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ABSTRACT. 2D P-SV elastic wave scattering by a crack near a non-planar surface is investigated. The
wave scattering problem is solved in the frequency domain using a combination of the boundary element
method (BEM) for the back surface displacement and a Fourier series expansion of the crack opening
displacement (COD). The model accounts for the action of the transmitting and receiving ultrasonic
contact probes, and the time traces are obtained by applying an inverse temporal Fourier transform.
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INTRODUCTION

The propagation of elastic waves and scattering by defects have important applications
in non-destructive testing (NDT) and evaluation (NDE), for instance in the nuclear power
and aero-space industries. The most important and critical defect is a crack and a lot of
work has been done on the scattering by cracks. However, not so much effort has been put
into the modeling of the whole NDT situation, including also models of ultrasonic probes
in transmission and reception. The purpose of the present work is to model the whole NDT
situation in the cases when a crack in a thick-walled component is located close to a non-
planar back surface, i.e. the surface opposite to the scanning surface. This is a situation that
occurs in applications such as the testing of thick-walled pipes with a diameter change or
a connection, in the nuclear power industry. The combination of a crack and a non-planar
back surface complicates the ultrasonic testing because the signal from the crack may be
masked by the signal from the non-planar surface. The 2D in-plane case is considered in this
paper and this is an extension of the earlier work by Westlund [1], where the corresponding
antiplane case is studied. The employed solution method is based on a reformulation of the
wave scattering problem as a combination of a displacement boundary integral equation (BIE)
for the back surface displacement and a hypersingular traction BIE for the crack opening
displacement. This gives a very effective treatment of the crack while allowing a general
geometry of the back surface, and since the method is essentially exact the model provides
accurate results for both high and low frequencies.
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FIGURE 1. The geometry with an interior crack in a component with a non-planar back surface.

PROBLEM FORMULATION

Consider a 2D scattering geometry as depicted in Fig. 1, where an interior strip-like
crack of width 2a is located in a thick-walled component with a non-planar back surface. In
the exterior of the crack the component is isotropic and homogeneous with Lamé constants
A and p and density p. The inclination of the crack with respect to the horizontal is given by
the angle 3.

Figure 1 also introduces two coordinate systems: the crack coordinate system (1, x2)
and the back surface coordinate system (z?, z5). The superscript ‘b> on quantities indicate
that they are represented in the back surface coordinate system. The standard transformation
rules for the transformation between the two coordinate systems apply.

On the scanning surface of the component two ultrasonic contact probes are located:
a transmitting ultrasonic probe () and a receiving ultrasonic probe (r). The half-widths of
the probes are denoted w; and w,, respectively, and the positions of the probes in relation to
the crack center are given by (7, t5) and (¥, r}) in the coordinate system of the back surface.
As a special case one probe can act as both transmitter and receiver in a pulse-echo testing
situation.

The multiple scattering between the crack and the back surface is accounted for in
the model, so the distance between them may be arbitrary as long as the crack is interior and
not surface-breaking. However, the distance between the scanning surface of the component
and the crack and back surface is assumed to be large enough (i.e. at least a couple of
wavelengths) so that multiple scattering between these surfaces can be neglected.

To enable the subsequent boundary element discretization of the back surface, it is
truncated at the left and right truncation limits 7' and 7%. The actual shape of the non-planar
back surface g(x%) may be quite arbitrary as long as it has no cusps, as scattering by such
cusps is not accounted for. The back surface is assumed to be planar to the left of b and to
the right of ¢, and A is the vertical distance between the lower and upper parts of the back
surface.

In 2D elastodynamics the wave motion decouples into two types: in-plane P and SV
waves and antiplane SH waves. In this paper the coupled P-SV wave scattering problem is
treated. Time-harmonic conditions are considered, and the time-factor ¢=** is suppressed
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throughout (where w is the angular frequency and ¢ the time). Under these conditions, the
equations of motion are:

—2

kV(Vu) = kY x (VX u) +u =0, (1)

where k, = w/c, is the pressure wave number, ¢, = /(A + 2)/p the pressure wave speed,
ks = w/cs the shear wave number and ¢; = +//1/p the shear wave speed.

The crack is open and thus traction-free, and the back surface is also free of tractions.
In addition, the scanning surface of the component is free of tractions except for the action of
the ultrasonic probes which is discussed in a separate section. Letting C'gs denote the back
surface, ez the unit normal vector in the 2-direction of the coordinate system of the crack and
n the downward unit normal vector on Cgg, the boundary conditions on the crack and back
surface are thus:

Ta—0~ (2)

-linfl]-f o(xz)-ea= lim o(x)-e2=0, [z1]<a
o(x) n=0, (w1, 22) € Cps.

