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Abstract

The main objective of this thesis is to study gravitational radiation along with its associated
phenomena, specifically for binary black holes. The occurrence of such events in our universe
have profound implications when gravitational waves are radiated by accelerating massive
astrophysical bodies. The specific system under our consideration is a binary black hole. The
two essential phases of binary black hole, namely inspiral and merger have their characteristic
gravitational wave signature. Gravitational waves during these phases are obtained by taking
advantage  of  powerful  numerical  tools  available.  Two  popular  techniques  are  applied  to
determine  waveforms,  namely  post-Newtonian  approximation  for  the  inspiral  phase  and
numerical relativity techniques for the merger phase of binaries. 
  
The nature of gravitational wave is explained by considering the linearised theory of general
relativity  and  its  effect  on  free-falling  bodies.  A detailed  description  of  the  multipole
expansion is provided which also encompasses the famous Einstein quadrupole formula. For
the inspiral phase of binary black holes, the post-Newtonian formalism is discussed in detail.
Extraction  of  waveforms  by  the  post-Newtonian  method  is  implemented  by  MATLAB
routines to test the findings. Lastly, the foundation of numerical relativity is reviewed which
serves the purpose to carry out further discussions on gravitational waves in strong gravity
regime during merger phase of binaries. ADM and BSSN formalism is introduced along with
the Schwarzschild and Misner initial data. BSSN evolution of Misner initial data is carried out
by CCATIE code. The Weyl scalars are extracted to provide an invariant way of representing
outgoing gravity waves at various stages of evolution.  
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1   Introduction

General relativity was formulated by Einstein on the foundation of the equivalence principle.
Gravity waves travelling at speed of light is an inevitable consequence of such a principle. A
gravitational wave (GW) can be regarded as a fluctuation in space-time which travel outwards
carrying energy from source. Such ripples in space-time are the result of complex dynamics of
massive dense objects or due to the interaction of massive stars, black holes or neutron stars
binaries.  Once  produced,  they  can  travel  unhindered  straight  to  the  earth  without  much
interaction  with  the  matter.  Such  disturbance  appear  as  distorted  space-time  to  a  distant
observer. However our earth is minuscule compare to the wavelength of GW, as distances are
so tremendous that their detection is huge challenge posed by modern astronomy. 

After Einstein had formulated his theory of general relativity, within months he figured out
the  famous  quadrupole  formula  for  gravitational  waves,  which  is  valid  for  bodies  with
negligible  self-gravity.  Till  mid  1920s,  linearised  theory  was  understood  due  to  the
contributions  by  Weyl  (1922)  and  Eddington  (1924).  Landau  and  Lifshitz  gave  the  first
theoretical treatment of radiation emission by self-gravitating bodies [2]. However in 1940's
and 1950's, scientific community was not considering GW as a physical possibility to carry
energy from the system. Feynman proposed “Sticky Bead” thought experiment to prove the
existence of such waves carries energy. The thought experiment states that any passing wave
should move any bead on stick back and froth, hence producing friction and thus concluding
that wave carries energy. Later on Bondi, Weber and Wheeler developed the formalism based
on Feynman argument.  Bar  detectors  were  build  around the  world  to  detect waves from
various astrophysical sources. The effort was initiated by Weber which eventually detected
electrical  signals  at  two  bar  detectors  (  one  at  chicago  and  other  near  Washington  DC)
simultaneously.  In  1970s,  soviet  scientist  suggested  to  develop  Michelson-Morley
interferometers for detection of gravitational waves. In 1973, a major breakthrough happened,
when Taylor and Russell Hulse detected pulsar 1913+16 which was in a binary. The orbital
decay (76.5 ms per year) was precisely consistent with the energy carried away by the waves
as  predicted  by  general  relativity.  In  2003,  another  major  binary  pulsar  J0737-3039  was
discovered, which also agrees well with predictions of general relativity. The technological
efforts made in 70's contributed to the second generation of detectors with advanced cooling
techniques. Several interferometers are now operating around the world like LIGO, GEO,
VIRGO and TAMA. The bursts sensitivity now has reached Khz ( h~10−17 ) increasing the
possibility of detecting such an event to about 3/yr. The sensitivity of detectors can be divided
into high ( f ≥10 Hz ), low (10−5 Hz≤ f ≤10 Hz) and extremely low ( f ≤10−5 Hz ) frequency
bands. For detailed discussion on history of gravitational wave research, see [2,22,25].

Gravitational  waves provide  a  possible  way to  probe  the  distant  universe  and test  exotic
theories  related  to  cosmology,  the  early  universe  and  extreme gravitational  regimes.  The
differences mentioned in table 1.1. mark gravitational waves astronomy as revolutionary and
will potentially have much more profound impact as compared to radio waves astronomy.
However we know that the electromagnetic astronomy is mature and well established field so
the  promises  seem blown  out  of  proportion.  The  possible  reason  for  this  is  that  source
distances or strengths are uncertain with several orders of magnitude, with the exception of
binaries. 
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In the future, possible detection of GW may give us extensive information about the universe
and make it possible to test physical laws which can never be tested by any other method
known to date. When gravitational waves and light arrive to earth from a astrophysical source
it should confirm the prediction of general relativity that the light and gravity waves both
travels  with  same  speed.  The  polarisation  of  gravitational  waves  may  confirm  that  the
gravitons are transverse traceless and gravitons have spin 2.

The primary purpose of simulating the binaries and supernovae bursts is to extract waveforms
and compare  them with  the  ones  obtained  from the  actual  sources  which  can  eventually
confirm the dynamics of the system predicted by general relativity. This will not only prove
the existence of black holes but provide ample clue for determining various physical features
of the system. Moreover, GW astronomy can offer a very strict test to general relativity in
strong gravitational field.  

The greatest challenge with such simulations is to extract waveforms to an accuracy which
can be matched filtered with the noisy waveform received. Matched filtering with a bank of
waveforms results in identifying and estimating the various parameters in the dynamics of the
source. Post-Newtonian approximations are popular to produce waveform banks when proper
numerical tools are incorporated [24].  

An even great challenge is to simulate the extreme space-time around binaries when post-
Newtonian approximations are not anymore accurate. In such situations Baumgarte-Shapiro-
Shibata-Nakamura  (BSSN)  formalism  of  Einstein's  equations  proved  to  provide  stable
simulations with constrained evolutions [1,15,16,17]. 

Table 1.1.   The comparison between for electromagnetic and gravitational waves
Electromagnetic Waves Gravitational Waves
Accelerating charges produce time changing
dipole moments

Incoherent  superposition  of  radiation  from
electrons, atoms, and molecules

Information about the thermodynamics of the
system

Wavelength small compared to the source

Scattered, absorbed by the matter

Very  high  frequency  ranges  (observation
frequencies at KHz and MHz)

Accelerating masses  produce time changing
quadrupole moments

Coherent superposition of radiation from the
huge dense mass source like black hole and
massive stars

Direct information about the dynamics of the
system

Wavelength are large compared to the source

Negligible interaction with the matter

Very low frequency range  (frequencies range
is several orders less then 10Hz)
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Outline

In chapter 2, a very quick review of gravitational wave sources is given. We have tried to
possibly list all the primary GW sources with their brief description. Description of how GW
are studied in various bandwidth, provide profound information about universe.  

Chapter 3 is the very foundation of gravitational radiation. Basic concepts are discussed and
formalism is introduced. The very nature of GW is explored by linearised general relativity.
The multipole decomposition of field is the key concept developed in this chapter.    

In  chapter  4,  we  starts  with  a  description  of  post-Newtonian  approximation  with  all  its
limitations  and  applications.  The  post-Newtonian  expressions  are  being  implemented  by
MATLAB routines and results are discussed. 

The  last  chapter  is  a  precise  description  of  topics  concerning  numerical  relativity.  The
essential  formulations  are  introduced  which  are  crucial  for  binary  evolution  problem.
Schwarzschild and Misner initial data are discussed and the results for their evolution are
presented.
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2   Gravitational Wave Sources

Theoretically,  any  mass  that  accelerates  is  a  source  of  gravitational  waves.  From  an
accelerating meteoroid in an orbit around sun to inspiralling black holes or even exploding
supernovae, all are sources of radiation. Unfortunately the strengths of such sources are much
weaker,  or  when  the  wave  reaches  earth  its  become  painfully  feeble,  making  extremely
challenging to detect. The sources vary from binaries to the supernovae bursts where each
phenomenon has its own characteristic GW, giving clues about the dynamics of the system.
The most common type of dynamics we deal with is of binaries. To describe a simple binary
system, one assumes two huge astrophysical objects which orbit around some centre of mass
which depends on magnitude of two masses (in the centre, for equal size binary). Such masses
can be neutron stars or even black holes. However, stars like our sun generate radiation at
such a small scale that its detectability is impossible with our present technology or even in
near future. When binaries inspiral they move deep into a potential well giving its excess
energy in form of radiation. The orbit become smaller and smaller, eventually this downward
inspiral results in coalescence of the two bodies. When the binary become effectively one
body its rotation of non-spherical shape also results in GW. Now, we will briefly discuss some
of the wave sources with all their associated phenomena. 

Figure 2.1.  Various frequency bands in GW astronomy are shown along with the mechanism
causing the radiation. Universe phase transitions, cosmic strings and domain walls are some
of the exciting futuristic subjects which can be studied by radiation. GW emission from binary
black holes and neutron stars are studied at low frequencies and high frequencies bands which
is of principle interest in our work.
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2.1   Binary Black Hole Mergers

Stellar  mass  black holes  exist  in  galaxies  and globular  clusters  (stars  clusters  orbiting in
galactic core). Supermassive black holes can form at galactic nuclei due to the merger of
galaxies.  The  inspiral  and  merger  of  black  hole  is  strange  and  extremely  interesting  to
observe. Such mergers are one of the spectacular sources of radiation. The black holes are
extremely dense objects, thus results in much less coalescence time and a lot of fascinating
radiation. Stellar mass black holes emit GW in the high frequency band and have been probed
by Laser Interferometer Gravitational Observatory (LIGO), while waves in the low frequency
band will be studied by Laser Interferometer Space Antenna (LISA) [27]. The information
provided by binary black hole waveforms is profound. The surface areas, masses, spins, orbits
in  curved space-time and nonlinear  dynamics,  can  all  be  established  from the  waveform
signature. Moreover, we can test the Penrose cosmic censorship conjecture, the second law of
black  hole  mechanics  and  how  they  pulsate  and  lose  their  excess  hair  by  radiation.
Gravitational  waveforms  can  be  extracted  by  various  methods  in  different  phases  of  the
binaries.  Inspiral  phase  waveforms  can  be  extracted  by  post-Newtonian  approximation,
merger by numerical relativity and finally ring-down by perturbation theory. 

Table 2.1.  Showing the equipment designed for GW observation, the distance they are able to
probed along with their respective signal to noise ratios (SNR) for binaries [27].
Equipment Distance Event Rate SNR
LIGO and Initial
Interferometers

100 Mpc 1/200 yr to 1/yr 10 or less

LIGO and Advanced
Interferometers

z~0.4 2/month to 15/day 10 to 100

LISA z~10 few/yr 100 to 100,000

2.2   Neutron Star or Small Black Hole Inspiral into Supermassive Black Hole

Supermassive black holes are mostly located at the galactic nuclei. Occasionally small black
holes  and  neutron  stars  inspiral  and  finally  plunge  into  such  supermassive  black  holes
resulting in a myriad of radiation.  The rate of such events are about few per year to the
distances probe by LISA. Such GW waveform probe into galactic nuclei and supermassive
black hole space-time. Waves are emitted in the low frequency spectrum. Mapping black hole,
evolution of horizons and test of no hair theorem are one of the exotic conjectures which can
be tested with such data. Black hole perturbation theory is the key framework for obtaining
such waveforms. 

2.3   Neutron Star and Black Hole Mergers

The existence of such events can be found in globular clusters. Initially the neutron star and
the black hole go into a downward inspiral, and eventually the neutron star forms lobes which
are sucked into black hole.  GW emitted usually  lies  in  the  high frequency band.   Initial
interferometers  have  probed  to  43  Mpc  with  event  rate  1 /2500 yr−1/ 2 yr.  Advanced
interferometers rates can quest up to at 650 Mpc with occurrence rate 1 / yr−4 /day. 
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Waves convey information about the spin, orbit, masses, tidal disruption of neutron star and
its structure. Theories about neutron star evolution and its equation of state for matter can be
tested and verified. Both post-Newtonian and numerical relativity techniques are employed to
obtain waveforms depending on the phase of binaries.

2.4   Neutron Star and Neutron Star Inspiral

Such events can happen when main sequence progenitors in the galaxy capture binaries in
globular clusters. Waves are emanated in the high frequency band. Initial interferometers have
studied distances up to 200 Mpc with rates 1/3 yr-1 - 1/300 yr-1  while advanced interferometers
up to 300Mpc with rates 1/yr - 3/day.  Information carried by waveform is about masses,
spins, and orbit during inspiral phase. But during merger phase information is lost due to high
noise of equipment. Relativistic effects can be studied during inspiral phase. The method for
extraction of waveforms is post-Newtonian approximation.

2.5   Spinning Neutron Stars or Pulsars

Spinning  neutron  stars  are  known  as  pulsars  and  lie  the  in  high  frequency  band  of  the
spectrum. Pulsar rotation rates are found to be ~ 250-700 rev/s. The mountains on the surface
of neutron stars cause emission of radiation, which tries to reduce the spin of star. However,
spin rates are kept in this limit when radiation torque is in balance with the accretion disc
torque around neutron star. In such steady state, X-ray luminosity (due to rate of accretion of
mass around neutron star) is proportional to wave strength. Detectability of the star depends
on the spin and ellipticity of the pulsating neutron star. Pulsar ellipticity is generally of order
≤10−6.  Ellipticity also decides the frequency of  pulsars.  GW helps probing neutron star
structure and its behaviour during birth. Slow motion and strong gravity techniques are used
for  analysis  of  the  problem.  Both X-ray luminosity  and GW yield  information about  the
temperature, crust and viscosity of the neutron star.

