not always using detailed metabolite

data) and the transcriptome. The connections can then be investigated by network

visualization.

An example of a more mathematical approach for data integration includes the sparse

PLS methodology which was adapted to select a subset of important genes to explain

transcriptomic data [24].

In general, in studies published to date, the individual connections between transcripts

and metabolites are integrated into a pathway/functional group decision. We propose a

different approach, in which we adapt a global model with the direct purpose of making

decisions on active or enriched pathways/functional groups as opposed to the two-step

individual modeling. We model the metabolite and transcript data jointly to make

an informed pathway decision, and hence the interpretation of the data becomes more

straightforward since the need for post-analysis of identified metabolite/transcript con-

nections is reduced.

The final goal of our analysis is to highlight pathways in which there is a considerable

difference between treatment groups manifested both in mRNA transcription profiles and

on the metabolite level.
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2. Pathway Model of Transcript - Metabolite Connections

We propose a global model with the purpose of making decisions on active or enriched
pathways by joint modeling of transcript and metabolite data. The experimental setup
that we base our model on is the availability of transcript and metabolite data for two
groups, which we for simplicity call treatment and control. Examples of this is cancer
and matched normal, or mutant and wild-type. A generalization to the model is to e.g.
include more treatment groups, which we touch briefly upon in Section 6, but in this
paper we focus on two treatment groups.

We index the pathways used in the model by k=1, . . . ,K. The indicator variable ck equals
one if pathway k is active, and equals zero otherwise. The purpose of the modeling and
estimation is to do sparse selection on the ck indicators.

2.1. Prior information. The global model contains the pathway information in the
form of membership for genes and metabolites in the different pathways. We denote
these memberships with indicators aik and bjk such that aik = 1 if gene i is in pathway
k and bjk = 1 if metabolite j is in pathway k for genes indexed by i = 1, . . . , Ng and
metabolites indexed by j = 1, . . . , Nm.

2.2. Data and Model Formulation. We let the control and the treatment groups in
the data be indexed by t = 1, 2, respectively. The expression of metabolite j in condition
t is denoted by fjt and the expression of gene i in condition t by git. We distinguish the
control and treatment groups by the indicator variable xt which is equal to zero for the
control group and equal to one for the treatment group; x1 = 0, x2 = 1. The gene level
of our model specifies a dependence of the gene expressions on pathway membership:

git = αi + xt βi

�
1−

�

k

(1− aik ck)
�

+ εit

The gene model includes an intercept term denoted by αi while the second term with the
parameters βi represents a direct effect from a potential pathway membership. If gene
i is a member of one or more active pathways, the direct effect can be included in the
model for the observations from the treatment group. The model selection procedure
(see below) determines if βi �= 0 for gene i.

Similarly, the metabolite model includes an intercept α�
j for each metabolite.

fjt = α�
j +

�

i

δij git1{βi �= 0}
�
1−

�

k

(1− aik bjk ck)
�

+ ε�
jt

The second term in the metabolite model is included to account for a potential effect
of gene expression on the metabolite expression. The expression of metabolite j can be
affected by gene i if both are members of the same pathway, provided that the direct effect
for gene i was included in the gene model. The parameters δij estimate the relationship
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between gene i and metabolite j. Please note that the biological replicates in each
treatment group are not indexed in the model equations stated above.

2.3. Model Selection and Parameter Estimation. Model selection occurs on two
levels in the estimation procedure; within pathways and on the global pathway level.
Within pathways (for pathway k), we firstly select genes comparing the null and non-
null gene models. For a specific gene i this means that we compare the model using
only the intercept parameter αi with the model where the direct effects parameters βi

are included as well. For each gene within pathway k, BIC is calculated for both the
null and non-null models. A rate-distortion criterion is used to select the genes for which
we use the non-null models, see Appendix B. The rate-distortion slope minimizing the
overall BIC (sum of individual gene BIC:s) is chosen and models selected based on that
slope. In using BIC to select models, we make the assumption that the model errors are
Gaussian.

For the model selection within pathways on the metabolite level, we allow genes within
pathway k with an included treatment effect (i.e. βi �= 0) to work as predictors. The
number of genes may be large (and the number of replicates small), and hence some
regularization is needed to select which genes to include as predictors. An elastic net
penalty [25] with a high level of sparsity imposed to select predictors, see Appendix A.3.
For each metabolite we have the null model (only intercept α�

j) and a set of increasingly
complex models indexed by inverse of the penalty parameter λ (large penalty results
in small models). To select which model to use for each metabolite, we again use rate-
distortion criterion, but with a cross-validation selection method instead of BIC. In effect,
we wish to maximize the overall predictive likelihood (instead of minimizing BIC which
seems to be unstable in this context.