It should be noted that since u is discontinuous across the crack the boundary condition on
the crack must be taken as a limit as the point approaches the crack, from either side.

THE INTEGRAL EQUATIONS

The solution method employed in this paper reformulates the wave scattering prob-
lem as two coupled boundary integral equations, which are subsequently solved simultane-
ously. The reformulation is based on the use of the outward propagating Green’s displacement
tensor for the infinite plane, denoted U*(z, y; w) with corresponding Green’s stress tensor
Sz, y;w) = C : VU*(x, y; w), where C is the elastic stiffness tensor. Here and through-
out, the V-operator always acts on the x-coordinates unless otherwise specified. The Green’s
tensor, also called the Helmholtz fundamental solution in plane strain, is the outward propa-
gating solution to the equation of motion (1) with a Dirac delta source term in the ej.-direction
of the coordinate system of the crack on the right-hand side. This Green’s tensor can be given
both in closed form in terms of Hankel functions [2] and on Fourier integral representation
form by using Fourier integral representations of Hankel functions.

The regularization of the back surface integral equation makes use of the static
Green’s displacement tensor for the infinite plane, denoted U*(x,y) with corresponding
static Green’s stress tensor X*(xz,y) = C : VU"*(x,y). The static Green’s tensor, also
called the Kelvin fundamental solution in plane strain, is given explicitly by e.g. Bonnet [2].

The integral equation for the back surface is derived using the 2D divergence theorem,
and is regularized by subtracting and adding back appropriate terms. The derivation and
regularization are similar to the antiplane case [1], so the details are not given here. The
result is the following integral equation for the back surface:

- [ @ [ pi0) - e n@) ds,
- [ )~ )] S (o) ds - gualy) ®
+ [ duie) (o, 0,50) e+ ) =0

where y € Cpgand k = 1,2. Since the singular behavior of X*(x, y;w) and Z*(x, y) is
the same, the first integral over Cgs is regular. Granted that the displacement u satisfies the
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usual assumption of Holder continuity [2], i.e. w € C"* with 0 < « < 1, the second integral
over C. ,+ C. is weakly singular. Equation (3) is thus regularized so that it contains no worse
than weakly singular integrals.

The integral equation for the crack follows immediately from an integral representa-
tion of u by applying Hooke’s law and the traction-free boundary condition on the crack. The
result is the integral equation:

Wz

. 0
lim oiz(y1, y2) = —/ wj(x)Cioki 7 — o S (@, Y1, 0y w)ng, (@) ds,
S (-BH
+ hm/ Au(x1)C JO E 2(21,0, y1, y2; w) dxy 4

Yz —(]

+C el

,0) =0,
) e uil(y1.0) = 0,
where i = 1,2, |yi| < a and Cjji are the components of the elastic stiffness tensor C in the
coordinate system of the crack. It should be noted that the limit in front of the second integral
cannot be moved inside the integral since the integrand is hypersingular [2, 3]. This problem
is automatically resolved by the solution method, as clarified below.

PROBE MODELING

The action of the transmitting probe is modeled by prescribing the traction on the
scanning surface underneath it. For the transmitting probe (¢), the boundary condition on the
upper surface of the component is then taken as:

Apipky, [5 sin2ve,v + (%% — 2sin? 7) e_,:gz.] e‘ik.-.(.:-'-_'—r'-_'l“'“"?, P probe,
1 i
tl) — (5)
Agipiks [7(5 cos 2y e,b + sin 27y ew] o iks(z} .l_ll,]sin—,’ SV probe,

beneath the surface of the probe (i.e. |z} — 7| < wy and 25 = d +15), and t® = 0 elsewhere.
The two options are referred to as P probe and SV probe respectively, since for § = 1 the
traction corresponds exactly to the traction of a plane P or SV wave, respectively, restricted
to the surface of the probe. The parameter ¢ accounts for the effect of the couplant applied
between the wedge and the scanning surface: § = 0 represents fluid coupling and § = 1
a glued probe. Fluids of different viscosity can be modeled by setting an appropriate value
0 < 0 < 1. The constant Ay is the amplitude of the plane wave and + is the angle of the
probe, measured clockwise from the normal of the probe.

