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Abstract 
General-Purpose computing using Graphics Processing Units (GPGPU) has been an area of 

active research for many years. During 2009 and 2010 much has happened in the GPGPU 

research field with the release of the Open Computing Language (OpenCL) programming 

framework and the new NVIDIA Fermi Graphics Processing Unit (GPU) architecture.  

 

This thesis explores the hardware architectures of three GPUs and how well they support 

general computations; the NVIDIA Geforce 8800 GTS (the G80 architecture) from 2006, the 

AMD Radeon 4870 (the RV700 architecture) from 2008 and the NVIDIA Geforce GTX 480 

(the Fermi architecture) from 2010. Special concern is given to the new Fermi architecture 

and the GPGPU related improvements implemented in this architecture. The Lukas-Kanade 

algorithm for optical flow estimation has been implemented in OpenCL to evaluate the 

framework and the impact of several different parallel application optimizations.  

  

The RV700 architecture is not well suited for GPGPU. The performance of the G80 

architecture is very good taking its relative age into account. However, much effort must be 

spent optimizing a parallel application for the G80 before full performance is obtained, a task 

that can be quite tedious. Fermi excels in all aspects of GPGPU programming. Fermi’s 

performance is much higher than that of the RV700 and the G80 architectures and its new 

memory hierarchy makes GPGPU programming easier than ever before. 

 

OpenCL is a stable and competent framework well suited for any GPGPU project that would 

benefit from the increased flexibility of software and hardware platform independence. 

However, if performance is more important than flexibility, NVIDIA’s Compute Unified 

Device Architecture (CUDA) or AMD’s ATI Stream might be better alternatives. 

  



 

 

 

 

 

Sammanfattning 
Generella beräkningar med hjälp av grafikprocessorer (General-Purpose computation using 

Graphics Processing Units, GPGPU) har varit ett aktivt forskningsområde under många år. 

Stora framsteg har gjorts under 2009 och 2010 i och med lanseringen av 

programmeringsramverket Open Computing Language (OpenCL) och NVIDIAs nya GPU-

arkitektur Fermi. 

 

Denna tes utforskar hårdvaruarkitekturen hos tre grafikprocessorer och hur väl de är 

anpassade för generella beräkningar;  NVIDIA Geforce 8800 (G80-arkitekturen) utgivet 2006, 

AMD Radeon 4870 (RV700-arkitekturen) utgivet 2008 och NVIDIA Geforce GTX 480 

(Fermi-arkitekturen) utgivet 2010. Stort fokus läggs på Fermi och de GPGPU-relaterade 

förbättringar som gjorts på denna arkitektur jämfört med tidigare generationer. Ramverket 

OpenCL och den relativa påverkan hos flertalet olika optimeringar av en parallell applikation 

har utvärderats genom att implementera Lukas-Kanades algoritm för uppskattning av optiskt 

flöde. 

 

RV700-arkitekturen är ej lämpad för generella beräkningar. Prestandan hos G80-arkitekturen 

är utmärkt trots dess relativa ålder. Mycket möda måste dock tillägnas G80-specifika 

optimeringar av den parallella applikationen för att kunna uppnå högsta möjliga prestanda. 

Fermi är överlägsen i alla aspekter av GPGPU. Fermis nya minneshierarki tillåter att generella 

beräkningar utförs både lättare och snabbare än tidigare. På samma gång är Fermis prestanda 

mycket högre än hos de två andra arkitekturerna och detta redan innan några 

hårdvaruspecifika optimeringar gjorts. 

 

Programmeringsramverket OpenCL är ett stabilt och kompetent ramverk väl anpassat för 

GPGPU-projekt som kan dra nytta av den ökade flexibiliteten av mjuk- och 

hårdvaruoberoende. Om prestanda är viktigare än flexibilitet kan dock NVIDIAs Compute 

Unified Device Architecture (CUDA) eller AMDs ATI Stream vara bättre alternativ. 
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ALU Arithmetic Logic Unit 

CPU  Central Processing Unit  

CTM  Close To Metal (AMD programming framework) 

CUDA  Compute Unified Device Architecture (NVIDIA programming framework) 

ECC Error Correcting Code 

FPU Floating Point Unit 

GFLOPS  Giga Floating-point Operations Per Second 

GPGPU  General-Purpose computing using Graphics Processing Units  

GPU  Graphics Processing Unit  

HPC  High-Performance Computing  

ID Identification number 

LK-method  The Lucas-Kanade method for optical flow estimation 

LS-method The Least-Squares method 

MADD Multiply And Add 

OpenCL  Open Computing Language 

OpenCV Open Source Computer Vision library 

RGB Red Green Blue (a color model) 

SFU Special Function Units 

SIMD  Single Instruction Multiple Data 

SM  Streaming Multiprocessor 

SP Streaming Processor 

TFLOPS  Tera Floating-point Operations Per Second 

VLIW Very Long Instruction Word 
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1. Introduction 
General-Purpose computing using Graphics Processing Units (GPGPU) has been an area of 

active research for many years. During 2009 and 2010, there have been major breakthroughs 

in the GPGPU research field with the release of the Open Computing Language (OpenCL) 

programming framework and the new NVIDIA Fermi Graphics Processing Unit (GPU) 

architecture.  

 

OpenCL is an open, royalty-free standard for cross-platform, parallel programming of modern 

processors found in personal computers, servers and handheld/embedded devices. The 

OpenCL standard has support from both NVIDIA and AMD and implementations exists on 

many operating systems including Windows, Mac OS X and Linux [1]. 

 

The NVIDIA Fermi architecture is a major leap forward for the GPGPU research field. 

NVIDIA calls the Fermi architecture “the world’s first computational GPU” and has 

improved almost every aspect of the hardware architecture compared to previous generation 

of architectures. NVIDIA’s Fermi architecture was released in April 2010 [2].  

 

The background, purpose and delimitations of this thesis will follow in section 1. Section 2 is 

dedicated to previous work within the GPGPU research field. A history of graphics hardware 

and the GPGPU field as well as a description of recent GPU hardware architectures can be 

found in section 3. Section 3 also describes the OpenCL programming framework. 

 

Section 4 will focus on our work to implement a parallel GPGPU application and to make this 

application fully exploit the available parallelism within a GPU. A description of several 

different application optimizations aimed at increasing performance can also be found in 

section 4. 

 

Section 5 describes the results of our work. Conclusions, discussion and suggestions for 

future work can be found in sections 6 and 7. 

1.1. Background 
During the last decades, microprocessors based on single Central Processing Units (CPU) 

have been driving rapid performance increases in computer applications. These 

microprocessors brought Giga Floating-point Operations Per Second (GFLOPS) to desktop 

computers. Between each new generation of CPUs the clock frequency has increased. 

However, in the last few years the increase in clock frequency has slowed down because of 

issues with energy consumption and heat dissipation.  

 

Instead of increasing clock frequency between different generations of CPUs, the 

development has moved more and more towards increasing the number of processing units 

used in each processor. Using more than one processing unit in each CPU changes the way 
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that the CPU should be utilized in order to get maximum performance. To fully utilize a 

multi-core CPU architecture, most applications must be redesigned to explicitly exploit 

parallel execution [3].  

  

Parallel execution is an execution model where the different processing units in a processor 

simultaneously run different parts of an application or algorithm. This is accomplished by 

breaking the application into independent parts so that each processing unit can execute its 

part of the application or algorithm simultaneously with the other processing units. Using 

parallel execution usually results in increased performance compared to executing the 

application in a sequential fashion. 

 

Programming an application to exploit parallel execution (parallel programming) has been a 

popular programming technique for many years, mainly in High-Performance Computing 

(HPC) using computer clusters or "super computers". There are three main reasons to utilize 

parallel programming; 1) To solve a given problem in less time, 2) To solve bigger problems 

within a given amount of time and 3) To achieve better solutions for a given problem in a 

given amount of time. Lately, the interest in parallel programming has grown even more in 

popularity because of the availability of multi-core CPUs [3]. 

 

In addition to the multi-core architecture of CPUs there is a microprocessor architecture called 

many-core. The many-core architecture was developed to increase execution throughput of 

parallel applications in single CPUs. The cores in a many-core microprocessor are usually 

heavily multithreaded unlike the single-threaded cores in a multi-core architecture. The most 

common many-core microprocessors are the ones used in Graphics Processing Units (GPU) 

[3]. Recent GPUs have up to 1600 processing cores and can achieve over 2.7 TFLOPS 

compared to recent CPUs which usually have 4 or 8 cores and can reach around 150 

GFLOPS. Note that these numbers represent throughput in single-precision floating point 

calculations [3][4]. 

 

With their immense processing power, GPUs can be orders of magnitude faster than CPUs for 

numerically intensive algorithms that are designed to fully exploit the parallelism available. 

The GPGPU research field has found its way into fields as diverse as artificial intelligence, 

medical image processing, physical simulation and financial modeling [5]. 

 

During the last years several programming frameworks have been developed to help 

programmers accelerate their applications using the processing power of GPUs. The two most 

notable frameworks are NVIDIA’s Compute Unified Device Architecture (CUDA) released 

in 2007 and AMD’s ATI Stream released in 2008. A common problem with the CUDA and 

ATI Stream frameworks is that they can only be used with NVIDIA’s or AMD’s GPUs 

respectively. A possible solution to this problem came in December 2008 with the 

specification of a new standardized programming framework called OpenCL. The OpenCL 

standard has since been implemented on many different platforms by a long range of 

manufacturers. OpenCL can be used with both AMD’s and NVIDIA’s GPUs [6]. 
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1.2. Purpose 
This thesis explores the hardware architectures of three GPUs and how well they support 

general computations; the NVIDIA Geforce 8800 GTS (the G80 architecture) from 2006, the 

AMD Radeon 4870 (the RV700 architecture) from 2008 and the NVIDIA Geforce GTX 480 

(the Fermi architecture) from 2010. Throughout this thesis these three GPU architectures are 

referred to as G80, RV700 and Fermi respectively. This thesis further explores the impact of 

several parallel application optimizations; how can a parallel application be optimized to 

utilize the most recent advances in GPU hardware and how much knowledge concerning the 

underlying hardware is the programmer required to have before being able to fully utilize it? 

A secondary goal for this thesis is to explore the OpenCL programming framework. 

 

To compare different hardware architectures and to evaluate different application 

optimizations and the OpenCL framework a parallel application will be developed. The 

Lucas-Kanade method (LK-method) for optical flow estimation published in 1981 has 

previously been implemented as a parallel GPU application using the NVIDIA CUDA 

framework [6][7][8][9]. The LK-method is well suited for a parallel implementation because 

it is computationally intensive and because all of the calculations in the method can be done 

in parallel. Implementing the LK-method in OpenCL will make it possible to evaluate parallel 

application optimizations as well as the OpenCL framework itself. 

 

While there have been several papers published concerning a parallel implementation of the 

LK-method none of the previous papers have described an OpenCL implementation. Neither 

have any publications been made using both OpenCL and the NVIDIA Fermi architecture. 

This thesis describes our OpenCL implementation of the LK-method, the application 

optimizations evaluated to obtain the highest possible performance of the application and the 

differences in performance when running the application on the G80, Fermi and RV700 

architectures. 

1.3. Delimitations 
Since the original LK-method was published numerous improvements have been suggested 

[8][9][10]. These improvements are outside the scope of this thesis and will not be 

implemented in our parallel application. 

 

The new NVIDIA Fermi architecture is the main GPU architecture described in this thesis and 

the graphics hardware is described using NVIDIA terminology. The concepts described are 

however also to a large extent valid for the AMD graphics hardware. It is often more obvious 

to compare the Fermi architecture to the G80 architecture because they are produced by the 

same manufacturer and share the same architectural foundation. Optimizations and 

benchmarks are carried out and tested on all three GPU architectures.  

 

Due to the limited time frame benchmarks are only measured on the Microsoft Windows 

platform. It should however be possible to run the application on any OpenCL compatible 
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platform. All benchmarks are measured using a 1080p “FullHD” video with a resolution of 

1920x1080 pixels at 23.98 frames per second. 

 

The aim is to be thorough evaluating application hardware optimizations. Should however 

time become a limiting factor the optimizations believed to have the greatest impact on 

performance will be evaluated first.  

  



5 

2. Previous work 
Research regarding general-purpose computation on computer graphics hardware has been 

conducted for many years, beginning on machines like the Ikonas in 1978, the Pixel Machine 

in 1989 and Pixel-Planes 5 in 1992 [11][12][13]. The wide deployment of GPUs in the last 

several years has resulted in an increase in experimental research using graphics hardware. 

[14] gives a detailed summary of the different types of computations available on recent 

GPUs. 

 

Within the realm of graphics applications, programmable graphics hardware has been used for 

procedural texturing and shading [13][15][16][17]. Methods of using GPUs for ray tracing 

computations have been described [17][18]. The use of rasterization hardware for robot 

motion planning is described in [19]. [20] describes the use of z-buffer techniques for the 

computation of Voronoi diagrams. The PixelFlow SIMD graphics computer was used to crack 

UNIX password encryption in 1997 [21][22]. GPUs have also been used in computations of 

artificial neural networks [22][23][24]. 

 

The official NVIDIA CUDA website “CUDA Zone” today features more than 1000 CUDA 

applications spanning a wide range of different research fields [25]. Several papers regarding 

GPGPU and optical flow can be found at the CUDA Zone. A few of these papers describe 

CUDA implementations of the LK-method. The two most notable papers are a real time 

multi-resolution implementation of the LK-method and “FOLKI-GPU”, which uses a 

window-based iterative multi-resolution Lucas-Kanade type registration for motion detection 

[8][9]. 
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3. General-Purpose computing on Graphics 

Processing Units 
Section 3 describes the history of graphics hardware and the GPGPU research field. It also 

describes recent graphics hardware architectures in detail and ends with a description of the 

OpenCL programming framework. 

3.1. History 
Section 3.1 describes the history of graphics hardware and the origin of the GPGPU research 

field. 