The model selection on the global pathway level is made via a stepwise procedure. In
each step, a pathway is chosen and added to the active set of pathways according to
an R2 criterion. For each pathway, the R2 values for the gene and metabolite models
are combined to an overall R2 value and the pathway with the largest R2 is added (for
details, see Appendix A.2).

For subsequent steps in the pathway selection procedure, the residuals from the metabo-
lite model from previous steps are used as responses, while genes are not allowed to be
re-used once they have been included in the model. A detailed description of the whole
estimation procedure is given in Appendix A.

3. Simulations and Application to the NCI-60 data

3.1. The NCI-60 Data Set. The NCI-60 is a set consisting of 59 human cancer cell
lines derived from various tissues, and characterized into nine broad cancer categories;
leukemia, non-small cell lung (NSCLC), colon, CNS, melanoma, ovarian, renal, prostate,
and breast cancer. The cancer cell line set has been used for extensive screening of
chemical compounds, and has also been characterized by gene expression profiling, with
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CGH copy number arrays, by microRNA expression and metabolite profiling, just to

mention a few. The gene expression levels have been analyzed multiple times using

different platforms, for example Affymetrix, as in the most recently published (as of

April 2010) Chiron data. Metabolite concentrations have been characterized only once

so far with triplicate technical replications [26].

3.2. Data Preprocessing. The cell lines belonging to the NSCLC and Leukemia group-

ings were chosen for the simulation study. Since control cell lines are not included in the

NCI-60 set, the six Leukemia cell lines were chosen to act as controls, while the nine cell

lines in the NSCLC group were considered to be the treatment group, but any grouping

is of course possible.

The gene expression values were averaged over multiple probe IDs in each cell line and

features missing a Unigene ID were filtered out. Features with the same Unigene ID were

averaged to produce a final set of 17118 gene expression values. The metabolite data

contained characterization of levels for 352 metabolite features. The subset of features

uniquely identified as a specific metabolite were selected. Information on all metabolites

contained in the KEGG database [7, 6] were downloaded (January, 2010) via the Taverna

tool [27]. Systematic metabolite names were matched via fuzzy matching and manual

curation to unique KEGG compound IDs resulting in total 136 compounds to be retained.

3.3. Pathway Information. Pathway information for 199 human pathways were down-

loaded from KEGG (January, 2010) through Taverna. The collective metabolic pathway

(with more than 1000 and 80 metabolites) was removed. All genes and metabolites tak-

ing part in the pathways were identified and mapped (creating the indicators aik and

bjk defined in Section 2). Pathways not containing any metabolites were excluded from

the modeling (although it is possible to include them in the gene model only) since the

integration of the different data sources was the main focus of the modeling. A total of

75 pathways were used in the simulations. After mapping of metabolites and genes to

the pathways, a total of 110 metabolites and 4526 genes were kept, see Table 1.

Table 1. Summary of the filtered NCI-60 data and pathway information.

Number of features Example

Genes 4526 hsa:2561

Metabolites 110 cpd:C00249

Pathways 75 path:hsa00471

3.4. Simulation Study. The NCI-60 data set (Leukemia and NSCLC groups) was em-

ployed for simulation and evaluation of the methodology in the following way. First, the

data in its original form was used to assess the overall performance of the model and

to judge the predictive power in the gene expression data on the metabolite expression
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data. In the case of poor predictive power in the gene expression data, the overall rate-

distortion model selection criterion should frequently pick the null models, or models

with few parameters.

Second, three simulated data sets were created with the aim to mimic different scenarios

of pathway activation; one scenario in which a majority of the genes and metabolites are

perturbed between the treatment and control groups, one having a small set of genes

with a strong signal, and similarly a strong signal on correlated metabolites, and one

in which we observe differential expression between the groups on half of the genes and

metabolites. We refer to the three data sets as "original", "all active", "a third active",

and "half active".

In detail, five non-overlapping pathways with varying sizes were selected to work as active

pathways in the three simulated data sets. For the first simulated data set ("all active"),

the precision in the measurements for all member genes and metabolites was increased by

a factor of four element-wise within treatment groups. Any existing differences between

the two treatment groups were thus increased for the subset of genes and metabolites in

the selected pathways. In the second simulated data set ("a third active"), the precision

was increased (similarly as in the all active simulated set) within each selected pathway

for a third of the genes (chosen at random), while the remaining genes had their precision

decreased by a factor of two. Half of the metabolites within each pathway (which had

the highest correlation to the genes with increased precision) were spiked in the same

way. The precision of the remainder of the metabolites was decreased. For the third

simulated set ("half active"), half of the genes and metabolites in each selected pathway

were chosen at random and their precision was increased by a factor of four, while the

remaining genes and metabolites levels were left unchanged.