The multiple scattering between the scanning surface and the crack and back surface
is neglected, so the component can be regarded as half-infinite. To determine the incoming
field it can then be expanded in P and SV plane wave potentials:

w(at) = Vop(a®) + Vi < (wla)eyy) ©

where V), denotes the nabla operator in the coordinate system of the back surface and the
potentials () and (") are given by:

0 i
(p(wh) _ 2i/ A(q)ei{q(.:"]'—f’]".—.':,.{.r:!_,’—.f'_,’—rm dq,
T J—m0

1 [ a{zb—ib) b_b
w(wh) _ g/ B(q)e””“'l —t8)—hs(xh—t5—d)) dg.
—0a

0
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Here h; = h(q) = | /k'_'f — @2 for j = p,s and the branch of the complex square root is

chosen such that Im /= > 0Vz € C.

Identification of the Fourier transform of the traction from the incoming field given by
Eq. (6) with the Fourier transform of the traction vector given by Eq. (5) yields the functions
A(q) and B(q). This determines the incoming field from the transmitting probe.

The action of the receiving probe is modeled using the electromechanical reciprocity
relation by Auld [4], which gives the change in transmission coefficient (reflection coefficient
in pulse-echo testing) due to a defect. This quantity is directly proportional to the output
voltage of the receiving probe. An application of the reciprocity relation to the present case
gives the change in transmission coefficient due to the crack as:

—iw Au_?-(xl)o':';(xl, 0) dx, ®)

5F(j' - E .

and the change in transmission coefficient due to the back surface as:

- 1w . .
6Tgs = ﬁ - u(@)o ()0, (x) ds. )
In Eq. (8) and Eq. (9) the quantities u;* and oj; are the displacement and traction, respec-
tively, in the absence of the crack but in the presence of the back surface, when the receiving
probe is transmitting. The COD Auw; is due to an incoming field from the transmitting probe,
in the presence of both the crack and back surface. The stress 0:’; is the stress resulting from
an incoming field from the transmitting probe (¢), in the absence of both the crack and the
back surface. It is computed by applying Hooke’s law to the incoming field given by Eq. (6).
The action of the receiving probe acting as a transmitter is modeled in the same way as the
transmitting probe. The probes are assumed to be transmitting at the angular frequency w,
and the quantity P is essentially the power supplied to the probe in transmitting mode.
It should be noted that all the computed 61" are computed for a fixed angular fre-
quency, i.e. 6" = 6I'(w). In an experimental testing situation, the quantity of interest is the
signal response as measured in the time domain. To obtain the time traces, an inverse Fourier

transform of 01 (w) and 01 gs(w) is taken with the frequency spectrum:

47 .2 w—wy ) 1 5 f—r
wzimsm ngim —Afcos WZAf ,

where f; is the center frequency and A f the 6 dB bandwidth.

NUMERICAL SOLUTION AND EXAMPLES

To solve the coupled integral equations, three discretizations are introduced; (1): the
COD Au is expanded in a series of Chebyshev functions, (2): the back surface Cpg is par-
titioned into N, boundary elements with IV, geometrical nodes and approximated on each
element by shape functions, (3): N; interpolation nodes on the back surface are chosen and
the displacement Aw is approximated between the interpolation nodes on each element by
interpolation functions.

Starting with the discretization of the COD Aw, the following finite series expansion

is made: v

Au.,'(.’m) = Z (lhn’l//'nr(xl/a)v (10)

m=1
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where the truncation limit N is chosen large enough so the desired accuracy is achieved. In
Eq. (10), the Chebyshev functions ¢, are defined by:

i

) 1 cos(m arcsin v), m=13,...,
1{«'m(7«7) =9 . .
< sin(m arcsinv), m=2,4,....

These functions form a complete orthogonal set on [—1,1] with respect to the ordinary
weighted L2-norm, with the weight function (1 — v2)~*/%. They also incorporate the cor-
rect square-root behavior at the crack edges and satisfy a useful integral relation.

