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1 INTRODUCTION
1.1 Background

Along with the development of coastal engineering, various types of
breakwaters have been built. The main purposes of breakwaters are to
provide harbour protection against waves, to stabilise beaches against
erosion due to large wave action, and to provide for temporary wave
protection for installations in or under the water surface.

Breakwaters may cause waves to break, they may just reflect waves, they
may dissipate wave energy through turbulence and friction, or they may
exert some combination of these, depending on their construction, the
wave characteristics, and the condition of the sea floor. According to their
structure, they can be classified in two groups: bottom mounted
breakwaters (fixed breakwaters) and floating breakwaters.

Examples of bottom mounted breakwaters include two types, the first of
which is made up of rubble-mound breakwaters and artificial stone
breakwaters. Rubble-mound breakwaters are composed of rock pieces
graded, from inner core to outer face, from fine to large. A typical section
is shown in Fig. 1.1. On the faces of artificial stone breakwaters, concrete
blocks are used as armour on the outer slopes. For this type of breakwater a
part of the incident wave energy is dissipated by waves breaking in front of
or on the face; the dissipation depends upon face slope and porosity, the
depth of water at the toe of the breakwater, the wave height, and the wave
steepness.

Fig. 1.1 A typical section of Rubble-mound breakwater



Vertical breakwaters are another type of bottom mounted breakwater.
Vertical breakwaters are mostly constructed of caissons, that is large
rectangular or circular concrete boxes, composed of walls and internal
diaphragms to give strength, and filled with sand or gravel to give weight,
see Fig. 1.2. It is also common practice to use sheet piling driven in
circular patterns and filled with sand for stability. A vertical breakwater
reflects the waves. Energy is only dissipated if the steepness of the
combined incident and reflected wave becomes high.

“\

Fig. 1.2 Section of vertical breakwater

Floating breakwaters form the second of the two major groups of
breakwaters. There are many different types in this group. Their effect is to
either reflect or dissipate the incident wave energy. These breakwaters are
designed with the motivation of improving the wave attenuation and the
stability of the structures. Floating breakwaters can be subdivided into four
general categories according to their construction, as shown in Fig. 1.3

(i) Box type breakwater (solid rectangle and barge);

(ii) Pontoon type breakwater (twin pontoon, open compartment,
A-frame etc.);

(1ii) Mat breakwater.

(iv) Tethered-float breakwater;

Floating breakwaters have some advantageous features in practical use, for
example floating breakwaters can be used where bottom-mounted
breakwaters are not feasible because of soft bottom, deep water, or
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problems with sand and silt transport. The cost of traditional fixed
breakwaters increases significantly with water depth, so that floating
breakwaters are an attractive option in deep water. Floating breakwaters
allow better water quality because they permit water circulation underneath
the structures, which reduces environmental problems. Floating
breakwaters can also be relocated to new positions or rearranged in an
alternative layout. However, floating breakwaters do not provide the
complete wave protection offered by fixed breakwaters. Part of the
incident energy is transmitted past the floating breakwater structures, and
this is more pronounced for long (and usually high) waves; therefore the
usefulness of these structures has been assumed to be limited to attenuation
of short-period waves. For long-period wave reduction, massive structures
could still be required.

An example of this was an installation for Town Quay in Reykjavik
Harbour, Iceland, by the Swedish company, SF Marina System AB. In
February 1992, the breakwaters of barge type were subjected to wind and
wave conditions similar to the predicted 1 in 50 year return period wave
condition for the Town Quay site. A video of this storm shows the
attenuation of short-period waves, and therefore the breakwaters provided
acceptable protection for small boats, although long-period waves were
transmitted. These long-period waves caused the floating breakwaters and
moored boats to move simultaneously with limited relative motion.
Moreover, the structures and mooring cables were not damaged by the
storm.

It is usually preferable for a breakwater to cause the dissipation or
reflection of as much wave energy as possible to provide good protection
on the leeward side. Some bad experiences with insufficient mooring cable
and anchor capacity have motivated an effort to evaluate cable and anchor
forces. However, to achieve this, greater understanding of the dynamic
behaviour of the complete system is required.

1.2 Process of Analysis

Breakwaters or offshore structures floating in ocean waves are generally
exposed to an environment of wind, currents and waves. Loads generated
by wind and currents are normally assumed to be constant for short periods
of time. In general, they influence the amount of cable pre-tension for a
moored structure. Wave loads of the first-order usually dominate the
environmental loads. To study the interaction between the bodies and the
waves, and the interaction between the bodies, would be the first stage in a
general analysis. This work was done a few years ago, and is described in



Paper A. Further work on multiple semi-submerged and submerged bodies
was also carried out, and is reported in Paper B.

In the work reported in Papers A and B, the wave forces acting on the
bodies, as well as added mass, wave damping and interaction forces
through the fluid, were determined by solving the diffraction problem and
the radiation problem for bodies at zero forward speed. In the diffraction
problem, all of the bodies are held fixed in the incoming waves and the
scattered velocity potential of the fluid is calculated. In the radiation
problem, the bodies, one at a time, are forced to oscillate in calm water and
the radiation potentials are calculated. Although these two problems are
physically different, from the mathematical point of view, they involve
similar boundary value problems. In general, there exist three major
models for solving this type of boundary value problems. They are given
in the following.

o Eigenfunction expansion models are those by which the domain
occupied by water is divided into different regions, one beneath each of
the structures and one around them. In each of these regions, the
velocity potential is expressed as a series of eigenfunctions satisfying
the Laplace equation and the boundary conditions except at the
boundaries between the regions. The continuity of velocity and pressure
at the common boundaries of the regions can be satisfied by adjusting
the coefficients of the series. A number of work were made based on
this model. These include the eigenseries solutions of MacCamy and
Fuchs (1954), Garret (1971), Black, et al. (1971), and Yeung (1981) for
a vertical cylinder; solutions of Calisal (1984), Miao & Liu (1985) for
composite cylinder, as well as solutions of Chakrabarti (1978), Mclver
(1986), Lindgren & Bjorkenstam (1989), Berggren & Bergdahl (1991)
and Berggren & Johansson (1992) for the problems of more than one
body.

e Boundary-integral models (or Panel method) are those in which the
model is based on the application of Green’s theorem in the entire fluid
domain to obtain an integral equation for the velocity potential on the
body surfaces (or on the entire boundary surface). The potential at any
point, in the fluid or on the boundaries, is considered as the result of a
distribution of sources (and sinks), with a contributing function (Green
function), on the submerged body surfaces. The source strengths are
then determined by discretizing this equation on the body surfaces. The
method has been developed by John (1949, 1950), Wehausen & Laitone
(1960), Hess and Smith (1962), Faltinsen and Michelsen (1974),
Garrison  (1974,1975), Newman (1985a, 1985b, 1985c, 1986),



Sclavounos and Lee (1985) and others, and has been applied to various
types of structures, for examples, single hemisphere (Garrison, et al.,
1970); submerged oil storage tank (Garrison & Chow, 1972); vertical
column with variation of section shape (Hogben & Standing, 1975); and
Tension-Leg Platform (Korsmeyer et al, 1988, and Newman &
Sclavounos, 1988). The boundary-integral methods are also called
boundary element methods, panel method, or sink-source method.

e Finite element models are those by which the fluid domain is generally
.divided into two regions, one interior which is near the structures and
one exterior. In order to satisfy the radiation condition at infinity, the
following techniques are often used in conjunction with a conventional
finite element method which is only applied in the interior region to
solve numerically diffraction and refraction problems. These methods
are: (i) boundary ‘dampers’ (Lysmer and Kuhlemeyer, 1969, Newton,
1975, Zienkiewicz, et al., 1978 and Huang, 1983), (ii) exterior series
solutions (Chen and Mei, 1974, 1975, Mei, 1978, Yue, et al., 1978 and
Olsson, 1990), (iii) exterior boundary integral formulation (Zienkiewicz,
etal,,1977,1978), and (iv) ‘infinite’ elements (Zienkiewicz and
Bettess, 1975,1977).

Procedures for applying the FEM to wave radiation and diffraction
problems has been reviewed by Chen and Mei (1974) and Bai and
Yeung (1974). Zienkiewicz et al. (1978) generalized the procedures
which can be used to link finite element solutions to any kind of exterior
solution.

When the three analytical and numerical models are compared, one.can see
that the eigenfunction expansion is the most accurate and fastest method.
However, this method is applicable only in cases where analytical
expressions exist, which requires a simple structural shape. The numerical
methods (both BIM and FEM), on the other hand, can be efficient
particularly for complex geometry. Eatock Taylor and Zietsman (1981a,
1981b) introduced a technique that permits the fictitious surface to be
lifted off the sea bottom, thereby the inner element region could be
reduced. This technique remedies the disadvantage of the conventional
FEM, especially in deep water, that the element mesh in the inner region
must be taken down to the seabed. Application of this technique together
with the coupled element approach (combining FEM with BIM) to highly
complex 3-D problems has been made by Eatock Taylor and Zietsman
(1982).



The dynamic response of floating structures in regular waves is the
primary subject studied here. The emphasis is placed on the effects of
constraints between the bodies, and the non-linear effects of the mooring
lines. Two types of couplings, elastic springs and revolute joints, are
discussed in detail. Mooring forces imposed on the structures have been
evaluated by a computer code, MODEX, which was developed by Jan
Lindahl (Lindahl & Bergdahl, 1987). The theoretical background to this
source code is given in the reports ‘Dynamic analysis of mooring cables’
(Lindahl & Sjoberg, 1983) and ‘Implicit numerical solution of the
equations of motion of a mooring cable’ (Lindahl, 1984). In this study an
elastic model has been used in assessing dynamic tension of the cable and
its transverse displacement. Since MODEX gives a solution in the time
domain, a transformation from time domain to frequency domain is made
by means of the Fast Fourier Transform technique. Only the component
corresponding to the fundamental frequency is coupled to the body
response analysis.

Kwan and Bruen (1991) have made a comparison of different procedures
based on time domain, frequency domain and quasi-static analysis for
cable dynamics. The conclusions based on their research are: 1) Although
quasi-static analysis yields acceptable predictions for suspended lines, it
can produce large errors in line tension and anchor force predictions, so
this method is suitable only for preliminary design; 2) Time domain
dynamic analysis which can account for all primary non-linearities is
therefore necessary to all practical mooring configurations; 3) Frequency
domain dynamic analysis can produce acceptable line tension and anchor
load predictions in most cases if the non-linearities are properly linearized.
However, this method may produce substantial error for highly non-linear
systems, for example when a large portion of the mooring line lies on the
sea floor, a clump weight is close to the touchdown point, or a buoy is
close to the surface. For these cases a time domain approach is more
appropriate.

The non-linear steady wave drift force cannot be neglected in a moored
structure system. Even when its magnitude is one order less than the wave
forces, the drifting offset due to this force will cause a change in the static
tension and the dynamic behaviour of the cables. In practice, the structures
are exposed to irregular waves in the ocean which cause excitation both at
low frequencies (difference-frequencies) and at high frequencies (sum-
frequencies). In particular, the difference-frequency excitation can cause
resonance and, consequently, large slowly varying offset in the horizontal
motion of the moored breakwater.



Chakrabarti and Cotter (1983) have made comparisons of linear and non-
linear models based on experiments with a conventional barge-type
structure exposed to beam sea in regular waves. The results demonstrate
that the computational models predict realistic roll motion only if they
include a non-linear viscous roll damping term in the motion equation.
This is particularly important for a motion near the natural period of the
structure.

In solving the equations of motion, the Newton-Raphson method is used to
deal with the non-linearity originating from the restoring force imposed by
the mooring cables. The ‘forward difference’ representation is applied for
the elements, in the Jacobi matrix, associated with this force. Once the
responses are derived, the free-surface elevation is determined according to
the dynamic free-surface condition. Waves on the free surface are
deformed due to the presence and oscillations of large structures.

As a stage in validating the mathematical modelling, model tests were
performed in a wave basin. Box-type floating breakwaters exposed to
incident regular, beam, and oblique, waves were investigated. The
experiments are fully discussed in Section 4. The results are used for
comparison with the theoretical solutions.

Breakwaters have to be properly designed, with an understanding of their
limitations, for specific site conditions. It is critical that they maintain their
function properly throughout their life. The analysis process mentioned
above, including the experiments, is based on the assumption that the
waves are regular. However, as ocean waves are random in nature, their
statistical properties have to be considered in designing breakwaters.
Design waves based on environmental statistics, e.g. wind, current and
storm waves, are the most important parameters in determining the
dimensions and layout of a particular system. Underestimation of design
waves leads to the failure of the structures or penetration of too large
waves into the harbour, whereas overestimation results in unnecessary
cost. Proposed approaches for selecting design waves are summarized in
the next section, Wave Climate and Design Waves.



2 WAVE CLIMATE AND DESIGN WAVES

Ocean waves are the most dominant and influential environmental factor
affecting the design of coastal and ocean structures. Wave height, wave
period and wave direction affect the response of the installed system. For
random waves, wave statistics are generally divided into two categories
according to the time scales concerned: short-term and long-term wave
statistics. Design waves based on the wave information from daily sea
states are used to simulate operational conditions. For example, in the
design of a breakwater system, such waves are used to determine the
dimensions, form and layout of the structures, in relation to the efficiency
of the system at the site for normal conditions. Design waves also
influence the fatigue characteristics of the mooring cables and coupling
elements. The time scale in this type of wave statistical analysis is usually
minutes or hours. There are two complementary methods for estimating the
short-term design condition. The first method involves the application of
wind data, whereas the second has to do with the collection of data directly
from wave record devices. The procedures of the estimates based on wind
data and on wave data are described briefly below.