3.1.1. History of graphics hardware  

In the beginning of the 1970s, the only purpose of graphics hardware was to map text and 

simple graphics to the computer display. On Atari 8-bit computers, chips provided hardware 

control of graphics, sprite positioning and display. At this time the general purpose CPU had 

to handle every aspect of graphics rendering. In the 1980s the computer game industry started 

using simple graphics hardware to accelerate the graphics computations. The Amiga featured 

a full graphics accelerator, offloading practically all graphics functions to hardware. In the 

early and mid-1990s, CPU-based real-time 3-dimensional (3D) graphics were becoming more 

and more common in computer games. This led to an even higher demand for GPU-

accelerated 3D graphics. The graphics frameworks Microsoft DirectX and Khronos Group 

OpenGL were released and together with the market’s demand for high-quality real-time 

graphics the frameworks became a driving force for the development of graphics hardware 

[26]. 

 

Early in the evolution of 3D-rendering, GPUs used a fixed-function graphics pipeline to 

render 3D-scenes. Scenes were rendered using the rasterization technique in which a scene is 

represented by a large number of triangles. The first stage in the fixed-function graphics 

pipeline converted triangle data originating from the CPU to a form that the graphics 

hardware could understand. The next pipeline stages colorized and applied textures to the 

triangles, rasterized the 3D-scene to a 2D-image and colorized the pixels in the triangles. In 

the final stage in the pipeline, the output image was stored in a frame buffer where it resided 

until it was displayed on the screen [3]. 

 

The pipeline stages that apply lighting, color and textures to triangles and pixels are called 

“shaders”. In the early fixed-function pipelines two shaders existed, a vertex (triangle) shader 

and a pixel shader. In 2001 new shader functions was introduced by Microsoft when they 

released version 8 of the DirectX framework. For GPUs to support the new shader-functions 

the fixed-function hardware shaders had to be made programmable. Programmable shaders 

increased the level of freedom for graphics programmers and made it possible to generate 

more realistic scenes. In the shaders, each triangle and pixel could now be processed by a 

short program before it was sent to the next stage in the pipeline. Each shader had its own 

dedicated pool of processor cores that executed the shader program. The processor cores were 
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quickly becoming more and more flexible and the possibility to run floating point math was 

soon introduced.  

  

In 2006 version 10 of the DirectX framework was released. DirectX 10 introduced a unified 

processor architecture where all shaders were executed by a single shared pool of processor 

cores. DirectX 10 also introduced an additional shader called a “geometry shader”. The 

geometry shader further increased the level of freedom for programmers and made the 

graphics pipeline more flexible [3]. 

3.1.2. History of the GPGPU research field 

With the introduction of the unified processor architecture GPUs started to resemble high-

performance parallel computers and many research groups started to work on ways to use the 

inherent computing power in GPUs for general purpose computing. In the beginning of the 

evolution of GPGPU, it was difficult to develop applications because of the lack of any real 

programming framework. Developers were forced to express their computational problems in 

terms of graphics based frameworks like DirectX or OpenGL. To solve this problem a few 

research groups started building API layers on top of the graphics frameworks to simplify 

GPGPU programming and make it available for mainstream developers. One of the most 

notable projects was BrookGPU, developed at Stanford University in 2003 [27]. 

 

In November 2006, AMD released their Close To Metal (CTM) low-level programming 

interface. CTM gave developers access to the native instruction set and memory in AMD’s 

GPUs. By opening up the architecture, CTM provided developers with the low-level, 

deterministic and repeatable access to hardware necessary to develop essential tools such as 

compilers, debuggers, math libraries and application platforms. With the introduction of 

CTM, a whole new class of applications was made possible. For example, a GPU-accelerated 

client for the distributed computing project “Folding@home” was created that was 30x faster 

than the CPU version [28][29].  

 

In 2007 NVIDIA released a GPGPU framework called Compute Unified Device Architecture 

(CUDA). CUDA is a complex C-language based GPGPU computing framework and the 

computing engines in NVIDIA’s GPUs. CUDA was the first standalone GPGPU framework 

that was not layered on top of the existing graphics frameworks; this made it a more 

streamlined product. Shortly after NVIDIA, AMD released a GPGPU framework based on the 

BrookGPU research. AMD’s framework is now called “ATI Stream”. 

 

With AMD’s release of CTM and ATI Stream and NVIDIA’s release of the CUDA 

framework the GPGPU research field gained much popularity. The popularity contributed to 

an increased pressure on GPU manufacturers to improve their GPU architectures for general 

computing by adding more flexibility to the programming model. Two examples of 

improvements that has been made solely for the reason of GPGPU is the addition of double 

precision floating point calculations and IEEE compliance for floating point calculations [3]. 
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The specification of a new GPGPU framework, OpenCL, was released 2009. OpenCL is 

developed by the Khronos Group with the participation of many industry-leading companies 

and institutions including Apple, Intel, AMD and NVIDIA. OpenCL is an open, royalty-free 

standard for cross-platform, parallel programming of modern processors found in personal 

computers, servers and handheld/embedded devices. OpenCL in many ways resemble the 

CUDA and ATI Stream frameworks but has the advantage that it is platform independent and 

hence can be run on both NVIDIA and AMD hardware. OpenCL implementations exist on 

Windows, Linux and Mac OS X as well as on many other operating systems. The OpenCL 

framework is described in section 3.3 [1]. 

3.2. Graphics hardware 
As stated in section 3.1, the graphics pipeline has evolved from a pipeline with fixed-function 

hardware to a pipeline with programmable hardware. However, some stages of the graphics 

pipeline are still located in fixed-function hardware. The fixed-function stages are only used 

to render graphics and are not relevant for GPU computing. Section 3.2 describes the GPU 

hardware architecture from a GPU computing point of view. Figure 3.1 shows an overview of 

a recent GPU hardware architecture. 

 

 
Figure 3.1. An overview of a recent GPU hardware architecture. 

 

Processing cores in a unified processor architecture are located in a unified processor pool and 

are grouped into clusters called Streaming Multiprocessors (SM). The SM work scheduling 

and execution model is described in section 3.2.1 and 3.2.2 and the SM hardware is described 

in detail in section 3.2.3.  

 

Graphics hardware contains several different types of memory. The main memory resides in 

large memory areas outside the actual GPU chip. Special memory controllers handle main 

memory accesses. To speed up memory accesses a many-level memory hierarchy is used, 

described in section 3.2.4. Section 3.2 is concluded with a description of some major 

improvements made specifically in the new NVIDIA Fermi architecture. 
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3.2.1. Global scheduling 

A parallel program executing on a GPU is called a kernel. For a kernel to fully utilize the 

GPU processing power it has to be executed by several thousand parallel threads. The GPU 

has a global scheduler that issues parallel threads to the SMs where they are executed. 

Scheduling is done by splitting the threads into thread blocks with a predefined size. The 

global scheduler then assigns blocks to the SMs (a single block cannot be split between two 

SMs). The global scheduler has to take several hardware constraints into consideration, for 

example the amount of blocks and the amount of threads that can be scheduled to a single SM 

is limited.  

 

A SM in the NVIDIA Fermi architecture can execute a maximum of 8 thread blocks or 1536 

threads at a time. If there are 128 threads per block the scheduler will be constrained by the 

maximum amount of blocks and 8 blocks will be scheduled to each SM. However, if a block 

contains 512 threads the scheduler will be constrained by the amount of threads and only 3 

blocks can be scheduled to each SM. How to determine the thread block size for optimal 

performance is described in section 4.5.3. In addition to the maximum block and thread 

constraints the global scheduler also has to consider thread register usage and block shared 

memory usage [30][31].  

3.2.2. Execution model 

The SMs in a GPU execute instructions using a thread level Single Instruction Multiple Data 

(SIMD) model.  A predefined number of threads form a SIMD unit. All threads in the same 

unit are executed together; the same instruction is executed for all the threads. The SIMD 

units are called warps using NVIDIA terminology and wavefronts using AMD terminology. 

On some GPU architectures execution is split into half-warps. In that case the threads in the 

first half of the warp execute the instruction first immediately followed by the threads in the 

second half of the warp.  

 

On recent GPUs, warps consist of 32 threads and wavefronts of 64 threads. The threads in a 

warp are made up by 32 consecutive threads aligned to even multiples of 32, beginning at 

thread 0. For instance, threads 0-31 and threads 96-127 each make up single warps but threads 

3-34 do not since they do not form an even multiple of 32. It is important to note the 

difference between a thread block (see section 3.2.1) and a warp. Threads are divided into 

thread blocks by the programmer while warps are a micro architectural entity that is not 

visible to the programmer [30][31]. 

3.2.3. Streaming multiprocessors 

The SMs in a GPU are highly threaded SIMD processors. The SMs execute all computational 

work submitted to the GPU. Each SM contains an instruction cache, an instruction queue, a 

warp scheduler, registers, memory and functional units. Figure 3.2 shows the hardware 

architecture of a SM. 
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 Figure 3.2. The hardware architecture of a SM. 

3.2.3.1. Scheduling 

The instruction cache and the instruction queue contain kernel instructions for the currently 

executing warps. The warp scheduler selects the instructions in the instruction queue that 

should be executed during the next clock cycle. The selection is made depending on the status 

and priority of the instructions in the queue.  

 

Instructions in the instruction queue can be in one of two states reflected by a status flag; 

“ready” and “not ready”. When an instruction enters the queue its status is set to “not ready”. 

The instruction status is changed to “ready” when all operands and memory areas for the 

instruction are available. The priority of an instruction is determined using a modified round-

robin algorithm that takes several different factors into account. The warp scheduler selects 

and issues the highest priority instruction with status “ready”.  

 

Another important purpose of the warp scheduler is to “hide” memory latencies that arise 

when data is accessed in main memory. Hiding latencies can be achieved by executing other 

warps while one warp is waiting for a memory instruction to complete. However, this requires 

that there are sufficient independent arithmetic instructions that can be issued while waiting 

for the memory instruction to complete. Switching execution between two warps does not 

imply any notable overhead time [30][31]. 

3.2.3.2. Memory 

There are two kinds of memory inside a SM, a register file and a shared memory area. The 

register file contains thousands of high bandwidth registers. The registers are divided among 

all threads scheduled to a SM. The Fermi architecture has a 128 KB large register file per SM 

which is split into 32768 4-byte registers. If a Fermi SM has 1536 active threads, each thread 

can use a maximum of 20 registers (80 bytes). If a thread requires more than 20 registers, the 

number of threads scheduled per SM has to be lowered, i.e. the scheduler has to lower the 

number of thread blocks scheduled to each SM. 
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The shared memory area is used for communication between threads in a thread block. Shared 

memory is partitioned between the blocks scheduled to a SM. Shared memory entries are 

organized into memory banks that can be accessed in parallel by threads in a warp. However 

if two threads access the same bank at the same time a bank conflict will occur and the 

accesses have to be serialized. Accessing shared memory is as fast as accessing registers if no 

bank conflicts occur. Recent GPUs often have at least 16 KB shared memory. If a SM has 8 

active blocks, each block can use have a maximum of 2 KB shared memory. If a kernel uses 

more than 2 KB of shared memory the number of blocks scheduled per SM has to be lowered, 

reducing performance. Optimizations for conflict free shared memory access are described in 

section 4.5.2.4 [30][31]. 

3.2.3.3. Functional units 

The functional units in a SM execute the instructions that are issued by the warp scheduler. 

The functional units consist of Streaming Processors (SP), branch units and Special Functions 

Units (SFU). The Fermi architecture has 32 SPs in each of its 15 SMs (480 SPs in total).  

 

A SP has two dedicated data paths, an integer data path and a floating point data path. The 

integer data path contains an Arithmetic Logic Unit (ALU) and the floating point data path 

contains a Floating Point Unit (FPU). The two data paths cannot be active simultaneously. 

Since integer and floating point instructions are the most common instructions in GPU 

computing, most of the work assigned to a SM is executed in its SPs. Support for double 

precision floating point calculations in the SPs is implemented in different ways on different 

architectures. Some architectures use separate double precision floating point units and others 

split the double precision (64-bit) instruction into multiple single precision (32-bit) 

instructions. 

 

Depending on the context, accuracy can be an important factor when doing calculations. The 

IEEE 754-2008 floating point standard specifies requirements that must be fulfilled to achieve 

a high level of accuracy for both single and double precision calculations [32]. Only the most 

recent GPU architectures conform to the IEEE 754-2008 floating point standard. Because the 

standards specified in IEEE 754-2008 are not important for graphics rendering this is an 

example of an architectural improvement made for the sole purpose of GPGPU. 

 

The branch units in a SM execute control flow instructions and the SFUs execute less 

common math instructions. The SFUs are clusters of several units that handle for example 

transcendental, reciprocal, square root, sine and cosine functions. Because these instructions 

are quite rare, a GPU has fewer SFUs than SPs. The Fermi architecture only has 4 SFUs per 

SM [30][31]. 

3.2.4. Memory pipeline 

Global memory load and store instructions are processed in the SMs but involve many 

different parts of the hardware, see figure 3.3. The load and store instructions are sent to the 

SM controller which arbitrates access to the memory pipeline and acts as a boundary between 

the memory and the SMs. The memory instructions can either access the registers, shared 
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memory or the off-chip main memory. The main memory is implemented in off-chip DRAM 

modules. The Fermi architectures implement main memory in GDDR5 DRAM and have six 

GDDR5 memory controllers, supporting up to 6 GB of main memory. 

 

  
Figure 3.3. The different stages of the memory pipeline. 

 

DRAM has high latency making accesses to global memory slow. Recent GPU architectures 

have a two level cache hierarchy designed to speed up main memory accesses. In previous 

generations of GPUs, the cache was only utilized when accessing texture data for graphics 

rendering. Fermi is the first GPU architecture to provide caching for all memory accesses.  

 

The level 1 (L1) cache is located close to the SMs. The purpose of the L1 cache is to speed up 

main memory accesses. The L1 cache implementation differs between different GPU 

architectures; sometimes the L1 cache is shared between several SMs while other 

implementations have a dedicated L1 cache for each SM. Compared to the L1 cache the L2 

cache is located closer to the main memory and is utilized by all the SMs. The purpose of the 

L2 cache is not only to cache data from main memory but also to optimize main memory 

accesses into as few transactions as possible, improving bandwidth utilization. The Fermi L2 

cache is 768 KB [30][31]. 