2.6   Neutron Star Birth

Neutron stars can be formed due to supernovae explosions or due to the collapse of accretion
induce white dwarf. R-mode (radial modes of vibration) instability depends on the spin of the
neutron  star.  If  period  of  spin  is  less  then  10-3  s,  then  neutron  star  is  R-mode  unstable.
Moreover the GW emission drives the R-mode sloshing. We still don't have evidence what
stops  the  growth  of  sloshing  at  later  stages.  GW give  us  insight  about  crust  formation,
coupling of R-modes, wave breaking, shock formation and magnetic field torques. Any of
these can be the reason of stopping sloshing growth. 

Figure 2.2.    R sloshing of spinning neutron star causes emission of GW
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2.7   Gravitational Waves from Early Universe

Gravitational waves were originated even during the big bang, but the expansion of universe
red-shifted the waves. Inflation results in amplification of quantum fluctuations which leads
to primordial GW. As time progresses the fundamental forces of universe decoupled, causing
phase  transitions,  which  again  produce  GW.  Electroweak  phase  transition  (  ~100  GeV)
occurred when universe was about 10-11 s old. LISA can probe to electroweak phase transition,
while LIGO can probe to phase transition which has occurred at  ~109  GeV or when age of
universe was ~10-25 s old. Waves in all bands provide information about early universe phases.
Inflation  can  be  studied  by  cosmic  microwave  background  anisotropy  at  extremely  low
frequencies. GW can inquest into physics of big bang, inflation and equation of state of very
the primitive universe.  Quantum gravity and cosmological perturbation theory can assist the
study and analysis of waveforms. Such studies can help to determine strength of electroweak
phase transition, and to probe evolution of inhomogeneities produced by phase transition.

Figure 2.3.   Three phases of  gravitational  radiation from binary black hole source.  The
inspiral phase involves the post-Newtonian expansion while the merger requires numerical
relativity techniques to extract the waves. The ring-down phase can essentially be treated as
effective single body with small perturbations. 
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3   Gravitational Radiation

Gravitational radiation is fundamentally ripples in space-time, which travels with speed of
light and  cause distance between free falling objects to vary. The distance between floating
objects  is  stretched  and  squeezed  by  a  passing  wave.  It  can  be  lensed,  red-shifted  and
scattered (significantly by massive dense objects like black holes) like the electromagnetic
waves. However absorption and dispersion of GW by matter is negligible which is the reason
wave can travel without hindrance through galactic nuclei and massive stars. The essential
non-linearity adds complexity to the problem. 

The basic assumption before treating any cosmological problem, that universe is isotropic and
homogenous on large scale is our guiding principle. This endorses that the average curvature
of universe is intrinsically the same. We have clues about curvature of universe globally. We
may reason that the universe may have zero (flat), positive or negative curvature. However
the problem of determining the curvature locally is extremely difficult due to non-linearity of
gravity. The information provided by the Riemann curvature tensor in this regard is extensive
as suggested by general relativity. We can define such a tensor conveying information about
curvature of universe globally. A gravitational wave also contributes to the curvature of the
universe.  However,  scales  of  contribution  for  both  curvatures  may  vary  largely.  To
mathematically elaborate the concept of gravitational waves we need to consider how the
curvature of the universe can be conceived and how it adds to the Riemann tensor which is
treated by short wave approximation [2,7].   
 
3.1   Short Wave Approximation

A major problem concerning gravity is its non-linearity. It is not possible to precisely separate
the contribution of GW from the curvature of space-time. The length scales on which it varies
(GW) is much shorter compare to all other important curvatures in astrophysical situations.
This  significant  difference  make  possible  to  split  the  Riemann  tensor  into  two,  one  is
background (R 

B ) part and other is GW part (R 
GW ). The split is not analytically accurate

but it's a very worthy approximation. The R 
B can be regarded as the global large scale

average curvature of universe over several wavelengths. R 
GW is the rapidly changing part

of the Riemann tensor describing small scale curvature locally.  The following expressions
estimate their respective scales

R
B ~ 1

R2
(3.1.1)

R
GW ≡R−R

B ~ h
ƛGW

2
(3.1.2)

where  R is  the Ricci scalar and ƛGW is the wavelength of GW divided by 2.  We have
considered R 

B inversely proportional to R2  assuming a closed universe, like the curvature
of closed sphere is defined as inverse square of its radius. We can have an approximation of
how the magnitude of two parts of Riemann tensor differ, following calculation for the GW
wavelength  probed by LIGO (h~10−22) can be done.
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1
R2~

1
1056 cm2

 (3.1.3)

R 
GW ~ h

ƛGW
2 ~ 10−22

108 cm2~
1

10−38 cm2 ≫
1

1056 cm2

 (3.1.4)

where  R is approximated by Hubble radius of universe.  This powerful method of defining
GW part of Riemann tensor was introduced by Wheeler and Power (1957) and is known as
two length expansion or short  wave approximation.  The pertinent result  is  that  GW truly
behaves in the same way as electromagnetic waves in vacuum. 

Figure 3.1.   Shows a closed universe scenario where metaphorically the closed world is like
an orange and its surface ripples are like scale of GW wavelength. 

3.2   Equation of Geodesic Deviation

To illustrate how the incoming wave influences the free-falling particles we need to consider
how the geodesics  of  two particles  deviate.  We will  derive  the  fundamental  equation for
geodesic deviation in terms of the Riemann tensor.  We can assume two free-falling point
particles A and B as shown in the Figure 3.2.  with their  respective trajectories  xand
x. By geodesic equation for a particle we have their corresponding equations.

Figure 3.2.    Two particles A and B moving through space-time 

d2 x

d2 
 d x

d
d x

d
(3.2.1)
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d2x
d 2 

 x
d x

d
d x

d
(3.2.2)

Taking the difference of these two equations mentioned above and ignoring second and higher
order terms in  we can simply derived the equation for geodesic deviation.

Du Du
=R

  UU (3.2.3)

where U=d /d is the velocity of particle and Du is the associated covariant derivative. 

3.3   Mathematical Description of Gravitational Wave

Lets consider two test particles A and B in nearly flat Minkowski space-time. Particle A is in
rest in the local Lorentz frame of our observer. As the gravitational waves passes, the particle
B appears to be moving as seen by observer shown in the Figure 3.3.

Figure 3.3.    In local Lorentz frame of A, particle B seems to moving when GW is passing
where  metric  tensor  g is approximated  by  the  considering  closed  Friedmann  Walker
universe scenario and assuming ∣R∣~1 /R2.

Let i be the general coordinate distance, then the variation in distance when GW are passing
by is

i=0
i  i   (3.3.1)

where 0
i is  the initial  distance before the wave.  By the condition of geodesic deviation

(3.2.3) we have 

∂2

∂ t 2 
i=−R 0j0

i  j 
(3.3.2)

As there was no relative motion between particles A and B before, (3.3.2) by aid of (3.3.1)
reduces to
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∂2

∂ t 2 
i=−R 0j0

i  j 
(3.3.3)

Remember  that  in  local  Lorentz  frame  all  the  components  of  the  Riemann  tensor  are
determined by Ri0j0. By defining the field metric

−R 0j0
i =1

2
¨hij
TT (3.3.4)

we can simplify the expression 

∂2

∂ t 2 
i=1

2
 ¨hij

TT j 0 
(3.3.5)

or

i=1
2
hij

TT j 0 (3.3.6)

Now to visualize how the passing GW effect free floating particles,  we will  consider the
following scenario. When the wave is propagating only in the z-direction, the effect on x-y
plane circle can be explained by (3.3.6). We have a set of four equations for our current circle.
The  expressions  can  be  categorized  as  two  modes  of  vibration  (plus  and  cross  modes)
depending on the value of field. Figure 3.4 illustrates the effect of this passing wave.  For the
plus mode of vibration the equations are

 x= 1
2
hplus

TT x 0  (3.3.7)

 y=−1
2
hplus

TT y 0  (3.3.8)

Similarly, for the cross mode we have

 x=1
2
hcross

TT y 0  (3.3.9)

 y=1
2
hcross

TT x 0  (3.3.10)
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Figure 3.4.    Considering points on a circle in x-y plane. As GW passes in z-direction how
distance between points varies is shown for the both modes of vibration. It is apparent that
field  reinstate its initial configuration  after cycle of wave. 

3.4   Linearised Einstein's Equations

Einstein's equations by equivalence principle are given by

G≡R−
1
2

R=8T  (3.4.1)

where T is the energy momentum tensor, R the Ricci scalar and R the Ricci tensor. The
Einstein's equations can be thought as 10 coupled second order partial differential equations
for ten metric tensor components.  Again the non-linearity makes it  demanding to find an
exact solution of Einstein's equations.  The best way to understand wave nature of GW is by
finding a solution of Einstein's equations (3.4.1) in a linearised regime [28]. We will assume a
region  far  away  from  any  source  which  is  nearly  flat  regime.  The  metric  can  then  be
expressed as sum of Minkowski flat metric plus small perturbations.

g=h  (3.4.2)

where  is Minkowski space-time with metric signature =−1,1,1,1 and perturbations
are small ∣h∣≪1 . Partial derivatives of the metric can readily calculated as

g ,=,h ,=h ,  (3.4.3)

We know the general expression of Christoffel symbols in terms of metric tensor 


 =1

2
gg , g,−g ,  (3.4.4)

We can linearised expression this expression with the aid of equations  (3.4.3) and (3.4.2)


 =1

2
h ,h ,−h ,  

= 1
2
h ,

 h ,
 −h  ,

  (3.4.5)

Another  expression  we  need  is  of  the  Riemann  curvature  tensor  in  terms  of  Christoffel
symbols

R= ,
 − ,

 
 

 −
 

  (3.4.6)

by use of the (3.4.5) and by neglecting the second and higher order term which is valid for the
linearised regime, (3.4.6)  reduces to
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R= ,
 − ,

  

= 1
2
h ,

 h ,
 −h,

h,  (3.4.7)

Moreover, the Ricci scalar can be approximated as

R≡gR≈R  (3.4.8)

By use of (3.4.8), (3.4.7) and substituting it in (3.4.1) we have 

h ,
 h ,

 −h ,
h,−h

−h,
=16T  (3.4.9)

For the purpose of simplification, we will define new trace inverse metric tensor 

h≡h−
1
2
h  (3.4.10)

solving again (3.4.9) for this new metric, we acquire our equation

h
 

h
− h,

− h,
=16T  (3.4.11)

Now using the Lorenz gauge condition h,
=0  we have finally our desired result.

h
=−16T  (3.4.12)

which has the familiar Green's function as a solution 

h=−4∫Tx ', t−∣x−x '∣
∣x−x '∣

dV '  
(3.4.13)

The simplest solution one can have for (3.4.13) is plane wave solution of the form 

h=ℜAeika xa

  (3.4.14)

where A is the polarization tensor and k= ,k, with the gauge conditions

kk=0  (3.4.15)
 

kA=0  (3.4.16)

Using the Lorenz gauge condition we can determine the only radiative components of the
field metric ( h

TT ), so we reduce to transverse traceless gauge. If we assume the wave travels
in the z -direction and by imposing the gauge conditions (3.4.15) and (3.4.16) we have 

19



A0 z=Ax z=Ay z=Az z=0  (3.4.17)

for the linear regime equation (3.4.16) can be rewritten as

A
=0  (3.4.18)

which implies the condition 

Axx=−Ayy  (3.4.19)

By conditions (3.4.17) and (3.4.19) we finally have our polarization tensor.

A=0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0

  (3.4.20)

The polarization tensor (3.4.20) indicates that we reduce to just two degrees of freedom in
transverse traceless gauge which are intrinsically two (plus and cross) modes of GW.

 Aplus=0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 (3.4.21)

Across=0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

  (3.4.22)

 

Figure 3.5.  Fields lines for the plus and cross modes of GW can be represented like the
electromagnetic field lines.

Table 3.1.     Comparison of  transformation of  electromagnetic  and gravitational  field  by
rotation of angle θ as shown in Figure 3.5. The helicity for  electromagnetic waves is 1 and for
GW is 2.   Transformation of a field by a rotation of angle  θ is   '=ei h where  h is the
helicity of the field  . 

Electromagnetic waves Gravitational waves

Ex
new=Ex cosEy sin 

Ey
new=Ey cos−Ex sin 

hplus
new=hplus cos 2−hcross sin 2

hcross
new =hcross cos2hplus sin 2
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Figure 3.6.    Rotation of an electric field by an angle θ

3.5   Multipole Moments Decomposition

Multipole expansions are useful express to any field potential around any source in series
expansion which often can be truncated to some term. The same is true for the gravitational
field of mass source as well as for electromagnetic field around a point charge. For detailed
discussion on this topic, see [5,12]. First we will describe how the multipole expansion of
Maxwell's  equations  can  be  done  which  eventually  guides  us  how to  expand  a  classical
gravitational field. Maxwell's equations can be written in covariant form as

 ∂F=J (3.5.1)

F=∂A−∂A  (3.5.2)

where A=/c2,−A and J= ,J , by substituting (3.5.2) in (3.5.1) 

∂∂
A−∂∂

A=J  (3.5.3)

Again exploiting the gauge freedom we have, Lorenz gauge simplifies the expression (3.5.3) 

∂∂
A=−J  (3.5.4)

 (3.5.4) has the famous Green's function as a general solution

Ax , t =
−∫ Jx ' , t−∣x−x '∣/c 

∣x−x '∣
dV '  

(3.5.5)

Now considering a region far away from the source such that ∣x∣≫R, where R is the size of
the source. The power series expansion of factor ∣x−x '∣−1

1
∣x−x '∣

= 1
x−x '2

= 1

 x2−2xx ' x '2
= 1
∣x∣

2 x '.n 1
∣x∣2...   