For estimates based on wind data two approaches have been used to
determine wave characteristics from a known wind field. One of them is
termed the “significant wave” method or the Sverdrup-Munk-
Bretschneider (SMB) method. By this method, the significant wave height,
H;, and the significant wave period, T;, are determined directly in terms of
representative wind speed, U, fetch, F, and duration, t, (on which the wind
acts), and expressed generally in non-dimensional form as

gH, /U*=f; (gF/U?, gt/U)
gT, /U = f, (gF/U?, gt/U).

Under specific conditions, it is either the fetch or the wind duration that
imposes a limit on Hy and T,. For fetch-limited waves, gt/U is large enough
so that it does not influence H, and Ty only gF/U> controls them.
Conversely, for duration-limited waves, these two parameters are simply
functions of gt/U. When both the fetch and duration are sufficiently large
for H; and T to reach limiting values, these parameters become dependent
only on the wind speed U; the condition of a fully arisen sea then exists.
Wiegel (1964) and Bretschneider (1958, 1970, 1973) provide some
hindcasting curves and empirical equations used to estimate Hg and Ts.



The second approach is to express the wave spectrum directly in terms of
the wind characteristics, e.g. the wind speed at 19.5 meters above the mean
water level. Examples are the spectra of Pierson-Moskowitz (Pierson &
Moskowitz 1964) and JONSWAP (Hasselmann er al. 1973), which are the
most common spectra used in ocean engineering. A method of applying
these formulas with corrected wind speed is provided in the Shore
Protection Manual (1984, 1992) of the U.S. Army Coastal Engineering
Research Center.

For estimates based on wave data the Fast Fourier Transform algorithm is
commonly used to decompose a waveform directly from the recorded data
into a set of sinusoidal waves, with corresponding amplitudes and
frequencies, in order to determine an energy spectrum. The significant
wave height and wave period for each recorded period are subsequently

obtained from the spectral moments, m, = J.:f“S(f)df , 1.e. by taking H =

4(my)”* and by defin%tions of peak period, T = 1/f, and zero up-crossing
period, T, = (my/m,)”, (which is related to Ty by T, = 0.71T, for the P-M
spectrum and by T, = 0.714T, for the JONSW AP spectrum).

A design wave based on the wave information from storm waves over a
long period (of the order of 20 — 100 years) is used to simulate the extreme
condition. The prediction of the characteristics of long-term extreme
values deals with the occurrence of rare events, as opposed to the short-
term statistics which determine the normal variations. When a system is
exposed to extreme conditions there is risk of damage. The strength of the
structures and mooring cables, as well as the load capacity of the anchors,
are affected by such waves. The determination of extreme waves usually
involves ‘selecting and fitting a suitable probability distribution to wave
height data, and then extrapolating this to find a suitable design wave that
corresponds to a chosen return period, Tr , or a chosen encounter
probability, E. In general, the long-term probability is obtained from many
short-term observations, since storm wave statistics still lack reliable data
covering sufficiently long periods.

Martensson and Bergdahl (1987) have made investigations of the wave
climate in the southern Baltic. Although the purpose of their work was to
evaluate the amount of wave energy in Swedish coastal water, some useful
information on wave statistics at the measuring sites is provided, and this
can be used as a reference.
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3 DYNAMIC RESPONSE IN THE FREQUENCY DOMAIN

In the analysis of interaction between waves and structures, wave motion is
usually considered to be stationary, ergodic and homogenous. Based on
these assumptions, it is permissible for a random process, for instance
wave elevation, 1(t), or wave force, F(t), to be described by a time history
or by a spectral representation; it is also accepted that the required
information can be sampled during an interval of time, e.g. a few hours,
that can be started at different times, and at different locations, within the
region considered. For such random dynamic problems, both the excitation
and response processes are modelled as random processes. Statistical
parameters of the response processes can be predicted from a probabilistic
specification of the excitation processes and the equation of motion of the
system.

To predict the response of a system to random waves, either time domain
analysis or frequency domain analysis may be ad()pted In time domain
analysis, various combinations of non-linear effects can be modelled in a
consistent and direct manner; for a system that is highly non-linear, or if
there are difficulties in the linearization of the non-linearities, this method
is usually needed to obtain reliable results. Frequency domain analysis, on
the other hand, holds only for linear systems. If all of the non-linearities in
the equation of motion are replaced by linear approximations, then the
method can be used for simplified solution. In comparison with time
domain analysis, frequency domain analysis is usually considered simple
and efficient; it yields results that are simpler to interpret and apply. All of
this may be the reason why frequency domain analysis has been applied
extensively to problems of floating-structure dynamics.

For structures floating in ocean waves, the non-linearities of importance in
dynamic response are non-linear fluid-drag force, non-linear mooring-line
force and non-linear viscous damping. Linear approximations of these non-
linear forces have been extensively studied in the past decade. Dynamic
analysis of the floating structures is mostly, whenever possible, performed
in the frequency domain for simplified solutions.

3.1 Review of Problems and Basic Assumptions
In the design of floating breakwaters or other floating offshore structures,
the dynamic response of the bodies to surface waves, currents and wind

needs to be taken into account. Since it is possible to translate the regular
waves into an irregular sea by means of Fourier transformation, it is
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generally sufficient to analyse the structures in regular sinusoidal waves.
One of the essential stages in response analysis is the mathematical
modelling, which represents the structures by suitably defined mass,
damping and stiffness matrices; external constraints; and hydrodynamic
forces. To formulate correctly all of these physical characteristics is
normally difficult due to uncertainties and non-linearities. Since the effects
of physical characteristics on a structure could be different for different
systems, it is sometimes possible to simplify the model in order to solve a
particular problem. In this primary study, the mathematical model
presented represents a basic floating system which can be modified to a
more complex or realistic system. In Figure 3.1, an example of a floating
breakwater system is shown; it is composed of multiple barge-type bodies,
couplings between the bodies and mooring cables between the bodies and
the seafloor. In the model the couplings are simulated either as massless
springs or as revolute joints, and the cables are modelled taking into
consideration their dynamic response to the excitations from the contact
(attachment) points and the surrounding fluid. These external effects are
discussed separately later. In the model it is assumed that the structures
have zero forward speed and that there is no current present.

Fig. 3.1 Barge-type floating breakwaters (SF Marina System AB)

12



The hydrodynamic forces exerted by waves on a structure, or on its
members, can be expressed as a function of four parameters in a non-
dimensional form:

T D
F :f(_%,uo 1 ?nD) G.1)

in which t is time, T is wave period, L is wave length, D is characteristic
dimension of the structure, uy is maximum horizontal water particle
velocity, p is mass density of water, v is kinematic viscosity, and the
parameter uoD/v is the Reynolds number, uoT/D is the Keulegan-Carpenter
number (KC), and ntD/L is the diffraction parameter. Chakrabarti (1980)
presents a figure (Fig. 3.2) which indicates the regions where different
models for the hydrodynamic forces should be applied. The non-
dimensional parameter, ka, presented in Figure 3.2 is equivalent to the
diffraction parameter, TD/L; whereas the KC number is equivalent to the
ratio of the particle orbit diameter (2A) to the structure dimension (D =
2a). The KC number plays a role in the flow separation; it measures the
importance of drag force effects. The diffraction parameter, ka, determines
the importance of the diffraction effect. When the parameter ka << 1, a
body is regarded as small and the diffraction is relatively unimportant. The
wave force may be dominated by the inertia and/or drag forces, shown in
the left part of the diagram. In this part of the diagram, if the parameter
2A/D < 1, as in Regions I and III, the wave amplitude is regarded as small.
In such a case the drag force is relatively small compared with the inertia
force, i.e. the Froude-Krylov approach is applicable. In the region where
the parameter 2A/D is of order O(1) or larger, for instance Region IV, the
wave amplitude is regarded as large. Since the flow separation and the drag
force are usually significant, the Morison equation is needed to include the
effect of the drag force. The inertia force and the drag force are added
together linearly. However, when the size of the structure is comparable to
the wave length, that is ka = O(1), the presence of the structure alters the
wave field near the structure. If no wave break occurs, it is indicated that
the drag force is less than 10%, according to the diagram in the regions II
and IV, and that the effect of diffraction is predominant. In this case the
Froude-Krylov approach and Morison equation are no longer valid. The
diffraction theory is then used to take the diffraction of the waves from the
structure into account.

13
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The problem discussed here involves large structures (floating bodies) in
combination with members (mooring cables) of small diameter in
comparison to the wave length. The characteristic dimensions of floating
breakwaters are generally in the region of ka > O(1) due to the properties
of structures and, hence, the diffraction theory has been adopted. In
addition to this, the parameter of wave steepness, H/L (wave height / wave
length), is assumed to be small, which means that the linear wave theory is
applicable as well. The method of computing the linear wave force on
large floating and submerged bodies is discussed in Papers A and B. The
concepts of added mass, radiation damping, exciting force and interaction
force (between the bodies through the fluid) have also been discussed in
the above mentioned papers. For the long slender members (cables) the
drag force has a significant effect on their dynamic characteristics,
especially on the dynamics of transverse displacement. Since an elastic
cable combines a soft transverse stiffness with a strong axial stiffness,
obtaining its dynamic force and response requires special methods. A
detailed computational procedure is described in the paper, "Dynamic
Analysis of Mooring Cables”, by Jan Lindahl and Anders Sjoberg (1983).
The application of this method to computing the dynamic load exerted on
the structures is discussed here in Section 3.5.

3.2 The Definition of Motions and Reference Frames

In order to derive a set of equations of motion for a system of several
floating bodies and mooring cables in three-dimensional space, three
groups of Cartesian reference frames are employed to define the position
and orientation of each rigid element, see in Fig. 3.3. The x-y-z frame is a
global reference frame with its origin, o, fixed on the mean water surface,
and the z-axis is directed upward. This global frame is usually used to
define the absolute motion of the bodies, as well as the interrelation of the
local frames of the same type or frames of different types.
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Z (Heave, Yaw)

Fig. 3.3 The definition of motions and reference frames for a
floating system

One of the groups of local frames used in dynamic analysis of a system
consists of body-fixed reference frames, also called vessel coordinate
systems, indicated by X,y,Z. Each frame is fixed on a body, which means

that it moves with the body, in both translation and rotation. All of the axes
of a given frame are oriented in the same directions as the axes of the
global frame when the body floats at rest in calm water. The geometry of
the body is usually specified in the body-fixed frame, and the points of
interest on the body can be defined in the x-y-z frame once the X -y —Z

frame is oriented relative to the x-y-z-frame. Let the reference centre of
rotation of the rigid body be Q, and its moving coordinate be expanded as
a power series of the perturbation parameter, €, and truncated up to the
second-order. This can be expressed as

X(t)=x> +X© +eXP )+ XD () +... (3.2)

where x,” is the vector from the origin of the x-y-z reference frame to the
origin of the X~y —Z frame, € is a small quantity denoting the wave

steepness, and (xo" + X?) is the resting position of Q independent of time,
t. In general, Q need not coincide with the centre of mass of the body. For
a body with small motion, the angular displacement is expressed as e0(t)
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with the components eq, €f}, and ey about axes parallel to x, y, and z; the
relations between these two frames for any point on the body are

X=x! +E+S{X‘”+6“) x(§~X(°))}+O(sz) (3.3)
or, in component form,

x=Xp+X+e[X"+pz-2")-y(F-Y)]
Y=Y AT YV (X=X —oz-2)] (3.4)

z=2) +Z+€[Z" + oY - Y )= B(x - X)]

Another group of local frames consists of cable reference frames; these are
used to define the position and movement of the points or elements of the
cables. Each of these frames is fixed in space with the origin located at the
anchor point. The coordinate plane defined by the axes x; and x; is parallel
to the mean water surface; the plane lies at the seafloor when constant
water depth is assumed. The cable hangs in the plane defined by the axes
X1 and x,. The axis x; is positive in the direction towards the upper end
point, while x, is of the same direction as the axis z. With the angle of
rotation of the x, axis relative to the x axis, denoted as 9,,, the coordinates
of the upper end point P; in this frame can be expressed as

X, =c, + g{cosB,XX‘” +sin0, Y" —sin@, ("z‘j - Z“”)-oc

+cos, (21 -2}~ [COSGIX (3’1 =Y?)-sind, (ij -X® )] ' 7}
x, =c, +e{2” +a-(y,- Y)-B-(x, - X)} (3.5)

X, =¢,+ e{sinG,XX“) ~c0s0, Y +cos0,, (Zj - Z‘O))- o

+sin0,, (2, —z“”).ﬁ-[smelx(yi ~Y)+cos,, (X, —X‘“’)]-y}
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where ¢y, ¢; and c; are the coordinates of the upper end point at the resting
position; they are expressed as

¢, =—cos6, x; —sinb, y; +cos(—)1x(xg—3(j)+sin9”(y'g —yj)
¢, =—7) +2Z, +Z (3.6)
¢, =—sin®, x; +cosO, y; +sin Glx(xg ~'>Zj)-coselx(y3 —yj)

where x, is the vector from the origin of the x-y-z reference frame to the
origin of the x;-x,-x3 frame. In formula (3.5), the second terms on the
right-hand side indicate the first-order displacements of the point P; in
space.