3.2.5. The NVIDIA Fermi architecture 

The Fermi architecture has undergone major improvements compared to previous generations 

of graphics architectures. Prior to Fermi, GPUs could only schedule one kernel at a time. In 

Fermi the global scheduler has been improved and can schedule many kernels simultaneously. 

When executing multiple kernels, it is however required that each SM executes blocks from 

the same kernel. The Fermi architecture has 15 SMs and can hence execute a maximum of 15 

kernels simultaneously. Executing multiple kernels simultaneously means that smaller kernels 

can be more efficiently dispatched to the GPU. To be able to execute many kernels efficiently 
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it is possible to copy data between host memory and device memory concurrently with kernel 

execution on the Fermi architecture. 

 

The SMs have undergone many improvements in the Fermi architecture. The number of SMs 

has been increased and there are more functional units inside each SM. The greatest 

improvement is the transition from a single-issue pipeline to a dual-issue pipeline. The dual-

issue pipeline can be seen in figure 3.4 

 

  
Figure 3.4. The Fermi SM hardware architecture.  

 

Each SM features two instructions queues and two warp schedulers allowing two warps to be 

issued and executed concurrently. Fermi’s dual warp scheduler selects two warps and issues 

one instruction from each warp to a group of 16 cores, 16 load/store units and 4 SFUs. Intra 

instruction dependencies cannot exist between two warps because they execute independently 

of each other. 

 

Most instructions can be executed concurrently in the dual-issue pipeline. However, double 

precision instructions do not support dual dispatch with any other instructions because both 

pipelines are used when executing double precision instructions. The possibility of executing 

double precision instructions using two pipelines has greatly increased double precision 

performance compared to previous architectures. 

 

Another architectural improvement in the SMs is the combined shared memory and L1 cache 

memory area. Each SM has 64 KB memory that can be configured as either 48 KB shared 

memory and 16 KB L1 cache or as 16 KB shared memory and 48 KB L1 cache. A 

configurable memory area makes it possible to fine tune the hardware depending on 

application.  The Fermi L2 cache has also been improved to aid the coalescing of global 

memory accesses. Section 4.5.2.1 describes memory coalescing in detail. 
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Additional improvements to the Fermi architecture include Error Correcting Code (ECC) 

protection that can be enabled for all memory areas in the memory pipeline and a unified 

address space for registers, shared memory and main memory. With a unified address space 

Fermi supports pointers and object references, which are necessary for C++ and other high-

level languages [2][31].  

3.3. Open Computing Language (OpenCL) 
A motivation for the development of OpenCL was that other CPU-based parallel 

programming frameworks did not support complex memory hierarchies or SIMD execution. 

Most existing GPU-based programming frameworks do support both memory hierarchies and 

SIMD execution; however they are limited to specific vendors or hardware. This section 

describes OpenCL as implemented on recent GPUs [1][3].  

 

The OpenCL framework can be described using four models; the platform model describes 

how OpenCL handles devices, the memory model describes the different memory types on an 

OpenCL device, the execution model describes how the sequential and parallel parts of an 

application are executed by OpenCL and the programming model describes the different 

parallel execution models that are supported by OpenCL [1]. 

3.3.1. Platform model 

The OpenCL parallel programming framework has a complex platform and device 

management model that reflects its support for multiplatform and multivendor portability. 

This differentiates OpenCL from other parallel programming frameworks. The OpenCL 

platform model consists of a host processor connected to one or more OpenCL compute 

devices. The host processor is usually a CPU. OpenCL compute devices are divided into 

compute units which in turn are further divided into processing elements. On a GPU, the 

compute units are implemented in the SMs and the processing elements are implemented in 

the functional units. Figure 3.5 shows the OpenCL platform model [1]. 

 

  
Figure 3.5. The OpenCL platform model. 

 

All computations on a device occur within the processing elements. An OpenCL application 

runs on the host processor and submits commands to execute computations on the processing 

elements within a compute device. 

3.3.2. Execution model 

OpenCL applications consists of two parts; a sequential program executing on the host and 

one or more parallel programs (kernels) executing on the device(s). The host program defines 
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the context for the kernels and manages their execution. Each OpenCL device has a command 

queue where the host program can queue device operations such as kernel executions and 

memory transfers. 

 

The core of the OpenCL execution model is defined by how kernels are executed. When a 

kernel is chosen for execution, an index space called “NDRange“ is defined and an instance 

of the kernel executes for each index in the NDRange. The kernel instance is called a work-

item. Each work-item is identified by a global identification number (ID) that is its index in 

the NDRange. All work-items execute the same kernel code but the specific execution path 

through the code and the data operated upon can vary. 

 

Work-items are organized into work-groups. Each work-group is assigned a unique work-

group ID and each work-item within a work-group is assigned a local ID. A single work-item 

can be uniquely identified by its global ID or by a combination of its work-group ID and local 

ID. The work-items in a single work-group execute concurrently on the processing elements 

of a single compute unit. Work-items within a work-group can synchronize with each other 

and share data through local memory on the compute unit. On a GPU, the work-groups are 

implemented as thread blocks and the work-items as threads. 

 

The NDRange is an N-dimensional index space, where N is 1, 2 or 3. The global, local and 

group IDs are N-dimensional tuples. For example in a 2D NDRange all IDs are 2D tuples on 

the form (x,y) and in a 3D NDRange on the form (x,y,z). The size and dimension of the 

NDRange as well as the size of work-groups are chosen by the programmer. Choosing a size 

and dimension that best fit the parallel application will result in increased performance. For 

example, if the application data set is on the form of a linear array then a 1D NDRange will 

usually yield the best performance while for 2D data set a 2D NDRange usually is better 

suited. How to find the best NDRange dimensionality and size is described in more detail in 

section 4.5.3. Figure 3.6 shows an example where a host executes two kernels with different 

NDRanges [1][3]. 

 

  
Figure 3.6. A host executing two kernels with different NDRanges.  
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3.3.3. Memory model 

There are four different memory areas that a work-item can access during execution; global 

memory, constant memory, local memory and private memory. The OpenCL memory model 

can be seen in figure 3.7. 

 

  
Figure 3.7. The OpenCL memory model. 

 

The global memory is the main memory of the device. All work-items have read and write 

access to any position in this memory. A part of global memory is allocated as constant 

memory and remains constant during execution of a kernel. The constant memory is cached 

which results increased performance compared to global memory when memory accesses 

result in a cache hit. The global and constant memory can also be accessed from the host 

processor before and after kernel execution. 

 

Each work-group has local memory that is shared among the work-items in the work-group. 

The local memory may be implemented as dedicated regions of memory on the OpenCL 

device. Alternatively, the local memory region may be allocated as a part of the global 

memory. The current version (1.0) of OpenCL supports up to 16 KB local memory. Each 

work-item also has private memory. Variables defined in private memory are not visible to 

other work-items. Local variables created in a kernel are usually stored in the private memory.  

 

The different memory types in OpenCL are implemented in different ways depending on the 

device type. For example, a GPU usually has global memory implemented in off-chip main 

memory, local memory in the shared memory area and private memory in the register files. 

The different memory implementations have very different performance and size. The main 

memory is large but has high access latency while the local registers are small but have very 

short access latency. Memory optimizations in OpenCL will be described in section 4.5.2 

[1][3]. 
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3.3.4. Programming model  

The OpenCL execution model supports the data parallel and the task parallel programming 

models. The data parallel model is currently driving the design and development of OpenCL. 

 

A data parallel programming model defines a computation as a sequence of instructions 

applied to multiple data elements (also known as the SIMD execution model, see section 

3.2.2). Each work-item execute the same instructions but on different data elements. In a 

strictly data parallel model, there is a one-to-one mapping between work-items and data 

elements during kernel execution. OpenCL implements a relaxed version of the data parallel 

programming model where a strict one-to-one mapping is not required; a work-item can 

access any data element. 

 

Task parallelism is achieved when different work-items execute different kernels on the same 

or different data elements. The task parallel programming model is difficult to implement on a 

GPU using OpenCL because the OpenCL GPU implementations does not yet support 

execution of multiple kernels at the same time. GPUs do however support task parallelism 

within a kernel since different work-items are able to follow different execution paths [1][3]. 
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4. Implementing and optimizing an OpenCL 

application 

Section 4 describes the parallel application developed during this thesis; an OpenCL 

implementation of the Lucas-Kanade method (LK-method) for optical flow estimation. The 

LK-method was first implemented as a sequential application running on a CPU and was then 

parallelized and accelerated using a GPU. Section 4 further describes the application 

optimizations implemented to achieve optimal performance for the parallel application. 

4.1. Application background 
Optical flow is the pattern of apparent motion of objects, surfaces and edges in a visual scene 

caused by the relative motion between the observer (an eye or a camera) and the scene 

[33][34]. There are many uses of optical flow but motion detection and video compression 

have developed as major aspects of optical flow research. The LK-method describes an image 

registration technique that makes use of the spatial intensity gradient to find a good match 

between images using a type of Newton-Raphson iteration. The method has proven much 

useful and has been used in a great variety of different applications. 

 

The LK-method tries to estimate the speed and direction of motion for each pixel between two 

image frames. The accuracy of the original LK-method from 1981 is not perfect and several 

alternative methods exists [35][36][37]. Numerous suggestions for improvements and further 

developments of the LK-method have also been published. One interesting development is a 

multi-resolution implementation of the LK-method that utilizes iterative refinement to 

improve accuracy [8]. Extending the LK-method with the use of 3D tensors is another 

extension that has proven superior in producing dense and accurate optical flow fields 

[36][37]. Another interesting development is the combination the original LK-method and a 

feature detection and tracking algorithm [38][39]. This thesis describes the implementation of 

the original LK-method from 1981. 

4.2. The Lucas-Kanade method for optical flow estimation 
The LK-method uses a two-frame differential method for optical flow estimation. The LK-

method is called differential because it is based on local Taylor-series approximations of the 

image data; that is, it uses partial derivatives with respect to the spatial and temporal 

coordinates. A grayscale image frame can be represented by the image intensity equation. By 

assuming that the intensity in two image frames taken at times t and t+δt is constant the image 

constraint equation can be formulated: 

 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 +  𝛿𝑡) 
 

(4.1) 

Equation 4.1. The image constraint equation.  

 

where I is the image intensity, δx and δy represent movement in the spatial domain and δt 

represents movement in the temporal domain. Effects other than motion that might cause 

changes in image intensity, such as a change in the lighting conditions of the scene captured 
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in the image, can be ignored if the interval between image frames is small enough. Because of 

this, a fast frame rate (about 15 frames per second or greater, depending on the camera used 

and the velocity of any moving objects) is essential for real-time use of the LK-method [40]. 

 

Assume that the movement of a pixel between the two image frames in the spatial domain is 

small and that the temporal difference is one time unit (δt = 1). Expressing equation (4.1) in 

differential form and expanding it using Taylor series, it can be written as  

 

𝐼 𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 +  𝛿𝑡 =  𝐼 𝑥, 𝑦, 𝑡 +  
𝜕𝐼

𝜕𝑥
𝛿𝑥 +

𝜕𝐼

𝜕𝑦
𝛿𝑦 +

𝜕𝐼

𝜕𝑡
𝛿𝑡 + 𝐻. 𝑂. 𝑇 

 

(4.2) 

Equation 4.2. The image constraint equation expressed in differential form and expanded 

using Taylor series. 

 

 

Combining equation (4.1) and (4.2), equation (4.3) can be derived 

 

𝜕𝐼

𝜕𝑥
𝛿𝑥 +

𝜕𝐼

𝜕𝑦
𝛿𝑦 +

𝜕𝐼

𝜕𝑡
𝛿𝑡 = 0 

 

(4.3) 

Equation 4.3. Deriving equation (4.3) from equations (4.1) and (4.2).  

 

Dividing equation (4.3) with δt and substituting the horizontal velocity δx/δt with Vx and the 

vertical velocity δy/δt with Vy yields 

 

𝜕𝐼

𝜕𝑥
𝑉𝑥 +

𝜕𝐼

𝜕𝑦
𝑉𝑦 +

𝜕𝐼

𝜕𝑡
= 0 

 

(4.4) 

Equation 4.4. Dividing equation (4.3) with δt and substituting δx/δt and δy/δt with Vx and 

Vy. 

 

 

Substituting the horizontal spatial image frame derivative ∂I/∂x with Ix, the vertical spatial 

derivative ∂I/∂y with Iy and the temporal derivative ∂I/∂t with It, equation (4.4) can be written 

as  

 

𝐼𝑥𝑉𝑥 + 𝐼𝑦𝑉𝑦 = −𝐼𝑡  

 

(4.5) 

Equation 4.5. Substituting the spatial and temporal derivatives of (4.4) and reorganizing.  

 

Equation (4.5) is known as “the aperture problem” of optical flow algorithms. Equation (4.5) 

has two unknowns, Vx and Vy, so it cannot be solved directly. At least one additional equation 

is needed to solve (4.5), given by some additional constraint.  

 

To solve equation (4.5), the LK-method introduces an additional constraint by assuming the 

optical flow to be constant in a local neighborhood around the pixel under consideration at 

any given time [6].  In other words, the LK-method assumes the optical flow Vx and Vy to be 

constant in a small window of size m x m, m>1, centered on the pixel (x,y). Each pixel 
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contained in the window produce one equation in the same form as (4.5). With a window size 

of m x m, n=m
2 

equations are produced. 

 

The n equations form a linear over-determined system. Expressing the equations in matrix 

form yields 

𝑿𝜷 = 𝒚 
 

(4.6) 

Equation 4.6. The n equations of the linear over-determined system expressed in matrix 

form. 