(3.5.6)
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where n=x /∣x∣. Now consider the retarded time factor  as nearly constant we can expand the
difference as

t−t0=∣x∣−∣x−x '∣/c=−n .x ' /cO∣x∣−1  (3.5.7)

hence by (3.5.7) the J term in (3.5.5) can be Taylor expanded in terms of time derivatives as

J t0−∂ t J
  t0n⋅x ' /c∂tt J

 t0n⋅x '2/2c2...  (3.5.8)

only considering the dominant mode ∣x∣−1 term in (3.5.6), (3.5.5) can be written in terms of
time derivative of current source 

A=−∣x∣−1

4 ∫J t 0−∂t J
 t0n⋅x ' /c∂tt J t0n⋅x '2/2c2...dV '  

(3.5.9)

Now  in  (3.5.9) ∫ J t0dV the  first  term  is  the  total  charge  which  is  constant.

∫∂ t J
 t0 n.x ' /c dV=n.∂ t∫ Jx ' dV ' second term is derivative of dipole moment which is

dominant  in  electromagnetic  radiation.  Now we  will  discuss  how this  procedure  can  be
extended to gravitational field.  Gravitational forces in Newtonian regime satisfies Poisson
equation

∇ 2=4G  (3.5.10)

Now, a 4D variant of above equation has Green's function as general solution 

x , t =−G∫x ', t−∣x−x '∣/c
∣x−x '∣

dV '  
(3.5.11)

Similar  to  (3.5.9)  power  series  expansion,  (3.5.11)  can  be  written  in  form  of  series.
M=∫dV ' first term in the series is total mass of the system. P=∫∂ tx 'i dV ' second

term is just the total momentum of the system which is also conserved. ̈Iij=∫∂ tx 'i dV '
third term is the quadrupole moment which is the first term appears in radiation field. Hence
the field potential can be approximated by

≈−GM
∣x∣

G n⋅P
c∣x∣

−
G ̈Iij n i n j

2 c2∣x∣
 

(3.5.12)

We can only have the only radiative component of (3.5.12) as dimensionless gravitational
field

h≈
−G ̈Iij ni n j

2 c4∣x∣
 

(3.5.13)
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But  to  characterize  the  component  of  gravitational  field  which  propagates,  it  has  to  be
transverse and traceless

h ij≈
−G Ïij n i n j

2 c4∣x∣
 

(3.5.14)

where Iij=Iij−1 /3ij Ikk trace removed.  To estimate how much energy is  carried away by
these waves we associate the flux ( F ) with them

F= −1
4G

n⋅grad  ̇  
(3.5.15)

In local wave zone, where the  n⋅grad ≈−̇, the expressions for flux of waves and its
respective luminosity are

F= 1
4G

̇2= c3

4G
ḣ2  

(3.5.16)

 L=4 ∣x∣2 F ~  G
4 c2 

I2 (3.5.17)

The expression (3.5.17) for luminosity is a good approximate for the full general relativity
result. The rate of energy carried by the waves can be given by expression

dE
dt

=−∫TGW
0r dA  (3.5.18)

where TGW
0r is the energy momentum tensor for GW at radial distance r.  So in the local wave

zone this expression takes form of this famous result

 dE
dt

=− 1
32∫〈 hij

TT hij
TT 〉dA (3.5.19)

or 

dE
dt

=− G
5 c2∫ 〈 Iij Iij 〉dA  

(3.5.20)

3.6   Expansion in Source Region for Slow Motion Sources

The  method  of  multipole  expansion  can  be  expanded  to  the  slow  motion  sources  and
considering field points far away from the source. By slow motion sources we mean when
velocities are negligibly small compared to the speed of light. Such conditions are met by
pulsars, where speeds are non-relativistic. Instead of multipole expansion of factor ∣x−x '∣−1

we will approximate this as r. Thus, (3.5.11) can now be Taylor expanded in terms of r. The
expansion series for the gravitational potential can be given in terms of time derivatives of
source mass density
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=−G∫ 1
r ∑n=0

n=∞

− r
c 

n 1
n!

dn

dtn x ', t dV'  
(3.6.1)

 
We will expand the series and look for the possible dynamical terms in the expansion. The
first term is just the Newtonian potential term.

N=−G∫ 1
r
dV '  (3.6.2)

The second term does not contribute either.

G
c ∫̇dV '=G

c
d
dt∫dV'=0  (3.6.3)

The third term is the first post-Newtonian term. 

PN1
=−G

2 c2∫ r ̈dV '  
(3.6.4)

The fourth is a term with a factor of r2 which suggests it is independent of x so it does not
contribute either.

 G
3c3∫ r 2 dV '= G

3 c3∫∣x∣2−2x⋅y∣y∣2 dV ' (3.6.5)

                        Figure 3.7.    A far away field point from slow moving source

The fifth term is the second post-Newtonian term.

PN2
=−G

c4 4!
d4

dt4∫ r3dV '  
(3.6.6)

At  sixth  term of  the  series  radiation  reaction  is  seen.  This  term is  referred  as  2.5  post-
Newtonian term. However, gravitational field h has to be decomposed in terms of both source
mass and mass current distributions which is being valid through weak field near zone and
local  wave  zone  (see  figure  3.8  for  description  various  wave  zones).  Let

M0, M1, M3. .. S0,S1,S3. .. are  the  mass  and  current  moments  of  source  respectively  then
schematically in local wave zone, h can be decomposed as

h~
M0

r


Ṁ1

r


M̈2

r
...

Ṡ1

r


S̈2

r
...  

(3.6.7)

where h falls as 1/r
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           M0 mass cannot oscillate
           Ṁ1 momentum cannot oscillate
           M̈2 first term is mass quadrupole moment 
           Ṡ1   angular momentum cannot oscillate
           S̈2   current quadrupole term is dominant for neutrons stars

Similarly, for the weak field near zone decomposition can given by

h~
M0

r


M1

r2 
M2

r3 ...
S1

r


S2

r2 ...  
(3.6.8)

Table 3.2.    Comparison of various post-Newtonian terms mentioned with their effects.
Term Effects
Newtonian Kepler
PN

 v
c


2 Perihelion shift

P1.5N
 v

c

3 Spin-Orbit coupling (Frame drag)

P2N
 v

c


4 Spin-Spin coupling

P2.5N
 v

c

5 Radiation reaction

Any gravitational field around a mass source can be categorized into wave generation and
wave propagation zones. Thus, dividing the region into zones so that we can be safely apply
different  set  of  mathematical  tools  for  both.  An  inner  radius  rI encompassing  the  wave
generation zone (weak field near zone and strong field region) and on the other hand outer
radius ro defining the inner boundary of wave propagation zone (distant wave zone). However,
these two zones overlap in local wave zone defined by radius rI≤r≤r0. The inner radius rI is
far away from the source (rI≫ƛ) such that gravity of the source is weak. The outer radius ro

is far away from inner one (ro−r I≫ƛ), but not that far away that gravitational redshift and
background curvature significantly affect the propagation. Weak field near zone is defined by
radius (2M≪r≪ƛ) and strong field zone by  r≤M. The expansion we have dealt with is
valid in the local wave zone and weak field near zone of radiation. The gravity field in strong
field zone is so strong in magnitude and non-linear in character that such expansions are not
anymore accurate. Numerical treatment of Einstein's equations is the only method which can
safely be exploited in strong wave zone. The treatment of numerical relativity for strong zone
will be dealt in Chapter 5. The various wave zones around source mass are depicted in figure
3.8.
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Figure 3.8.    Depicting various wave zones around mass source and techniques applied for
analysis, see [28,2]. 

4   Post-Newtonian Approximation 

4.1   Post-Newtonian Approximation

The main objective of this section to explore how we can manipulate the post-Newtonian
technique to determine the various observables associated with a gravitational wave. The two-
body problem we are considering here is black hole binaries, which are inspiralling around
the  centre  of  mass.  The  energy  of  the  system  is  lost  by  the  outgoing  radiation.  The
gravitational reaction forces the two black holes to come closer and closer into a downward
inspiral and eventually merge to form a single black hole resulting in a burst of radiation. In
Figure 2.3 various stages of binary black hole coalescence are shown. The purpose of the
whole effort is extract waves and compare them with the signals received by the ground base
observatories which will assist in accurate understanding the binary black hole problem. This
chapter is an adaptation of [4].

The most successful theory of gravitation, general relativity has failed to provide an exact
solution to two body problem. Numerical techniques are the only hope for an approximate
understanding of binary dynamics. One outstanding technique is the post-Newtonian (PN)
approximation in which flux (F) of the gravitational waves is obtained by a series expansion
in parameter v /c=GM / r c2 where  v is the source velocity and  r(t) Schwarzschild radial
distance between black holes. The PN approximations are highly successful in obtaining the
decay of binary pulsars with the emission of GW [4,6,24]. However binary pulsars don't test
the PN theory to highest order as the relativistic velocities of pulsars are small (v /c~3×10−3

). The approximation is valid for the inspiral regime where the parameter is small. Currently
these expressions are known up to 3.5 PN order (where vn corresponds to term of n/2 PN
order). The expressions of  wave flux F and non-relativistic energy E can be given in terms of
series in v
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E=−1
2
v2∑

k=0

∞

Ek v2k  
(4.1.1)

F= 32
5
2 v10∑

k=0

∞

Fk vk  
(4.1.2)

where =m1 m2/m1m2
2 symmetric mass ratio for binary with masses m1  and m2.  Ek and

Fk (expansion  coefficients)  are  only  functions  of  η.  The  method  assumes  adiabatic
approximation which insures  that  the fractional  change of  orbital  velocity over an orbital
period is negligibly small ( /≪1 ) and luminosity of radiation is proportional to rate of
change of orbital  frequency.  For the circular orbits the energy balance equation is 

F=−M dE
dt  (4.1.3)

One would use the following coupled differential equations for the evolution of the orbital
phase

d
dt

− v3

M
=0  

(4.1.4)

dv
dt

 Fv
M E 'v

=0  (4.1.5)

where we have used the fact that  (orbital phase) which is the half the gravitational wave
phase  in restricted waveform at dominant order and  v3=M f where f is frequency of
GW. Solutions to these ordinary differential equations are 

t v=t0M∫
v

v0 E 'v
Fv

dv  
(4.1.6)

v=0M∫
v

v0 E 'v
Fv

v3 dv  
(4.1.7)

where t0,  ɸ0  are integration constants, v0 is a reference velocity and E 'v=dE v/dv. All
that is left is to estimate the expressions (4.1.6) and (4.1.7) with various orders of F(v) and
E'(v) in terms of series and solve the differential equations (4.1.4) and (4.1.5) with numerical
techniques. Currently, the expressions for the E(v) and F(v) are known up to 3 PN and 3.5 PN
orders respectively.

E3 v=−1
2
v2[1− 3

4
 1

12
v2− 27

8
−19

8
 1

24
2v4E3 v6]    

(4.1.8)

F3.5 v=
32
5
2 v10 [1− 1247

336
 35

12
 v2−4 v3F4 v4F5 v5F6 v6F7 v6]  

(4.1.9)
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where expansion coefficients are 

E3=− 675
64

− 34445
576

−
2052

96 155
96

2 35
5186

3
F5=− 8191

672
583

24


F7=− 16285
504

− 214757
1728

−193385
3024

2
F6=

6643739519
69854400 16

3 2−1712
105  41

48 
2−134543

7776 −94403
3024 2−775

324 
3−856

105 log 16 v2

and =0.577216 ... is the Euler constant. 

4.2   TaylorT2
 
The expression of  E'(v)/F(v) in equations (4.1.6) and (4.1.7) has to be truncated up to valid
PN order.  Evaluating the expressions by integrating them one would obtain the following
expressions for 3.5 PN order. 

3.5 v=0−
1
32v5 [ 13715

1008 
55
12 −10 v315293365

1016064 27145
1008 3085

144 2 v4 +

38645
672 −65

8 ln vvlso v512348611926451
18776862720 −160

3 2−1712
21 v6 +

2255
48 2−15737765635

12192768 76055
6912 2−127825

5184 3−856
21 log 16 v2v6

+

77096675
20321128 

378515
12096 −74045

6048 2v7
]

(4.2.1)

t3.5v=t0−
5M
256v8 [1743

252
11

3
v2−32

5
 v33058673

508032
5429

504
617

72
2v4 +

7729
252

−13
3

v5−1052469856691
2347107840

128
3

26848
105

3147553127
3048192

−451
12

2v6

−15211
1728

225565
1296

33424
105

log 16 v2v6−15419335
127008

−75703
756

14809
378

2 v7 ]

   (4.2.2)
Both expressions have transcendental functions which require lot of computation power for
obtaining high resolution waveforms. For simulation purposes, t0 can be chosen to be time of
coalescence for binaries. By reverting (4.2.2) the expression, v(t) can be found by determining
roots of polynomial of v for a given time interval.   
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Figure 4.1.    The v t2 is extracted by reverting the expression (4.2.2) and finding the roots
for given time interval, considering it as a polynomial in v t 2. Here time for coalescence is
32s for M=1.4 binaries. The v t 2 represents a much accurate description of amplitude of
gravitational waveforms. 