3.3 Equations of Motion

Dynamic responses of a floating structure are determined by the equations
of motion, in which all significant dynamic effects (dynamic forces) on the
structure needed to be taken into account. Let a system of multiple linked
bodies be discretized into rigid bodies, and number them from 1 to NB. For
each of the bodies, the interactions between it and connected objects, for
example neighbour floats, boats, the seafloor, walls, and so on, are
replaced by the corresponding external forces. The interactions between
the body and the fluid are replaced by fluid pressure. The computational
model is shown in Figure 3.4,

Fig. 3.4 Computational model
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For each body, following the conservation law of linear momentum, or
Newton’s second law, three equations of motion in the X, y and z
directions are derived. In addition, by applying the conservation law of
angular momentum with respect to the fixed origin, o, together with the
equation of linear momentum, another three equations can be obtained in
relation to the rotations of the body about the axes passing through the
selected centre, Q, and parallel to the x, y and z axes. For a system of small
motions, the equations are summarized in matrix form in terms of the
generalized displacements and forces

M"%" () +C"x" (t) = F" (1) m=12,.,NB 3.7)

where overhead dots denote the time derivative, and the index, m, is the
number of the body; x(t) is the generalized displacement vector; M is the
mass matrix given in Equation (3.8); and C is the stiffness matrix due to
restoring forces and moments from the displaced position of the body, also
given in equation (3.9). Finally, F(t) represents the load vector.

M 0 0 0 M(z,~Z®) -M(7,-Y?)]
0 M 0 -M(z, -Z) 0 M (%, -X©)
0 0 M M(7,-Y?) -M(x,-X"?) 0
M:
0 M(z, -2®) My, -Y?) 1,41y 15, 18,
M(z, -Z?) 0 -M(X, -X©) 18, 15 +15 18,
L~M(yg~y‘°>) M(x, -X®) 0 1%, 15, 15 +15,
(3.8)
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00 0 0 0 0 1
00 0 0 0 0
0 0 pgA pgly ~pgl 0
C = A \%
0 0 ngA Pg(lzz +1; ) _ngA —ng,V
b -Mg(7, - 2?) e +Mg(x, - X )
0 0 —pglt ot pe(Ifi + 1) ~pgl;
: 8 ~Mg(z, -2%) ) (+Me(y,-Y"?)
00 o0 0 0 0 |

(3.9)

In these equations X, is the centre of mass of the body; Ii)-b Gi=1,2,3;and

j =1, 2, 3) are the second moments of inertia. Definitions of I”b and I;,°
are

= J[f,. (£ - X)" dm

and
th = Il (£~ X) 7Y )

where V® is the volume of the whole body including the part above the free
surface. Other moments are similarly defined. The first and second

moments of inertia of the cut plane (water-line plane), S(O) are denoted
respectively by I* and Ii’;‘ (i=1,2,3;andj=1, 2, 3); their definitions are
given as follow

I = [f (X=X @) dxdy,
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Hsm ( X(O))( -y ) dxdy, and so on.

The first moments of the static submerged volume, V®, are denoted by I.Y
(i=1, 2, 3), and defined as

= H.fvm (i B X(O)) dxdydz, and so on.

Equation (3.7) applies in the time domain. If the mass, damping, or
stiffness properties are frequency dependent, the problem is more
conveniently formulated in the frequency domain. For a body in harmonic
motion, the components of the displacement vector may be described by

x, = Re{X; -e ™} i=1,2,..,6 (3.10)

where X; denotes the complex amplitude of the displacements; index j = 1,
2, and 3 indicate, respectively, the translational motions in sway, surge and
heave; and j = 4, 5, and 6 indicate the rotational motions in pitch, roll and
yaw. The linear and angular displacement about the body are noted in the
definition sketch, Figure 3.3. For the problem considered here, the time
dependent external force F(t) may consist of the wave force F,(t), viscous
damping force F,(t) and constraining force F(t) from the external supports
and connections. The linearized wave force acting on the body m is of the
form

N
Fr(t)=F"(t)-A™x" - B™x" — i(A"‘"fvz" -B™x") (3.11)
n=1

in which A™ is the added mass matrix and B™" is the matrix of radiation
damping, both of which are due to the m-th body’s own motion. The
matrices A™ and B™ are the interaction coefficients due to the motion of
the neighbor n. The exciting force due to diffraction is Ky (t). The
numerical computations of these coefficients in the frequency domain are
fully described in Papers A and B.

Since the viscous damping force and the constraining forces are often non-
linear, for example the velocity-squared drag force caused by the viscosity
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of the fluid, and the forces due to the mooring lines, they cannot be directly
incorporated into the equation of motion when the dynamic analysis is
implemented in the frequency domain. All non-linear forces acting on the
bodies need to be linearized. The linearization techniques are discussed in
the following sections. In general, linearized constraining forces can be
given in the following form:

F(l)
“F, (1) = (3.12)
T(l) + F(l) X (Xb + X(O))+ F(O) X X(I)

where T." denotes the first-order constraining torque due to constrainting
influences (including force and moment). With the definitions given in

equations (3.10) — (3.12), the equations of motion (3.7) can be rewritten

[~0?(M™ + A™™) - i@B™ +C™} X™e ™ + %{—mzAm“ —~ioB™ } X"e 7

n=l,n#m
=F" () +F () +F (1)

m=1,2,..,NB (3.13)

In order to eliminate the time factor from the equations and calculate the
structural response in the frequency domain, a formal mathematical
transformation is used. The basic approach involves the expansion of the
time-dependent loads in terms of a series of harmonic functions. One can
use an ordinary Fourier series in which the loads, F(t), are expanded in a
series of the form

F(t)=iAncos%t+iB“sin%t (3.14)

n=0 n=0

where T is the duration of the loading, or the loads can be expressed as an
infinite integral,
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F(t) = Tﬁ(m)e—i‘”‘ do. (3.15)

—oa

The general equations of motion, Eq. 3.7, can be written as

Mmim(t)+ mem (t): J"Fm ((D)e—i(m do m= 1’2’_“5 NB (316)

—oo

Based on the assumption that the structural response to each excitation
frequency is confined to that frequency, the following complex set of
equations can be solved for various values of ®:

(—0*M™ +C™) X" (0)=F" (m) m=12,., NB. 317

Finally, the total response can be calculated from the summation of
responses from all of the frequencies.

3.4 Inclusion of Mechanical Couplings
3.4.1 Elastic springs

It is seldom that a floating breakwater consists of a single unit; in general,
it is built up by joining units in various ways so that the breakwater will act
as one continuous beam. The relative motion between the units is usually
restricted by some type of coupling, such as stiff elements or articulated
couplings (or joints), among others. The function of an articulated
coupling is such that it allows bending in the vertical plane, while it limits
horizontal bending and twisting.

Considering that the motion of a breakwater system has been assumed to
be small and that the size of the coupling is usually small compared with
the characteristic dimensions of the bodies, the stiff elements may be
modelled as massless springs with large stiffness. In this study, it is
assumed that the springs are placed parallel to the x, y and z axes when the
bodies are floating at rest, and that the connections between the body and
the springs are hinged connections. Figure 3.5 a) illustrates a simple
example of a pair of bodies, m and n, connected by a spring with length 1
parallel to the y axis and having relative displacements 0x and 8y in the x
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and y directions respectively. The horizontal components of the spring
force at point p on body m are illustrated in Figure 3.5 b).

X

[mp n SX
y

Fig. 3.5 a) Relative displacements for a pair of bodies connected by an
elastic spring.

F=F% +F® + 0%
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_ @
F, =F" +k-0y
b) The horizontal components of the spring force on body m.

The force F is caused by the axial deflection of the spring. To the first
order, the axial deflection is due only to the relative displacement &x; 8y

induces the second-order deflection. To account for the direction of F, the
force on body m can be expressed as
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k 0[éx] |FY \
0 F(n% 8y = F)(ll) N (318)

In general, when the bodies move in all six modes of motion, the relative
movements between the attached points p on body m and g on body n in
the global reference frame are defined as

Xy =X, :(xg‘ -x8)+(im ~§“)+
8[(X(1)m —x@n ) +ebm (i;)n _ X(O)m)_ ULV (5{-: —x©On )] + 0(82)

(3.19)

where the term with the scale € gives the deflection Al (8x, dy, 8z) of the
first order. With similar considerations, the linear forces on body m and
their moments about the selected centre of rotation, X(O)m, are summarised
in matrix form

j=1 j=1

where F,™" denotes the first-order generalized spring force on body m in
which the moments (for components 4, 5 and 6) are evaluated according to
Equation (3.12). The stiffness matrix related to the body’s own motion is
K™, and K;™" is related to the motion of the connected body n; both of
these are caused by the j-th spring. The number of springs on body m is
NS. For the springs parallel to the x axis, the corresponding stiffness
matrices are derived as follows:
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kj 0 0 0 kjhf; kjh;‘;
0 EXj 0 —Exjh;j‘ 0 EX}hxm)
0 0 Exj Exjh;'} E)qh)'(“J 0
K™ —
! 0 _E.h™ E_R"™ K (thyjh ] [EXJhQ;h J
X' zj Xy 44 (0) (0)
+h 5 F; +h g Fy
n m EX)hXJhYJ k)h7jh
wp 0w () e
E_ h_ h k.hTh?
“k.h™ E_h"™ 0 X Hxitz ityitty K
ity X xj (+hZ)F’EJO) +h;';F§]0) 66
(3.21)
in which

K, =hJFY +hIED +Exj[(h;)2 +(h;‘;)2],
Kss =hDFP +hIFY +k,(b2) +E,(hn ),

K =h2E® +h2E® +E, (7))’ +k;(hn),
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and
_ K, 0 0
0 -E, 0
0 0 _Em
K" =
0 thg “Enhw
~k;h? 0 E ;hj
kjhyy  —Eghg 0
in which
= 0)
h:] — XS - Xn 3
- 0
hi =y, -Y,",
= 0)
hZ‘—ZS'“Zn-

1

E_hy,

xjtzi

~E, hl,

Kj yi

E hyhy;

Xjhyj Ty

+E hmhnl

zj zi

E, hihl,

K) X}yl

E hl’llhﬂ

Xyt
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E hI\

xj*oxi

E hihy

1(_} yiTxt

xjrxjtxi

+k h™h%

jtzjttzi

(E h™h™

k hmhn

Jyjtd

k.hy,

Iy

-E,hy;

Xjixi
my. n
mhuhm
izjtyi

[ Eghighy |1,
+k.hTh'.

ey

j k hl‘ﬂhn
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For the springs parallel to the y axis, the K;™" and K™ matrices are
derived as

Eyj 0 0 0 Ey}h'Z‘J1 Eyjh;'}
0 kj 0 thZ‘ 0 kjh)’f'J
0 0 Eyj Eyjhry'} Ey)h;1 0
Kmm m
iz Yityi 44 +h‘;}F;JO) +h;r;FZ(JO)
yit'g ¥it i (0) 55 (0)
h“}FXJ +h;]FZJ
khTh? E, hPh]}
E hm khm 0 ( Jxj ZJ] [ yityi LJJ K
vittyi Jxj my(0) mp(0) 66
i hz_;Fx_; hZJF}’J .
(3.23)
in which

Ko =hJE +hAFY +E () +k;(h2)’,

371z it i

Kss =hDFY +h"FQ +E [(hxmj)2+(h;‘;)2],

Xj© Xj
K¢ =h"FP +h"F® + k. (h‘“) +Eyj(h3})2,

1=yl Xj © Xj

and
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-E, 0 0 0 -—Eyjhfz‘i Eyjh;i
0 ~kj 0 kjh'z‘i 0 —kjh';i
0 0 '—Eyj _Eyjhgi Eyjhii 0
KJ.nn —
! O k hm ““E hm . E)’Jh;}}hgl E hmhn k hmhn
ity Yiyi +kjhg;h:l yittyittxi gtk
/
m m myn EYJh;r;hl;l my. n
—Eyjha' 0 Eyjhxj Eyjhxjhyi N +Eyjh2j]h:i Eyjhzjhyi
E.h"  -kh" 0 k;h™h" E,h™h" (kjhghgi ] '
vittyi T it Pt iyt - my.n
+Eyhyhyi )|

(3.24)

For the springs parallel to the z axis, the K™ and K;™" matrices are derived

as
Ezj 0 0 0 Ezjh;’;K —Ezjh;}
0 EZj 0 —Ezjhfj1 0 Ezjhxmj
0 0 k; kjh'y‘} ~kjh;‘} 0
Ko =
Bl i 4 - +hxijy(;>) - +h2}FijO)
k.h™h™ ’ E h"h"
m 17Xy Al ad]
El.ihzj 0 —kjh:} M(+hn1p(9)] Kss —(—i-hm»F(p) ]
. Y1~ X) Ytz

~-E h™ E h" 0
S +hjF” +h;‘;F§f’

Zjyj

{Ehh) (Eth K, |

: (3.25)
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in which

K, =h7FY +hIFY +k,

Yityi

(hw) + Ezj (h$)2 ’

Ky =h2EY +h2F + B, (0 ) + k(b7 ),

Ke =hFY +hIFY +E,

and
_ E,
0
0
K" =
0
-E by
Ehy;

Xj = xj

—kjhy -

k.hT

17X

Z

E, h,

zjzi

—kjhy,

hmhll

J)’J y

+E ;hyhy

zj*zi

k.hhy,

Xyt

E, hlh.

zjrxjizi

3.4.2 Revolute joints (Hinge joints)

|05) + ()]