 

 

Where X, β and y are 

𝑿 =  

 
 
 
 
𝐼𝑥1   𝐼𝑦1

𝐼𝑥2   𝐼𝑦2

⋮
𝐼𝑥𝑛    𝐼𝑦𝑛  

 
 
 

    𝜷 =   
𝑉𝑥  
𝑉𝑦      𝒚 =  − 

𝐼𝑡1

𝐼𝑡2 
⋮

𝐼𝑡𝑛  

  

 

 

An over-determined system such as (4.6) usually has no exact solution so the goal is to 

approximate Vx and Vy to best fit the system. One method of approximating Vx and Vy is the 

Least Squares method (LS-method). Using the LS-method the best approximation of Vx and 

Vy  can be found by solving the quadratic minimization problem 

 

arg min
β

  𝑦𝑖 −  𝑋𝑖𝑗 𝛽𝑗

𝑛

𝑗 =1

 

2
𝑚

𝑖=1

=
arg min

β
  𝐲 − X𝛃 2 

 

(4.7) 

Equation 4.7. The quadratic minimization problem suggested by the LS-method.  

 

Provided that all the n equations of (4.7) are linearly independent, the minimization problem 

has a unique solution where the error of the approximation is minimized. Rewriting equation 

(4.6) according to equation (4.7) results in: 

 

(𝑿𝑻𝑿)𝜷 = 𝑿𝑻𝒚 

 

Equation 4.8. Rewriting equation (4.6) according to equation (4.7). 

 

(4.8) 

Solving (4.8) for 𝜷  yields the final velocity vectors for the pixel under consideration  

 

𝜷 = (𝑿𝑻𝑿)−1𝑿𝑻𝒚 

 

Equation 4.9. Solving equation (4.8) for 𝛽  yields to final velocity vectors Vx and Vy for 

the pixel under consideration. 

 

(4.9) 

In summary, to estimate the optical flow fields between two consecutive images in an image 

sequence using the LK-method the following steps must be executed: 

 

1. Calculate the spatial and temporal derivatives for the images. 

2. For each pixel, form a window of size m x m, centered on the pixel. 
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3. Use each pixel in the window to produce an equation in the same form as equation 

(4.5). 

4. Use equation (4.5) to form the equation system (4.9). Solving equation (4.9) will yield 

the final velocity vectors Vx and Vy for the pixel under consideration. 

4.3. Implementation of the Lucas-Kanade method 
As stated in section 4.2, the LK-method uses a two-frame differential method for optical flow 

estimation. The optical flow is hence estimated by comparing two consecutive image frames 

in an image sequence or video. When estimating optical flow using the LK-method, color 

information in the image frames is of no use. Because of this, the image frames are converted 

to grayscale should they be color coded. For an image frame encoded using the Red Green 

Blue (RGB) color model the grayscale conversion is performed using equation (4.10)  

 

𝑖 =
(𝑅 + 𝐺 + 𝐵)

3
 

 

Equation 4.10. The formula used when converting a RGB-color image to grayscale. 

(4.10) 

 

where 𝑖 is the approximated grayscale value for the pixel and R, G and B are the red, green 

and blue values respectively. Next, the spatial derivatives Ix and Iy are approximated for each 

pixel. This is achieved by convolving each pixel in the first frame with the kernel listed in 

equation (4.11) to get the spatial derivative in the horizontal direction and equation (4.12) to 

get the spatial derivative in the vertical direction (do not confuse kernels used for convolution 

with OpenCL kernels which are parallel programs). 

 

1

4
∗  

−1 1
−1 1

  

 

Equation 4.11. The convolution kernel used for approximating the x-derivative, Ix, 

for a pixel. 
 

(4.11) 

1

4
∗  

−1 −1
    1    1

  

 

Equation 4.12. The convolution kernel used for approximating the y-derivative, Iy, for a 

pixel. 
 

(4.12) 

The temporal derivative, It, is approximated by subtracting the two frames. To make the 

implementation more robust against noise, the temporal derivative is convolved with the 

smoothing kernel in (4.13)  

 

1

4
∗  

1 1
1 1

  

 

 (4.13) 

Equation 4.13. The kernel used to smooth the temporal derivative, It, for a pixel. 

 

 

When the spatial and temporal derivatives have been approximated for the whole frame, it is 

possible to start solving equation 4.9 for each pixel. By solving equation (4.9), the final 
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velocity vectors Vx and Vy can be established. See listing 4.1 for pseudo code of our 

sequential implementation of the LK-method. 

 

WINDOW_SIZE = 9 // size of window, should be an odd number 

WINDOW_RADIUS = (WINDOW_SIZE – 1) / 2 

 

// value used to avoid singularities when using the cofactor method to inverse a 2x2 matrix 

ALPHA = 0.001  

 

// read image frame data from two frames taken at time t and t+delta_t 

im1 = read frame1 

im2 = read frame2 

 

if <frames are color coded> 

  convert frames to grayscale using equation (4.10) 

endif 

 

sub = im1 - im2 // frame difference, used for approximating the temporal derivative (It) 

 

Ix = conv2(im1, kernel_x) // approximate the x-derivative using eq (4.11) 

Iy = conv2(im1, kernel_y) // approximate the y-derivative using eq (4.12) 

It = conv2(sub, kernel_t) // approximate the t-derivative using eq (4.13) 

 

// loop over each pixel in frame 

// only place window where it will fully fit inside the frame 

for each pixel p at position (x,y) in im1 at least WINDOW_RADIUS pixels from the frame edges 

 

  form window of size WINDOW_SIZE centered around pixel (x,y) 

 

  // loop over each pixel inside the window 

  for each pixel inside window 

    IxWindow = Ix-values contained inside the window centered at (x,y) in Ix 

    IyWindow = Iy-values contained inside the window centered at (x,y) in Iy 

    ItWindow = It-values contained inside the window centered at (x,y) in It 

 

    // Calculate all values needed in X^T * X from equation (4.9) 

    Ix2 = sum(element_wise_multiplication(IxWindow * IxWindow)) 

    IxIy = sum(element_wise_multiplication(IxWindow * IyWindow)) 

    Iy2 = sum(element_wise_multiplication(IyWindow * IyWindow)) 

 

    // Calculate all values needed in X^T * y from equation (4.9) 

    // negate the sum because y has a negative sign, see eq (4.6) 

    IxIt = sum(element_wise_multiplication(IxWindow * ItWindow)) * -1 

    IyIt = sum(element_wise_multiplication(IyWindow * ItWindow)) * -1 

 

    // form matrix (X^T * X) according to eq (4.9) 

    // (X^T * X) will always be a 2x2 square matrix. To inverse the XtX-matrix  

    // it is possible to use the cofactor method. To avoid singularities 

    // when using the cofactor method, add a small value alpha to position 0,0  

    // and 1,1 of XtX 

    XtX = matrix(2,2) 

    XtX[0][0] = Ix2 + alpha 

    XtX[0][1] = IxIy 

    XtX[1][0] = IxIy 

    XtX[1][1] = Iy2 + alpha 

 

 

    // Caluclate the inverse of (X^T * X) using the cofactor method 

    cofMat = matrix(2,2) 

    cofMat[0][0] = XtX[1][1] 

    cofMat[0][1] = -XtX[0][1] 

    cofMat[1][0] = -XtX[1][0] 

    cofMat[1][1] = XtX[0][0] 

 

    // scalar value used to calculate the inverse of cofMat below 

    s = 1 / (XtX[0][0] * XtX[1][1] - XtX[0][1] * XtX[1][0]) 

 

    // multiply matrix cofMat with scalar s – this yields the final inverted XtX matrix 

    invXtX = scalar_matrix_multiply(s, cofMat) 

 

    // form X^T * y 

    Xty = matrix(2,1) 

    Xty[0][0] = IxIt 

    Xty[1][0] = IyIt 

 

    // solve equation (4.9) 

    beta = matrix_multiply(invXtX, Xty) 

 

    // beta now contains our final velocity vectors Vx and Vy for pixel p at position (x,y) 

    Vx = beta[0][0] 

    Vy = beta[1][0] 

end 

Listing 4.1. Pseudo code for the sequential Lucas-Kanade implementation. 
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4.4. Parallel implementation of the Lucas-Kanade method 
Not all applications can benefit from the computational power of the parallel processors inside 

a GPU. To be able to accelerate an application using a GPU, the application has to fit the 

parallel execution model, as described in section 3.2.2. For an application to fully benefit 

from the parallel processors inside a GPU, the data elements used in the application need to be 

independent so they can be processed in parallel. If, for example, half of the data elements in 

an application are independent and can be processed in parallel, it is said that the application 

is parallelizable to a degree of 50%.  

 

How well an application performs when programmed for a GPU is highly dependent on how 

big the portion of the application is that can be parallelized. Assume that, for example, 95% of 

an application is parallelizable and is accelerated 100 times using a GPU. Further assume that 

the rest of the application remains on the host and receives no speedup. The application level-

speedup is then  

 

1

(100% − 5%) +  
95%
100

 
=

1

0.05 +  0.095
=

1

0.0595
≈ 17 

 

Equation 4.14. Speedup of an application where 95% is parallelizable and receives a 

speedup of 100x. 

 

(4.14) 

Equation (4.14) is a demonstration of Amdahl’s law: The application level-speedup due to 

parallel computing is limited by the sequential portion of the application. In this case, even 

though the sequential portion of the application is quite small (5%), it limits the application 

speedup to 17x even though 95% of the program receives a 100x speedup [3]. 

 

𝑆 =
1

 1 − 𝑃 +
𝑃
𝑁

 

 

Equation 4.15. Amdahl’s law specifies the maximum theoretical speed-up (S) that can be 

expected by parallelizing a sequential program. P is the portion of the program that can 

be parallelized and N is the factor by which the parallel portion is sped up. 

(4.15) 

 

Another important factor regarding the performance of a parallel application is its arithmetic 

intensity. Arithmetic intensity is defined as the number of arithmetic operations performed per 

memory operation. It is important for GPU accelerated applications to have high arithmetic 

intensity or the memory access latency associated with memory accesses will limit 

computational speedup. Ideal GPGPU applications have large data sets, high parallelism and 

minimal dependency between data elements [3]. 

 

As previously stated in section 1.2 the LK-method is well suited for parallel implementation. 

The LK-method is computationally intensive and all of the data elements (the pixels in the 

images) are independent so 100% of the application is parallelizable. It is hence theoretically 

possible to develop a fully parallel implementation of the LK-method without a sequential 

portion of the application to limit the speedup. Instead the speedup will be limited by other 
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factors such as the device processors performance, the memory bandwidth between the host 

and the device and the threading arrangement of the parallel implementation. The threading 

arrangement of the parallel implementation refers to how the computational work is 

decomposed into units of parallel execution. Section 4.4.1 will describe threading 

arrangement in more detail.  

4.4.1. OpenCL implementation 

As stated in section 3.3.2, OpenCL applications consists of two parts; a sequential program 

executing on the host and one or more parallel programs (kernels) executing on the device. To 

redesign a sequential application to a parallel application is not a straight forward task. 

Finding parallelism in large computational problems is often conceptually simple but can turn 

out to be challenging in practice. The key is to identify the work to be performed by each unit 

of parallel execution (a work-item in OpenCL) so the inherent parallelism of the problem is 

well utilized. One must take care when defining the threading arrangement of the parallel 

implementation. Different threading arrangements often lead to similar levels of parallel 

execution and the same execution results, but they exhibit very different performance in a 

given hardware system. The optimal threading arrangement for a parallel implementation is 

dependent on the computational problem itself [3]. 

 

Looking closer at the sequential implementation of the LK-method in listing 4.1, the different 

steps needed to estimate the optical flow for two image frames are: 

 

1. Read the pixel data from both image frames. 

2. Convert the image frame data to grayscale. 

3. Subtract the pixel data in the second image frame from the pixel data in the first image 

frame. 

4. Approximate the spatial and temporal derivatives by three convolution operations on 

the image frame data. 

5. Loop over all pixels placing a window around each pixel. 

6. Use each pixel inside the window to form a set of equations and approximate the best 

solution to these equations using the LS-method. 

 

Our first naïve OpenCL implementation of the LK-method was divided into four kernels; a 

grayscale converter, a kernel for matrix addition and subtraction, a kernel for convolution and 

a kernel for the LS-method. 

 

To be able to visualize the resulting motion vectors directly on the input frame a fifth kernel 

was introduced. The fifth kernel colors the pixels in the original input frames according to a 

certain color scheme. Using a full circle spanning all possible colors, motion in any direction 

can be represented by its own color tone, see figure 4.1. By letting the color intensity vary 

depending on the length of the calculated motion vector it is possible to illustrate how fast a 

pixel is moving. Using this scheme motion in any direction can be displayed by a unique 

color, see figure 4.2. Several other application optimizations were considered to increase 

performance of our parallel application. Section 4.5 describes these optimizations. 
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Figure 4.1. The color scheme used to visualize the motion vectors. 

 

 

 

 

 

 

 
Figure 4.2. Screenshot of an image frame. The direction in which the pixels are moving can be 

determined by looking at the color scheme in figure 4.1. Pixels that are not moving are black. 
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4.5. Hardware optimizations 
To achieve optimal performance when developing a parallel application for a GPU there are 

many different requirements that must be met. Section 4.5 describes these requirements and 

tries to explain why they must be met in order to achieve optimal performance. This section 

also aims to answer some of the questions stated in section 1.2. Henceforth our parallel 

application will be referred to as “the application”. 

4.5.1. Instruction performance 

To process an instruction for a warp, a Streaming Multiprocessor (SM) must:  

 Read the instruction operands for each work-item in the warp 

 Execute the instruction 

 Write the result for each work-item in the warp 

 

Therefore, the effective instruction throughput depends on the nominal instruction throughput 

as well as the memory latency and bandwidth. It is maximized by:  

 Minimizing the use of instructions with low throughput 

 Maximizing the use of the available memory bandwidth for each category of memory 

 Allowing the warp scheduler to overlap memory transactions with mathematical 

computations as much as possible to hide memory latency. This requires that:  

o The kernel executed by the work items has a high arithmetic intensity  

o There are many active work-items per SM 

 

For a warp size of 32, an instruction is made of 32 operations. Therefore, if T is the number of 

operations per clock cycle, the instruction throughput is one instruction every 32/T clock 

cycles for one SM. The throughput must hence be multiplied by the number of SMs in the 

GPU to get throughput for the whole GPU [41].  