4.3  TaylorT3

As shown in section 4.2 by finding the explicit expression for v and t v one would
revert the expression (4.2.2) and can determined v t  .  The equations for orbital phase
and instantaneous frequency of GW for 3.5 PN then can obtained as 

3.5t =0−
1
5 [ 3715

8064 55
96  2−3

4 39275495
14450688 284875

258048 1855
2048 2438645

21504 −65
256 ln lso 5

+831032450749357
57682522275840

−53
40

2−126510089885
4161798144

2255
2048

2−107
56

154565
1835008

2 6

+−1179625
1769472

3−107
56

log 26−189516689
433520640

−97765
258048

141769
1290240

27]

(4.3.1)

f 3.5=
2

8M
[1743

2688
11

32
2−3

10
31855099

14450688
56975

258048
371

2048
24−7729

21504
−13

256
5

720817631400877
288412611379200

53
200

2107
280

25302017977
416178144

−451
2048

2 −30913
1835008

26 +

235925
1769472

3107
280

log26−188516689
433520640

−97756
258048

141769
1290240

27]

(4.3.2)

where =  t 0−t  /5M −1/8 and f ≡2 '2−1=v3/M . Given value of t0 one can find
orbital phase and frequency of gravitational waves. As t t 0 frequency (F t ) diverges.
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Figure 4.2.    The instantaneous phase ( t  ) and frequency ( F t  ) of gravitational wave
for  M=1.4 binaries  with t0=32sec are  shown.  The  order  of  instantaneous  phase  was
truncated up to 4 term. It's evident that F t  diverges at t t 0. 
4.4   Extraction of Binary Inspiral Waveforms

The inspiral waveforms can be extracted by the expression 

h  t =Apcos 2t Ac sin 2 t   (4.4.1)

where Ac, Ap and are the amplitude of cross-polarised and plus polarised GW.  The expression
for  3.5 t  was truncated up to 4 term. The amplitude,  A(t) is given by the response of
antenna to the gravitational wave as given by expression

A  t =
4 C MC

DL
Mc f GW t 

2
3  

(4.4.2)

where MC=3 /5m1m2, DL is the luminosity distance, C (0≤C≤1) is geometric factor that
depends on the  orientation angle  between antenna and binary  system.  By (4.4.2)  explicit
expressions for Ac and Ap can be determined as

Ac t =
−2 C MC

DL
2 cosi Mc f GW t 

2
3  

(4.4.3)

Ap t =
−2 C MC

DL
1cosi 2 Mc f GW t 

2
3  

(4.4.4)

where i is the inclination angle of binary with earth. 
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Figure:  4.3.   Gravitational  waveform  for M=1.4 binaries  with t0=32sec and i=0 is
shown. The waveform were extracted by (4.4.1) considering  C as unity.  It's  evident from
spectrogram that the frequency diverges as time of coalescence is reached. 

Another more realistic way to extract waveform is by exploiting the expression 

h  t =v t2 cos 2 t   (4.4.5)

which is a much more accurate description of GW amplitude in comparison to above method.
The reason for being such a nice waveform is that amplitude varies dominantly proportional
to v t2. The results for such waveform are shown in Figure 4.4.

Figure 4.4.   Gravitational waveform for M=1.4 binaries with t0=32sec is shown. The
waveform were extracted by (4.4.5). The evident feature of waveform is its non-zero content
and smooth variation. 

4.5   Extraction of Waveform by Stationary Phase Approximation

In restricted PN approximations only PN corrections to the phase are included and amplitude
corrections are neglected. The response of antenna to a gravitational radiation is given by

h  t =A t cos  t   (4.5.1)
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where A(t) is given by (4.4.2). The purpose of neglecting amplitude corrections simplifies the
process of data analysis to a large extent. For our purposes, Fourier domain is a good choice
to work with, Fourier transform of (4.5.1) yields

h f =A  t ∫
−∞

∞

e2ift e−i tei tdt=A  t ∫
−∞

∞

ei2ft− tei2ft tdt  (4.5.2)

expression  (4.5.2)  can  be  dealt  with  as  stationary  phase  approximation.  It's  the  far  most
popular way of extracting the waveforms, the approximation yields

h f = C
DL

2 /3
5
24

MC
5
6 e

if i

4  

(4.5.3)

where

f =2f t00∑
k=0

7

k f k−5/3  
(4.5.4)

  
and the expansion coefficients for f  in (4.5.4) are given by

k=
3

128
Mk−5/3 k

0=1, 1=0 , 2=
3715
756

55
9
 , 3=−16 , 4=

15293365
508032

 27145
504

3085
72

2,

5= 38645
756

−65
9
1ln 63 /2M f 

7= 77096675
254016

378515
1512

−74045
756

2
6=

11583231236531
4694215680

−640
3

2−6848
21

−15737765635
3048192

 2255
12

2  + 

          76055
1728

2−127825
1296

3−6848
63

ln 64M f 

The coefficients 5 and 6 are not constant as they have log f-dependence but we can treat
them as constant if we assume that  log f-dependence is weak in the desired bandwidth. For
simulations the expression for f  was evaluated up to k=2.  

However, computations as suggested by (4.5.3) produce some artifacts (spurious frequencies).
These artifacts has to be removed by truncating frequencies greater then f0 . To produce the
required waveform in time domain inverse Fourier transform has to be performed which again
generate some false frequencies in waveform. Bandpass filtering has to be performed to throw
away some of lowest and highest false frequencies. The results are shown in figure 4.5.
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Figure 4.5.    The waveform was extracted by the stationary phase approximation
procedure described in this section.  The waveform are obtained for M =1.4 binaries
with t0 = 32 s.

Figure 4.7 (a).    Amplitude of cross and plus polarised gravitational wave at i=0

Figure 4.7 (b).    Amplitude of cross and plus polarised gravitational wave at i=90
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5   Numerical Relativity

In  general  relativity  the  two-body  problem  is  of  special  interest.  The  binary  black  hole
problem has become exciting and challenging in astrophysics. On the successful operation of
detectors  all  around the  world,  interest  is  growing on  receiving  signals  from supernovae
bursts, star collapse and binary black holes coalescence. But one major issue with GW is its
complexity to extract waveform and weakness of received signal. Numerical relativity plays a
vital  role to extract waveforms from background noise by matching with already existing
waveforms banks. The interest is growing due to the exponential increase in computational
power of clusters over the past decades. The binary black hole in vacuum are the primary
sources of gravitational radiation. We already have discussed briefly various phases of the
binaries resulting in signature waveforms. Post-Newtonian approximation is one the effort to
solve the issue. But this method has its own limitations in strong gravitational interactions and
at relativistic speeds. The sole purpose of numerical relativity is to solve Einstein's equations
by numerical techniques for various astrophysical scenarios. The final stages of black hole
coalescence involve strong gravitational interactions where only numerical relativity methods
are  valid.  Post-Newtonian  approximations  are  not  useful  at  such  extreme curvatures  and
relativistic speeds.  

In  1964,  the  first  attempts  to  solve  Einstein's  equations  by  numerical  techniques  were
reported.  But  at  that  time the computational  resources needed to solve the problem were
inadequate.  Now  we  have  the  computational  power  and  memory  to  solve  the  Einstein's
equations computationally. Advance algorithms for solving such complex problems has been
developed over decades. Our interest in numerical relativity is to extract waveforms from
binary black hole evolution and form a template bank which can be utilize to matched with
the  received  signals.  Due  the  technological  advancement  in  supercomputers,  this  field  is
becoming  increasing  mature  and  lot  of  previous  problems  are  reconsidered.  Collision  of
axisymmetric  black holes,  binary black hole inspiral,  and coalescence of  black hole with
initial spin and momentum are being studied. The evolution times are being enough to extract
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the gravitational waveform.  However the simulations of binary black holes space-time turn
out to be much more complicated due to the computational challenges they pose. 

Einstein's equations can be considered as ten coupled non-linear partial differential equations.
The equations can have many equivalent forms. In harmonic form, the metric tensor forms
wave equations which are mathematically known for their stability properties.  The metric
tensor cannot be decomposed into background and perturbations for strong gravity scenarios.
Therefore, numerical solution to Einstein's equations is the way forward. There are only six
components to be solved for metric the rest of four components are just gauge freedom. The
3+1 split of metric tensor is the basis for the ADM formalism. The BSSN formalism is the
conformal  modification  to  this  formalism.  BSSN has  developed  interest  in  the  two-body
problem because of the stability of evolution on supercomputers. Dealing with space-time
singularities  is  another  issue which is  to  be  resolved by method of  excision.  Excision is
accomplished by excluding space points which are causally disconnected but this method
comes with a price. Keeping track of apparent horizons at each time step to perform excision
is computationally expensive. The excision can be avoided by using puncture initial data for
evolution. We will systematically discuss some of the formalism, initial data and  findings in
this chapter. This chapter is based on systemic study of [1,8,9,10,11,13,14,15,16,17,18,19,26].

5.1   Arnowitt-Deser-Misner (ADM) Formulation 

The  3+1  split  of  Einstein's  equations  is  the  most  widely  used  formulation  in  numerical
relativity. Space-time is foliated by considering spacelike hypersurfaces which evolve with
coordinate time. So the four-dimensional space-time is split  into three-dimensional hyper-
surfaces plus time. The idea was first suggested by Arnowitt, Deser and Misner when they
were trying to quantize gravity. The technique we will discuss is Cauchy approach which sees
space-time as three dimensional space at particular instant of time. To grasp the concept we
will first consider 3+1 split of Maxwell's equations. The famous Maxwell's equations can be
written in terms of vector potential A a set of three equations

 ∇⋅E=4 (5.1.1)

∂ A
∂ t

E∇=0  
(5.1.2)

−∂ E
∂ t ∇×∇×A=4J  

(5.1.3)

The above set of equations can be categorized into two. The ones which are constrained and
the  ones  which are  evolution equations.  (5.1.1)  is  a  constraint  equation which cannot  be
violated at any instant of time as the evolution continues. (5.1.2) and (5.1.3) are the evolution
equations which determines the evolution of fields as time progress. However if the evolution
is performed numerically then it cannot be guaranteed that the constraint equations will not be
violated. 

Now we will continue to 3+1 split of Einstein's equations. The four-dimensional space-time is
foliated by three-dimensional hyper-surfaces Σ which are labelled by t. n


 is a normal vector
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on hyper-surface which points in increasing value of time. We can define a projection tensor
P which projects  any vector  to  spatial  the hyper-surface Σ.  Following are the straight

forward properties of such a tensor

P≡g−nn  (5.1.4)

P=P  (5.1.5)

Pn=0  (5.1.6)

The P must  be  symmetric  and  should  be  purely  spatial  as  indicated  by  (5.1.6).  Now
projecting the metric tensor to the hyper-surface we will have our spatial metric.

ij=Pi
 Pj

g  (5.1.7)

The projections of time coordinate can be split into spatial direction and part orthogonal to it. 

i=P
i t  (5.1.8)

=n t  (5.1.9)

Figure 5.1.    Shows the two hyper-surfaces separated by coordinate time dt. The normal line
show the direction of future pointing normal vector n. The coordinate line shows the same
coordinate on the two hyper-surfaces. 

Therefore by (5.1.8) and (5.1.9) we have   

t= n  (5.1.10)
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where  α is lapse function which measure the proper time and  is shift vector measuring
velocity of spatial coordinate labels. Now in terms of spatial metric, lapse function and shift
vector whole metric can be written in the form 

ds2=−dt2ijdxii dtdx j j dt  (5.1.11)

Another important quantity which needed to be defined for ADM formulation is extrinsic
curvature. Defined as projecting the covariant derivative of normal vector 

Kij=Pi
 Pj

 D n  (5.1.12)

Another useful definition for extrinsic curvature is the Lie derivative with normal vector of
spatial metric 

Kij=−1
2

Ln ij  (5.1.13)

By help of above defined quantities we are now in a position to split the Einstein's equations
to formulate ADM equations

R 3K2−Kij K
ij=16G   (5.1.14)

D jK
ij−ijK =8G ji  (5.1.15)

d
dt

ij=−2Kij  (5.1.16)

 d
dt
−LKij=−Di DjRij

3K Kij2 Kil K j
l8[Sij−

1
2
S−]  (5.1.17)

where L is Lie derivative with respect to i , R3 is the curvature tensor formed by 3D
spatial  metric, Di is  the  covariant  derivative,  is  energy  density, ji is  the  momentum
density, Sij stress  energy  tensor  of  matter  and  K is  the  trace  of Kij.  Again  (5.1.14)  and
(5.1.15) are hamiltonian and momentum constraint equations. Whereas (5.1.16) and (5.1.17)
are evolution equations for spatial metric and extrinsic curvature respectively.  It's always
guaranteed by Bianchi identities that a initial solution to constrained equations will always be
a solution to evolution equations at later times. 

5.2   Baumgarte-Shapiro-Shibata-Nakamura (BSSN) Formulation

The ADM was considered as standard formulation for numerical relativity simulations until
recently. As this formulation has some serious issues during the simulation. Evolution with
ADM formulation proved to be numerically unstable. Simulation with shorter evolution time
were reported. As the system approaches singularity in shorter time, numerical code crashes.
BSSN reformulates the evolutions equations (5.1.16) and (5.1.17). This formulation has added
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advantage of stability and longer simulation times. The basic idea behind this formulation is
to split the conformal and traceless part of the ADM evolution equation. This is achieved by
introducing new spatial metric ij

ij=e−4ij  (5.2.1)

to fix the determinant of metric to unity we have defined the following constrain

e−4=1/3  (5.2.2)

Instead of using extrinsic curvature we will consider its traceless part Aij which is defined  as

Aij=Kij−
1
3
ij K  (5.2.3)

 
Similar to conformal decomposition of spatial metric ij, Aij can be decomposed as

Aij=e−4 Aij  (5.2.4)

The evolution equation (5.1.17) can be used to find trivial expression for conformal spatial
metric ij and its conformal factor  as

d
dt ij=−2 Aij  (5.2.5)

d
dt

=−1
6
 K  (5.2.6)

To find evolution equation for K, expression (5.1.17) can be used, with the aid of hamiltonian
constraint (5.1.14) the Ricci scalar is eliminated. 

d
dt K=−ij Di Dj[ Aij

Aij1
3 K2 1

2 S]  
(5.2.7)

For  the evolution equation of  trace-free  part  of  extrinsic  curvature  some manipulation of
(5.1.17) results in  

d
dt

Aij=e−4 [−Di D jRij−Sij]
TFK Aij−2 Ail A j

l   (5.2.8)

Due  to  the  conformal  decomposition  of  the  spatial  metric  the  Ricci  tensor  can  also  be
decomposed into conformal part and conformal factor as

Rij= RijRij
  (5.2.9)

The conformal factor Rij
 can be readily calculated by covariant derivatives of  as
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Rij
=−2 Di D j−2 ij

Dl Dl4 Di Dj−4 ij
Dl Dl  (5.2.10)

The conformal part Rij can be computed by the standard conformal spatial metric ij.  To
simplify matters, we need to define a new variable, conformal connection function as 

 i≡  jk  jk
i =− , j

ij  (5.2.11)

Now in terms of conformal connection  i , Ricci tensor can be written

Rij=−1
2 lm ij, lm ki∂ j

k k ijk lm 2  l ( i
k  j )km  i m

k klj   (5.2.12)

Conformal connection function i must be promoted to independent variable as we want the
expression (5.2.12) of Ricci tensor to maintain its elliptic behaviour. However this comes with
a  price  of  computing  three  new evolution  equations  in  the  formulation.  Assuming i as
independent variable the equation for its evolution can be given by 

∂
∂ t

 i=− ∂
∂ x j 2 Aij−2 m( j, m

i )  2
3

ij, l
l l , l

ij   
(5.2.13)

Still  the  above expression has  stability  issues  when numerical  simulations  are  done.  The
situation can be improved by removing the divergence of Aij with the help of momentum
constraint  (5.1.16).