The boundary element discretization is done in the usual way, see e.g. Bonnet [2] and
Dominguez [5]. In this paper an isoparametric interpolation (i.e. the shape and interpola-
tion functions are the same and the geometrical nodes are used also as interpolation nodes)
with quadratic Lagrangian interpolation functions is used. For an isoparametric interpolation
N; = N,. Letting N,,,4. denote this common number, the use of quadratic interpolation func-
tions implies that N,,,4. = 2N, + 1. By collocating Eq. (3) at the 2/V; + 1 boundary node
points, 2(2N, + 1) linear equations are obtained. Projecting Eq. (4) on N expansion func-
tions yields 2V additional linear equations. Combined, a total of 2(2N, 4+ 1 4+ N) equations
in 2(2N, 4+ 1+ N) unknowns (the 2(2N, + 1) back surface displacements and the 2NV series
expansion coefficients a;p,) is obtained. It should be noted that the use of an isoparametrical
interpolation with quadratic Lagrangian interpolation functions enforces the Holder continu-
ity of w which was assumed in the derivation of Eq. (3). This is essential for the effectiveness
of the regularization, and leads to regular integrals which are accurately computed using or-
dinary Gauss-Legendre quadrature. It should also be noted that after discretizing the integral
equation for the crack using the Chebyshev functions the limit in front of the hypersingular
integral in Eq. (4) can be evaluated analytically, since the expansion and projection leads
to convergent integrals. The resulting integrals are also straightforward to compute numeri-
cally. The regularization of the back surface integral equation and the series expansion of the
COD thus results in a solution method with straightforward numerical computations and an
effective treatment of the hypersingularity.

To illustrate the influence of the back surface a few numerical results are given. In the
examples a pulse-echo testing situation (i.e. the same probe acting as both transmitter and
receiver) is simulated and the back surface g(x%) is chosen as:

0, b < b,
glzh) = j} [1+sin (Z5 (2} — (Tb))] , b<ab<e,
A, > ¢,

where A, b, and c are defined in Fig. 1. In the numerical examples given, the parameters
of the non-planar back surface are A = 8mm, b = 2mm and ¢ = 10mm. The Lamé
constants of the material are A = 113.2 GPa and ;» = 80.9 GPa, respectively, and the density
is p = 7900 kg/m*. A 4mm wide vertical crack (i.e. 3 = 90°) with its center located 4 mm
from the lower part of the back surface is considered. The probe is an 8 mm wide SV-probe
with angle v = —45° and fluid coupling so that § = 0. The probe is located at a vertical
distance of 15 mm from the center of the crack. Damping is incorporated in the model by
giving the Lamé constants imaginary parts of 1 % of the real parts.
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FIGURE 2. Echo amplitudes. Solid curves (—): crack present, dashed curves (- -): crack absent.

Figure 2 shows the pulse-echo signal response as a function of probe position, com-
puted for a single frequency of 2 MHz. The results are not calibrated, but the same normal-
ization is used so the results can be compared. The results in Fig. 2(a) are for the planar
back surface, those in Fig. 2(b) for the non-planar back surface. In both figures the dashed
curve shows the signal response from the back surface in the absence of the crack, and the
full-drawn curve shows the total signal response with the crack present. As seen in Fig. 2(a),
the planar back surface gives only a very weak signal response which is also independent
of probe position, as expected. Figure 2 also shows strong corner echoes from the crack, as
expected.
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FIGURE 3. Time traces for a probe located 17.4 mm to the left of the crack.
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Figure 3 shows the time traces for a probe positioned 17.4 mm to the left of the crack
center, computed for a center frequency f. = 2 MHz and 6 dB bandwidth A f = 1 MHz. The
normalization is the same in all time traces, but it should be noted that the scale is different
in the time traces without and with the crack present.

As can be seen both in Fig. 2(b) and by comparing Fig. 3(c) and 3(d), for a probe
positioned around 17 mm to the left of the crack center the signal amplitude is approximately
equal with and without the crack. In addition, the strong pure SV-wave pulse from the crack
arriving at ¢ ~ 16.1 us in the time traces in Fig. 3(d) is only just distinguishable from the
strong pure SV-wave pulse from the back surface arriving at ¢ ~ 17.4 pus. Even for this very
simple geometry and favorable testing situation there are thus probe positions for which a
crack may be quite difficult to detect, when the back surface is non-planar.

CONCLUSIONS

In this paper a 2D model of ultrasonic testing for interior strip-like cracks near a non-
planar back surface is developed. The incident field emitted from an ultrasonic contact probe
is modeled by prescribing the traction on the component beneath the probe. This enables the
derivation of an explicit expression for the incident field in terms of an inverse Fourier trans-
form. The wave scattering problem is solved by reformulating it as two coupled boundary
integral equations for the unknown crack opening and back surface displacements. By using
a combination of a series expansion of the COD and a boundary element discretization of the
back surface to solve the coupled integral equations, the hypersingularity in the BIE for the
crack can be treated analytically while the geometry of the back surface is allowed to be quite
general. The model is completed by employing an electromechanical reciprocity relation to
model the action of the receiving probe and applying an inverse temporal Fourier transform
to obtain the time traces.

Work on an extension of the present model to the 3D case with a rectangular crack is
in progress, and future work will treat also other defects.
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