4.5.1.1. Arithmetic instructions 

For applications that only require single-precision floating point accuracy is it highly 

recommended to use the float data type and single-precision floating point mathematical 

functions. The single-precision float data type requires only half the bits compared to the 

double-precision floating point data type double. As described in section 3.2.5 single-

precision floating point instructions are much faster to execute than double-precision 

instructions. 

 

Many OpenCL implementations have “native” versions of most common math functions. The 

native functions may map to one or more native device instructions and will typically have 

better performance compared to the non-native functions. The increased performance usually 

comes at the cost of reduced accuracy. Because of this native math operators should only be 

used if the loss of accuracy is acceptable.  

 

Whilst building OpenCL kernels it is possible to enable the –cl-mad-enable build option. 

This will allow a * b + c to be replaced by a “Multiply And Add” (MADD) instruction. 
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The MADD instruction computes a * b + c with increased performance but with reduced 

accuracy. 

 

There are several other compiler optimization options available, many of them trading 

accuracy for performance. The -cl-fast-relaxed-math option implies both the –cl-mad-

enable as well as several other compiler options. It allows optimizations for floating-point 

arithmetic that may violate the IEEE 754 standard and the OpenCL numerical compliance 

requirements. It should however be noted that not all OpenCL implementations have support 

for the -cl-fast-relaxed-math compiler option. For example, the current AMD 

implementation (ATI Stream SDK v2.01) does not. For more information about the compiler 

options, see [1]. 

4.5.1.2. Control flow instructions 

Any flow control instruction (if, switch, do, for, while) can significantly impact the 

effective instruction throughput by causing work-items of the same warp to diverge (to follow 

different execution paths). If this happens, the different execution paths for the warps need to 

be serialized, i.e. executed one after another. When all different execution paths have been 

executed, the work-items converge back to the same execution path. Note that work-items 

within different warps can follow different execution paths without any performance penalty. 

To avoid warp divergence, control flow instructions should be kept to a minimum and must 

be designed so that all work-items within a warp follow the same execution path.  

4.5.1.3. Memory instructions 

A memory instruction is any instruction that reads from or writes to memory. Throughput for 

memory instructions to local memory is 8 clock cycles while memory instructions to global 

memory imply an additional memory latency of 400-600 clock cycles.  

 

As stated in section 3.2.3.1, global memory latency can be “hidden” by the warp scheduler if 

there are sufficient independent arithmetic instructions that can be issued while waiting for the 

global memory access to complete. This does however require that there are enough unique 

warps to schedule within a SM. Section 4.5.3 lists several guidelines concerning how to 

increase the number of active warps per SM. 

4.5.1.4. Synchronization instruction 

The barrier() function will make sure that all work-items within a work-group reach the 

barrier before any of them execute further. Synchronizing all work-items within a work-group 

is sometimes needed to ensure memory consistency. Work-item synchronization using the 

barrier() function has a throughput of 8 clock cycles in the case where no work-item has to 

wait for any other work-items. It should be noted that synchronization instructions can make it 

more difficult for the warp scheduler to achieve optimal work-item scheduling. 

4.5.2. Memory bandwidth 

The AMD and NVIDIA architectures differ somewhat concerning the memory 

implementation. For both platforms though, the effective bandwidth of each memory space 
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depends significantly on the memory access pattern. This means that it is up to the 

programmer to ensure that memory within an application is accessed in a way that results in 

optimal performance.  There are several requirements that must be met to achieve optimal 

memory performance in a GPU application. Section 4.5.2 covers the different types of 

memory available and discusses these requirements [41]. 

4.5.2.1. Global memory 

Global memory is not cached and implies a 400-600 clock cycles memory latency. To obtain 

optimal performance when accessing global memory it is required to access memory 

according to a specific access scheme. Global memory bandwidth is used most efficiently 

when the simultaneous memory accesses (during the execution of a single read or write 

instruction) can be coalesced into a single memory transaction of 32-, 64-, or 128-bytes. For 

example, if 16 work-items each read one float data value (4 bytes) from memory, this can 

result in one single memory transaction if the read is coalesced, as opposed to a non-coalesced 

read that results in 16 memory transactions. It is not hard to imagine the impact on 

performance that coalesced memory accesses have, making it one of the most important 

factors to consider when optimizing a GPU application.  

 

Unfortunately, it is no simple task to achieve coalesced memory accesses. The G80 

architecture is very strict concerning which access patterns that result in coalesced memory 

assesses and which patterns that does not. There are three requirements that need to be 

fulfilled in order to coalesce memory accesses on the G80 architecture; 1) Work-items must 

access 4-, 8- or 16-byte words, 2) All 16 work-items in a half-warp must access words in the 

same memory segment and 3) Work-items must access words in sequence: The k:th work-

item in a half-warp must access the k:th word. If these requirements are not fulfilled memory 

accesses will be serialized. 

 

Global memory coalescing have been greatly improved in the Fermi architecture, allowing 

much more slack in the memory access patterns that result in coalesced memory accesses. On 

the Fermi architecture it is also possible for memory accesses to be partly coalesced. Section 

5.8 describes the global memory access schemes implemented in the application in order to 

coalesce memory accesses. 

4.5.2.2. Constant memory 

Constant memory is cached so a read from constant memory will only result in a read from 

global memory on cache miss. If a cache hit occurs, the data is instead retrieved from the on-

chip cache which has the same performance as reading from a register. By storing commonly 

used data in constant memory it is possible to circumvent the access latency associated with 

global memory accesses to increase performance.  

4.5.2.3. Texture memory  

Texture memory is allocated in the global memory area. Texture memory is cached just like 

constant memory so a read from texture memory will only result in a global memory read on 

cache miss. The texture cache is optimized for 2D spatial locality so work-items of the same 
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warp that read image addresses that are close together achieve best performance. When using 

the texture memory, data must be read and written using OpenCL image objects. Reading data 

through image objects can be beneficial during certain circumstances [41].  

4.5.2.4. Local memory 

Local memory is located inside the SMs and is much faster than global memory. Access to 

local memory is as fast as access to a register, provided that no local memory bank conflicts 

occur. Data stored in local memory is visible to all work-items within a work-group. To 

reduce global memory bandwidth in a kernel, a good technique is to modify the kernel to use 

local memory to hold the portion of global memory data that are heavily used in an execution 

phase of the kernel. The work-items within a work-group can cooperate in loading data from 

global to local memory. If so, it is important to synchronize all work-items after the data is 

loaded to ensure memory consistency. In OpenCL, work-item synchronization can be 

achieved using the barrier(), mem_fence(), read_mem_fence() and write_mem_fence() 

functions. 

 

To achieve high bandwidth, the local memory is divided into equally sized memory modules 

called banks. Any memory access of n addresses that fall into separate banks can be serviced 

simultaneously, resulting in an effective bandwidth that is n times higher than that of a single 

bank. If however the n memory requests fall into the same bank, the requests must be 

serialized. This is called an n-way bank conflict.  

 

On NVIDIA’s GPUs the local memory is organized into 16 banks. When the work-items in a 

warp access local memory, the request is split into one request for the first half of the warp 

and a second request for the second half of the warp. Hence there can be no bank conflicts 

between a work-item belonging to the first half-warp and a work-item belonging to the second 

half-warp. On AMD’s GPUs local memory is organized into 32 banks [41][42]. 

 

To avoid bank conflicts the local memory access pattern must be considered. For example, if 

an array of 1-byte char data values is accessed as in listing 4.2 bank conflicts will occur 

because each work-item in the warp read data with a stride of one byte, resulting in several 

threads reading the same memory bank. On NIVIDIA’s GPUs 4 consecutive bytes are stored 

in the same bank, e.g. byte 0-3 is stored in bank 0, byte 4-7 is stored in bank 1 etc. 

 
 

__local char local[32]; 

char data = local[WorkItemId]; 

 

Listing 4.2. A memory access pattern that results in bank conflicts.  

 

However, accessing the same array as in listing 4.3 will result in a conflict free access because 

data is now accessed with a stride of 4 bytes which results in each work-item accessing 

separate memory banks. 
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char data = local[4 * WorkItemId]; 

 __  

Listing 4.3. A conflict free memory access pattern. 

 

In general, it is possible to detect bank conflicts by analyzing the local memory access scheme 

using cyclic groups and Euler’s totient function (φ(n)). 

4.5.2.5. Registers 

Registers are used to store data for a work-item. In general, accessing a register does not 

imply any latency. Register delays may however occur due to read-after-write dependencies 

or register bank conflicts. The compiler and the warp scheduler try to schedule instructions to 

avoid register bank conflicts. The best result is achieved when the number of work-items per 

work-group is a multiple of 64. Delays introduced by read-after-write dependencies can be 

ignored as soon as there are at least 192 active work-items per multiprocessor to hide them.  

4.5.3. NDRange dimensions and SM occupancy 

The NDRange determines how the work-items executing a kernel should be divided into 

work-groups. How the NDRange affects the execution time of a kernel generally depends on 

the kernel. It is possible to let the OpenCL implementation determine the NDRange even 

though that usually does not result in the best performance. The programmer is encouraged to 

experiment with the NDRange to find the optimal performance for each kernel.  

 

There is a hardware limit on the number of work-items per SM and the number of work-items 

per work-group. If this limit is exceeded, the kernel will fail to launch. See Appendix A for 

the maximum number of work-items per SM for some different GPUs. A kernel will also fail 

to launch if the number of work-items per work-group requires too many registers or too 

much local memory. The total number of registers required for a work-group is equal to 

 

𝑐𝑒𝑖𝑙(𝑅 ∗ 𝑐𝑒𝑖𝑙 𝑇, 32 ,
𝑅𝑚𝑎𝑥

32
) 

 

Equation 4.16. The total number of registers required for a work-group. 

(4.16) 

 

Where R is the number of registers required by the kernel, Rmax is the number of registers per 

SM given in Appendix A, T is the number of work-items per work-group and ceil(x,y) is equal 

to x rounded up to the nearest multiple of y. The total amount of local memory required for a 

work-group is equal to the sum of the amount of statically allocated local memory, the 

amount of dynamically allocated local memory and the amount of local memory used to pass 

the kernels arguments [41].  

 

Given the total number of work-items in an NDRange, the number of work-items per work-

group might be governed by the need to have enough work-items to maximize the utilization 

of the available computing resources. There should be at least as many work-groups as there 

are SMs in the device. Running only one work-group per SM will force the SM to idle during 

work-item synchronization and global memory reads. It is usually better to allow two or more 
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work-groups to be active on each SM so that the scheduler can interleave work-groups that 

wait and work-groups that can run. For work-groups to be interleaved, the amount of registers 

and local memory required per work-group must be low enough to allow for more than one 

active work-group. 

 

For the compiler and the warp scheduler to achieve the best results, the number of work-items 

per work-group should be at least 192 and should be a multiple of 64. Allocating more work-

items per work-group is better for efficient time slicing but too many work-items will exceed 

the available number of registers and memory and hence prevent the kernel from launching. 

 

The ratio of the number of active warps per SM to the maximum number of active warps per 

SM is called the SM “occupancy”. The compiler tries to maximize occupancy by minimizing 

the number of instructions, registry usage and local memory usage. In general there is a trade-

off between occupancy and memory/registry usage which will be kernel dependent. For some 

kernels it will be worth sacrificing some memory to obtain a higher occupancy while for other 

kernels the same sacrifice will result in reduced performance. The programmer is encouraged 

to experiment to find the optimal trade-off. 

  

To summarize, the optimal NDRange will be obtained by following these guidelines: 

 

 Required: The number of work-items per SM must be below the hardware limit of the 

GPU. 

 Required: The local memory and registry usage for a work-group must be below the 

hardware limit of the GPU. 

 There should be at least as many work-groups as there are SMs on the device. 

Preferably there should be two or more work-groups per SM (local memory and 

registry usage will limit the maximum number of work-groups that can be run 

simultaneously on a SM). 

 The number of work-items per work-group should be as high as possible and should 

be a multiple of 64. There should be at least 192 active work-items per SM to hide 

registry read-after-write dependencies. 

 The occupancy for a SM should be as high as possible. 

 The optimal NDRange for a kernel cannot be established without experimentation. 

The optimal configuration depends on the kernel. 

4.5.4. Data transfer between host and device 

The bandwidth between the device and the device memory is much higher than the bandwidth 

between the host and the device memory. Hence data transfers between host and device 

should be minimized. This can be achieved by moving code and data to the device kernels. 

Intermediate data structures may be created in device memory, operated on by the device and 

then destroyed without ever being mapped by the host or copied to host memory. Because of 

the overhead associated with each memory transfer it is beneficial to combine several smaller 

memory transfers into one large memory transfer whenever possible.  
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Higher performance between host and device memory is obtained for memory objects 

allocated in page-locked memory (also called “pinned” memory) as opposed to ordinary 

pageable host-memory (as obtained by malloc()). The page-locked memory has two main 

benefits: 1) Bandwidth is higher between page-locked memory and device memory than 

between pageable memory and device memory and 2) For some devices, page-locked 

memory can be mapped into the device address space. In this case there is no need to allocate 

any device memory and explicitly copy data between device and host memory. 

 

In OpenCL, applications have no direct control over whether memory objects are allocated in 

page-locked or pageable memory. Using NVIDIA’s OpenCL implementation, it is however 

possible to create memory objects using the CL_MEM_ALLOC_HOST_PTR flag and such objects 

are likely to be allocated in page-locked memory [41]. 

4.5.5. Warp-level synchronization  

Work-items within a warp are implicitly synchronized and execute the same instruction at all 

times. This fact can be used to omit calls to the barrier() function to increase performance.  

The reader is referred to [41] for more information about warp-level synchronization.  