 ∂
∂ t

 i=−2 Aij, j2  jk
i Akj−2

3 ij K , j−ijS j6 Aij, j− ∂
∂ x j

l , l
ij−2 m ( j, m

i ) 2
3 ij,l

l 
(5.2.14)

With  this  the  evolution  structure  of  BSSN  is  complete.  The  evolutions  equations  for
 , K , Aij , and i represents complete set of equations. The new formulation is much more

stable as the equations are well posed and have strong hyperbolicity. 

5.3   Boundary Conditions 

The computational domain of numerical relativity does not cover the whole space-time to
spatial infinity due to lack of computational resources. Moreover, the domain covered by such
simulation is pretty small  such that boundary lies right where the space-time is  dynamic.
Therefore suitable boundary condition must be provided so to minimize the reflection and
outgoing waves leave the boundary smoothly. Such boundary must be set so that there are not
artificial  reflection  and boundary  conditions  cause  no  instability.  But  this  issue  is  not  as
simple as it seems due to several reasons. All dynamical variables do not behave as waves at
such distances which are set by computational domain for simulations. Secondly, there are no
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local boundary conditions which are provided for the incoming wave to leave the grid cleanly.
We will now briefly discuss the boundary conditions (that can be set in Cactus (see section 5.6
for details)) for binary black hole space-times.

Static Boundary Condition: By static we mean that at boundary no dynamical variable is
updated and they retain their initial values throughout the evolution. This condition is does the
worse in our case and introduces lot of artificial reflection of gravitational waves.  However
the condition may suit such scenarios where static condition are required at boundary to avoid
truncation errors.   

Flat Boundary Condition: Flat boundary condition allows some dynamics at the boundary as
compare to static condition but still introduces significant amount of reflections. When flat
boundary is  set  the  boundary value is  just  copied from a interior  point  where  dynamical
variable are calculated. Still this condition does no good for our purpose. 

Radiative Boundary Condition:  This  boundary serves  the  purpose for  a  clean outlet  of
waves  from the  grid.  It  assumes  that  dynamical  variable  behaves  like  constant  (f 0)  plus
outgoing radial wave which decays as 1/r at the boundary of the grid. 

f x , t =f 0u  r−t 
r

 (5.3.1)

where r=x2y2z2 , and f 0 is taken to one of diagonal elements of metric and rest are
zero. The expression (5.3.1) clearly shows that we are assuming that outgoing waves behaves
like smooth wavefronts at the boundary. This boundary condition has found to be very useful
for  avoiding  artificial  reflections.  However,  there  is  more  to  it,  to  implement  (5.3.1)  its
differential  form  (5.3.2)  is  more  useful  in  practice.  As  differential  equations  can  be
implemented as difference in equations by numerical techniques.

x i

r
∂ t f∂i f

xi

r 2 f −f 0=0  
(5.3.2)

5.4   Gauge Conditions

The possible values of lapse and shift are one of the gauge choices which are needed to be
provided before the evolution. For gauge conditions we concentrate on the lapse function only
because shift vector is often chosen to be zero for our purpose. Determining the value for
lapse function can be done in to three ways. 

Prescribed Slicing: Specify the lapse initially for a given space-time by the known a prior
conditions.  The  simplest  example  of  such  gauge  is  geodesic  slicing.  Gauge  choice  for
geodesic slicing is 

≡1  and   ≡0  (5.4.1)
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The gauge choice  simply suggests  that  it  follows time-like  geodesic  with  proper  time of
Eulerian  observer.  The  geodesic  slicing  allows  very  short  evolution  times  as  coordinate
singularity is achieved at quite early stage. Like for Schwarzschild initial data singularity is
achieved at M time. Shorter simulation times covers very small space-time domain thus
extraction of gravitational wave is not possible which is not desirable.

Elliptic Slicing: This the most robust and accurate of form of slicing condition. Usually lapse
is determined by solving elliptic differential equation on each time step by imposing some
condition on the spatial hyper-surfaces. However, solving elliptic equation on each time step
is a computationally expensive task. 

Algebraic Slicing: The slicing calculates lapse and its time derivative on each hyper-surface
as  a  function  of  spatial  metric  and  extrinsic  curvature.  The  slicing  condition  can  be
computationally cheap. However it's difficult to analyse data analytically. The most common
used  type  of  such  gauge  is  hyperbolic  K-driver  condition.  The  lapse  function  is  readily
calculated by

∂t−L=−2 FK   (5.4.2)

The main advantages of such slicing condition is that it's cheap and lapse decays to zeros in
regions of strong curvature. The typical choice for F is 2 / which is known as 1+log
slicing. 1+log slicing the far most commonly used condition. It's cheaper for computers then
elliptic slicing condition and moreover foliates the action of singularity avoidance. 

5.5   Initial Data for Black Hole 

As we have developed suitable formulation for the evolution of black hole space-time and
have seen the constraint equations the natural question will be, which space-times satisfies
such initial conditions and evolve with stability. To simplify the matters we are assuming that
extrinsic curvature Kij is set to zero. This condition simplifies matters a lot. Such assumption
makes the momentum constraint  trivial,  however the hamiltonian constraint  still  needs to
solved.  The requirement  is  that  we want  black hole  to  exist  on initial  hyperspace which
eventually  evolve  at  time  progress.  For  purpose  of  solving  hamiltonian  constraint  our
assumption  is  that  spatial  metric ij is  flat.  This  leads  to  simplification  of  hamiltonian
constraint as

D2=0     (5.5.1)

where the D covariant derivative associated  conformal spatial metric ij. Solution to (5.5.1)
leads to Schwarzschild and Misner initial data. 

5.5.1   Schwarzschild Initial Data

Schwarzschild solved the Einstein's equations for a spherical symmetric vacuum space-time.
The solution represents the exterior of a star or a black hole. 
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ds2=−1−2M
rs dts

2 1

1− 2M
rs 

drs
2r s

2 d2r s
2sin 2 d2

    (5.5.2)

 The metric is a static solution to Einstein's equations as given in Schwarzschild coordinates (
ts , rs , ,).  To avoid the coordinate singularity,  we can choose isotropic radial  coordinate
which is related to radial coordinate as

rs=1M
2r 

2

r     
(5.5.3)

The Schwarzschild metric in isotropic coordinates is given as

ds2=− 2r−M
2rM 

2

dt21M
2r 

4

dr2r2 d2     
(5.5.3)

where d2=d2sin2d2. The spatial metric and conformal factor are set to following
values

gij=4ij     (5.5.4)

=1M
2r      

(5.5.5)

For  simulation  purposes  black  hole  resides  at  the  origin  of  the  grid.  The isotropic  lapse
function has value 2r−M/ 2rM which can be set by using proper parameters in Cactus.
However,  isotropic  lapse  function  retain  its  initial  value  throughout  the  evolution.  The
evolution of Schwarzschild initial data can be treated as primary step to evolve more complex
systems,  like  coalescence  of  two  black  holes.  Previously,  this  problem  has  been  treated
numerically to gain experience for binary systems [18,19].

5.5.2   Misner Initial Data

In 1960, Misner proposed a way to represent space-time of two black holes. The solution can
be generalized to any number of black holes [17]. The metric represents two non-rotating
black holes momentarily at rest and their throats are connected by two wormholes as show in
figure 5.2. The two throats connected two asymptotic flat space-times. The throats can be
thought as apparent horizons of black holes. The general metric for Miner data is given as

ds2=−dt24dx2dy2dz2     (5.5.6)

The conformal factor has the following solution to  hamiltonian constraint for two throat data

= ∑
n=−∞

∞ 1
sinh 0 n

1
 x2 y 2 zcoth 0 n2     

(5.5.7)
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However in practice the summation is cutoff to n =30, which is being tested for applications
and works very well. The relations are given in cylindrical coordinates (  r , , z  ).

Figure 5.2.    The asymptotic flat regions are connected by two Einstein-Rosen bridges or
wormholes representing the two black holes. Clearly, an isometry is there between upper and
lower half of the two bridges. 

0 determines the mass to throat separation ratio. If  0≃1.8, then black holes have the same
event horizon. Similar solutions can be constructed for multiple black holes which has similar
structure of space-time as shown in Figure 5.2 but connected by multiple stationary throats.
For Misner initial data, the relation for ADM mass is given by

M=4∑
n=1

n=∞ 1
sinh 0 n

    
(5.5.8)

5.6   Results and Discussion

The platform chosen for our simulation of binary black hole space-time is Cactus. Cactus is
an open source framework developed for scientists and engineers which have the capacity to
run on a wide range of architectures and operating systems. Cactus gives the power of parallel
computing for challenging and exhaustive simulations with its modular structure of thorns.
There are two components to Cactus the basic functional and interface is provided by flesh
the  core  module,  while  several  other  modules  named  as  thorns  have  their  respective
specialized functionalities [13].   

The emphasis of our simulation was on evolutions using the Schwarzschild and Misner initial
data sets. There were 100x100x100 grid points to cover the whole space-time. Each run was
done with aid of both fixed mesh refinement (FMR) and adaptive mesh refinement (AMR)
techniques. AMR capabilities were provided by Carpet which is designed to work seamlessly
with Cactus environment.  The initial data were evolved by both BSSN and ADM formulation
to test the reliability and crash times for code. ADM evolution is implemented in standard
CactusEinstein thorns while BSSN functionality is provided by AEIThorns or CACTIE code.
The  Weyl  scalars  were  extracted  by  PsiKadelia  thorn  measure  the  outgoing  gravitational
waves by the single static and dynamic binary black holes. 
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5.6.1   Schwarzschild Initial Data Evolution

The Schwarzschild black hole is a static solution to Einstein's equations. It  represents the
exterior of uncharged non-rotating black hole.  However, this test run works as a benchmark
for the code reliability and determining crash time. We have evolved initial data with ADM
formalism based on FMR to about 17M with grid resolution of 0.2 and isotropic lapse. Such
evolution has no interesting dynamics in it but Weyl scalars extracted showed some form of
instability which eventually crashed at about 17M. Similar evolution was performed with the
1+log slicing and black hole mass of  1M. On contrary to isotropic lapse,  such evolution
showed some form of gauge waves. Perhaps, the reason for appearance of waves is that the
resulting Schwarzschild isotropic metric was not in isotropic coordinates as it doesn't satisfy
1+log slicing condition. But still the precise description of waves is not known. 

 

          (a)
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         (b)

Figure 5.3.    Evolution of Schwarzschild initial data with grid resolution 0.2 and isotropic
lapse  where  boundary  was  placed  at  10M.  (a)  Real  part  of  Weyl  scalar 4 (outgoing
transverse wave) at 5M in x-z.  (b) Real part of Weyl scalar 4 (outgoing transverse wave) at
14M in x-z plane. Beyond that instability overcomes. 

(b)
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(c)

Figure 5.4.    Evolution of Schwarzschild initial data with grid resolution 2 and 1+log lapse
where boundary was at 100M. (a) The lapse contours at time 15M. (b) The lapse contours at
time 30M. (c) Real part of Weyl scalar 4 (outgoing transverse wave) at 30M in x-z. 

5.6.2   Misner Initial Data Evolution

This initial data is of most interest in our case. The data was evolved with both FMR and
AMR grids. Similarly, both ADM and BSSN evolution sequences were executed with 1+log
gauge conditions and 0=2.2. However, with BSSN the initial data was a lot more stable. An
obvious reflection appears at the boundary (at 10M quite near) when no boundary condition
was set during BSSN evolution with grid resolution 0.2. The data was also evolved with
boundary at 100M and grid resolution 2. During evolution, outgoing gravitational waves were
extracted by Weyl scalars.

(a)
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(b)

 

(c)
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(d)

(e)
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Figure 5.5.    Evolution of Misner initial data with grid resolution of 0.2 where boundary is
placed at 10M. (a) Lapse contour map at 1.5M with ADM evolution method using FMR.
Lapse was initially set to unity.  (b) Lapse at 7M for Misner initial data with ADM evolution
method using FMR technique. (c) Real part of Weyl scalar 4 (outgoing transverse wave) at
7M  in  x-z  plane  using  FMR,   The  reflection  is  not  apparent  at  boundaries  with  ADM
evolution. (d) Real part of Weyl scalar 4 (outgoing transverse wave) at 16M in x-z plane
using FMR,  The wave reflection at the boundary is at its peak with BSSN formulation. The
apparent  reflection  is  because  no  boundary  condition  was  set  throughout  evolution  and
boundary has been place quite close. (e) Real part of Weyl scalar 4 (outgoing transverse
wave) at 20M in x-z plane,  The wave reflection has been reduced due to radiative boundary
condition with BSSN evolution and AMR.