~E, hl.

zjtzi

k.hy,

Pxi

—k:hh}

Yt

kjhfj‘h;“

+E ;hyhy

zj *zi

E,hlhy;

ziyjttz

E, hl;

zZyt

~E,h};

zj o xi

E,h7hy,

Zj zjixi

E, hohl,

Zj Z}°y1

Z txj i

| +E_ h™nn

Zityityi /|

E_h™h" ] ,

(3.26)

Another type of connection that is often encountered in the simulation of
articulated couplings is the revolute joint. A revolute joint allows relative
rotation about a common axis, but precludes relative translation along this
axis, as shown in Fig. 3.6. In order to define the revolute joint, a pair of
joint definition frames, x”,-y" 2" and X”-y”y-z”,, are introduced; the
frames are attached to bodies m and n, respectively, with their origins at
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the centre of the joint, denoted P, that is common to the bodies. Points Q,,
and Q, at one unit of distance from P on the axis of relative rotation, are
specified in order to determine the z” axes of the frames. To orient the
frames, unit vectors f,, g, and h,, are defined along the coordinate axes of
the X" -y m-2"n frame, and £, g, and h,, of the x”,-y”,-z”, frame.

by Body n

Body m

N

Fig. 3.6 Revolute joint (Hinge)

The analytical formulation of the revolute joint is that points P, and P,
coincide and that body-fixed vectors hy, and h, are parallel, leading to the
constraint equations

®*(P,.,P,)=r, -1, =0

m? m

(3.27)

CI)dl(fm’hn) fm 'hn
@ (h,,h, )= , =
'(Ddl(gm’hn) Em .hn

for which the second condition states that the vector h,, is parallel to hy, if,
and only if, it is orthogonal to f,, and g, There are three scalar equations
for the first condition, and two for the second one. These equations yield
only one relative degree of freedom, i.e. rotation about the common axis of
the bearing. In general, if a system has NJ number of joints, all constraint
equations encountered can be written in the form
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®,(r,,A,.r,,A,)=0 j=1,2,..,NJ (3.28)

j m>'n?

where index j is the number of the joint between the bodies m and n; r is a
space vector of coordinates X, y and z; and A is the direction cosine matrix
(or transformation matrix) of the body-fixed frame relative to the
stationary x-y-z frame.

The effect of this type of joint on the connected bodies can be replaced by
the reaction forces and torques at the connecting point. Since the reaction
forces and torques affected by the relative motion of the connected bodies,
are usually difficult to determine, a solution based on the principle of
virtual work and the Lagrange multiplier theorem is used to obtain the
equations of motion which satisfies the constraint conditions for the
system.

According to Newton’s laws and the virtual work principle, variational
equations of motion for a constrained system are reduced to the following
compact form

5" [Mi + (AG" + AG® (X, -XV)-F, |+ [M(R, -XV)ATi +J'0" + BT o - T; ]| =0

(3.29)

in which J’ is the inertia matrix with respect to the body-fixed frame; F,
and T’, denote the applied forces and moments (or torques) with respect to
the selected centre of rotation; ®" = AT ®; ® is the angular velocity of the
body-fixed frame relative to the x-y-z-frame; and @ is a skew-symmetric
matrix associated with the vector ®. The effect of the constraint forces is
eliminated in this composite equation because the virtual work of all
constraint forces is zero. Equation (3.29) must hold for all virtual

displacements, or, and virtual rotations, on’, that are kinematically
admissible for the constraints of equation (3.28) if

D.or+ @ on" =0 (3.30)
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where @, and @, are Jacobian matrices for which computational formulae
are given in Table 3.1; for a complete explanation, see Haug (1989).

When Equation (3.29) holds for all r and o’ that satisfy equation (3.30),
according to the Lagrange multiplier theorem, there exists a Lagrange
multiplier vector A such that

5[ M+ (AGY +AG® |M(%, - X ) F, + @A+
(3.31)
5 [M(% — X )ATE+J'6 + B @ T, +DA| =

for arbitrary or and 6n’. The coefficients of these arbitrary variations must
be zero, yielding the constrained Newton-Euler equations of motion

Mi +(A®’ + A |M(X, -X)+ @A =F,
(3.32)
Yo+ M(E, -XO)ATE+ @A =T] -3T'0’

To complete the equations of motion, acceleration equations associated
with the kinematic constraints of equation (3.28) must be obtained. By
taking the time derivative of equation (3.28), the velocity equation is

Di+D 0 =D, (3.33)

Next, the time derivative of this equation yields the acceleration equation
Qi+d,0 =-0, —(Dr+®.0)=T. (3.34)

So far, the equations are set up for a system of large displacements and
large rotations. For a spatial system, Euler’s theorem and Euler parameters
are usually needed to determine the transformation matrix A. For a more
detailed derivation of these equations, see Haug (1989). However, for-a
system of small-amplitude motion, the system acceleration equations can
be simplified by eliminating the second order terms, O(e®). Since the
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approximations of sinot = o0 and cosa. = 1 are permissible for a small
angular displacement o (<15° or 0.26 rad), the transformation matrix A
can be written in the form of elements of 0 (ct, B, 7):

F I -y B1
A:I v 1 -—oc[. (3.35)
L—B o J

1

To the first order, O(e), the relationships of a):éz(d,B,Y) and

o’ =A"0 = are derived. According to the formulas given in Table 3.2,
the solutions of I" for all constraint conditions involved are eliminated due
to the second order. The Coriolis acceleration effects on the right side of
equation (3.32) and the cross-term effects with ®'®’ are also negligible
for the same reason. Combining equations (3.32) and (3.34), the linearized
approximation obtained is

M M(x, -X@) @ Ir§] [FO
M(%, -X©@) i o7 o |=|T® (3.36)
o 038 0 || A 0
T 4

with the expressions of

®"n=e(@A + @A)+ 0(e?)
and

olr=¢(@] "2 + @2+ 0(e?)

where the superscripts (0) and (1) indicate the terms of zero and the first
order, respectively. These equations of motion, taken with the kinematic
constraint equation (3.28) and the linearized velocity equation (3.33), yield
a mixed system of differential-algebraic equations of motion for the
system. In addition to this dynamic analysis, an equilibrium analysis of the
system is needed to determine the zero-order Lagrange multipliers, and the
static forces which depend on the equilibrium position of the bodies.
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Furthermore, initial conditions on position and orientation
may be required for a time domain solution.

and on velocity

Table 3.1
Type of | Constraint
constraint | function Do, Do D D
Spherlc.al ° (Pp.Po) 111 (1] A (ip _ i(())) —A (;P _ 5{(0))
constraint mm " A "
Dot-1 1 o (b | 0 0 —hTATALE, | ETATA R,
constraint
Dot-l 1 ¢ (guhn) | 0 0 | BIATALE, | -gATAR,
constraint
Table 3.2
Type of r
constraint | functions
herical ) )
Sp | T (PP A, 8,80 (%) - X0)-A,&,8, (% -X)
constraint
Dot- ) ey -~ -
Lo r o b | cn(ATA &7 67 +@ @/ ATA ) +207 T ATA P
n n m m m n n n m m n n n mom m
constraint
Dot-1 )y ey ~ ~
. T (gmbo) | —hT(ATA, &8, +8,8,A0A,, ), +20, T, ATA, B0,
constraint
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3.5 Inclusion of Mooring Lines

A mooring system is generally required to keep floating breakwaters on
station. For the purpose of assessing the influence of mooring lines on the
dynamics of a breakwater system, a study of different methods was
undertaken, based on the published articles of other researchers. This study
yielded considerable information. Kwan and Bruen (1991) made
calculations by three different methods, conventional quasi-static analysis,
time domain and frequency domain analysis, for 13 cases of different types
of mooring and different wave conditions. Results from these three
methods were compared. The comparison shows that quasi-static analysis
gives a very poor representation of wave frequency tensions, which may
result in large errors in fatigue damage calculation. However, when the
total tensions are considered. the difference in the results based on quasi-
static and time domain analysis is less dramatic. Quasi-static analysis
underestimates total tensions by 4 to 40% for all of the thirteen cases
studied. From these extensive comparisons, it is evident that quasi-static
analysis is a very approximate approach, especially for systems floating in
deep water. Generally, it is not sufficient that the cable force be determined
only by the fairlead position. For an accurate prediction of cable tension,
dynamic analysis is needed, to include not only the loads induced by the
motions of the fairlead but also the dynamics of the mooring line itself.

In studying the methods used in the dynamic analysis, extensive
comparisons of the dynamic computations (parameters), based on
frequency domain and time domain simulations, for mooring cables, have
also been made and reported in the Kwan and Bruen paper. Results
obtained by these methods have been compared in terms of maximum line
tensions, tension spectra and their transfer functions (tension to tangential
motion), and maximum anchor loads. A major conclusion based on these
comparative studies is that the frequency domain analysis can produce
acceptable line tension and anchor load predictions in most cases if the
non-linearities are properly linearized. Furthermore, similar conclusions
have been obtained by Larsen and Sandvik (1990) from a similar study.

In this dissertation an approach based on dynamic analysis in the time
domain is employed using a computer programme, MODEX, developed by
Lindahl (1983) at the Department of Hydraulics, Chalmers University of
Technology. The method has been verified by model test data (Lindahl,
1985, Bergdahl & Rask, 1987). The program MODEX is based on the
theory reported in the paper “Dynamic Analysis of Mooring Cables” by
Lindahl and Sjoberg (1983). In this paper, a model is used that
incorporates the elasticity of the cable, inertia forces, the hydrodynamic
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force, drag forces and the frictional forces between the sea bottom and the
cable. Among these forces, the drag forces acting on the cable give rise to
important non-linear terms in the governing equations. A sea bottom
effect, such as the contact between the cable and the bottom, also causes
non-linearities. The bottom effect is particularly significant in shallow
water where a large portion of the cable may lie on the bottom. The non-
linearity caused by a change of the geometry of the cable is also taken into
account. In the numerical computation, the position of the mooring line is
updated at each time step, except for the global mass matrix (including the
added mass) which may be updated for each n:th time increment where n is
larger than one. The damping term, stiffness term and load in the equation
of motion for the cable are recalculated at each time step. Hence the
computation is complex and time consuming.

According to equations (3.15)-(3.17) and the principle described in Section
3.3, the cable force reacting on the structure can be decomposed into a
series of periodic components at different frequencies by means of the Fast
Fourier Transform (FFT) technique. Response of the system to wave
excitation is then calculated by solving the equations of motion
incorporating only the cable force of wave frequency.

3.6 Inc}usion of Wave Drift Forces

In addition to linear wave forces, floating structures are also affected by a
non-linear steady wave drift force when exposed to regular waves. This
non-linear force may be partially attributable to the velocity-squared terms
in Bernoulli’s equation, and partially attributable to the surface elevation
or run-up on the structures at the waterline when the structure is surface
piercing. The drift force is of the second order with respect to the wave
height and, thus, generally a small percent of the first-order force.
However, under certain circumstances, the drift force can be of
considerable significance. The dynamic behaviour of moored floating
structures is, for instance, influenced by this force since, in the equations
of motion, it changes the restoring forces and moments caused by the
mooring lines. The equilibrium position of the floating system and the
initial tensions of the cables are determined by this steady force, as well as
the steady forces caused by wind and current.

Moreover, the non-linear steady wave force may become oscillating forces,
due to the difference in frequencies of wave components in irregular
waves. For a given wave energy spectral density, a random wave profile

can be generated in terms of components of frequency ; (j = 1,2,...,N). An
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important contribution to the non-linear oscillating forces is due to the
velocity-squared terms in Bernoulli’s equation. The solution of the second-
order problem results in: mean forces, slowly-varying excitation forces
with difference frequency (;-0), and excitation forces with double

frequencies (20;,2a%) and sum frequencies (®;+0). Due to the long natural
periods in a moored system in the surge, sway, and yaw motions and low
damping near these periods, the slow oscillations and, hence, the mooring
loads increase. This may be critical for a large moored structure. The large
horizontal displacement of the structure near resonance can result in failure
of the anchor system. The high frequency forces can also play an important
part in exciting the resonance oscillations in heave, pitch and roll, since the
natural periods in these motions are generally small for a barge-type (or
ship-like) structure. Normally, their resonance periods fall within the range
of a few seconds.

Many authors have made investigations of the non-linear wave force
effects on the dynamic behaviour of a large moored-structure system.
Nielsen and Herfjord, et al. (1994) have made investigations of large
floating platforms, such as deep draft floaters (DDFs), Troll Olje platforms
and tension leg platforms (TLPs), which are used for oil and gas
production. These studies provide the basis for observation that the low
frequency wave induced motions, in the horizontal and vertical planes, are
more important than the first-order motions. Figure 3.7 illustrates clearly
the various contributions to the total mooring load, as well as the load in
the most heavily loaded line, under extreme conditions. For this type of
offshore structure, both mean wind force and mean wave drift force are the
main contributions to the total steady force. The dynamic part of the load is
dominated by the slow drift motion.
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Fig. 3.7 Mooring force versus platform offset. (Nielsen et al. 1994)
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Takaki and Tango (1994) have made studies on a very large floating
structure system consisting of multiple barge-type modules, each one of
the same length L, floating in regular waves in a head sea condition. It is
verified experimentally that the coefficients of wave drift force on the
multiple connected floating structures have values of more than 2 to 3 in
the case of rationally-hinged connector(s). They found that the wave drift
force on the multiple structures with hinge connectors becomes zero, in the
range of a long wave length, when the number of the modules with the
hinge connectors becomes larger. The effect of different kinds of
connections on the wave drift forces has also been investigated. Results
from their studies show that the wave drift forces on the multiple structures
connected with hinge connectors are smaller than those on the structures
with rigid connectors in the long wave length A range, larger than A/L =
3.0, but that there is no difference in the short wave length range of A/L <

1.0. In the range of 1.0 < A/L < 3.0, the wave drift forces associated with
the hinge connectors are much larger than those associated with the rigid
connectors.