The first round in the estimation procedure aims to identify the most important pathway

according to the R2
scoring scheme. The R2

criterion is defined within each pathway,

and since the number of parameters used within each pathway is optimized with rate-

distortion, the R2
-criterion should not pick only large pathways.

In fact, we see in Figure 1 that small pathways generally are scored highly, and especially

in the metabolite model. Small pathways can be easily explained in R2
-sense in the

metabolite model if they contain just one or two metabolites, and we happen to have a

strong signal on those genes in the data. Perhaps such small pathways can be excluded

from the analysis, but we have chosen to keep them in the analysis, and since the gene

model also influences the pathways selection, spurious signals in the metabolite model

are down-weighed somewhat.

For the original data, we observe that the expression values of genes seem to have some

predictive power on the metabolite expression, as non-null models are picked frequently,

which motivates our model formulation. Similar plots for the simulated data sets for

the first round of estimation is given in Appendix C. Figure C.1 and Figure C.2 show

the R2
scores for the gene and metabolite models separately with the spiked pathways

marked with red squares. The original NCI-60 data is also depicted for comparison.

The general trend is that the spiked pathways have a high rank in the simulated sets



8 PATHWAY IDENTIFICATION VIA DATA INTEGRATION AND MODELING

0 50 100 150 200 250 300

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Pathway size

R
2

(a) Gene model

2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

Pathway size

R
2

(b) Metabolite model

Figure 1. Overall R2 scores for each pathway versus pathway size in the
gene and metabolite level models on the original NCI-60 data.

especially on the gene model. The exception is pathway hsa:00400, and after closer
inspection we observed that this pathway contains genes exhibiting high variance and
inconsistent expression values within the two treatment groups. Hence, the R2 is also
very low in metabolite model for this pathway. For all the other pathways, the increase
in precision on the member genes also leads to higher R2 values in the metabolite model.

Running the estimation method for the model several rounds gives a set of pathways
with the highest rank. The choices of when to stop the stepwise procedure are several;
after a given set of rounds, when the overall R2 falls below some cut-off, or when the
overall R2 falls below a certain percentage of the R2-value of maximum ranked pathway.

For the original NCI-60 data, none of the spiked pathways are ranked among the top
ten pathways, indicating that higher ranks within the simulated data sets show that our
spiking procedure makes sense. For the simulated data sets, the results are given in Ta-
ble 2 where the ranks for the pathways are ordered according to hsa:00410, hsa:00400,
hsa:00061, hsa:00230, hsa:00562.

From Table 2 we observe that the model performs well on the all active and half active
sets, but slightly worse on the a third active set. Closer inspection shows that for example
the top ranked pathway on set 2 is a small pathway which partly overlaps with one of
the spiked pathways, indicating that the model still picks up the spiked signal.

The performance of the model on the different simulated sets, as well as the original data
can be further investigated by depicting the selected pathways in a rank-rank plot. In
Figure 2, the ranks for the different pathways in the first round of estimation for the gene
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Table 2. Ranks (according to R2) for the
active pathways for the three simulated data
sets in the NCI-60 data. The stopping crite-
ria was chosen to a fixed set of 10 estimation
rounds.

Data set Spiked pathway ranks
(combined)a

NCI-60 Original -, -, -, -, -
NCI-60 all active (set 1) 6, -, 1, 4, 3
NCI-60 a third active (set 2) -, -, 3, 9, -
NCI-60 half active (set 3) 5, -, -, 2, 3

a A dash indicates that the pathway was not present among the top
ten ranked pathways.

and metabolite models are depicted on the x- and y-axes. The top ten selected pathways
are highlighted with red squares.

The rank-rank plots show that pathways with high ranks in both the metabolite and gene
models preferably are picked. However, pathways with a strong signal in for example the
gene model, and a weak signal in the metabolite model can also be picked, due to the
R2 selection criterion. One possibility is to exclude such pathways from the selection
process, and select pathways under an additional criterion on the maximum of the ranks.
However, such a solution is quite ad-hoc and we chose to keep the simple R2 criterion
for selecting pathways.

4. Comparisons with Other Methods

The purpose of the model we present in this paper is to integrate transcriptomic and
metabolomic data, and analyze the data with respect to pathways. The current methods
for analysis and integration of such data is usually (gene) set enrichment, or different
versions of correlation analysis.