(a)
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(b)

(c)
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(d)

Figure 5.6.     Evolution of Misner initial data with grid resolution of 2, where boundary is
placed at 100M. (a) Real part of Weyl scalar 4 (outgoing transverse wave) at 58M in x-z
plane. (b)  Real part of 4 at 113.6M. (c)Evolution of lapse. (d) Evolution of gxx.  

6   Conclusion and Future Work

The overall objective of this thesis was to carry out a study on gravitational waves, lay the
theoretical foundation and test the findings by utilizing proper numerical tools available up to
date.  Due to the wide spectrum of this enriched area of study, it  was impossible to even
explore each and every subject in much detail. However, much have been done on extraction
of gravitational waves  during the inspiral and merger phase of the binaries. The pertinent
concepts are touched in much detail  for the foundation of future work. The extraction of
waves by post-Newtonian formalism and simulating binary black hole space-time along with
the extraction of Weyl scalars were explored with emphasis on computation.  

The results obtained by aid of Cactus ware satisfactory. However, the emphasis of future work
must  rely  on  latest  numerical  relativity  scenarios.  Evolution  of  puncture  method,  thin
sandwich  data  and  extraction  of  various  modes  of  Zerilli  waves  (Zerilli  wave  equation
describe perturbations of non-rotating black hole) by simulating binaries to much longer times
should be considered in future developments. Much more realistic grid sizes can be chosen
which eventually requires more memory and time resources on the cluster. Various topics in
this mature area are not  even touched due to their  complexity and shortage of time. The
excision of black hole which is one of primary techniques of singularity avoidance is not
mentioned in this thesis. Secondly, determination of black hole apparent horizons is also not
treated, as much of our work was focussed on extraction of gravitational waves.  The field of
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numerical relativity can be further explored by considering perturbed black holes, massive
black holes inspiral and neutron stars merger. 
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7   Appendix

A.1   Compiling and Running Cactus Framework 

There are two important ingredients to setup framework for numerical relativity simulations.
Primarily you will need to download Cactus [13] and compile it for your architecture and
depending on the compilers and additional softwares you require, this will take some effort.
Then you will need to download Carpet [14], a adaptive mesh refinement functionality which
works well with the Cactus framework. First you will  need to download Cactus from the
following repository. I have tested this with OSX 1.6.2 with x-code 3.2. For this you need to
have CVS and git on you system. Just you need to issue following commands

cvs -d :pserver:cvs_anon@cvs.cactuscode.org:/cactus login
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You will be asked for password which is  anon. After this you need to download Cactus flesh
by command

cvs -d :pserver:cvs_anon@cvs.cactuscode.org:/cactus checkout Cactus

Similarly,  you  can  checkout  the  others  arrangements.  Before  that  you  need  to  go  to
Cactus/arrangements directory.  The following arrangements  are  recommended and can be
downloaded by the following command.

cvs -d :pserver:cvs_anon@cvs.cactuscode.org:/cactus checkout CactusEinstein
CactusWave  CactusPUGH  CactusPUGHIO  CactusIO  CactusExternal  CactusConnect
CactusBase CactusBench CactusTest

Second step is to download Carpet by the issuing following commands

cd Cactus
git clone -o carpet     git://carpetcode.dyndns.org/carpet.git
cd arrangements
ln -s ../carpet/Carpet* .

The last command is just to create a software link. If your system does not support such
command just create your own soft link and past it there. Before we continue to compiling,
you need to have a C++/C and F77/F90 compiler. The best way you can get for your mac
system is by website http://hpc.sourceforge.net/. Please download GCC 4.4 and install it from
the binaries. The next you need to have a visualization software which I recommend is VisIT.
Go to website https://wci.llnl.gov/codes/visit/executables.html get the executable and copy the
install script along with it. Place both in the same directory and issue the following command.
Remember this command is for the mac systems as mentioned before. Otherwise you need to
make changes accordingly in the command. 

sudo ./visit-install 1.12.1 darwin-i386 /visit

The third external software you need to have before we continue to compilation procedure is
HDF5. Which you can get from http://www.hdfgroup.org/downloads. Get the current release
of this software don't worry about the hdf5 software with the file streaming capabilities. The
third repository you need to have is AEIThorns which you can have by

cvs -d :pserver:cvs_anon@cvs.aei.mpg.de:/numrelcvs login
CVS password: anon
cvs -d :pserver:cvs_anon@cvs.aei.mpg.de:/numrelcvs checkout AEIThorns

Now for configuration of Cactus on you local OSX machine issue following commands on
terminal.

Cd Cactus
make  local-config  HDF5=yes  LDFLAGS=-lgfortran  F90=gfortran  F77=gfortran
CC=gcc CXX=g++ 

This configures cactus with the config file name “local”. Make sure that cactus found the
HDF directory and last test on compilers goes well. Now to compile this configuration write

make local
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This will usually generate errors cause of incompatible thorns in your thorn list. So go to
Cactus/configs/local folder and edit Thornlist file (just copy the thorns given below to
you file and save it). The following thorns are recommended which are needed to be compile
for purpose.

AEIThorns/AEILocalInterp           # AEILocalInterp ( ) [ ] { }
AEIThorns/AEIUtil                  # AEIUtil ( ) [ ] { }
AEIThorns/BAM_Elliptic             # BAM_Elliptic 
AEIThorns/BAM_VecLap               # BAM_VecLap 
AEIThorns/BSSN_MoL                 # adm_bssn 
AEIThorns/BoundaryExample          
AEIThorns/CalcK                    # CalcK (ADMBase,StaticConformal) [ ] 
AEIThorns/Constants                # Constants ( ) [ ] { }
AEIThorns/EHFinder                 # ehfinder 
AEIThorns/Exact                    # exact 
AEIThorns/FiniteDifferencing       # FiniteDifferencing ( ) [ ] { }
AEIThorns/Fortran                  # Fortran ( ) [ ] { }
AEIThorns/HyperWave                # HyperWave (grid) [ ] {MethodOfLines}
AEIThorns/HyperWave0               # HyperWave0 (grid) [ ] { }
AEIThorns/IDConstraintViolate      # idconstraintviolate (admbase,grid) [ ]
AEIThorns/IDFileADM                # IDFileADM (ADMBase,StaticConformal,IO)
AEIThorns/ManualTermination        # ManualTermination ( ) [ ] { }
AEIThorns/Nice                     # nice ( ) [ ] { }
AEIThorns/Noise                    # Noise (grid) [ ] { }
AEIThorns/Norms                    # Norms ( ) [ ] { }
AEIThorns/PointwiseDerivatives     # PointwiseDerivatives ( ) [ ] { }
AEIThorns/TensorTypes              # TensorTypes ( ) [ ] { }
AEIThorns/TestInterpLocal_Large    # testinterplocal ( ) [ ] { }
AEIThorns/TestInterpLocal_Small    # testinterplocal ( ) [ ] { }
AEIThorns/TestInterpPUGH_Small     # testinterppugh ( ) [ ] { }

CactusEinstein/ADM
CactusEinstein/Extract             
CactusEinstein/AHFinder
CactusEinstein/PsiKadelia          
CactusEinstein/TimeGeodesic   
CactusEinstein/IDAnalyticBH        
CactusEinstein/IDSimple            # IDSimple 
CactusEinstein/EvolSimple          # simple_adm
CactusEinstein/ADMAnalysis         # ADMAnalysis 
CactusEinstein/ADMBase             # ADMBase (grid) [ ] { }
CactusEinstein/ADMConstraints      # admconstraints 
CactusEinstein/ADMCoupling         # ADMCoupling ( ) [ ] { }
CactusEinstein/ADMMacros           # ADMMacros ( ) [ ] { }
CactusEinstein/SpaceMask           # SpaceMask (grid) [ ] { }
CactusEinstein/StaticConformal     # StaticConformal (grid) [ ] {ADMBase}
CactusEinstein/CoordGauge          # CoordGauge ( ) [ ] {ADMBase}

CactusElliptic/EllBase             # ellbase ( ) [ ] { }
CactusElliptic/EllSOR              # ellsor (ellbase,boundary) [ ] 

CactusIO/IOJpeg                    # IOJpeg (IO) [ ] {IO}
CactusExternal/jpeg6b              # jpeg6b ( ) [ ] { }
CactusExternal/HDF5                # HDF5 ( ) [ ] { }
CactusExternal/FlexIO              # FlexIO ( ) [ ] { }

CactusUtils/NaNChecker

CactusConnect/HTTPD
CactusConnect/HTTPDExtra 
CactusConnect/Socket
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CactusPUGH/PUGH                    # Driver ( ) [ ] {cactus}
CactusPUGH/PUGHInterp              # Interp ( ) [ ] { }
CactusPUGH/PUGHReduce              # Reduce ( ) [ ] { }
CactusPUGH/PUGHSlab                # Hyperslab ( ) [ ] { }

CactusPUGHIO/IOFlexIO              # IOFlexIO (IO) [ ] {IO}
CactusPUGHIO/IOHDF5                # IOHDF5 ( ) [ ] {IO}
CactusPUGHIO/IOHDF5Util            # IOHDF5Util (IO) [ ] {IO}
CactusPUGHIO/IsoSurfacer           # isosurfacer (Grid,IO) [ ] {IO}

CactusBase/Boundary                # boundary ( ) [ ] { }
CactusBase/CartGrid3D              # grid (coordbase) [ ] {driver}
CactusBase/CoordBase               # CoordBase ( ) [ ] { }
CactusBase/IOASCII                 # IOASCII ( ) [ ] {IO}
CactusBase/IOBasic                 # IOBasic (IO) [ ] {IO}
CactusBase/IOUtil                  # IO ( ) [ ] { }
CactusBase/InitBase                # InitBase ( ) [ ] { }
CactusBase/LocalInterp             # LocalInterp ( ) [ ] { }
CactusBase/LocalReduce             # LocalReduce ( ) [ ] { }
CactusBase/MoL                     # MethodOfLines ( ) [ ] { }
CactusBase/SymBase                 # SymBase ( ) [ ] { }
CactusBase/Time                    # time ( ) [ ] {cactus}

CactusWave/WaveToyC        
CactusWave/IDScalarWaveC   
CactusWave/WaveBinarySource

Now  to  run  the  parameter  file  test.par  which  you  have  written  by  issue  the  following
command after cd to Cactus directory. The parameter file needed to be in the Cactus main
directory.

./exe/cactus_local test.par

The task of configuration of Cactus on ada-cluster is slight different. First we don't have the
HDF5 capability secondly we need to have MPI loaded before configuration. So after login to
ada-cluster load following softwares

module load gcc/4.3.2 openmpi/1.3/gcc/4.1

Now make configuration file like we did on local mac-machine by command 

make local-config  F90=mpif90 F77=mpif77 CC=mpicc CXX=mpic++ LDFLAGS=-
lgfortran  CFLAGS=-fgnu89-inline  MPI=OpenMPI
OPENMPI_DIR=openmpi/1.3/gcc/4.1

Then just make this configuration which will again generate errors. So again edit the Thornlist
file by the below thorns (just paste the given Thornlist below and save the file).

# arrangement/thorn                # implements (inherits) [friend]
{shares}

AEIThorns/AEILocalInterp           # AEILocalInterp ( ) [ ] { }
AEIThorns/AEIUtil                  # AEIUtil ( ) [ ] { }
AEIThorns/AHFinderDirect           # AHFinderDirect 
AEIThorns/BAM_Elliptic             # BAM_Elliptic 
AEIThorns/BAM_VecLap               # BAM_VecLap 
AEIThorns/BSSN_MoL                 # adm_bssn 
AEIThorns/BoundaryExample          
AEIThorns/CalcK                    # CalcK (ADMBase,StaticConformal) [ ] 
AEIThorns/Constants                # Constants ( ) [ ] { }
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AEIThorns/Dissipation              # Dissipation 
AEIThorns/EHFinder                 # ehfinder 
AEIThorns/Exact                    # exact 
AEIThorns/FiniteDifferencing       # FiniteDifferencing ( ) [ ] { }
AEIThorns/Fortran                  # Fortran ( ) [ ] { }
AEIThorns/HyperWave                # HyperWave (grid) [ ] {MethodOfLines}
AEIThorns/HyperWave0               # HyperWave0 (grid) [ ] { }
AEIThorns/IDConstraintViolate      # idconstraintviolate (admbase,grid) [ ]
AEIThorns/IDFileADM                # IDFileADM (ADMBase,StaticConformal,IO)
AEIThorns/ManualTermination        # ManualTermination ( ) [ ] { }
AEIThorns/Nice                     # nice ( ) [ ] { }
AEIThorns/NoExcision               # NoExcision 
AEIThorns/Noise                    # Noise (grid) [ ] { }
AEIThorns/Norms                    # Norms ( ) [ ] { }
AEIThorns/PointwiseDerivatives     # PointwiseDerivatives ( ) [ ] { }
AEIThorns/TensorTypes              # TensorTypes ( ) [ ] { }
AEIThorns/TestInterpLocal_Large    # testinterplocal ( ) [ ] { }
AEIThorns/TestInterpLocal_Small    # testinterplocal ( ) [ ] { }
AEIThorns/TestInterpPUGH_Small     # testinterppugh ( ) [ ] { }
AEIThorns/SphericalSurface