4.5.6. General advice 

OpenCL kernels typically execute a large number of instructions per clock cycle. Thus, the 

overhead to evaluate control-flow and execute branch instructions can consume a significant 

part of resources that otherwise could be used for high throughput compute instructions. For 

this reason loop unrolling can have a significant impact on performance.  

 

The NVIDIA OpenCL compiler supports the compiler directive #pragma unroll by which a 

loop can be unrolled a given number of times. It is generally a good idea to unroll every major 

loop as much as possible. By using #pragma unroll it is possible to suggest the optimal 

number of loop unrolls to the compiler. Without the pragma the compiler will still perform 

loop unrolling but there is no way to control to which degree [41]. 

 

The AMD OpenCL compiler performs simple loop unrolling optimizations; however, for 

more complex loop unrolling, it may be beneficial to do this manually. The AMD compiler 

does not support the #pragma unroll so manual unrolling of loops must be performed to be 

sure that performance is optimal. 

 

AMD’s GPUs are five-wide Very Long Instruction Word (VLIW) architectures. For 

applications executing on AMD’s GPUs, the use of vector types within the code can lead to 

substantially greater efficiency. The AMD compiler will try to automatically vectorize all 

instructions and the AMD profiler can display to which degree this is possible. Manual 

vectorization is however the best way to ensure that optimal performance is obtained for all 

data types. The NVIDIA architecture is scalar so vectorizing data types have no impact on 

performance [42]. 
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5. Results 
To be able to compare the different GPU architectures as well as the impact of the 

optimizations described in section 4 a set of benchmarks have been compiled. The 

benchmarks have been carried out on three different system configurations. The system 

configurations are listed in table 5.1.  

 

 

 Configuration 1 (CFG1) Configuration 2 (CFG2) Configuration 3 (CFG3) 

CPU Intel Core 2 Duo 6700  

@ 2.66 GHz 

 

Intel Core 2 Duo 8400  

@ 3.00 GHz 

 

Intel Core i5 750  

@ 2.67 GHZ 

RAM 4x1GB DDR2 PC2-6400  

@ 800 MHz 

 

2x2GB DDR2 PC2-8500 

@ 1066 MHz 

 

2x2GB DDR3 PC3-12800 

@ 1600 MHz 

Hard drive Western Digital Raptor  

74 GB @ 10000 RPM 

 

Samsung Spinpoint F1 

 1 TB @ 7200 RPM 

Samsung Spinpoint F3  

1 TB @ 7200 RPM 

PSU 700W 650W 750W 

Operating 

system 

Microsoft Windows 7 

Professional 64-bit 

 

Microsoft Windows Vista 

Business 64-bit 

Microsoft Windows 7 

Professional 64-bit 

GPU NVIDIA Geforce 8800 GTS 

(G80) 

AMD Radeon 4870 

(RV700) 

 

NVIDIA Geforce GTX 

480 (Fermi) 

GPU Driver NVIDIA WHQL-certified 

Geforce driver v197.13 

Catalyst version 9.11 

Driver version 8.690.0.0 

NVIDIA WHQL-certified 

Geforce driver v197.41 

GPU SDK NVIDIA CUDA Toolkit  

v3.0 64-bit 

ATI Stream SDK  

v2.01 64-bit 

NVIDIA CUDA Toolkit 

v3.0 64-bit 

 

Table 5.1. The three different system configurations used for benchmarking the OpenCL 

application. 

 

Section 5 starts with presenting the benchmarks for our sequential implementation followed 

by the benchmarks for our naïve parallel implementation. The parallel application 

optimizations will then be presented one by one with comments regarding their impact on 

performance. Section 5 will be concluded by a table summarizing the results and showing the 

relative performance impact of all the optimizations. 

 

The benchmarks have been measured using a ~10 second (240 frames) “FullHD” 1920x1080 

video at 23.98 FPS. Video decoding is handled by the CPU using the Open Source Computer 

Vision (OpenCV) library version 2.0 [43]. To be able to play video at 23.98 FPS in real time 

the application must decode a frame, process it and display on the screen in less than 41.7 ms.  

5.1. A naïve sequential implementation on the CPU 
Our naïve sequential LK-method implementation (see listing 4.1) is extremely slow and 

requires ~21 seconds to process a frame on CFG1. The results are slightly better on CFG2 and 

CFG3. This implementation is indeed naïve and much could be done to improve it. According 

to [43] a speedup of at least a magnitude should be possible if the application is optimized for 
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the CPU. CPU optimization is however outside the scope of this thesis. The benchmarks for 

the sequential implementation can be seen in table 5.2. 

 

 CFG1 (ms) CFG2 (ms) CFG3 (ms) 

Average processing time per 

frame 

21344 18750 16896 

 

Table 5.2. Processing times for the naïve sequential LK-method implementation. 

 

5.2. A naïve parallel implementation on the GPU 
Our naïve parallel implementation was our first attempt creating a GPU accelerated 

application. Parallelizing the LK-method implementation showed a great performance 

increase compared to the sequential implementation. On CFG1 the performance increased 

42x. CFG3 showed an even higher performance increase of 1374x.  

 

As previously described in section 4.4.1, our first parallel implementation was divided into 

five kernels; a grayscale converter, a kernel for matrix operations, a kernel for convolution, a 

least-squares method implementation and a kernel for visualizing the motion vectors. After 

considering all the performance requirements listed in section 4.5.3 and experimenting with 

the NDRange, a work-group size of 64x8 was found to be the best configuration for CFG1 

and CFG3. This was however not possible on CFG2 due to hardware limits. An NDRange of 

32x8 was used for CFG2.  

 

The Fermi GPU excels immediately and the naïve implementation is already fast enough to 

execute in real time. This is however not possible on neither the G80 nor the RV700. The 

processing times of the naïve parallel implementation can be seen in table 5.3. 

 

 CFG1 (avg ms / 

frame) 

CFG2 (avg ms / 

frame) 

CFG3 (avg ms / 

frame) 

Grayscale 4.13 0.84 0.17 

Matrix  0.65 0.77 0.19 

Convolution  12.93 0.92 0.2 

Least-squares 402.71 23.17 3.76 

Visualize 6.53 3.01 0.39 

Device time (all kernels) 465.29 49.5 8.55 

Host time (entire application) 46.29 8.22 3.75 

Total processing time 511.58 57.72 12.3 

 

Table 5.3. Processing times for the naïve parallel implementation. 

5.3. Local memory 
As stated in section 4.5.2.1, global memory accesses have a latency of 400-600 clock cycles 

making them very costly. By introducing local memory buffers in the least-squares kernel it 

was possible to reduce the number of global memory reads from 81 per pixel to just 2 reads 

per pixel. This means that the number of global memory reads for the least-squares kernel was 

reduced by 98%. 
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As stated in section 4.5.2.4, it is important to consider the memory access scheme when 

accessing local memory to avoid bank conflicts. For example, a 2-way bank conflict will 

reduce the local memory bandwidth by half. Several different local memory access schemes 

were evaluated. The final local memory access scheme resulted in 20x less bank conflicts than 

the naïve one. Optimizing the local memory access scheme had most impact on the G80 

architecture. 

 

The reduced usage of global memory should in theory yield a great performance increase 

because of global memory latency. Indeed, table 5.4 shows that this optimization results in a 

very large performance increase on CFG1. Due to the improved caching in the Fermi 

architecture no notable change can be seen on CFG3. On CFG2, the increased use of local 

memory has a negative effect on performance. After modifying the kernel the increased 

registry and local memory usage required that the NDRange for the least-squares kernel was 

reduced to 16x24 for CFG1 and to 8x8 for CFG2. 

 

 CFG1 (avg ms / 

frame) 

CFG2 (avg ms / frame) CFG3 (avg ms / 

frame) 

Grayscale 4.28 0.84 0.17 

Matrix 0.72 0.77 0.19 

Convolution 12.86 0.92 0.2 

Least-squares 21.24 154.12 3.43 

Visualize 6.67 3.01 0.39 

Device time (all kernels) 84.37 179.51 8.25 

Host time (entire application) 44.97 9.83 3.79 

Total processing time 129.34 189.34 12.04 

 

Table 5.4. Processing times after the local memory optimizations. 

5.4. Constant memory 
As stated in section 4.5.2.2, constant memory is cached. Global memory reads that result in a 

cache hit are as fast as reads from a register. Storing commonly used data in the constant 

memory should reduce processing time significantly due to the large performance penalty 

associated with global memory accesses.  

 

The variables containing the kernels used to perform convolution was stored in constant 

memory. Since all work-items use the same three kernels for calculating spatial and temporal 

derivatives, the cache hit rate should be high. Moving the convolution kernels to constant 

memory reduce the total number of global accesses by 4 per convolution (12 in total). This  

reduced the number of global reads by approximately 50% for the OpenCL kernel handling 

convolution. This reduction is not as high as for the local memory optimization in the least-

squares kernel but should still be high enough to result in a visible performance increase. 

 

The use of constant memory results in a performance increase on CFG1. No notable change in 

performance can be seen for CFG3, most likely because of the improved memory caching in 

the Fermi architecture. CFG2 displays a minor performance increase. A peculiar side effect of 

the use of constant memory is that the host time decreases by 74% on CFG1! The results are 

presented in table 5.5. 
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 CFG1 (avg ms / 

frame) 

CFG2 (avg ms / frame) CFG3 (avg ms / 

frame) 

Grayscale 4.28 0.84 0.17 

Matrix  0.72 0.77 0.19 

Convolution  1 0.92 0.19 

Least-squares 18.78 129.01 3.43 

Visualize 6.66 3.0 0.39 

Device time (all kernels) 45.36 155.67 8.25 

Host time (entire application) 11.48 9.65 3.62 

Total processing time 56.84 165.32 11.87 

 

Table 5.5. Processing times after the constant memory optimizations. 

5.5. Native math 
As described in section 4.5.1.1, many OpenCL implementations have “native” versions of 

most common math functions. To increase performance in the application all math functions 

were replaced by the native versions. For example, floating point division was replaced with 

the native_divide function and the exponential functions were replaced with native_pow.  

 

The introduction of the native OpenCL instructions did not affect the performance of the 

application on any of the architectures. One reason for this is that the compiler already 

utilized the native instructions everywhere possible. The use of native instructions could 

however result in a performance increase on other platforms with other compilers why the 

native instructions were left in the application for eventual future use. 

5.6. Merging kernels 
To increase the arithmetic intensity and allow the Grayscale, Matrix Subtraction and 

Convolution kernels to share frame data in local memory these three kernels were combined 

into one single large kernel called “GSC”. With fewer kernels to start, the host overhead time 

associated with launching a kernel should be reduced. Merging several smaller kernels into 

one large kernel is however no guarantee for increased performance. Because a larger kernel 

requires more memory, fewer work-items can execute the kernel at the same time. This might 

lead to reduced performance and problems in scheduling the kernel. The optimal kernel size is 

therefore a trade off and the programmer is required to experiment to find this optimal size for 

each kernel.  

 

In the GSC kernel, the work-items in the different work-groups cooperate to load global 

memory data into local memory, much like in the local optimization described in section 5.3. 

Loading data in this way results in fewer global memory accesses than before. One drawback 

of using local memory this way is that synchronization instructions must be introduced to 

ensure local memory consistency. As stated in section 4.5.1.4, explicit work-item 

synchronization can make it more difficult for the scheduler to achieve optimal work-item 

scheduling. The GSC kernel was configured with an NDRange of 64x8 for CFG1 and CFG3. 

This was however not possible on CFG2 so the NDRange for CFG2 was set to 32x8. 
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Merging the kernels had a positive impact on the host time on all three hardware 

configurations. However, almost no change at all could be seen for the device time on CFG1 

or CFG3, most likely because the arithmetic intensity before the merge was already high 

enough to hide the memory latencies. A slight performance decrease can be noticed for 

CFG2. See table 5.6 for the processing times after the kernels were merged. 

 

 CFG1 (avg ms / 

frame) 

CFG2 (avg ms / 

frame) 

CFG3 (avg ms / 

frame) 

GSC 12.31 26.54 0.66 

Least-squares 19.04 128.46 3.41 

Visualize 6.56 2.92 0.39 

Host to device memory transfer time  3.25 7.6 1.52 

Device to host memory transfer time  4.43 9.93 1.64 

Device time (all kernels) 45.66 175.34 7.61 

Host time (entire application) 2.84 4.34 1.67 

Total processing time 48.5 179.68 9.28 

 

Table 5.6. Processing times after the kernel merge optimization. 

5.7. Non-pageable memory 
As stated in section 4.5.4, there are several benefits of using non-pageable memory as 

opposed to pageable memory. Memory bandwidth is higher between non-pageable memory 

and device memory than between pageable memory and device memory. For each frame to be 

processed by the device, the frame must first be decoded by the host, transferred from host to 

device memory, processed by the device, transferred back from device to host memory and 

then displayed on the screen. Each video frame is approximately 1920 * 1080 * 3 ≈ 5.93MB 

so before a frame is processed and can be displayed to the user ~11.86 MB data must be 

transferred between the host and the device. 

 

Using pageable memory when transferring data between host and device memory results in a 

memory bandwidth of around 1.82 GB/s on CFG1 and 3.90 GB/s on CFG3. To be able to 

copy data to and from the host non-pageable memory to device memory, the data must first be 

copied from pageable memory to non-pageable memory on the host. Copying data between 

different parts of host memory is a synchronous operation so execution must be stalled until 

all data is available in non-pageable memory. This stall introduces some overhead time in the 

application. 

 

The usage of non-pageable host memory results in increased memory bandwidth, 2.49 GB/s 

on CFG1 and 5.70 GB/s on CFG3. However, the increase in host processing time associated 

with copying data between pageable and non-pageable memory overshadows the decreased 

transfer time due to increased bandwidth, see table 5.7.  
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 CFG1 (avg ms / 

frame) 

CFG2 (avg ms / 

frame) 

CFG3 (avg ms / 

frame) 

GSC 12.45 26.64 0.69 

Least-squares 19.58 129.66 3.62 

Visualize 6.56 2.92 0.39 

Host to device memory transfer time 2.38 7.6 1.04 

Device to host memory transfer time 3.27 9.75 1.02 

Device time (all kernels) 51.73 176.48 6.76 

Host time (entire application) 9.7 10.19 3.87 

Total processing time 61.43 186.67 10.63 

 

Table 5.7. Processing times after the non-pageable memory optimization. 