4.1. Gene Set Enrichment. Gene set enrichment on the transcript and metabolite
data is not an integrated approach per se, but we can analyze the different data types
separately and try to combine the two analyses. How to combine enrichment p-values
is not obvious though, and we don’t attempt to do so here. Instead we report the p-
values for the two analyses separately. The metabolites and genes in all four data sets
were ranked with respect to differential expression using the moderated t-statistic [28].
Pathway enrichment analysis was done separately on the gene expression and metabolite
data within each NCI-60 data set with the GSEA method [13] and the GSA methods
[12]. P-values were calculated with a permutation test based on 1000 permutations of
gene and metabolite pathway membership.
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(c) A third active (set 2)

0 10 20 30 40 50 60 70

0
2

0
4

0
6

0

Pathway ranks by metabolites (first round)

P
a

th
w

a
y 

ra
n

ks
 b

y 
g

e
n

e
s 

(f
ir
st

 r
o

u
n

d
)

(d) Half active (set 3)

Figure 2. Ranks in the first round of estimation for all the NCI-60 data
sets. The top ten picked pathways are indicated with red squares. It
should be noted that the ranks for the pathways change between the
different rounds, as genes are sequentially removed, and the residuals for
metabolites from previous rounds of estimation are used as responses.

In the tables below, the pathways are ranked according to p-value. When applicable, ties
in the ranking have been resolved by giving pathways with equal p-values the same min-
imum rank. The ranks for the pathways are ordered according to hsa00410, hsa00400,
hsa00061, hsa00230, hsa00562.
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Table 3. Ranks (according to p-value) given by GSEA for
the active pathways in the four data sets from the NCI-60
data. In comparing with Table 2, please note that for our
model, we integrate the two data sources, and hence present
an overall ranking.

Data set Spiked pathway ranks a Spiked pathway ranks b

(genes) (metabolites)

NCI-60 Original 9, 2, 33, 40, 14 3, 35, 17, 20, 31
NCI-60 all active 1, 28, 15, 1, 1 1, 5, 10, 2, 12
NCI-60 a third active 1, 24, 18, 16, 2 1, 12, 4, 2, 8
NCI-60 half active 6, 24, 42, 1, 1 1, 17, 9, 3, 26
a Number of p-values < 0.01: 1, 12, 5, 11, respectively.
b Number of p-values < 0.05: 4, 4, 5, 4, respectively.

The simulated data sets were spiked in such a way to increase the differences in the
gene and metabolite models between groups. If this difference is present among many of
the genes/metabolites within one pathway, GSEA should perform well. We observe that
GSEA does fairly well on the all active data set. The worst performance of GSEA on
the gene model and is within the a third active set. Since just a third of the genes are
spiked within each pathway, the signal is hard for the algorithm to pick up. GSEA fails in
picking up the signal among the genes belonging to pathway hsa00400, as is natural due
to the conflicting expression values. Enrichment of pathway hsa00061 is neither detected
well, probably due to the smaller size (in the gene expression data) of that pathway.

Table 4. Ranks (according to p-value) given by GSA and
the maxmean statistic for the active pathways in the four
data sets from the NCI-60 data.

Data set Spiked pathway ranks a Spiked pathway ranks b

(genes) (metabolites)

NCI-60 Original 20, 62, 56, 74, 42 6, 32, 7, 8, 34
NCI-60 all active 1, 67, 44, 1, 1 1, 12, 5, 3, 13
NCI-60 a third active 1, 62, 45, 67, 25 1, 18, 8, 1, 11
NCI-60 half active 1, 66, 54, 1, 19 3, 28, 7, 2, 17
a Number of p-values < 0.01: 9, 15, 20, 21, respectively.
b Number of p-values < 0.05: 13, 10, 9, 9, respectively.

The maxmean score in GSA is very good at picking up one-tailed expression changes, i.e.,
when the genes or metabolites are perturbed between the two treatment groups mainly
in the same direction. However, it performs less well in the two-tailed situation. Also,
the maxmean statistic is designed to avoid situations where few strong signals could
dominate the score [12]. Thus, this may be the reason that it performs poorly on the
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a third active data set, especially on the gene-level where only a third of the genes are

spiked. GSA seems otherwise to perform similarly to GSEA.

4.2. Correlation Analysis. The correlation analysis for integration of the gene expres-

sion and metabolite data (partly adapted from [17]) was done as follows. Differential

expression for the genes in all four data sets was assessed using the moderated t-statistic,

and p-values were adjusted with the Bonferroni-Holm (BH) method [29] to account for

multiple testing. Genes with a p-value below a given threshold were selected and the

corresponding pairwise Pearson correlations were calculated with each metabolite (over

both treatment and control groups simultaneously). Prior to correlation analysis, both

the genes and metabolites were centered to have mean zero and scaled to have a variance

of one.