While studying the response problem, the trend was observed that the
mean wave drift force is more important for large structures than for small
ones. Wave diffraction seems to be an important factor behind this
phenomenon. Slow drift excitation loads are large when the mean wave
loads are large. Kinoshita, et al. (1986) have made similar investigations
on multi-body-type floating breakwaters. The breakwater consists of
several slender flat plates with floats, and is placed parallel to head seas.
The wave energy of the incident waves, which is locked in the interval
between the adjacent plates by resonance, is dissipated into the water
through the power of the eddies. For this particular type of breakwater, the
wave drift force is small, because there are almost no reflected waves.
Therefore the quadratic response of the waves is smaller than for a
conventional breakwater. However, these experimental studies show that
the damping due to wave drift force has a strong effect on the system
response in both regular and irregular waves. Herfjord and Nielsen (1988)
also found that the wave drift damping is an important contribution to the
low frequency damping for a large volume structure, even if this damping
is dominated by viscous effects. Low-frequency motion is the result of a
low-damped system at resonance. Accordingly, for accurate prediction of
the system response, it is critical to account for all damping mechanisms.

Viscous effects make a contribution to the mean drift forces when the drift
forces become small. Although these effects cause a third-order drift-force,
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proportional to the cube of the wave amplitude, the effects can become
increasingly important with rising wave amplitude.

In order to determine the extreme loads in the mooring lines, reliable
estimates on the motions are needed. A moored structure could possibly
oscillate with combined low frequencies and wave frequencies. The low
frequency motions can be determined by solving the following ordinary
differential equation which is decoupled from the high-frequency
components.

d*X (¢ dx (t
(Mij + Aij) dtjz( ) + \N;j th( ) + Cinj(t) =D; (3.38)

In regular waves, the wave drift force, D;, and wave drift damping
coefficient, Wj;, are constant functions of the square of the wave amplitude.
Moreover, their values are independent of the slow drift displacement, X;.
However, in random waves, these quadratic forces are time dependent.
They become slowly-varying quantities and depend parametrically upon
the slow drift displacements of the structure. When evaluating the mean
forces on a structure, it is not necessary to solve the second-order problem.
The second-order potential does not result in mean wave forces. All of the
information that we need can be obtained from the first-order solution.
However, this is not true for the slow-drift excitation forces. A
contribution from the second-order potential is needed. At present, the
viscous damping and wave drift damping estimates are very uncertain.
Their values are usually obtained by analysing the experimental data from
free decay tests of the structure in calm water and in regular waves. The
final estimated motions are a combination of the first-order motion with
different components of the slow drift motions.

In the work presented here, no computation of wave-drift offset is made.
The mean offset, needed for the calculation of the mooring line load, is
taken from experimental data.

3.7 Inclusion of Nonlinear Drag Damping
Non-linear drag force can have significant effect on structural motions. As
mentioned in Section 3.1, the problem we look at is the diffraction

problem. The parameter kD is assumed to be of the order O(1). According
to Fig. 3.2, the drag force on a structure is usually less important in the
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region this order. However, for certain motions the drag force has a small
but significant effect on the amplification of the dynamic response, e.g. the
roll motion of a long floating body (barge or ship) in beam (90° wave) sea.
The effect is particularly important for a motion near the natural period of
the structure. When comparing theoretical calculations with experimental
data from model tests, it was also found that the response amplitudes were
considerably overestimated near the system resonance in cases where
viscous damping was ignored. In many practical applications, the natural
frequency of a barge-type structure in roll often falls within the range of
wave frequency where the wave energy is dominant; therefore an accurate
prediction of roll damping is of importance. In order to reduce the roll
motion, bilge keels are often recommended as a method of increasing roll
damping.

Standing and Jackson (1992) made an experimental investigation of roll
damping for a barge-type structure. A series of typical cross sections, such
as a basic rectangular section with either sharp or rounded corners, and
with and without bilge keels, was tested. From their studies, notable
features were found: first, that the contribution from the wave-radiation
damping to the roll damping is very small, while the frictional contribution
is negligible; and second, that the roll damping coefficient increased
linearly with roll velocity amplitude for sections with sharp corners and no
bilge keels, and almost linearly for all sections with bilge keels. The
measured wave radiation damping was also found to be fairly constant and
independent of roll velocity amplitude.

To include the effect of drag force on the roll motion, the non-linear
damping term, C ||, is incorporated into the equations of motion as

follows,

> [Mm ™ (0 + Coy K[, + Cymx;™ (0] =B (1) (3.39)

i=

i=1,2,...6m=1,2,..,NB

in which the drag coefficient, Cg;, is evaluated from the drag damping part
of the Morison equation based on structure motion. The drag force due to
the water particle velocity, which is often insignificant compared to the
inertia term, is left out. When the system of equations given in Equation.
(3.39) is solved, it is usual to linearize the non-linear term by introducing a
linear term so that the work done over one period is the same for this linear
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term as for the non-linear term. The linearization is carried out with respect
to time, t, in the following way:

%, [%, z%(mxi)-x, (3.40)

In this equation the right hand side is the first term of the Fourier series
expansion of the left hand side. On substitution of |%;|%;into Equation

(3.39) and the elimination of time, a set of complex equations with
unknown X is obtained. :

The drag damping coefficient is usually difficult to determine. In the
present study, the Cp parameter is based on the experimental data provided
by Standing and Jackson (1992), and others.

3.8 Solution Techniques

Since the primary non-linearities in the system considered have already
been linearized with respect to time, the dynamic analysis is reduced to a
solution of the complex equations in the frequency domain. To account for
the effects mentioned in Section 3, the equations of motion at an incident
wave frequency are derived as follows with the additional acceleration
equations already obtained from the kinematic constraint equations.

NS
—mz(Mm + A“‘m) - im(Bv’“m +3—§_C—CD(1)IX‘“’ I) +C" +J)_=:;K;“m ~H"} X"+

NB NS
Y {-o’A™ —ioB™} X" + Y (KMX")+ QTA® + @0TAY — FN, = K" (o)
j=I1

n=l,n#m

NB
~iw® Y OPX™ =0
m=]

m=1,2,..,NB (3.41)

Here (Dxm (fbr,(l)n,) is an NC x 6 Jacobian matrix associated with body m;
NC is the number of constraint equations and depends on the type and
number of couplings. Since the viscous damping term and the mooring line
force, F,, in Equation (3.41) are non-linear with respect to X (amplitude

m
m2?
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of motions), a Newton-Raphson method is used for finding the solution. In
many cases, if the iteration begins at a point near the root of interest, this
iterative scheme gives a very efficient convergence to the roots of the
equations. For the problem studied here, the solution, excluding the non-
linear effects with respect to X, is often expected to be near the solution of
the complete equations; its values can therefore be used as the initial
values in the iterative process. In practically all of the cases I have tested,
the convergence of this iterative scheme has been achieved in only a small
number of iterations.

In each of the iterations, the computation involves a solution of the linear
equations. For a system of many connected bodies moving in all six
directions, the number of complex equations, equal to NB x 6 + NC, may
become very large. During the process of design, the equations may have
to be solved for many different frequencies of a random sea state and for
different couplings, mooring lines and mooring arrangements.
Consequently, an efficient solution method for this phase would be very
worthwhile. The most important aspect in the computation of the solution
is effective computer implementation in both operation speed and data
storage. To this end, the LU (Lower triangular and Upper triangular)
decomposition method is employed to find the linear solution. This method
has an operations count (=1/3 N° ) which is as small as that for Gaussian
elimination, but it does not share the disadvantage that all right-hand sides
must be known in advance. In the sample computations, however, it was
found that the coefficient matrix of the linear equations is ill-conditioned.
The direct solution methods of LU decomposition or Gaussian elimination
failed to give satisfactory results. Another method is therefore needed.
Singular value decomposition, SVD, is one of the powerful techniques for
dealing with sets of equations or matrices that are either singular or else
numerically very close to singular (ill-conditioned). SVD can diagnose
precisely what the problem is by the use of a condition number, and in
some cases this will also solve it. A matrix is singular if its condition
number is infinity, and it is ill-conditioned if its condition number is too
large. When the method was tried on the cases that were studied here,
rational estimates of the solution were obtained.

3.9 Surface Elevation

Predicting wave attenuation is a major task in breakwater design. The
problem that arises, when a wave train of small amplitude encounters a
semi-submerged and fixed breakwater, corresponds to the diffraction
problem. A part of the incident wave energy is reflected, while the other
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part is transmitted and dissipated. For breakwaters of rectangular
configuration, the energy dissipation is usually small. The superposition of
the reflected and incident waves forms a combined wave in front of the
breakwaters, as sketched in Fig. 3.7 a). The combined velocity potential,
@, is the sum of components describing the incident and scattered wave
motions:

O=0, +b, (3.41)

where @; denotes the incident wave potential, and ®; the scattered
potential. The free surface elevation is obtained from the dynamic free-
surface condition .

1({o® ,
n(t) =~ B (—&—LO - (3.42)

The effect of a breakwater on water waves can be determined by
examining the average wave-energy fluxes (proportional to the square of
the wave height) across the various regions around the breakwater. For a
long fixed breakwater (2-D problem), it is convenient to define a reflection
coefficient K, as the ratio of reflected wave height H, to incident wave
height H; , and a transmission coefficient K, as the ratio of transmitted (H,)
to incident wave height. If there were zero wave dissipation, H; and H,
would then be related by the following equation

H? =H? +H’ (3.43)
or

K> +K2=1. (3.44)

The coefficients of K, and K, vary with the wave period, wave steepness,
and the structural configurations.

For the more general three-dimensional case of a wave train that

approaches a moored floating breakwater, the affected wave field includes
the components of wave diffraction (reflection and transmission) and wave
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radiation caused by the motion of the body as shown in Fig. 3.7 b). The
velocity potential for the combined wave motion is

M 6
D=D, + D, +i0) Y X, P, (3.45)

m=1 j=1

in which @, denotes the radiation potential due to the motion of body m in
mode j with the amplitude X,;. According to the free surface condition
given in Equation (3.42), the surface elevation of the combined wave
pattern is then written as

n =122
n(t) - g( at jZ:O

:-@(QJI +® )+ —
g g

(3.46)

2

®

M=

X,®.,

6
=1

g
I

For this general case, the combined wave field, as well as the wave energy
in the area of interest, can be described by the coefficient of the total wave
height to the incident wave height or by the sum of the components with
coefficients defined in a way similar to the reflection and transmission
coefficients.

Incident  Reflected Transmitted Radiation Radiation
wave wave wave wave wave
7 Z
Fig. 3.7 a) Wave trains for a fixed b) Wave trains caused by the
breakwater. breakwater motion (e.g. heave).
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4 EXPERIMENTAL INVESTIGATION

Preliminary model tests have been carried out in the wave basin in the
Department of Hydraulics. The purpose of the tests was to evaluate the
prediction accuracy of the theories used in the numerical computations.
For this purpose many tests, according to four different models described
in Table 4.1, were planned to be carried out in steps in order to facilitate
the understanding of different effects on the dynamic characteristics of the
system.

Table 4.1 Cases studied in model test.

Model No. Structure arrangements Wave directions
Two units connected by .
I two revolute joints 180
(No mooring chains used) (beam wave)

Two units connected by
i two revolute joints 180°
There are 4 mooring chains

- (beam wave)
on each of the units

I The same as II above 165°

v The same as II above 150°

All of the tests were performed in regular waves. In addition to these tests,
free-decay tests for one unit with 4 mooring chains in all six modes of
motion were carried out in calm water in order to evaluate natural periods
of the systems.

In addition to the mathematical modelling to be verified by the model tests,
the experiments were intended to be as realistic as possible. Therefore, a
scaling procedure was needed to obtain a testing model dynamically
similar to its prototype.
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4.1 Dimensional Analysis

Dimensional analysis is often a useful approach to obtain relationships (or
scaling laws) between variables pertaining to a model and its prototype. By
carrying out this approach to the system being analysed, several
dimensionless parameters (or numbers) may be derived. The main
advantage of using these dimensionless parameters is that the similarity of
two systems generally results when the systems are geometrically similar
and when the governing dimensionless parameters for the systems are
correspondingly the same for both. Hence, the results of studies on one
system can be applied to a similar system; the characteristics of one system
can be represented by the characteristics of a similar system.

There are three general methods of dimensional analysis. These are: a) the
Buckingham 7t theorem, which states that there will be at least one set of n-
m (n = quantities involved, m = fundamental dimensions) independent
dimensionless groups in a dimensional analysis; b) Group theory in which
dimensionless parameters are obtained by normalizing the differential
equations of motion; and ¢) obtaining dimensionless parameters by taking
the ratio of the significant forces that exist in the system being analysed. In
any fluid in motion, the forces that could be relevant generally include
inertia, viscosity, gravity, pressure, elasticity, surface tension and
compressibility forces. Since the fluid inertia force is usually important in
fluid dynamic problems, any other relevant force is conveniently
introduced as a ratio to this inertial force: for example inertia/viscous force
(= Reynolds number); inertia/gravitational force (= Froude number);
inertia/pressure force (= Euler number); inertia/compressibility force (=
Mach number); etc. Of the three methods, the first two have been adopted
for the experimental work discussed here, and their application is
described next.