CactusUtils/NaNChecker

CactusEinstein/ADM
CactusEinstein/Extract             
CactusEinstein/AHFinder
CactusEinstein/PsiKadelia          
CactusEinstein/TimeGeodesic   
CactusEinstein/IDAnalyticBH        
CactusEinstein/IDSimple            # IDSimple 
CactusEinstein/EvolSimple          # simple_adm
CactusEinstein/ADMAnalysis         # ADMAnalysis 
CactusEinstein/ADMBase             # ADMBase (grid) [ ] { }
CactusEinstein/ADMConstraints      # admconstraints 
CactusEinstein/ADMCoupling         # ADMCoupling ( ) [ ] { }
CactusEinstein/ADMMacros           # ADMMacros ( ) [ ] { }
CactusEinstein/SpaceMask           # SpaceMask (grid) [ ] { }
CactusEinstein/StaticConformal     # StaticConformal (grid) [ ] {ADMBase}
CactusEinstein/CoordGauge          # CoordGauge ( ) [ ] {ADMBase}

CactusElliptic/EllBase             # ellbase ( ) [ ] { }
CactusElliptic/EllSOR              # ellsor (ellbase,boundary) [ ] 

CactusIO/IOJpeg                    # IOJpeg (IO) [ ] {IO}
CactusExternal/jpeg6b              # jpeg6b ( ) [ ] { }
CactusExternal/FlexIO              # FlexIO ( ) [ ] { }

CactusConnect/HTTPD
CactusConnect/HTTPDExtra 
CactusConnect/Socket
CactusUtils/TimerReport

CactusPUGH/PUGH                    # Driver ( ) [ ] {cactus}
CactusPUGH/PUGHInterp              # Interp ( ) [ ] { }
CactusPUGH/PUGHReduce              # Reduce ( ) [ ] { }
CactusPUGH/PUGHSlab                # Hyperslab ( ) [ ] { }

CactusPUGHIO/IOFlexIO              # IOFlexIO (IO) [ ] {IO}
CactusPUGHIO/IsoSurfacer           # isosurfacer (Grid,IO) [ ] {IO}

CactusBase/Boundary                # boundary ( ) [ ] { }
CactusBase/CartGrid3D              # grid (coordbase) [ ] {driver}
CactusBase/CoordBase               # CoordBase ( ) [ ] { }
CactusBase/IOASCII                 # IOASCII ( ) [ ] {IO}
CactusBase/IOBasic                 # IOBasic (IO) [ ] {IO}
CactusBase/IOUtil                  # IO ( ) [ ] { }
CactusBase/InitBase                # InitBase ( ) [ ] { }
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CactusBase/LocalInterp             # LocalInterp ( ) [ ] { }
CactusBase/LocalReduce             # LocalReduce ( ) [ ] { }
CactusBase/MoL                     # MethodOfLines ( ) [ ] { }
CactusBase/SymBase                 # SymBase ( ) [ ] { }
CactusBase/Time                    # time ( ) [ ] {cactus}

CactusWave/WaveToyC        
CactusWave/IDScalarWaveC   
CactusWave/WaveBinarySource

Carpet/Carpet                      # Driver ( ) [ ] {Cactus,IO}
Carpet/CarpetEvolutionMask         # CarpetEvolutionMask ( ) [ ] { }
Carpet/CarpetIOASCII               # IOASCII ( ) [ ] {IO}
Carpet/CarpetIOBasic               # IOBasic (IO) [ ] {IO}
Carpet/CarpetIOScalar              # IOScalar ( ) [ ] {IO}
Carpet/CarpetInterp                # interp ( ) [ ] {Cactus}
Carpet/CarpetLib                   # CarpetLib ( ) [ ] {IO}
Carpet/CarpetReduce                # reduce ( ) [ ] { }
Carpet/CarpetRegrid                # CarpetRegrid ( ) [ ] { }
Carpet/CarpetRegrid2               # CarpetRegrid2 ( ) [ ] { }
Carpet/CarpetSlab                  # Hyperslab ( ) [ ] { }
Carpet/CarpetTest                  # CarpetTest ( ) [ ] { }
Carpet/CarpetTracker               # CarpetTracker
(SphericalSurface,CarpetRegrid2) [ ] {SphericalSurface,CarpetRegrid2}

So, again you can run parameters file on ada-cluster by the very similar commands mentioned
before. The script file used for executing jobs on ada-cluster is below

#PBS -M fahadn@student.chalmers.se
#PBS -m a
#PBS -q ada
#PBS -r n
#PBS -l walltime=01:00:00
# Request 1 processor (node)
#PBS -l nodes=12:ppn=4
#PBS -N Cactus

cd $PBS_O_WORKDIR 

module load gcc/4.3.2 openmpi/1.3/gcc/4.1
cd Cactus
./exe/cactus_local test.par

Before I will list the parameter files for the various simulations we have done I would like to
mentioned some handy commands which will be useful for simulation task. Remember to
install VisIT  in /usr/local/ directory so that you can execute it by the ./visit command after
cd to  /usr/local/visit/bin directory.  Secondly,  the  way to  remote  login  on Chalmers
studat server is by ssh command.

ssh -Y fahadn@remote2.studat.chalmers.se

After  you  gain  access  to  studat  you  can  now login  to  ada-cluster  again  by  very  similar
command.

ssh  fahadn@ada.c3se.chalmers.se

The way to copy files from ada-cluster to you computer or vice versa is by first copy it to
your directory at studat then copy it from there by the following series of commands

scp -r fahadn@ada.c3se.chalmers.se:Cactus/try try
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scp -r fahadn@remote2.studat.chalmers.se:try try

Make sure you are login to studat but not to ada-cluster. This will copy Cactus/try directory to
try folder at you studat account then to you local computer. 

A.2   Cactus Parameters Files

# Misner Black Hole evolution with BSSN formulation and Carpet

ActiveThorns = "CoordBase SymBase time carpet carpetlib TimerReport
carpetregrid carpetreduce carpetslab boundary cartgrid3d bssn_mol 
mol nanchecker idanalyticbh carpetioascii LocalInterp LocalReduce 
ioutil iobasic admcoupling admbase admmacros coordgauge spacemask 
staticconformal carpetevolutionmask SphericalSurface PsiKadelia
IOJpeg" 

cactus::terminate = "time"
cactus::cctk_initial_time = 0
cactus::cctk_final_time = 100
Time::dtfac = 0.25

IO::out_dir = "try/"
IOJpeg::out_every               = 10
IOJpeg::out_vars                = "PsiKadelia::WeylComponents"
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IOBasic::outInfo_every = 1 

driver::global_nsize=100

grid::type = "byrange"
grid::xyzmax=100
grid::xyzmin=-100

grid::domain             = "full"
grid::avoid_origin   = "no"

Carpet::ghost_size = 3 
Carpet::max_refinement_levels = 9 
Carpet::buffer_width = 9 

Carpet::prolongation_order_space = 5 
Carpet::prolongation_order_time = 2 

###################################################################

MoL::ODE_Method = "RK4" 
MoL::MoL_Intermediate_Steps = 4 
MoL::MoL_Num_Scratch_Levels = 1 

ADMBase::metric_type = "physical" 
ADMBase::initial_data = "misner_bh" 
ADMBase::initial_lapse = "one" 
ADMBase::lapse_evolution_method = "1+log" 
ADMBase::evolution_method = "ADM_BSSN"

ADMMacros::spatial_order = 4 
ADMBase::initial_shift = "zero" 

ADM_BSSN::timelevels = 3 
ADM_BSSN::stencil_size = 3
ADM_BSSN::advection = "upwind4" 
ADM_BSSN::bound = "newrad" 
Boundary::radpower     = 3

ADM_BSSN::lapsesource = "straight" 
ADM_BSSN::harmonic_f = 2.0 
ADM_BSSN::force_lapse_positive = yes 
ADM_BSSN::lapse_advection_coeff = 1.0 

ADMBase::shift_evolution_method = "gamma0" 
ADM_BSSN::ShiftGammaCoeff = 0.75 
ADM_BSSN::BetaDriver = 1.0 
ADM_BSSN::gamma_driver_advection_coeff = 1.0 
ADM_BSSN::ApplyShiftBoundary = yes 
 

# Misner Black Holes with BSSN formulation and Fixed Mesh Refinement 

ActiveThorns = "boundary cartgrid3d time ioBasic admBase staticconformal
IDAnalyticBH ADMConstraints AHFinder Extract ADMCoupling ADM ADMMacros
CoordBase Coordgauge IOUtil spacemask PUGH ADMBase PUGHreduce SymBase
iojpeg jpeg6b InitBase LocalInterp LocalReduce admanalysis ioascii PUGHSlab
PUGHInterp PsiKadelia MoL BSSN_MoL IOHDF5 IOHDF5Util"

####################### Grid and Initial Setup Routines ###################

driver::global_nsize = 100
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grid::type = "byrange" 

# [-10M,10M]^3
grid::xyzmax = 10 
grid::xyzmin = -10 

# thus  20M/100 = 0.2M   dx=dy=dz=0.2M  as 0.2M resolves BH raduis
# typical grid size [-100M,100M]^3 for 3D Data

cactus::terminate = "time" 
#cactus::cctk_initial_time = 0

# typical times for coalescence 10^2M-10^3M
cactus::cctk_final_time = 16.5

 
time::timestep_method = "courant_static" 
time::dtfac = 0.25
IOBasic::outInfo_vars = "admbase::alp" 
IOBasic::outInfo_every = 10
 
#IOASCII::out1D_vars = "admbase::alp admanalysis::grr PsiKadelia::psi0re
PsiKadelia::psi0im" 
#IOASCII::out1D_every = 10
IO::out_dir = "try/"

#Outgoing gravitational waves psi0 INgoing psi4

IOHDF5::out_every = 10
IOHDF5::out_vars = "PsiKadelia::WeylComponents admbase::alp"

##########################################################################

admbase::evolution_method = "ADM_BSSN" 
admbase::initial_lapse = "one" 
ADMBase::initial_shift = "zero" 
admbase::lapse_evolution_method = "1+log"
ADM_BSSN::bound = "none"
admbase::initial_data = "misner_bh" 
idanalyticbh::mu = 2.2

ADM_BSSN::lapsesource = "straight" 
ADM_BSSN::harmonic_f = 2.0 
ADM_BSSN::force_lapse_positive = yes 
ADM_BSSN::lapse_advection_coeff = 1.0 
ADMBase::shift_evolution_method = "gamma0" 
ADM_BSSN::ShiftGammaCoeff = 0.75 
ADM_BSSN::BetaDriver = 1.0 
ADM_BSSN::gamma_driver_advection_coeff = 1.0 
ADM_BSSN::ApplyShiftBoundary = yes 

# Schwarzschild Black Hole with FMR and ADM evolution 

ActiveThorns = "boundary cartgrid3d time ioBasic admBase staticconformal
IDAnalyticBH ADMConstraints AHFinder Extract ADMCoupling ADM ADMMacros
CoordBase Coordgauge IOUtil spacemask PUGH ADMBase PUGHreduce SymBase
iojpeg jpeg6b InitBase LocalInterp LocalReduce admanalysis ioascii PUGHSlab
PUGHInterp PsiKadelia IOHDF5 IOHDF5Util"

###########################################################################

driver::global_nsize = 100 
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grid::type = "byrange" 

# [-10M,10M]^3
grid::xyzmax = 10.0 
grid::xyzmin = -10.0 

# thus  20M/100 = 0.2M   dx=dy=dz=0.2M  as 0.2M resolves BH raduis
# typical grid size [-100M,100M]^3 for 3D Data

cactus::terminate = "time" 
#cactus::cctk_initial_time = 0 

# typical times for coalescence 10^2M-10^3M
cactus::cctk_final_time = 30 
#cactus::cctk_itlast = 250 
 

time::timestep_method = "courant_static" 
time::dtfac = 0.25
IOBasic::outInfo_vars = "admbase::alp" 
IOBasic::outInfo_every = 10 
#IOASCII::out1D_vars = "admbase::alp admanalysis::grr PsiKadelia::psi0re
PsiKadelia::psi0im" 
#IOASCII::out1D_every = 10
IO::out_dir = "try/"
IOJpeg::out_every               = 10
IOJpeg::out_vars                = "PsiKadelia::WeylComponents"
#IOJpeg::mode                    = "remove"
#IOJpeg::colormap                = "auto"
#IOJpeg::colormap_factor         = 16 

#Outgoing gravitational waves psi0

IOHDF5::out_every = 10
IOHDF5::out_vars = "PsiKadelia::WeylComponents"

admbase::evolution_method = "ADM" 
adm::method= "stagleap" 
admbase::initial_lapse = "one" 
admbase::lapse_evolution_method = "1+log"

admbase::metric_type = "static conformal" 
admbase::initial_data = "schwarzschild" 
idanalyticbh::mass = 1.0

# Kerr Black Hole with FMR and ADM 

ActiveThorns = "boundary cartgrid3d time ioBasic admBase staticconformal
IDAnalyticBH ADMConstraints AHFinder Extract ADMCoupling ADM ADMMacros
CoordBase Coordgauge IOUtil spacemask PUGH ADMBase PUGHreduce SymBase
iojpeg jpeg6b InitBase LocalInterp LocalReduce admanalysis ioascii PUGHSlab
PUGHInterp PsiKadelia IOHDF5 IOHDF5Util"

driver::global_nsize = 100 
grid::type = "byrange" 

# [-10M,10M]^3
grid::xyzmax = 10.0 
grid::xyzmin = -10.0 

# thus  20M/100 = 0.2M   dx=dy=dz=0.2M  as 0.2M resolves BH raduis
# typical grid size [-100M,100M]^3 for 3D Data

63



cactus::terminate = "time" 
#cactus::cctk_initial_time = 0 

# typical times for coalescence 10^2M-10^3M
cactus::cctk_final_time = 10 
#cactus::cctk_itlast = 250 
 

time::timestep_method = "courant_static" 
time::dtfac = 0.25
IOBasic::outInfo_vars = "admbase::alp" 
IOBasic::outInfo_every = 10 
#IOASCII::out1D_vars = "admbase::alp admanalysis::grr PsiKadelia::psi0re
PsiKadelia::psi0im" 
#IOASCII::out1D_every = 10
IO::out_dir = "try/"
IOJpeg::out_every               = 10
IOJpeg::out_vars                = "PsiKadelia::WeylComponents"
#IOJpeg::mode                    = "remove"
#IOJpeg::colormap                = "auto"
#IOJpeg::colormap_factor         = 16 