Significance for correlations between all gene-metabolite pairs was assessed and p-values

adjusted with the BH-criterion. All gene-metabolite pairs with a correlation p-value

lower than the given threshold were selected and clustered with single-linkage clustering

to create groups of co-correlated metabolites and genes. The clustering procedure was

adopted to exclude spurious small clusters of co-correlated metabolite-gene pairs (only

adding noise). The largest cluster (which either was the only one, or by far bigger than

the other clusters) among the co-correlated genes and metabolites was therefore used for

enrichment analysis. The enrichment of pathways within the genes and metabolites was

assessed separately with a hypergeometric test (equivalent to a Fisher test). The p-value

threshold was set to 0.01 for all data sets.

The results for the analysis on all four data sets are given in Table 5. We would expect

the method to pick up at least some of the signal in the gene data set since genes with a

differential expression between the treatment and control groups were chosen in the first

step and hence are present in the clustered groups. Within the gene expression data,

three of the active pathways received a relatively high rank for all the simulated data

sets. However, the ranks, especially not for the a third active set, are not impressive. The

method seems to perform very well on the metabolite data, although the fact that the

gene-metabolite connections may be induced by between-pathway correlations, instead

of correlations within pathways, may raise concerns (see discussion in Section 5).
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Table 5. Ranks (according to p-value) given by correlation
analysis for the active pathways for the three data sets in
the NCI-60 data. The ranks for the pathways are ordered
according to hsa00410, hsa00400, hsa00061, hsa00230,
hsa00562.

Data set Spiked pathway ranks a Spiked pathway ranks b

(genes) (metabolites)

NCI-60 Original 48, 47, 29, 6, 3 23, 45, 21, 1, 14
NCI-60 all active 5, 55, 42, 1, 2 4, 3, 2, 1, 9
NCI-60 a third active 1, 54, 40, 2, 5 3, 16, 4, 2, 7
NCI-60 half active 2, 55, 42, 1, 3 2, 1, 5, 4, 7
a Number of p-values < 0.01: 0, 9, 5, 10, respectively.
b Number of p-values < 0.05: 0, 4, 1, 3, respectively.

5. Discussion

We propose a model for the purpose of identifying pathways (sets of reactions involving
genes, metabolites and proteins) with altered behavior when comparing two different
experimental conditions. The model is intended to make informed pathway level decisions
by integrating gene expression and metabolite data.

Model selection is necessary on two levels in the model; within pathways and on the global
pathway level. First, for the within pathway model selection, the model complexity in
both the gene and metabolite models is chosen according to a rate-distortion criterion.
The rate-distortion criterion works well in a situation in which a small set of features, for
example genes, show a strong signal, and hence chooses non-null models for the features
with a strong signal. If a larger set of features instead exhibits moderately strong signals,
the rate-distortion criterion tends to select a subset of the features, but generally not all
of them. However, according to our simulations, sufficiently many genes and metabolites
seem to be selected for the model to function satisfactory (data not shown). The three
simulation scenarios used in this paper attempt to mimic different levels of pathway
activity with both strong and moderate levels of gene and metabolite signals (see below).

For the within pathway model selection in the metabolite models, we choose to use linear
regression with an elastic net penalty. The elastic net has some appealing properties,
and works better in a p > n setting than for example the lasso [25]. The elastic net
penalty (called α) is not chosen via cross-validation for each metabolite, but instead
a global α-value is fixed to largely mimic the behavior of the lasso, but still allow for
highly correlated genes to function as predictors together in the model by shrinking
their coefficients towards each other. Undesirable lasso effects like model saturation and
the restriction of the maximum number of included predictors (n) in the model can
be circumvented by using an elastic net penalty. However, we experienced problems in
using a modified BIC for selection of the penalty in the elastic net (the same problems
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occurred with the lasso) and thus recommend that the model be run with cross-validation
techniques within the metabolite model instead.

To make a global pathway level decision, we select pathways in a stepwise procedure
according to an R2-based criterion. Some limitations are inherent in a stepwise procedure
to select predictors. The presence of correlated predictors, i.e., in our case overlapping
pathways (common member genes and metabolites), may be a problem. If two highly
correlated pathways are active when comparing two conditions, the stepwise procedure
tends to choose one of the pathways, and leaves the other outside the active set. One
solution is to redefine the residuals after each round of estimation, allowing genes and
metabolites in the selected pathway to be re-used if they are present within the set of
genes and metabolites in another highly ranked pathway. However, the risk which such
a procedure is that we keep selecting overlapping pathways at the expense of neglecting
other pathways which may be of biological interest.