5.8. Coalesced memory accesses 
As stated in section 4.5.2.1, coalescing global memory accesses can greatly increase the 

performance of a parallel application. There are three requirements that need to be fulfilled in 

order to coalesce memory accesses on the G80 architecture; 1) Work-items must access 4-, 8- 

or 16-byte words, 2) All 16 work-items in a half-warp must access words in the same memory 

segment and 3) Work-items must access words in sequence: The k:th work-item in a half-

warp must access the k:th word. If these requirements are not fulfilled none of the memory 

accesses will be coalesced. On the Fermi architecture it is possible to have partly coalesced 

memory accesses, even if the access pattern does not fulfill all three requirements. For 

example, 16 global accesses to two different memory segments would be coalesced into two 

global accesses on Fermi while it would be 16 (non-coalesced) global accesses on the G80. 

 

When each work-item only access one single 4-byte word (for example a float data value) 

coalescing is trivial. The work-items unique global NDRange ID can be used to calculate the 

global memory address that each work-item should access. The first requirement to achieve 

coalesced memory accesses is fulfilled because the work items access 4-byte words. The 

second requirement is fulfilled if the work-group x-dimension size is evenly divisible by 16. 

The third requirement is fulfilled since the NDRange ID is used to divide the work-items into 

warps (i.e. work-item 0-31 will form a warp). Global memory accesses according to this 

scheme is implemented for all global memory writes in the GSC and least-square kernels and 

all global memory reads in the Visualize kernel. See figure 5.1 for an example of the memory 

access scheme.  
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Figure 5.1. Example of an access scheme for a work-group with size x = 32 and y = 8. The 

light green boxes display which work-group that reads which part of the image frame. Each 

work-item reads the memory position that map to its local ID within the work-group. 

 

It is much more difficult to coalesce memory accesses when the work-items do not access 4-, 

8- or 16-byte words. The work-items in the GSC and Visualize kernel both access 3x 1-byte 

words (the three 1-byte RGB values for each pixel in the frame). The GSC kernel reads 1-byte 

words from global memory and the Visualize kernel writes 1-byte words to global memory. 

To coalesce these memory accesses a more advanced access scheme is required than in the 

trivial case.  

 

To fulfill the first requirement for coalesced memory accesses the work-items in each work-

group read or write an uchar4 (4x 1-byte RGB values) from/to global memory. The second 

requirement implies that the global memory addresses need to be aligned to 16x 4-byte words. 

Memory address alignment together with the third requirement is fulfilled by padding the 

accessed memory area and adjusting the work-group x-dimension size. The work-group x-

dimension and the padding must be chosen so that they solve equation (5.1) and (5.2) 

 

 WGDx + P𝑥 ∗ 3

4
≡ 0 (mod 16) 

 

 WGDx + P𝑥 ∗ 3 ∗ 𝑊𝐺𝑥𝑖𝑑 ≡ 0 (mod 64)  

(5.1) 

 

 

(5.2) 

   

where WGDx is the work group x-dimension size, Px is the padding in the x-direction and 

WGxid is the work group x-dimension ID. 

 

When WGDx and Px are chosen to solve equation (5.1) and (5.2) all the requirements will be 

fulfilled and the global memory accesses will be coalesced. If the padded memory has more 

uchar4 words than there are work-items, the work-items need to read more than one uchar4 
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each. In that case the work-items read a second uchar4 with a set memory offset. See figure 

5.2 for an example of this memory access scheme. 

 

 
 Figure 5.2. Example of an access scheme for a work-group with size x = 32, y = 8 and 

padding = 32.The light green boxes display which work-group that reads which part of the 

image frame. Each work-item reads the memory positions that map to its local ID within the 

work-group. 

 

As can be seen in table 5.8, coalesced global memory accesses only increase performance on 

CFG1. According to the NVIDIA visual profiler all global memory accesses are 100% 

coalesced for the GSC and visualize kernels. For the least-squares kernel only the global 

memory writes are 100% coalesced. As stated in section 3.2.5, the Fermi architecture has 

special hardware to optimize global memory accesses; it is however not possible to see to 

which degree memory accesses are coalesced. On CFG1, the coalesced memory access 

scheme greatly reduces the total number of global memory accesses. However, because the 

advanced access scheme pads the memory area, the total number of 4-byte words accessed is 

somewhat increased. This result in extra memory accesses which reduces performance on 

CFG2 and CFG3 architecture compared to the trivial memory access scheme without padding. 
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 CFG1 (avg ms / 

frame) 

CFG2 (avg ms / 

frame) 

CFG3 (avg ms / 

frame) 

GSC 6.33 102.32 0.78 

Least-squares 19.69 128.7 3.65 

Visualize 3.11 5.85 0.49 

Host to device memory transfer time  2.37 7.57 1.04 

Device to host memory transfer time 3.29 9.67 1.02 

Device time (all kernels) 34.78 254.1 6.98 

Host time (entire application) 9.4 11.74 3.74 

Total processing time 44.18 265.84 10.72 

 

Table 5.8. Processing times after the coalesced memory optimizations. 

5.9. Using the CPU as both host and device 
Using AMD’s OpenCL implementation it is possible to use the CPU as both host and device. 

This will run the entire application on the CPU, not utilizing the GPU at all. Using the CPU as 

both host and device on CFG2, using only pageable memory, yields an average processing 

time of 781 ms. Comparing to the naïve sequential implementation on CFG2 this is a decrease 

in execution time of 96%. When comparing to the naïve parallel implementation on CFG1 the 

decrease in processing time obtained by utilizing a GPU is only ~33%. On the other hand, if 

comparing to Fermi utilizing a GPU decreases processing time by 98%. Note that NVIDIA’s 

OpenCL implementation does not yet support using the CPU as both host and device. 

5.10. Summary of results 
To summarize, CFG3 has the best performance of the three system configurations evaluated. 

Optimizing the parallel application had a positive yet limited impact on performance for 

CFG3. For CFG1 the optimizations made a huge difference and significantly reduced the 

processing time of the application. For CFG2, all optimizations proved to have a negative 

effect on performance which results in the naïve implementation having the best performance. 

Table 5.9 summarizes the device times for the three configurations with regard to application 

optimizations and table 5.10 summarizes the total time (device and host time). Figure 5.2 

plots the device processing times and figure 5.3 plots the total processing times for the 

respective application versions.  

 

When analyzing the results from table 5.9 and 5.10 it can be seen that the best performance 

for CFG1 is obtained by using the naïve implementation as a base and then applying all 

optimizations except the use of non-pageable memory. For CFG3 the best performance is 

obtained by applying all optimizations except non-pageable memory and coalesced memory. 

Table 5.11 lists the application processing times measured for CFG1, CFG2 and CFG3 using 

these optimization configurations. 
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 Device only processing  times 

 CFG1 (G80) CFG2 (RV700) CFG3 (Fermi) 

Application 

version 

Exec. 

time 

(ms) 

Rel. 

time 

change 

(%) 

Time 

change 

rel. 

naïve 

(%) 

Exec. 

time 

(ms) 

Rel. 

time 

change 

(%) 

Time 

change 

rel. 

naïve 

(%) 

Exec. 

time 

(ms) 

Rel. 

time 

change 

(%) 

Time 

change 

rel. 

naïve 

(%) 

Naïve 465.29 - - 49.5 - - 8.55 - - 

Local mem. 84.39 -82 -82 179.51 263 263 8.25 -4 -4 

Constant 

mem. 
45.36 -46 -90 155.67 -13 214 8.25 0 -4 

Kernel 

merge 
45.66 1 -90 175.34 13 254 7.61 -8 -11 

Non-

pageable 

mem. 

51.73 13 -89 176.48 1 257 6.76 -11 -21 

Coalesced 

mem. 
34.78 -33 -93 254.1 44 413 6.98 3 -18 

 

Table 5.9. Summary of device processing times for the three configurations. 

 

 

 Total processing times (host + device)  

 CFG1 (G80) CFG2 (RV700) CFG3 (Fermi) 

Application 

version 

Exec. 

time 

(ms) 

Rel. 

time 

change 

(%) 

Time 

change 

rel. 

naïve 

(%) 

Exec. 

time 

(ms) 

Rel. 

time 

change 

(%) 

Time 

change 

rel. 

naïve 

(%) 

Exec. 

time 

(ms) 

Rel. 

time 

change 

(%) 

Time 

change 

rel. 

naïve 

(%) 

Naïve 511.58 - - 57.72 - - 12.3 - - 

Local mem. 129.34 -75 -75 189.34 228 228 12.04 -2 -2 

Constant 

mem. 
56.84 -56 -89 165.32 -13 186 11.87 -1 -3 

Kernel 

merge 
48.5 -15 -91 179.68 9 211 9.28 -22 -25 

Non-

pageable 

mem. 

61.43 27 -88 186.67 4 223 10.63 15 -14 

Coalesced 

mem. 
44.18 -28 -91 265.84 42 361 10.72 1 -13 

 

Table 5.10. Summary of the total processing times for the three configurations. 
 

 

 Best performance obtained 

 CFG1 (G80) CFG2 (RV700) CFG3 (Fermi) 

 Exec. time 

(ms) 

Time change 

rel. naïve (%) 

Exec. time 

(ms) 

Time change 

rel. naïve (%) 

Exec. time 

(ms) 

Time change 

rel. naïve (%) 

Device time  37.05 -92 49.5 0 7.48 -13 

Host time  1.45 -97 8,22 0 1.2 -68 

Total time 38.51 -93 57.72 0 8.68 -29 

 

Table 5.11.The best processing times obtained for the three configurations. 
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Figure 5.2. Device only processing times for the three GPUs 

 

 

 

 

Figure 5.3. Total processing time for the three GPUs 

  

465.29

84.39
45.36 45.66 51.73

34.78
49.5

179.51
155.67 175.34 176.48

254.1

8.55 8.25 8.25 7.61 6.76 6.98
Naïve Local mem. Constant mem. Kernel merge Non-pageable 

mem.
Coalesced 

mem.

Ex
ec

u
ti

o
n

 t
im

e 
(m

s)
Device only processing time

CFG1 CFG2 CFG3

511.58

129.34

56.84 48.5 61.43 44.18
57.72

189.34
165.32 179.68 186.67

265.84

12.3 12.04 11.87 9.28 10.63 10.72
Naïve Local mem. Constant mem. Kernel merge Non-pageable 

mem.
Coalesced 

mem.

Ex
ec

u
ti

o
n

 t
im

e 
(m

s)

Total processing time

CFG1 CFG2 CFG3



44 

6. Conclusions 
As the results in section 5 shows, the new NVIDIA Fermi GPU excels in all aspects of 

GPGPU. Fermi delivers higher performance than previous generation GPU architectures and 

is at the same time easier to program. As the results show the application scales very well. 

Replacing a G80-based GPU with a Fermi-based GPU will surely increase performance for 

almost any GPU application. Before the Fermi architecture, there was much to gain from 

optimizing GPU applications. With Fermi there are still some gains to be made from 

optimizing but the performance is already quite good with a naïve implementation, much due 

to the improved caching and memory architecture. It should be noted that Fermi requires more 

power and generates more heat than previous generation GPUs. Heat and power dissipation is 

however outside the scope of this thesis. 

 

Local memory bank conflicts and non-coalesced memory accesses have been common and 

tedious problems up until now. With Fermi’s improved memory architecture, it is easier to 

coalesce global memory accesses and less knowledge about the hardware is required from the 

programmer. However, even with Fermi’s improved memory architecture, bank conflicts and 

non-coalesced memory accesses can still lower performance. To achieve maximum 

performance the programmer must therefore still have some knowledge about the hardware to 

be able to address these issues.  Hopefully, in coming GPU architectures the programmer will 

not have to consider memory access patterns at all. 

 

On the G80 architecture the benefits from optimizing the application were immense. 

Optimized use of local and constant memory resulted in large performance increases. 

Coalescing global memory accesses also proved to be one of the most important factors to 

consider to achieve optimal performance. These optimizations are however not possible to 

implement without a deep understanding of the hardware. It is not easy to achieve maximum 

performance on the G80 architecture. Optimizing memory access patterns can be tedious 

work, especially if the original algorithm does not map very to the GPU execution model. 

With the right optimizations though, the performance of the G80 GPU did exceed that of the 

RV700 GPU, a quite remarkable result since the G80 was released two years prior to the 

RV700. 

 

The RV700 architecture is not well suited for GPGPU. The AMD OpenCL implementation 

does not expose the local memory of the RV700 to the programmer. Instead, local memory is 

emulated in global memory. As a result of this, local memory optimizations results in a 

performance decrease on the RV700. Instead of data being copied to on-chip memory, it is 

only copied to another part of the global memory – an utterly pointless operation. The only 

optimization that showed a positive impact on performance was the use of constant memory. 

The use of constant memory does however only result in increased performance on the 

RV700 if local memory is utilized. Hence, the naïve version of the application has the best 

performance on the RV700. 
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None of the hardware configurations did benefit from the use of non-pageable memory. The 

requirement to copy data between pageable and non-pageable memory on the host system did 

result in overhead time that overshadowed the increased host to device bandwidth. Usage of 

non-pageable memory could however prove to increase performance should more data be 

transferred every frame. 

 

OpenCL is a stable and competent parallel programming framework. The fact that the 

framework is supported by all major GPU manufacturers (AMD and NVIDIA) as well as the 

possibilities to use the framework on most major operating systems are strong incentives. Yet, 

there are some differences between the OpenCL implementations from the different GPU 

manufactures. Only one operating system (Microsoft Windows) was used in this thesis but 

even then some differences between the implementations could be noted. For example, it is 

possible to use the CPU as both host and device when using AMD’s OpenCL implementation 

while this is not possible using NVIDIA’s. Other differences between the OpenCL 

implementations are support for compiler options like -cl-fast-relaxed-math, support for 

compiler directives like #pragma unroll and support for OpenCL image objects. 