For problems involving wave motion, the following conditions were
imposed for practical reasons:

a) Pm/pp = 1, water is used in model tests;
“b) gm/gy=1; and
¢) (U/yfeL) / (U/JeL), =1, Froude similarity is maintained.

The subscripts m and p denote values pertaining to the model and
prototype, respectively. From these three conditions and from relevant
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defining relations, the following relationships may be derived for systems
of geometric similarity:

Du,/u, =t,/t, =C};
2) £, /f, =C%
3) F, /F, =C; ; and

4 M, /M, =C};

in which Cy is the length-scale factor between the model and prototype; u
represents the velocity; t, time; f, frequency; F, force, and M, moment.

The Buckingham = theorem has been used to obtain the dimensionless
parameters for the problem of wave-structure interaction. In general, any
time-invariant force, F, i.e. a maximum in-line force, on a fixed rigid
structure of characteristic size, D, subjected to a plane wave propagating in
finite water depth, could depend on the density of water p, gravity g,
viscosity v, body length D, wave amplitude A, wave length L, wave
direction 0, water depth d, and time t. Their relationship may be expressed
in functional form as

F=f(p,g v,D,A,L,0,d). 4.1)

In this equation there are totally nine dimensional quantities. According to
the Buckingham 7t theorem, six non-dimensional parameters will be used
to define the non-dimensional form of equation (4.1). The dimensional
analysis of equation (4.1) yields

F/(pgAD?)=£(A/L,d/L,D/L,8,Re) (4.2)

where A/L is half the wave steepness and d/L is the wave-depth parameter.
These two independent dimensionless parameters are sufficient to define
the incident waves. Re is a characteristic Reynolds number
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D/L is the diffraction parameter and is used to indicate the importance of
wave diffraction or scattering in the problem. When D/L is sufficiently
large (say D/L > 0.2), wave diffraction or scattering is significant, see Fig.
3.2; when this is so and also A/D is small, the effect of drag force and the
influence of the Reynolds number may be omitted from equation (4.2).
When D/L is small, on the other hand, the flow separation may dominate
the loading behaviour, while the incident wave field may remain relatively
unaffected. This situation implies that the effect of wave diffraction no
longer need to be taken into account. Instead of the diffraction parameter,
D/L, the Keulegan-Carpenter number (= uyT/D, or = 2nA/D) may be used
to indicate the relative importance of the drag and inertia forces, where ug
is the velocity amplitude of water particle.

D D
(: il 2nA ] which accounts for the consequences of fluid viscosity.

For body motion in waves without any external constraints, the body mass
must be added to the nine physical parameters upon which the wave force
depends. Thus the non-dimensional form of the body motion in one
direction, for example in heave motion, is expressed as

z/A = f(A/L,d/L,D/L,6,Re,m/pD?). (4.3)

Since m = pV holds for freely floating bodies, the added parameter, m/pD3 ,
is equal to V/D’. For a given body shape, this parameter is independent of
the length scale. Thus, it can be omitted from equation (4.3). The
discussion of equation (4.2) applies to this problem as well, although there
are some important exceptions for viscous forces that may significantly
affect the motion of structures, even in cases where the diffraction
parameter D/L is large. Examples are: 1) roll motion of bodies with a sharp
corner cross-section, as discussed in Section 3.7; 2) surge motion of flat
plates or streamlined bodies, for which types of bodies the inertial forces
are often small compared to the frictional forces due to viscous shear; and
3) body motion near the resonant region, in which case even small viscous
damping may have a marked effect on the amplitude of response. It should
be pointed out, however, that it is usually impossible to have complete
dynamic similarity, that is to ensure constancy of both a Froude and a
Reynolds number. If the effect of viscosity has to be taken into account,
further assumptions or hypotheses may be necessary. Moreover, the model
test results may not predict exact prototype values in amplitude of motion
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if the viscous damping in roll motion is neglected; fortunately the viscous
damping often has little effect on the natural frequency.

For this study, the values of D/L are in the region where the diffraction is
important. The wave steepness, A/L, and the parameter, A/D, are
considered to be small. With these assumptions, the linearizing
approximation has been made such that the wave force varies linearly with
wave amplitude; then the parameter A/L can be omitted from equations
(4.2) and (4.3). For the linear diffraction problem, equation (4.3) reduces to

z/A = £(d/L,D/L.6). (4.4)

In practice, it is not difficult to obtain the same identities of the parameters
d/L, D/L, and 6 in the model test as those in the prototype. The constancy
of d/L and D/L entails the equality of the ratios

Lin/Lp = dpy/dy = D /Dy = Cp .

In contrast to large floating objects, mooring cables are usually considered
to be long slender members of small D/L values. As already mentioned,
when D/L is small the viscous effect on the cable dynamics cannot be
omitted and, consequently, the requirement of having the same Reynolds
number in two dynamically similar systems must be met. If, in addition,
the elasticity of a cable is taken into consideration, the dynamics of the
cable will be influericed by its elastic stiffness. Hence, the dynamic
similarity is ensured when the elasticity of the cable is properly modelled
together with other independent parameters. Ideally, all of the independent
parameters should be held constant between the model and the prototype,
but in practice this may not be possible. Therefore, special techniques are
often needed to overcome the difficulties.

In finding the non-dimensional parameters for the dynamic similarity of
the mooring cables, a method involving the governing equations was used.
This approach has been developed by M.L. Collier (1972); J. Lindahl
(1985) has applied this method in his experimental studies. Both of them
have demonstrated that model scaling is possible for an elastic cable. For a
detailed description of the dimensional analysis, refer to their papers. In
this thesis, only their results are given. From the dimensional analysis, it is
indicated that the following relationships must be satisfied:
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Sm/sp = Cp, a)

Tw/T,=C", b)
K /K, = 9CL, o)
(Cn ! (Cup =, d) (4.5)
(Con)m / (Cpn)p = DQ/CL e)
(Com / (Cpr)p = 9Q/C, f)
(To)m / (Tr), = 0CLY’, and g)
(Re)y / (Re), = OCL*; h)

with the assumptions that v, = v, and (po)m = (pc)p , Same cable material is
used, and the definitions ¢ = (Cy)n / (Cv), and O = (Do) / (De)y; Where s
denotes the total unstretched length of cable; T, the period; K, the cable
stiffness; Cy, the added mass coefficient; Cpy and Cpr, the normal and

tangential drag coefficients; Ty, cable tension; Cy, volume coefficient
cross—sec tion area o
(= D2 ); and D, characteristic diameter of the cable.
4

In this approach a distorted scaling (a length scale different from the
diameter scale, Cp # ) has been introduced to achieve dynamic similarity
in a way that is possible to carry out. Since the distorted diameter scale has
been used, the Reynolds number is no longer the same in the two similar
systems (model and prototype). Additional similarity relations given in
equations 4.5 e) and h) must be satisfied. The scale factor, C,, is chosen on
the basis of the length of the cable, and % is determined from equations 4.5
e) and h) such that (Cpy), and (Re),, are points on the drag vs Reynolds
number curve for the model cable chosen. The determination of 1 is based
on the normal drag similarity. It should be noted that the similarity in
tangential drag may not be satisfied even if equation 4.5 f) is satisfied. This
is due to cable roughness which may have different effects on the
tangential drag in the model and the prototype. In model tests, the
Reynolds number may be low enough that the tangential drag coefficient is
independent of roughness, but this may be not true for the prototype. For
mooring cables having large transverse oscillation, the lack of similarity in
the tangential force does not have any significant effect on the cable
tension or amplitude of motion.
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In practice, it is difficult to satisfy the requirement that K, /K, = eCL°
(equivalent to E, /E, = Cp), because it is impossible to find a material
which can match the required (very small) value of Young’s modulus, E, in
model scale. To overcome this difficulty, a spring of appropriate stiffness
is inserted in series with the cable at its lower end. This technique has been
used by various researchers in the modelling of elastic members.

When a cable is attached to a floating body oscillating in waves with zero
forward speed, the upper end of the cable follows the body with a velocity
that is proportional to the amplitude times the frequency of the body’s
motion, U o a®. Hence, the similarity of the Strouhal number based on the
amplitude of the cable motion at the upper end is satisfied when a,/a, = Cp,
since /@, = C,”* and U,/U, = C.”. :

The models tested were based on concrete barge-type floating breakwaters.
Such breakwaters are produced by a company, SF Marina System AB, in
Sweden. For their TYPE300 breakwaters, the principal dimensions in full
scale are: length, 20 m; breadth, 3 m; draft =1.2 m; and weight =38 tonnes.
Each floating breakwater unit is moored by 3 to 4 chains with the
following characteristics:

Total unstretch length, / = 30 m, about 3 X water depth,
Chain diameter, D, =23 mm,

Mass per unit unstretched length =12 kg/m,

Density = 7800 kg/m’ , and

Water depth =10 m.

The models were constructed to a scale of 1/10 (= Cp). The principal
parameters in the model scale were obtained according to the theories
described above. In spite of the fact that only standard sizes of chain are
available, the chains used are actually quite similar to those computed. The
difference in full-scale is also small. The parameters in both full-scale and

scaled-down are given in Table 4.2. For Table 4.2 c) and d), & = 0.1296,

and ¢ = -I‘é—-—;—z = 0.7714.

p
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Table 4.2 a) Wave characteristics for regular waves in prototype and model

Period Wave Length Wave Wave Height
(sec) (m) Steepness (cm)

Tn T, L L, H/L Hy, H,
0.02 1.12 11.2

0.6 1.90 0.562 5.62 003 | 1.69 16.9
0.04 2.25 22.5

0.02 1.53 15.3

0.7 2.21 0.764 7.64 0.03 2.29 229
0.04 3.06 30.6
0.02 2.00 20.0
0.8 2.53 0.998 9.98 0.03 3.00 30.0
0.04 4.00 40.0

0.02 2.53 25.3
0.9 2.85 1.264 12.64 0.03 3.79 37.9
0.04 5.06 50.6
0.02 3.12 31.2
1.0 3.16 1.559 15.59 0.03 4.68 46.8
0.04 6.23 62.3

b) Water depths and principal parameters of the floating bodies in

prototype and model

Water depth Length of body | Breadth of body | Draft of body

hm = CL hp lm = CL Ip bm = CL bp Tdm = CL po
hy h, I 1, b b, Tam Tap
(m) (m) (m) (m) (m) (m) (m) (m)
1.0 10.0 2.0 20.0 0.3 3.0 0.119 | 1.19
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¢) Parameters of mooring cables in prototype and model

Length of cable Diameter of cable Mass / length
sm=CL S, (Do = (Do), M, = ¢9° M,
Sm Sp (Dc)m (Dc)p Mm Mp
(m) (m) (mm) (mm) (kg/m) | (kg/m)
2.965 29.65 3.5 27 0.215 16.586

d) Stiffness of cables and couplings in prototype and model

Stiffness of cable

Stiffness of coupling

(K = 9O*CLK ), Kn=C"K,
(Kom Koy Kn K,
(kN) (kN) (kN) (kN)
rigid rigid
regarded as rigid | regarded as rigid (except for (except for
restriction in pitch) | restriction in pitch)

4.2 Experimental Arrangement and Measurements

Testing Facility

The experiments were performed in a 3-D wave basin which is 11.5m by
19.4m and has water depths up to 1.2m. Two synchronised wave
generators at one end of the basin were used to provide regular waves.
Each generator consists of a plane blade and a piston so that the wave
amplitude and period can be varied by adjusting an input signal given to
the pistons. A sloping beach covered with small crushed stone was located
at the opposite end of the basin to reduce the wave reflections. For the
removal of undesired cross waves in the basin, i.e. waves perpendicular to
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the main wave propagation direction, absorbers were placed at the side
walls of the basin.

Before the models were placed in the basin, the waves of interest were

carefully calibrated and the surface elevation time series were measured in
the area where the model should be during the execution of the tests.

Models and instruments

The breakwater units used in the model tests were constructed from PVC
with rectangular section and symmetrically loaded with steel plates. Each
of the units is of the same size, as illustrated in Figure 4.1. This figure also
shows the main dimensions of the units which are determined according to
the dimensional analysis given in the previous section, refer to Table 4.2.
The mechanical quantities of the scaled cables are also given in the same
table.

2m

0.37

0.225m

Fig. 4.1 Dimensions of the floating units used in the model tests.

Model motions in 6 degrees of freedom were measured by the MacReflex
system, which was provided by the company Qualisys AB. The system isa
newly developed position and motion analysis system. It consists mainly
of three parts: a specially developed precision CCD camera, a video
processor and MacReflex software used in a Macintosh environment.
Video monitors are optional, however they can make it possible to obtain
better experimental conditions during the system set up. For 3-D
measurements, at least one extra camera and video processor are required.
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The camera has an internal LED flash for infrared illumination of a
measured object and its attached markers which are made with retro-
reflective tape. The camera has an exposure time of only 800
microseconds; it samples all the markers at the same time with a frequency
of 50 Hz. When the short-flash light-pulses illuminate the markers, they
become the brightest shining objects in the field of view. The camera
automatically reduces its sensitivity so that only the markers are visible in
the video image. The video processor is used to detect the markers in a
picture and to calculate the centre point of each marker in video (real time)
speed. The MacReflex software is used for two purposes: 1) to collect data
from the video processor; and 2) to sort and track the sampled data, since
the video processor cannot distinguish one marker from another. Data
exported from MacReflex in a readable form can be further processed by
other analysis programs, such as a WingZ based application program.