The R2-based criterion for global pathway selection focuses on the amount of explained
variance within each pathway. We combine the gene and metabolite level models by
scaling the R2-values to impose equal weights (or other predefined weights) between
the gene expression and metabolite data. A BIC criterion to select pathways could be
suggested, but in our experience the BIC criterion is unstable in this setting. This is due
to the fact that each pathway is small compared to the size of the overall data sets, and
the log-likelihood will therefore dominate the criterion resulting in the selection of null
models.

Pathway selection is partly dependent on cross-validation (from the model selection in the
metabolite model) and the procedure therefore suffers from some inherent variability. The
variability only affects pathway ranking, since the same overall set of pathways almost
always is selected. The differences we observe are mainly of the form where overlapping
pathways "swap" places with each other in the active set of pathways.

Several definitions of altered behavior at the pathway level are possible. For example,
a pathway can be classified as active at the gene level if only a few genes show strong
differential expression between two conditions. Alternatively, activity could be thought
to involve a larger set of genes showing moderate differential expression. The three
simulation scenarios based on data from the NCI-60 data set attempt to mimic these
different types of pathway activity.

The NCI-60 data is used as a test case to investigate the proposed model. We chose two
cancer types, Leukemia and NSCLC, to act as control and treatment groups respectively,
but any other choices of cell lines would have worked equally well. The approach with
spiked (subsets of) pathway genes and metabolites, was motivated by our desire to gener-
ate a more controlled setting with known signals in the data (although the original data
may of course be informative to differentiate between cancer types). To enhance existing
signals in a real data also has the benefit of preserving correlations between genes and
metabolites. One might argue that we have spiked the data "too much", thus making the
pathway decision trivial. However, we show that e.g. GSEA cannot pick up the signal
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in all data sets, and thus our simulated scenarios function as proofs of concept for our
modeling approach.

The aim of the proposed model, is to pick up correlations between the different data
sources, and use these to make a pathway decision. For one of the pathways (hsa:00400),
null models were frequently selected for the member genes. Hence, the pathway received a
low R2-score for the gene model, and subsequently also for the metabolite model. In con-
trast, with GSEA, GSA, or correlation analysis, we observe that the pathway (hsa:00400)
is ranked highly (especially in the correlation analysis) in some of the simulated data sets.
Since none of the genes within this pathway are scored highly among the differentially
expressed genes, we conclude that with the correlation analysis, the metabolites within
this pathway likely are included in the clustered set due to correlation with other (non-
pathway) genes. Therefore, it seems likely that the correlation analysis is "too generous"
in certain scenarios. However, it should also be noted that the correlation analysis is an
ad-hoc method since no consensus on how to do integrated correlation analysis on tran-
script and metabolite data is reported in the literature. We conjecture that the method
might be improved with more restrictive p-values and alternative clustering schemes.

We observe that both our model, GSEA, GSA, as well as the correlation analysis have
problems in detecting the active pathways in the a third active (set 2) data set. This
is probably due to the limited amount of spiked in signal in this data set, which makes
the signal hard to pick up. It should be noted that when omitting the smallest pathways
on the metabolite level (containing just one metabolite), all four spiked pathways are
scored among the top ten for this data set with our model (while GSA and GSEA have
the inherent property of not ranking such small sets highly in an enrichment context).
this demonstrates the strength of using an integrated approach when there are different
data sources available for analysis.

For GSEA, at least for the all active data set (simulated set 1), hsa:00400 is scored
among the top pathways in the metabolite data. Nevertheless, since the enrichment of
this pathway on the gene level is non-significant, we would probably not consider this
pathway interesting in a biological context. Our model makes this decision directly based
on the fact that the genes cannot predict the metabolite expression. However, if we wish
to find pathways with large differential expression on the metabolites, but not necessarily
with correlations between gene expression and metabolite data within the same pathway,
GSEA is a good choice for analysis.

The metabolite data in the NCI-60 set contains characterization of a relatively large set
of metabolites, although many of the features, i.e. peaks in the spectra, could not be
identified uniquely. Unfortunately it is often the case that missingness in the data is
present. The missing metabolite concentration values can be imputed from the other
replicates within treatment groups, which also has been done partially in the NCI-60. As
an alternative to imputation our model and estimation procedure can handle moderate
levels of data missingness, as long as there are a sufficient number of data points left to
do estimation for each gene and metabolite (with of course larger variance in prediction
as a result). Incompleteness in the pathway information also induces some problems in
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the modeling. In effect, we reduce the sizes of the pathways to match the detectable gene
and metabolite sets, but this is the standard procedure in enrichment analysis.

6. Conclusions and Future Work

The model we propose in this paper aims to identify perturbed pathways by the inte-
gration of two different ’omics’ data types. We integrate the pathway level decision in
the modeling procedure, and show with simulations that the model generally performs
better at identifying active pathways than for example enrichment methods performed
separately on the transcript and metabolite data.