 

As long as both AMD and NVIDIA prioritize their own flagship frameworks (ATI Stream 

and CUDA) their OpenCL implementations will be slightly behind. The NVIDIA 

implementation of OpenCL does not yet fully benefit from all the improvements in the Fermi 

architecture even though this will probably be remedied in future implementations. One can 

speculate that the performance of OpenCL is slightly worse than that of ATI Stream or 

CUDA. Even though OpenCL is platform independent maximum performance will not be 

obtained without knowledge about the underlying software and hardware platform.  

 

To summarize, a Fermi GPU is well worth the investment for any GPGPU project. The 

slightly higher initial cost will be motivated many times over by the fact that performance is 

much better and that much less effort is required from the programmer. OpenCL is a stable 

and competent framework well suited for any GPGPU project that would benefit from the 

increased flexibility of software and hardware platform independence. If performance is more 

important than flexibility, the CUDA and ATI Stream frameworks might be better 

alternatives. 
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7. Future work 
Because NVIDIA’s OpenCL implementation do not fully support all of the latest features of 

the Fermi architecture it was not possible to explore the full feature range of Fermi. In the 

future it will hopefully be possible to fully explore all aspects of the Fermi architecture using 

OpenCL. The OpenCL performance was only measured on the Microsoft Windows platform. 

OpenCL implementations exist on both Linux and Mac OS X as well as on other platforms 

and operating systems. It would be interesting to compare the relative OpenCL performance 

between different operating systems. Another interesting aspect would be to compare the 

OpenCL performance to that of CUDA and ATI Stream.  

 

The LK-method implementation could be optimized further. For example, the global memory 

reads in the least-squares kernels are not coalesced to 100%. Another optimization could be to 

store the least-square kernel input data in OpenCL image objects which might increase 

performance. Further optimizations could include moving the video decoding from the CPU 

to the GPU. Utilizing the GPU for video decoding should reduce the amount of data 

transferred between the host and the device and increase performance.  

 

In this thesis, the focus has been on optimizations for NVIDIA GPU hardware. There are 

however other GPU manufacturers and other types of devices that can be used with OpenCL. 

It would be very interesting to see if AMD’s newest GPU hardware architecture “Cypress” 

can match the performance of the Fermi architecture. It would also be interesting to see how 

much the performance of the OpenCL CPU version of the LK-method implementation could 

be improved using CPU optimizations. 

  



47 

References 
 

[1] The Khronos Group. (2010) The OpenCL Specification. 

http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf. Accessed 2010-05-28 

 

[2] NVIDIA Corporation. (2010) NVIDIA’s Next Generation CUDA Compute 

Architecture: Fermi. 

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_

Architecture_Whitepaper.pdf. Accessed 2010-05-28 

 

[3] Kirk, D. B. and Hwum, W. W. (2010) Programming Massively Parallel Processors. 

Burlington: Elsevier. ISBN 9780123814722. 

 

[4] ATI Stream SDK v2.01 Performance and Optimization. 

http://developer.amd.com/gpu/ATIStreamSDK/assets/ATI_Stream_SDK_Performanc

e_Notes.pdf. Accessed 2010-06-02. 

 

[5] GPGPU.org. GPGPU Developer Resources. http://gpgpu.org/developer. Accessed 

2010-05-28. 

 

[6] The Khronos Group. Open Standards, Royalty Free, Dynamic Media Technologies. 

http://www.khronos.org. Accessed 2010-05-28. 

 

[7] Lucas, B. D. and Kanade, T. (1981) An iterative image registration technique with an 

application to stereo vision. In Proceedings of Imaging understanding workshop, pp 

121 - 130. 

 

[8] Marzat, J., Dumortier, Y. and Ducrot, A. (2008) Real-Time Dense and Accurate 

Parallel Optical flow using CUDA. 

http://julien.marzat.free.fr/2008_Stage_Ingenieur_INRIA/WSCG09_Marzat_Dumortie

r_Ducrot.pdf. Accessed 2010-05-28. 

 

[9] Besnerais, G. L. and Champagnat, F. Dense optical flow estimation by iterative local 

window registration. In Proceedings of IEEE ICIP05. September, 2005, Italy, Genova. 

Vol. 1. 

 

[10] Bruhn, A., Joachim, W. and Schnörr, C. (2003) Lucas/Kanade Meets Horn/Schunck: 

Combining Local and Global Optic Flow Methods. http://www.mia.uni-

saarland.de/Publications/bruhn-ijcv05c.pdf. Accessed 2010-05-28. 

 

[11] England, J.N. (1978) A system for interactive modeling of physical curved surface 

objects. In Proceedings of SIGGRAPH 78. 1978.  pp 336-340. 

 



48 

[12] Potmesil, M. and Hoffert, E.M. (1989) The Pixel Machine: A Parallel Image 

Computer. In Proceedings of SIGGRAPH 89. 1989. pp 69-78. 

 

[13] Rhoades, J., Turk, G., Bell, A., State, A., Neumann, U. and Varshney, A. (1992) Real-

Time Procedural Textures. In Proceedings of Symposium on Interactive 3D Graphics. 

1992. pp 95-100. 

 

[14] Trendall, C. and Steward, A.J. (2000) General Calculations using Graphics Hardware, 

with Applications to Interactive Caustics. In Proceedings of Eurographics Workshop 

on Rendering. 2000. pp 287- 298. 

 

[15] Olano, M. and Lastra, A. (1998) A Shading Language on Graphics Hardware: The 

PixelFlow Shading System. In Proceedings of SIGGRAPH. 1998. pp 159-168. 

 

[16] Peercy, M.S., Olano, M., Airey, J. and Ungar, P.J. (2000) Interactive Multi-Pass 

Programmable Shading. In Proceedings of SIGGRAPH. 2000. pp 425-432. 

 

[17] Proudfoot, K., Mark, W.R., Tzvetkov, S. and Hanrahan, P. (2001) A Real-Time 

Procedural Shading System for Programmable Graphics Hardware. In Proceedings of 

SIGGRAPH. 2001. pp 159-170. 

 

[18] Carr, N.A., Hall, J.D. and Hart, J.C. (2002) The Ray Engine. In Proceedings of 

SIGGRAPH / Eurographics Workshop on Graphics Hardware. 2002. 

 

[19] Lengyel, J., Reichert, M., Donald, B.R. and Greenberg, D.P. (1990) Real-Time Robot 

Motion Planning Using Rasterizing Computer Graphics Hardware. In Proceedings of 

SIGGRAPH. 1990. pp 327-335. 

 

[20] Hoff, K.E.I., Culver, T., Keyser, J., Lin, M. and Manocha, D. (1999) Fast 

Computation of Generalized Voronoi Diagrams Using Graphics Hardware. In 

Proceedings of SIGGRAPH. 1999. pp 277- 286. 

 

[21] Eyles, J., Molnar, S., Poulton, J., Greer, T. and Lastra, A. (1997) PixelFlow: The 

Realization. In Proceedings of SIGGRAPH / Eurographics Workshop on Graphics 

Hardware. 1997. pp 57-68. 

 

[22] Kedem, G. and Ishihara, Y. (1999) Brute Force Attack on UNIX Passwords with 

SIMD Computer. In Proceedings of The 8th USENIX Security Symposium. 1999. 

 

[23] Bohn, C.-A. (1998) Kohonen Feature Mapping Through Graphics Hardware. In 

Proceedings of 3rd Int. Conference on Computational Intelligence and Neurosciences. 

1998. 

 



49 

[24] GPGPU.org. History of GPGPU. http://gpgpu.org/oldsite/data/history.shtml. Accessed 

2010-05-28. 

 

[25] NVIDIA Corporation. NVIDIA CUDA Zone. 

http://www.nvidia.com/object/cuda_home_new.html. Accessed 2010-05-28. 

 

[26] History of GPU (Graphics Processing Unit). http://strojstav.com/tag/history-of-gpu-

graphics-processing-unit/. Accessed 2010-05-28. 

 

[27] Stanford University. BrookGPU. 

http://graphics.stanford.edu/projects/brookgpu/index.html. Accessed 2010-05-28. 

 

[28] Stanford University. Folding@home. http://folding.stanford.edu/. Accessed 2010-05-

28. 

 

[29] Advanced Micro Devices. A Brief History of General Purpose (GPGPU) Computing. 

http://ati.amd.com/technology/streamcomputing/gpgpu_history.html. Accessed 2010-

05-28. 

 

[30] Real World Technologies. NVIDIA's GT200: Inside a Parallel Processor. 

http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=1. 

Accessed 2010-05-28. 

 

[31] Real World Technologies. Inside Fermi: NVIDIA's HPC Push. 

http://www.realworldtech.com/page.cfm?ArticleID=RWT093009110932. Accessed 

2010-05-28. 

 

[32] IEEE Xplore. 754-2008 IEEE Standard for Floating-Point Arithmetic. 

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=4610935. 

Accessed 2010-05-28. 

 

[33] Burton, A. and Radford, J. (1978) Thinking in Perspective: Critical Essays in the 

Study of Thought Processes. Routledge. ISBN 0416858406.  

 

[34] Warren, D. H. and Strelow, E. R. (1985) Electronic Spatial Sensing for the Blind: 

Contributions from Perception. Springer. ISBN 9024726891.  

 

[35] Horn, B. K. P. and Schunck, B. G. (1981) Determining optical flow. Artificial 

Intelligence. Vol 17, pp 185. 1981. 

 

[36] Farnebäck, G. (2000) Fast and Accurate Motion Estimation Using Orientation Tensors 

and Parametric Motion Models. In 15th International Conference on Pattern 

Recognition. 2000. Vol. 1, pp. 1135. 

 



50 

[37] Haiying, L., Rama, C. and Azriel, R. (2003) Accurate dense optical flow estimation 

using adaptive structure tensors and a parametric model. In IEEE Trans. Image 

Processing. October, 2003. Vol. 12, pp. 1170. 

 

[38] Tomasi, C. and Kanade, T. (1991) Detection and Tracking of Point Features. Carnegie 

Mellon University Technical Report CMU-CS-91-132. April, 1991. 

 

[39] Shi, J. and Tomasi, C. (1994) Good Features to Track. In IEEE Conference on 

Computer Vision and Pattern Recognition. 1994. pp. 593-600. 

 

[40] Bodily, J. M. (2009) An Optical Flow Implementation Comparison Study. 

http://contentdm.lib.byu.edu/ETD/image/etd2818.pdf. Accessed 2010-05-28. 

 

[41] NVIDIA Corporation. NVIDIA OpenCL Programming Guide for the CUDA 

Architecture. 

http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_Open

CL_ProgrammingGuide.pdf. Accessed 2010-05-28. 

 

[42] Advanced Micro Devices. ATI Stream SDK v2.01 Performance and Optimization. 

http://developer.amd.com/gpu/ATIStreamSDK/assets/ATI_Stream_SDK_Performanc

e_Notes.pdf. Accessed 2010-05-28. 

 

[43] Open Source Computer Vision library. http://opencv.willowgarage.com/. Accessed 

2010-05-28. 

 

[44] Anguita, M., Díaz, J., Ros, E. and Fernández-Baldomero, F. J. Optimization Strategies 

for High-Performance Computing of Optical-Flow in General-Purpose Processors. In 

IEEE Transactions On Circuits And Systems For Video Technology.  October, 2009. 

Vol. 19, no. 10. 

 

[45] GPUReview.com. Video Card Reviews and Specifications. 

http://www.gpureview.com/. Accessed 2010-05-28. 

 

[46] NVIDIA Corporation. NVIDIA Geforce Family. 

http://www.nvidia.co.uk/object/geforce_family_uk.html. Accessed 2010-05-28. 

 

[47] Advanced Micro Devices. ATI Radeon and ATI FirePro Graphics Cards from AMD. 

http://www.amd.com/us/products/Pages/graphics.aspx. Accessed 2010-05-28. 

 

  



51 

Appendix A 
Table A.1 shows a comparison of modern graphics hardware [45][46][47]. 

 GeForce 

8800 GTS 

GeForce 

GTX 285 

GeForce 

GTX 470 

GeForce 

GTX 480 

Radeon 

HD 4870 

Radeon 

HD 5850 

Radeon 

HD 5870 

Manufacturer NVIDIA NVIDIA NVIDIA NVIDIA AMD AMD AMD 

Architecture G80  

 

GT200  Fermi Fermi R700 

 

Evergreen Evergreen 

GPU G80 

 

GT200b GF100 GF100 RV700 Cypress Cypress 

Production year 

 

2006 2009 2010 2010 2008 2009 2009 

SMs 14 

 

30 14 15 10 18 20 

Cores / SM (Total) 8 (112) 

 

8 (240) 32 (448) 32 (480) 80 (800) 80 (1440) 80 (1600) 

Max threads / SM 768 

 

1024 1536 1536 1024 1536 1536 

Process (nm) 90 

 

55 40 40 55 40 40 

Transistors (M) 681 

 

1400 3200 3200 956 2154 2154 

Main memory type GDDR3 

 

GDDR3 GDDR5 GDDR5 GDDR5 GDDR5 GDDR5 

Main memory size (MB) 640 

 

1024 1280 1536 1024 1024 1024 

Memory bus width (bit) 320 

 

512 320 384 256 256  256 

Memory bandwidth (GB/s) 64 

 

159 134 177 115 128 154 

Local memory (B) 16384 

 

16384 49152 49152 16384 32768 32768 

Register file size / SM (B) 8192 

 

16384 32768 32768 262144 262144 262144 

Core clock (MHz) 500 

 

648 607 700 750 725 850 

Memory clock (MHz) 800 

 

1242 1674 1848 1800 2000 2400 

Max power (W) 147 

 

183 215 250 150 158 188 

Theoretical TFLOPS ~0.4 

 

~0.7 ~1.1 ~1.35 ~1.2 ~2.1 ~2.7 

 

Table A.1. Comparison of 7 recent GPUs.  

 