The line tensions and the surfuce wave elevations were measured by ring-
shaped force transducers and conductive wave probes, respectively. All of
the data from the sensors were collected by the data acquisition system
MP100 which was provided by BIOPAC Systems, Inc. This system
consists of a collection unit and system manager software which works
with the AcqKnowledge waveform analysis program. The data collected
can be saved in the format of the application program or in the text format.
The MP100 system can take samples at different rates. However, in these
experimental studies 50 samples per second was selected since it was
being used with the MacReflex system.

An MRMP-1 synchronization unit was also used in order to synchronize
the MacReflex system with the MP 100 system. The data from MacReflex
and from all of the channels in the MP100 were therefore sampled at the
same time.

Measurement setup

The photograph shown in Fig. 4.2 illustrates the arrangement of the
experiments for oblique waves. Arrangement of breakwater modules,
mooring chains and measurement points are illustrated in Figure 4.3. Two
units (modules) were connected with two revolute joints, see Figure 4.4.
Three reflective markers (at least three markers for 3-D measurements)
were attached to each of the units at selected positions. Of the eight
mooring chains, chains from m3 to m6 were hung at an angle of about 45
degrees from the vertical symmetry plane in the longitudinal direction,
while the others were in the planes parallel to their transverse symmetry
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planes. The force transducers were placed at the connection between the
model and the chain, for example on mooring lines m1, m2 and m4. Since
the model and the mooring arrangement were transversely symmetric, only
the lines at one side of the system were measured when the system was
exposed to beam sea (180° waves). Six wave probes, A2 to A7, were
placed 0.5 m in front of and 0.5 m behind the model, three at each side,
and the distance between them was about 1 m.

Fig. 4.2 Photograph of the experimental arrangement.

For free floating models, only the motions were measured. Wave probe Al
located about 5 m from the model, was intended to be used to control the
incoming waves during each test. All models were placed about 7 m from
the wave generator.
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Fig. 44 Connecting arrangement of revolute joints
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Figure 4.5 illustrates the connection of the hardware of the recording
systems MacReflex and MP100, and Figure 4.6 shows a typical
measurement setup for MacReflex. A maximum of 10 analog channels in
MP100 were used for data acquisition. The sampling time for each test was
determined to be 20 sec., which should be less than the time required for

the reflected wave to travel from the model to the wave generator and back
again.

UIM 100 f< ] i Y

MP 100 | » iffer |8

Sync. out

Sync. in
Output 2 / Auxiliary IHumination
"
Output 1 Camera Control

Camera Control

Video processor

Fig. 4.5 Arrangement of measuring equipment

Measurements

Before a series of tests was conducted, the measurement accuracy of the
MacReflex system was checked by testing a marker position while the
model was floating at rest. Figure 4.7 shows the registration of the marker
position. The marker movement as registered was less than 2 mm in the x
direction and less than 1.5 mm in the y and z directions.

a) Free decay tests

The free decay tests were performed in all six modes of motion for a single
moored body. The natural periods for these modes, evaluated from the
tests. It can be seen that the natural periods of the motion in the horizontal
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plane, i.e. sway, surge and yaw, are clearly larger than those in the vertical
plane, i.e. heave, pitch and roll; they are in the range of 5 - 10.5 sec. The
natural periods of 0.98 and 1.03 sec. in heave and roll motions are near the
tested wave periods given in Table 4.2 a).

Fig. 4.6 A typical measurement setup for MacReflex

b) Wave tests

Four models were used in wave tests. For model I, the motions of the
model were measured; for model II, III and IV, the motions of the model,
mooring line tensions, and waves near the model were measured. For each
model, experiments were carried out at five different wave periods; there
were three variations of wave steepnesses for each wave period. These
experimental wave conditions are given in Table 4.2 a).
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5 COMPARISONS AND DISCUSSION
5.1 Analysis of Sampled Data

The Data acquired from the MacReflex and MP100 systems is in the form of
time series. Since the MacReflex and its supporting analysis program,
WingZ for MacReflex, provided motion data only for markers, further
computation of the bodies’ motion in the six degrees of freedom was
needed. Six markers ( three for each unit) were measured and the results
were used to determine the body motion. Figures 5.1.a) and b) present an
example of the resulting motions. Effects due to the non-linear drift force are
clearly seen in the sway, surge and yaw motions. The curves in these figures
present the total motion comprising first-order wave-induced motion and
slow-drift motion. Since cnly regular waves were modelled, the amplitude of
the slow-drift motion decreased with time, due to damping. The body then
continued its wave-frequency ~motion around the mean drift position.
Examples of the recorded wave elevation in front of and behind the
measured bodies are presented in Figures 5.1. ¢) and d). The low frequency
motion was not observed to have any significant effect on the water waves.
The variation in cable tension is illustrated in Figure 5.1.e). The slow-drift
oscillation and wave-frequency motion appear again in the dynamic tension,
due to the fact that the upper end of the cable follows the body to which it is
attached.

For recorded time series, the frequency response characteristics can be
analysed by means of Fast Fourier Transformation (FFT). As an illustration,
Figure 5.2 shows a transformation of the sway motion given in Figure 5.1.a).
Magnitudes in this figure indicate that the slow-drift motion can be very
much greater than the high frequency motion. Even when the impulse load is
small, large oscillation may occur in a resonant system. For a moored
slender body system, natural frequencies associated with the motions in the
horizontal plane (sway, surge and yaw) are normally lower than those in the
vertical plane (heave, pitch and roll), see Table 4.3. This may also be the
reason why the modes with high natural frequencies show hardly any low
frequency effect. In addition, the effect of damping is very important.
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Fig 5.1 a)

Measured sway, surge and heave motion of Body 1'i

Model IV, T = 0.9 sec. and H/L = 0.03.
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Fig. 5.1 b) Measured pitch, roll and yaw motion of Body I in Model 1V.
T =0.9 sec. and H/L = 0.03.

63



T I e P s - - - e~ oo - - - - -1 -110.00000
Lo Lo AL ACACD A =Ty A - SN A- - - 15.000000 2
s NN YAVAV IR NS RN Rk -4 L+ -10.0E+000 &
E={ MY - AR RRARIER -|F W+ -|5.00000 £
= - -V AUy YRV VA Y Y Y Y - o l10.0000 B
)
________ e e SNV T D T Y VU Y Y T -115.0000
1 :_ A P AR N R e £ e R A e A - |10.00000
| N N A (AR A1 Ae - |5.000000 €
ok AVAYAPSERERIRNE EEIRPANARSN {4 L4 Fle -]0.0E+000 &
=l YR ALHRA (- - U LAY AR - Ak |+ - }-5.00000 £
It o U 0 A SR S A o O 1
........ Ry DT R T ~|15.00000
gho A AR A A A A A R A A - - 10,0000 5
= I - -1 H - A4 - -4 1 -15.000000 5
SN\ STV A - SFEN SEas - - [0.0E+000 €
o0 Ry YA LY L - V-1 4= - |-5.00000 =
_________ ALY VLV Y Y Y LV YV A, - |-10.0000
0.000 5.000 10.00 15.00 20.00 25.00
seconds
Fig. 5.1¢c) Measured windward wave elevation in Model IV,
T = 0.9 sec. and H/L = 0.03.
=1 A e e e g V- A AR AN A - [+ -5.000000 5
8_ i 1 i U @
S gy LI B LA A WA FH T -[0.0E+000 €
5} i} ] 0 [ =
1=, R R AEVARY V-EYARY YR AS -\t Y+ -|-5.00000 E
. . . . _|-10.0000

i
e e e e e oot 5000000 5

------- T K

E

8_ 9}
o AANPAAMANAAAAS A ASAAIA, - fo0Es0008
ko] 1 ¢ =
B E
=

' ' ' _|-10.0000
5.000000 5
0.0E+000 £
-5.00000 E
' ! ! -10.0000
0.000 5.000 10.00 15.00 20.00 25.00
seconds
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Fig. 5.2 Amplitude spectrum and phasé for >sway motion in Figure 5.1.a).

The present study is focused on the first order responses of the considered
problem. Therefore, amplitudes with frequencies corresponding to the
incident wave frequency will be decomposed from the other components and
used in comparisons with results obtained from numerical computations.
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5.2 Numerical Computations

All of the experimental models and the wave conditions given in Table 4.2
a) were studied theoretically. According to the mathematical modelling and
the scheme described in Paper A, the wave loads on each of the bodies were
initially calculated for each of the wave frequencies. Computational
experience shows that the computation of the horizontal wave loads requires
a fine discretization of the body surfaces. This may be due to the fact that
the bodies have relatively small draft, the wetted body surfaces are close to
the free surface where most of the wave energy is found; and may also be
due to the large velocity gradients around the sharp corners of the bodies.
The number of panels required for discretization depends on the wavelength.
Although increasing the number of the panels usually produces better
results, this is time consuming, specially when using a PC computer. One
way to refine the discretization is to use a cosine distribution of the panel
size in the horizontal directions. Figure 5.3 shows a mesh of cosine
distribution, with more panels around the sharp corners and fewer close to
the middle. This technique can efficiently reduce the number of panels
without any practical loss of accuracy. I have made test runs with different
numbers of panels, for example 440, 516, 548 and 620 panels, for each of
the bodies. The cosine distribution was applied in most of the cases studied.
The results show that the number of panels required to achieve accepiable
accuracy is 548. It is noted that this number may be reduced by improving

the distribution.

Fig. 5.3 Wetted body surfaces discretized with 2 X 548 panels
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The validity of the solution of the hydrodynamic coefficients has been
confirmed and reported in Papers A and B where comparisons are made
with results provided by different authors. For the other solutions, such as
motion response, wave elevation and line tension, the computations were
performed following the approaches described in Section 3. In the
computation of the line tensions and wave elevations at the positions near
the moored breakwater, it is important to be aware of the effects of offset
caused by the mean drift force. The breakwaters are assumed to undergo
oscillations around their mean positions. In the present study, these mean
positions were evaluated directly from the test results. In order to check the
validity of the computations, numerous comparisons were made. Values
resulting from the various simulations are presented below together with
those from the measurements.

5.2.1 Results for high frequency (1st order) motions

The first example discussed here is a simulation of the response of the
moored breakwater (Model II) to the beam waves, as given in Table 4.2 a).
Since only beam waves are taken into consideration, the motion response of
the breakwaters is limited to sway, heave and roll motions; also, Body I
shows the same motions as Body II. Results of the motions for Body I are
presented in Fig. 5.4. In view of quality control, results from numerical
computation are generally compared with results from model tests before the
analysis moves into detail. The translational responses shown in the plots are
defined as the ratio of the amplitude of the breakwater motion over the
amplitude of the incident waves, and the rotational responses are presented
directly in the diagrams in radians.

Similar simulations were also made for oblique waves, i.e. waves coming
from 165° (Model III), and waves from 150° (Model IV). In these cases, the
comparisons were made separately for the two connected bodies, see Fig.
5.5 through Fig. 5.8. Motions in surge, pitch and yaw are also presented,
since the limitation mentioned above is no longer valid.
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Fig. 5.5 A comparison of computed and measured results
for Body I of Model III
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Fig. 5.8 A comparison of computed and measured results
for Body II of Model IV

As seen from the comparisons, the theoretical computations correspond
fairly well in general with the measurements. However, in some cases the
discrepancy is large. This is particularly noticable in the motions of very
small amplitude, such as the responses in surge, pitch, roll and yaw. The
major contributions to the scatter could be experimental error, especially for
the measurements of small motions, and the damping estimation. An
estimate of the accuracy of the measured motion is £0.5 ~ 2.0 mm. For the
small motions, the amplitudes are approximately of the same order as this
variation. However, for practical reasons, our interest is focused on the large
motions. From the comparisons it can also be seen that, except for yaw
responses in oblique waves, the numerical solution generally overestimates

the motion response.

In determination of the motion response for Model II, we found that the
mooring system used in the model tests was so compliant that the 1st order
responses, except for the roll motion, were hardly affected by the mooring
system. This can be confirmed by comparing the measured responses of
Model I (free floating) and Model II (connected with mooring chains), see
Figures 5.9 and 5.11. Curves from numerical prediction are also shown in
these figures for direct comparison. Results for sway motion seem to show
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very good agreement between computation and experiment. For heave and
roll motions, as indicated in Figures 5.10 and 5.11, experimental points
remain very well fitted to the theoretical curves, as long as the periods are
outside the resonant region. For periods inside the resonant region, the fit is
poorer. For the motions in these two modes, the essential contribution to the
disagreement between the numerical results and the experiments could be an
underestimation of the damping. In sway motion, the results from both
methods show that the motion responses are almost linear to the incident
waves, even for the case when H/L = 0.04, which is slightly in excess of the
region of linear wave theory. The same behaviour can be observed in heave
motion. However, in roll motion the theoretical results display a
considerable difference in the region close to the resonant period, unlike the
measured values in which the linear behaviour remains. This may indicate
that the solution of roll damping, especially in the resonant region, needs to
be improved.
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Fig. 5.9 Sway responses of Body I'in Model I (free floating) and
Model II (with 4 mooring chains).
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Response of breakwater in heave

4.00 N Model H/L
e —-—6—*‘ Cal. 4 0.02
-1 — b Cal. 4 0.03
7 —F] - ca. 4 o004
3.00 & Exp. 4 0.02
-t & Exp. 4 0.03
“ ] Exp. 4 0.04
: < Exp. 8 0.02
- JAN Exp. 8 0.03
2.00 M Exp. 8 0.04
. /e
1.00 i
0.00 P T T T T I T T T T[T T T TTTrT{TTTTT
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
Period (sec) '

Fig. 5.10 Heave responses of Body I in Model I (free floating) and
Model I (with 4 mooring chains).
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In order to examine the effect of wave direction on motion response, similar
plots are made including the results for Models III and TV. As expected, the
roll amplitudes shown in Figures 5.14 and 5.17 reached a maximum in a
beam sea, and decreased as the breakwaters were turned 165° and 150°
from the main propagation direction of the waves, which indicates that a
minimum would be reached in a head sea or in a following sea. For short
waves this observation seem to be applicable to sway and heave, see Figures
5.12 and 5.13 for Body I, and Figures 5.15 and Fig. 5.16 for Body II. The
motions in beam waves have been observated to be greater than the motions
in oblique waves.