A potential application of the current model is to extend it to jointly analyze transcription
factor binding site data coupled to gene expression or microRNA expression, for which
a similar biological ordering is inherent. Another possibility is to generalize the model
to handle several treatment groups and include more data sources, for example adding
copy number variation data to the current setting with transcript and metabolic data.
To extend the model to handle more than two treatment groups can be done in several
ways, but one possibility is to re-parametrize the model to penalize contrasts of regression
coefficients (for example in the metabolite model).

In the current work we focused on selecting predictors via an elastic net penalty in the
metabolite model, but if more prior information is available concerning specific links
between genes and metabolites, it is possible to further restrict the set of potential
predictors that we allow to influence the metabolite expression. Such prior information
can also be used to validate the predictors selected by the elastic net. We intend to
implement the possibility of including such prior information in future version of the
model estimation procedure.
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Appendix A. Detailed Parameter Estimation Procedure

A.1. Data Normalization. Initial centering of the data was done by removing overall
sample means for each gene and metabolite over all the replicates. The replicates for
each gene and metabolite were also scaled to a variance equal to 1.

A.2. Estimation Procedure. A stepwise regression procedure in the ck parameters
were adapted. The outline of the procedure is as follows. For the initial round of
estimation, let the indicator ck = 1 for each pathway k = 1, . . . ,K in turn and perform
steps 1-3 below for each k.

1. Find the set of genes with aik · ck = 1 (i.e., genes that are members of pathway k).
Estimate the parameter βi for these genes (using ordinary least-squares). Calculate
the residual sum-of-squares SSE and BIC for each gene for the null and one-parameter
models. Calculate a set of rate-distortion slopes (see Appendix B) and for each slope,
calculate the overall BIC for the chosen model. Choose the slope (and hence models)
that give the lowest overall BIC (by summing the individual BICs). The result is a
subset of genes in which βi is estimated for each gene. For the remaining genes, the
null model is chosen. Keep track of the number of parameters estimated and for which
genes the non-null model was estimated.

2. Find the set of metabolites with bjk · ck = 1 (members of pathway k). The genes
in pathway k, i.e. the genes for which aik · bjk · ck = 1 are allowed to influence the
metabolite expression, excluding the genes for which only the null model was estimated
in step 1. Define a predictor matrix X consisting of the gene expression (the responses)
for these genes. The matrix X can have a large number of predictors, and the number
may exceed the number of replicated measurements (i.e., a p > n situation), so some
regularization is needed in order to model the metabolite responses as dependent on the
predictors in X. Impose an elastic net constraint (we choose the elastic net parameter
α = 0.8) and estimate the solution paths for different levels of regularization (indexed
by the penalty parameter λ). Calculate a sequence of rate-distortion slopes and choose
the slope that minimizes the overall prediction error (over all metabolites) according
to cross-validation.

3. Calculate the residual sum-of-squares SSE , and the total sum-of-squares SST for both
the gene and metabolite models. Calculate the coefficient of determination R2 =
1− (SSE/SST ) for both models (giving R2

g and R2
m).

4. Calculate a combined coefficient of determination score R2
comb for each k as

R2
comb|k = w

R2|gk
maxk{R2|gk}

+ (1− w)
R2|mk

maxk{R2|mk }

The weight parameter 0 ≤ w ≤ 1, defines how much the gene and metabolite model
influences the combined R2, which is used to pick the most important pathway to add.
If w = 1, only the gene model influences the choice, and conversely if w = 0, only the
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metabolite model does so. Equal contribution of the two data sources implies w = 0.5
as a sensible choice.

5. Pick the k, say k�, with the dominating R2
comb. Calculate the residuals for the genes

and the metabolites. Note which genes have been included in the model (divide the
genes into active and inactive sets). Remove k� from the set of pathways for which to
do estimation in subsequent rounds.

6. Stopping the stepwise procedure. Multiple choices are available on how to stop the
stepwise procedure. For example, after a fixed number of rounds, or after the combined
R2 for any pathway falls under a certain threshold.

For subsequent rounds of estimation, do the following modifications to the estimation
procedure.

Step 1. Remove the genes which are already in the active set. Do the estimation on the
remaining genes.

Step 2. For metabolite j, find the genes for which aik · bjk · ck = 1 and that were chosen
according to rate-distortion as before. Remove any genes that are in the active set, and
use the expression values for the remaining genes as columns in the predictor matrix X.