#Outgoing gravitational waves psi0

IOHDF5::out_every = 10
IOHDF5::out_vars = "PsiKadelia::WeylComponents"

admbase::evolution_method = "ADM" 
adm::method= "stagleap" 
admbase::lapse_evolution_method = "1+log"

admbase::metric_type = "static conformal" 
admbase::initial_data = "kerr" 
admbase::initial_lapse = "kerr"
admbase::initial_shift = "kerr"

idanalyticbh::mass = 1.0
#idanalyticticbh::a_kerr = 0.3

A.3   Simulation of Binary Inspiral - MATLAB Code

% Calculates Cross and Plus Component of Amplitude of h(t)
% 
% inc = inclination
% D = Distance in meters
% t = time vector
% m1, m2 = masses of binaries
% tc = time for coalescence 
 
function [Ap,Ac,f]=Amp(t, m1, m2, tc, inc, D)
 
  T0 = 4.925E-06;    % (sec) for conversion of Mass to Geometrised units
(c=G=1)
  c = 3.0E+08;       % speed of light (m/sec)
  M = m1 + m2;       % total mass
  eta = m1*m2/(M^2); % symmetric mass ratio
  Mc = eta.^(3/5)*M; % Chirp Mass
  C = 1;             % C geometric factor
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  f = freq(t, m1, m2, tc); %Calculating Instantaneous Frequency of GW
 
  Ac = -2*C*T0*c*Mc/D*(2*cos(inc))*(pi*Mc*T0*f).^(2/3);   %Cross Component
of h(t)
  Ap = (1 + cos(inc)^2) .* Ac./(2*cos(inc));                %Plus Component
of h(t)
 
return;

% Calculates Instantaneous Phase of GW
% p = instantaneous phase of GW
function p=phi(t, m1, m2, tc)
 
  T0 = 4.925E-06;    % sec, for Conversion to geometrized Units 
  M = m1 + m2;       % total mass
  eta = m1*m2/(M^2); % symmetric mass ratio
 
  % Coefficients of expansion
  a0 = 1.0;
  a2 = 3715/8064 + 55/96*eta;
  a3 = -3*pi/4;
  a4 = 9275495/14450688 + 284875/258048*eta + 1855/2048*eta^2;
 
  
  theta = (eta*(tc - t)/(5*M*T0)).^(-1/8);
  p = -2/eta*theta.^(-5).*(a0 + a2*theta.^2 + a3*theta.^3 + a4*theta.^4);
 
return;

% Calculates Instantaneous frequency of the gravitational wave as a
function of t
% f= instantaneous freq
 
function f=freq(t, m1, m2, tc)
 
  T0 = 4.925E-06;    % seconds
  M = m1 + m2;       % total mass
  eta = m1*m2/(M^2); % symmetric mass ratio (unit-less)
  gamma = 0.577216;  % Euler constant
  theta = (eta*(tc - t)/(5*M*T0)).^(-1/8);
 
  
  % Coefficients of expansion
  a2 = 743/2688 + 11/32*eta;
  a3 = -3*pi/10;
  a4 = 1855099/14450688 + 56975/258048*eta + 371/2048*eta^2;
  a5 = (7729/21504 - 13/256*eta)*pi;
  a6= - 720817631400877/288412611379200 + 53/200*pi^2 + 107/280*gamma +
( 25302017977/4161798144 -    451/2048*pi^2)*eta - 30913/1835008*eta^2
+235925/1769472*eta^3 + 107/280*log(2.*theta);
  a7 = (-188516689/433520640 - 97765/258048*eta + 141769/1290240*eta^2)*pi;
  
  f = theta.^3/(8*pi*M*T0).*(1 + a2*theta.^2+ a3*theta.^3 + a4*theta.^4 +
a5*theta.^5 + a6.*theta.^6 + a7*theta.^7);
 
return;

% Calculate time as a function of velocity 
% v = instantaneous velocity
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function t=tv(v, m1, m2, tc)
 
  T0 = 4.925E-06;    % (seconds)
  M = m1 + m2;       % total mass
  eta = m1*m2/(M^2); % symmetric mass ratio (unit-less)
 
  % Coefficients of expansion up to 3.5 PN
  a0 = 1.0;
  a2 = 743/252 + 11/3*eta;
  a3 = -32*pi/5;
  a4 = 3058673/508032 + 5429/504*eta + 617/72*eta^2;
  a5 = (7729/252 - 13/3*eta)*pi;
  a6 = -10052469856691/23471078400 + 128/3*pi^2 + 6848/105*gamma +
(31477553127/3048192 - 451/12*pi^2)*eta -
15211/1728*eta^2+25565/1296*eta^3+3424/105.*log(16*v.^2);
  a7 = (-15419335/127008 - 75703/756*eta + 14809/378*eta^2)*pi;
 
  t = tc - 5*M*T0/(256*eta)*v.^(-8).*(a0 + a2*v.^2 + a3*v.^3 + a4*v.^4 +
a5*v.^5 + a6.*v.^6 + a7*v.^7);
 
return;

% Calculate velocity-squared as a function of time
 
function v2=v2t(t, m1, m2, tc)
 
T0 = 4.925E-06;    % (seconds)
M = m1 + m2;       % total mass
eta = m1*m2/(M^2); % symmetric mass ratio (unit-less)
 
% Determines v^2 from expression of t(v)
% by finding roots of the equation by considering it as polynomial in v^2
% instead of v -- see routine tv for expression
 
ct = (t - tc)*256*eta/(5*M*T0);
v2 = zeros(1, length(t));
 
c = zeros(1, 5);
 
c(5) = 1.0;
c(4) = 743/252 + 11/3*eta;
 
for k = 1:length(ct)
    c(1) = ct(k);
    r = roots(c);
    v2(k) = max(r);
end;
 
return;

% Calculates velocity v(t)
 
function v=vt(t, m1, m2, tc)
 
T0 = 4.925E-06;    % (seconds)
M = m1 + m2;       % total mass
eta = m1*m2/(M^2); % symmetric mass ratio (unit-less)
 
 
% v(t) is determined by the expression of t(v) by finding roots of the
% equation -- see routine 'tv' for expression
ct = (t - tc)*256*eta/(5*M*T0);
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v = zeros(1, length(t));
c = zeros(1, 9);
 
c(9) = 1.0;
c(7) = 743/252 + 11/3*eta;
c(6) = -32*pi/5;
c(5) = 3058673/508032 + 5429/504*eta + 617/72*eta^2;
c(4) = (7729/252 - 13/3*eta)*pi;
 
for k = 1:length(ct)
    c(1) = ct(k);
    r = roots(c);     % finding roots of polynomial
    v(k) = max(r);    % just considering maximum root as solution 
end;
 
return;

% Calculates the inspiral of binary
% f0 = reference frequency frequency at coalescence
 
function [h, p, f, Ap, Ac]=inspiral(t, m1, m2, tc, inc, f0)
 
  D = 1.0;  % Distance to binary from earth in meters
 
  p = phi(t, m1, m2, tc);
  [Ap,Ac,f] = Amp(t, m1, m2, tc, inc, D);
  h = Ap.*cos(p) + Ac.*sin(p);
 
  % Zero out everything where t >= tc  
  % (after time of coalescence)
  h(t >= tc) = 0;
  p(t >= tc) = 0;
  f(t >= tc) = 0;
  Ap(t >= tc) = 0;
  Ac(t >= tc) = 0;
 
  % Zero out everything where inst. frequency is < f0
  % (larger then reference freq.)
  h(f < f0) = 0;
  p(f < f0) = 0;
  f(f < f0) = 0;
  Ap(f < f0) = 0;
  Ac(f < f0) = 0;
 
  % Normalize thats why D value doesn't matter
  h = h/norm(h);
 
return;

% Test for inspiral.m
% Neutron star binary inspiral (1.4-1.4 solar masses)
m1 = 1.4;          % mass of object 1 (solar mass units)
m2 = 1.4;          % mass of object 2 (solar mass units)
srate = 2048;      % sample rate (Hz)
tc = 32.0;         % time taken for coalescence (seconds)
inc = 0.0;           % angle of inclination
f0 = 40.0;         % reference frequency (Hz) when binary is impossible to
detect by LIGO 
dt = 1/srate;      % sample size (seconds)
N = floor(srate*tc);   % Number of data points needed
t = [0:N-1].'*dt;      % Time parameter
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[h, p, f] = inspiral(t, m1, m2, tc, inc, f0);
figure,
 
figure, plot(t, p);
axis tight
xlabel('Time (sec)');
ylabel('\phi(t)');
title('Binary inspiral waveform');
 
figure, plot(t, f);
axis tight
xlabel('Time (sec)');
ylabel('F(t)');
 
figure, plot(t, h);
axis tight
xlabel('Time (sec)');
ylabel('h(t)');
 
figure,
specgram(h, Nfft, srate, Nfft/2);

% Test Neutron star binary inspiral (1.4-1.4 solar masses)
m1 = 1.4;          % mass of object 1 (solar masses)
m2 = 1.4;          % mass of object 2 (solar masses)
tc = 32.0;         % time to coalescence (seconds)
srate = 2048;      % sample rate (Hz)
dt = 1/srate;
N = tc*srate;
 
t = (0:N-1)*dt;  % time vector
phase = phi(t, m1, m2, tc);
f = freq(t, m1, m2, tc);
v2 = v2t(t, m1, m2, tc);
h = v2.*cos(phase);      % amplitude is approximated by v^2 more accurately
 
figure,
plot(t, phase);
axis tight
xlabel('time (sec)');
ylabel('\phi(t)');
 
figure,
plot(t, f);
axis tight;
xlabel('time (sec)');
ylabel('F(t)');
 
figure,
plot(t, h);
axis tight;
xlabel('time (sec)');
ylabel('h(t)');
 
figure,
Nfft = 512;
specgram(h, Nfft, srate, Nfft/2);

% Calculates Inspiral with stationary phase approximation
 
function [h t]=inspiralsphase(m1, m2,srate,tc,f0)
 
T0 = 4.925E-06;            % conversion factor to geometrised units (sec)
M = m1 + m2;               % total mass
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eta = m1*m2/(M^2);         % symmetric mass ratio (unitless)
N = 2^nextpow2(tc*srate);  % number of samples
T = N/srate;               % actual length of sequence (seconds)
Nyq = srate/2.0;           % Nyquist frequency (Hz)
dt = 1/srate;              % time-step size (seconds)
df = srate/N;              % frequency-step size (Hz)
t = 0:N-1*dt;
 
f = (1:N/2-1)*df;  % positive frequencies, up to but not including Nyq,
                   % used for calculating chirp as a function of frequency
                   % (zero excluded to prevent divide-by-zero later)
 
% Calculate Si(f) in frequency domain
si = 2*pi*tc.*f +tc+ ( (3/(128*eta))*(pi*T0*M)^(-5/3) )*f.^(-5/3) +
(3715/756+55/9*eta)*(3/(128*eta))*(pi*M*T0)^-1*f.^-1;
chirp = f.^(-7/6).*exp(-1i*si+pi/4);
 
c = [ 0 chirp ];   % DC component which is zero
f = [ 0 f ];
 
w = zeros(1, length(f));
w(f0 <= f) = 1.0;
 
c = w.*c;    % Boxcar multiplication 
figure,plot(abs(c))
 
% inserting Spectrum at Nyquist frequencies of a real signal
H = [ c 0 conj(c(end:-1:2)) ];
figure,plot(abs(H))
 
% Inverse fourirer transform
h = real(ifft(H));
 
% kill everything below (T - tc)
h = h((T-tc) <= t);
 
% time vector of new h(t)
t = (0:length(h)-1)*dt;
 
%Removing artifatcs in Lower and high frequency
[b, a] = butter(4, 1.4*f0/Nyq, 'high');
h = filter(b, a, h);

 figure,
 [x,y,z] = butter(4,1.4*f0/Nyq,'high');
 [sos,g] = zp2sos(x,y,z);      % Convert to SOS form
 Hd = dfilt.df2tsos(sos,g);   % Create a dfilt object
 h = fvtool(Hd);              % Plot magnitude response
 set(h,'Analysis','freq')      % Display frequency response
 
[b, a] = butter(4, 0.98,'low');
h = filter(b, a, h);
 figure,
 [x,y,z] = butter(4,.98,'low');
 [sos,g] = zp2sos(x,y,z);      % Convert to SOS form
 Hd = dfilt.df2tsos(sos,g);   % Create a dfilt object
 h = fvtool(Hd);              % Plot magnitude response
 set(h,'Analysis','freq')      % Display frequency response
 
return;

% Test for inspiralsphase.m
% Neutron star binary inspiral (1.4-1.4 solar masses)
clc
m1 = 1.4;          % mass of object 1
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m2 = 1.4;          % mass of object 2
srate = 2048;      % sample rate (Hz)
tc = 32.0;         % time from t = 0 to coalescence (seconds)
i = 0.0;           % angle of inclination
f0 = 40.0;         % reference frequency (Hz) when binary is impossible to
detect by LIGO 
dt = 1/srate;      % sample size (seconds)
N = floor(srate*tc);   % Number of data points needed
t = (0:N-1).'*dt;      % Time parameter
 
[h t] = inspiralsphase(m1, m2, srate, tc,f0);
figure,
subplot(2, 1, 1);
plot(t,h);
axis tight
xlabel('Time (s)');
ylabel('h(t)');
 
figure,
Nfft = 512;
specgram(h, Nfft, srate, Nfft/2);
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