A.3. Degrees of Freedom and the Elastic Net. To employ BIC to do model selec-
tion, we need to know the degrees of freedom of the models we choose between. For a
linear regression model with n observations and p predictors, yi = β0 +

�p
j=1 xijβj , i =

1, . . . , n, the degrees of freedom for the total sum-of-squares is n− 1. For the regression
sum-of-squares the degrees of freedom equals the number of predictors p+1 in the model.

For the gene model, the degrees of freedom for the regression sum-of-squares is the
number of genes for which we include the intercept term separating the treatment and
control groups.

The calculation of the degrees of freedom for the regression sum-of-squares for the
metabolite model is more complicated since an elastic net constraint is imposed which
results in an adaptively fitted model. In the elastic net regression model we wish to do
the following optimization, with a mix of a ridge and lasso penalties.

β̂elasticnet = argmin
β

� n�

i=1

(yi − β0 −
p�

j=1

xijβj)2 + λ1

p�

j=1

|βj | + λ2

p�

j=1

β2
j

�
.

The degrees of freedom can be estimated by the following formula [30, 25].

Hλ2(A) = XA(XT
AXA + λ2I)−1

X
T
A

and setting
�df = Tr(Hλ2(A))

where A denotes the active set of predictors, i.e. the predictors included in the model for a
given pair of λ1 and λ2. XA contains the columns of the predictor matrix X corresponding
to the active set. As we recommend cross-validation for the model selection in the
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metabolite model, we do not explicitly use the degrees of freedom in the metabolite model,
but we state the formula here for completeness. The elastic net problem stated above
can be reformulated into a problem involving an elastic net penalty α which controls the
compromise between the ridge and lasso type penalties, and an overall penalty parameter
λ.

A.4. Implementation. The estimation procedure was implemented in the open source
software R, and the elastic net paths in the metabolite model calculated via the glmnet
algorithm [31].

Appendix B. Model Selection Criteria

The rate-distortion theory, originally intended for data compression in the information
theory field, can be adjusted to work as a model selection criterion in significance testing
or cluster analysis on high-dimensional data like gene expression, or on metabolite data
([32]). Suppose we have N genes that act as responses (each observed n times in a
microarray experiment). For each gene we have a set of predictors for which we would
like to select a subset of features that influences the gene expression the most. We can use
the lasso or some other shrinkage method to estimate a solution path for each gene, and
calculate a residual sum-of-squares (SSE) for each gene model, indexed by the penalty
parameter λ.

We wish to minimize the overall distortion (i.e., the residual sum-of-squares) under the
constraint that the total number of parameters used in the overall modeling must not
exceed a certain bound (related to how many parameters we must "pay" to achieve some
overall explanatory power in the set of model). Figure B.1 illustrates the rate, equal to
1/λ and indicating model complexity, and distortion (SSE) curves for two genes.

The dashed lines indicated in Figure B.1 correspond to a fixed slope constraint ∆. For
a given slope constraint, it can be shown that by selecting the points for each gene that
is first intersected by the "moving" slope constraint, the overall distortion is minimized
under the restriction that the total rate is less than or equal to the sum of the rates for
the selected points [32].

We use BIC to select the model complexity in the gene model. Under the assumption
that the model errors are Gaussian, the BIC criterion can be written

BIC = −2 · loglik + df · log(n)
= n · (log(SSE)− log(n) + log(2π) + 1) + df · log(n)

with SSE as above, n the number of replicates, and df the degrees of freedom in the
model. The models we choose between for each gene is the null model, or the model
with the treatment group indicator as the only predictor. Based on the rate-distortion
criterion, we pick the slope ∆ with the smallest overall BIC. The BIC criterion has some
attractive properties, like asymptotical consistency, but also has the drawback of often
selecting too sparse models in finite samples [23].
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Figure B.1. Rate distortion curves for two genes. The dashed lines
correspond to a fixed slope constraint ∆.

In the metabolite model, we chose to instead use a cross-validation procedure to select
the overall rate-distortion slope. We also implemented BIC as a selection method, which
we found to be very unstable in particularly p > n situations. The overall trend was
that sparser models was chosen for n > p settings compared to the cross-validation pro-
cedure, but much more complex models chosen in p > n situations, due to a dominating
log-likelihood for complex models (with saturation for small values on the penalization
parameter λ).
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Appendix C. Supplementary Figures
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Figure C.1. Overall R2 scores in the first round of estimation for each

pathway versus pathway size in the gene model on the original NCI-60

data and the three simulated data sets. The red squares indicate the

pathways that were spiked in the simulated data sets.
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Figure C.2. Overall R2 scores in the first round of estimation for each

pathway versus pathway size in the metabolite models on the original

NCI-60 data and the three simulated data sets. The red squares indicate

the pathways that were spiked in the simulated data sets.
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