To examine the differences of motion between the connected bodies the
figures 5.18 to 5.23 are presented for Models III and IV. In Figures 5.20 and
5.23, the property of infinite stiffness of the couplings in roll (relative
rotation is allowed only in pitch) is demonstrated which indicates that the
roll motions of Bodies I and II are the same. Approximately the same
responses in heave motion are indicated as well. The difference found in
sway motions, shown in Figures 5.18 and 5.21, could be caused by the fact
that the global co-ordinate system used in the computation is located at the
centre of the water plane of Body I (selected centre of Body I at rest) and
the sway motion of Body II is related to a selected centre of its own. There
is a difference between these two centres in the sway motions because the
bodies are rigidly connected and have the yaw motion about the z axis
through the selected centre of Body I It may be that the yaw motion
becomes more pronounced in long waves. Note that the sway motion of
Body I in Model III is greater than that of Body II at T = 1.0 sec., while it
becomes less in Model IV at the same period.
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Fig. 5.21 Calculated sway response of Body I and Body II in Model IV.

78



2.00

® i
§ 1 [Model v HL
o 4 | =K o002
£ 150
P - |—E— 008
© 1 |
s ] A— 0.04
2 i
® 1.00 o Body I
£ .
‘5 ,_
q) p
@ 050 —
O -
o -
[72]
m -
o i "
OOO YIII||III|K|II[I|IIE!I!I
0.60 0.70 0.80 0.90 1.00

Period (sec)

1.10
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5.2.2 Surface elevation

The validation of the calculated wave elevation is made by comparing the
results of the numerical predictions with measured values from the model
tests. Fig. 5.24 presents the results for Model II. The computations were
performed for the same positions as were measured in the model tests, see
Fig. 4.3 in Section 4.2. Results marked windward refer to the waves on the
incident wave side, while leeward refers to the side protected by the
breakwater from the incident wave. Furthermore, the results presented are
expressed as the ratio of the amplitude of the total wave to the amplitude of
the incident wave at a given point. Similar comparisons were made for
Models III and IV and are presented in Figures 5.25 and 5.26, respectively.
In general, the results obtained from the theoretical approach were found to
be in agreement with the measured values, especially when keeping in mind
that certain errors contaminated the measured data. These errors may come
from: 1) inaccuracy of the record sensor, for instance a +£1 mm variation in
measured wave amplitude due to the wave probes used; 2) the effect of
reflexions (cross waves) in the wave basin, due to the side walls; and 3) the
varying distance from the breakwaters to the measuring points, due to the
slowly-varying motion in sway. On the other hand, some errors could also
have been introduced in the computation of the total waves, as a
consequence of over or underestimation of the motion of the breakwaters.
These variations should be accounted for in any interpretation of the
calculated results, including the line tensions shown in Section 5.2.3. It
should also be noted that in these plots it is the linear axis scale that is
applied, not the logarithmic scale.

Variations of the total wave amplitude ratio over the period range from 0.7
sec. to 1.0 sec. are presented in Figures 5.27 to 5.35. In this series of plots,
results from both theory and experiment are compared directly, and the
values from the weather side are displayed together with the values from the
lee side. Figures 5.27 to 5.29 show the results for Model II at each pair of
points, e.g. Al and A4, A2 and A5, and A3 and A6. Similar plots are
presented also for Model III in Figures 5.30 to 5.32, and for Model IV in.
Figures 5.33 to 5.35. Again the results presented show a good correlation in
most cases, even in the area (points A2 and AS5) where the water field is
strongly affected by diffracted waves from both bodies. Linear response of
water waves was observed, in spite of that the responses to waves of
steepness H/L = 0.04 deviate slightly from the others to waves of H/L =
0.02 and 0.03. Both the experimental and theoretical curves exhibit a
consistent trend for the wave performance on the weather side, as well as for
the performance on the lee side. In Model II, waves on the weather side
reach a maximum at T = 0.8 sec., and have an amplitude slightly larger than
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the incident wave height (H = 2A), and reach a minimum amplitude of about
30% of A at T = 0.9 sec.

In order to obtain an impression of the variation of wave attenuation with the
direction of the incident waves at the lee side, the coefficients of the wave
amplitudes are presented in Fig. 5.36 for incident waves of- H/L = 0.03. It
can be seen clearly that for high frequency waves the breakwaters provide
better protection in oblique waves than in beam waves, but that for waves of
low frequency, there is no significant difference. In this figure the
differences between the values at points A4 and A6 are indicated as well. In
Fig. 5.37, similar comparisons are made for the waves at the weather side.
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Fig. 5.24 A comparison of the model test and the numerical
prediction for wave amplitudes at all six given points
of Model II.
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Fig. 5.26 A comparison of the model test and the numerical
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5.2.3 Mooring cables

The performance of a moored breakwater is closely related to the static
properties of its mooring system, such as the mean position of the
breakwater, the system holding capacity for static load, the individual cable
load capacity for maximum load (static + dynamic load), the system
restoring force, etc. Figures 5.46 a) to f) present the relationships between
the system restoring force and the breakwater offset of Body L. In these
figures, all six components of the restoring force are plotted against the
offset in one of the modes. The computations were carried out by applying
the program MODEX to each of the cables. As shown in the results, the
system stiffness (K = F/X) is small compared with the stiffness caused by
the buoyancy, especially in heave, pitch and roll; which indicates that their
effects on the wave induced motions could be relatively unimportant. This
corresponds to the observations from the model tests and the numerical
predictions given in Section 5.2.1.

Figures 5.47 a) — f) show the line tensions for each of the individual cables

versus the breakwater offset. In the sway mode, the breakwater can be
expected to exhibit a large mean offset, in particular in a beam sea state. As
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is shown in Figure 5.47 a), the maximum load may occur in Cable 1 or
Cable 4. This depends, of course, on the contributions from the dynamic part
of the load caused by the dynamic oscillation at the position of the fairlead.
Moreover, the static analysis shows that, at the wave frequencies studied,
the motion responses of the moored breakwaters are not significantly
affected by the non-linearties of the mooring system.

The dynamic analysis of the mooring cables was also carried out with the
program MODEX, a time domain simulation program calculating line
position, line tension, line strain etc., for an arbitrary mooring cable. As
mentioned in Section 5.1, the static tension caused by the mean drift motion
and the dynamic tension caused by the slowly varying motion were
abstracted from the sampled data by means of Fast Fourier Transformation.
The computed results presented herein refer always to the first order
component of the dynamic part of tension. A sample of the numerical
simulations is shown in Figures 5.48 to 5.50 where the results are expressed
as functions of time. The calculations were performed for Cable 4 in Model
IV with wave of H/L = 0.03 and T = 1.0 sec. In Figure 5.38 the load time
series are directly comparable.

Results obtained by MODEX and the model tests were compared in terms
of dynamic tension at the upper end of the cable. Figure 5.39 shows the
results from Cables 1, 2 and 4 in Model II. As indicated in the comparisons,
the computed results are very close to those measured. Similarly good
agreement was also found for the cables in Models II and IV. For those
results, the comparisons are made directly in the plots of tension versus the
wave period.

In order to illustrate the dynamic properties of the line tension, the numerical
results shown in Fig. 5.40 are plotted against the wave period for various
H/L, where the tensions are scaled by wave amplitudes. It is shown that
Cable 1 would be the most heavily loaded cable in the system and that the
maximum response of the cable load occurs at T = 0.9 sec.

89



06

998 0'[ = I PUe £0°0 = "I/H JO 2AM ® I0J AT [SPOIA
ur 4 9[qeD Jo pus 1addn oy3 Je uoISUS] aur] 2y} Jo A101STY SWIL], §¢°C Sy
(o8s) swiy
€¢ ¢¢ t¢ 0c 6L 8L LI 9L GL #L €L 2L kL OL 6 8 L 9 & ¢ ¢ 2

L:_M:__________:_::__:_w:_::_:_:__::w::m:_____:___________::t_:___:_:___::T_:t_:l

-

pelBNdEY) — e

wswiadxy

bbb bl e v Lo b

|H|l!llll'llll[lllIIHIIIIIHIIIH“IIIIII

nENN]

p] e b b bdhed e o Lo e bbb b b bovee e b bond b Lo

LITTT

0l

(N) uolsus | ureyn



5-00$Illl|lll({!lllli!lllll|l_

C Model lI 7

4.00 — -
z - ]
g n _
‘% 3.00 — ¢ % ]
c - n
2 - i
o] -~ -
3] - & -
& 200 -
2 F " ]
= L "
(@] ~ & §
1.00 —

» o % i

0.00 ||01||||l||||||||1||;[\“

1.00 2.00 3.00 4.00 5.00
Measured tension (N)
Fig. 5.39 Comparison of measured dynamic tension with the tension

obtained in conjunction with the program MODEX for Cables
1, 2 and 4 in Model IL.

140.00 <
- Model It . H/L cable
g = N ical Results —@— 002 1
2 120.00 = umerical Resu 14_ . e | .
& 100.00 | 4
© - 1
[ L
= 80.00 2
& - 4
®  60.00 | 1
o - 2
©  40.00 [ 4
9 =
2 o
& 20.00 —
"“— : = = T
0.00 C——1 1 | | I T SO N R T B
0.60 0.80 1.00 1.20

Period (sec)
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Figure 5.41 presents the dynamic tension in Cable 1 versus the amplitude of
the incident waves. A non-linear relationship between the line tension and
the incident wave appears for the waves of low frequency.
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Fig. 5.41 Dynamic tension versus wave amplitudes of the excitation.

The next series of comparisons concern the tension response in oblique
waves. Some introductory results are presented as the ratio of dynamic
tension to the wave amplitude. Figure 5.42 shows results from the sampled
and the calculated data for Cables 4 and 5 in Model III. Except for the
maximum response at T = 0.9 sec., the agreement between the two sets of
data is quite reasonable. Considerable discrepancy occurs at T = 0.9 sec.,
the reason for which could be overestimation of the excitation at the fairlead.
As shown in Fig. 5.43, the same reason could apply to the results for Model
IV, except the maximum dynamic load which no longer occur at T=0.9 sec.
It is noted that in this case the heaviest load could be in Cable 4, rather than
in Cable 1. This may be due to the motion of the body in sway when the
oblique waves are taken into account.

Finally, comparisons are made for the dynamic tensions in different sea
states. Figures 5.44 and 5.45 present the results for Cable 1 and Cable 4,
respectively. It can be clearly seen that the dynamic tensions for beam
waves are greater than those for oblique waves.
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Fig. 5.48 Excitation of the displacement at the upper end of Cable 4 in
Model IV corresponding to a wave of H/L = 0.03 and T= 1.0sec.,
a) horizontal displacement, b) vertical displacement, and
c) displacement out of the equilibrium plane of the cable.
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DISPLACEMENT OUT OF PLANE OF CABLE, NODE 2
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Fig. 5.49 Typical dynamic properties of Cable 4 in Model IV
corresponding to a wave of H/L=0.03 and T=1.0 sec.,
a) displacement in horizontal direction, b) displacement
in vertical direction, c) displacement out of the equilibrium
plane of the cable, and d) element tensions.
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6. CONCLUSIONS

A computational model has been developed which is capable of simulating
the dynamic performance of a group of interconnected, moored floating
structures subjected to harmonic wave action. In addition to the elasticity
and damping of the mooring system and the constraints of the
interconnections, linearized viscous damping, especially roll damping, was
taken into account. Results from the computation and the model tests have
been compared. The model tests confirm the general validity of the
assumptions used in the modelling of the wave forces and the mooring line
forces.

The following conclusions are derived from the results.

e The 3-D panel method implemented is a useful tool for estimating the
wave-induced motion of multiple interconnected structures.

e The program MODEX, which is based on the finite element method,
yields reliable results in the prediction of line tension and line
deformation.

¢ The model developed simulates satisfactorily the structural motion, as
well as the generated and diffracted waves. Hence, it can be stated that
the model can be used to evaluate the efficiency of proposed floating
breakwaters or used in the design of such breakwaters.

As shown in both the computations and the experiments, a compliant
mooring system has little influence, compared to free floating structures, on
structural motions of a frequency corresponding to the incident wave, or on
the wave pattern around the structures, while it strongly influences the
slowly varying motions induced by wind and waves. Due to the small
damping in sway and surge, the drift motion can be greater than the wave
frequency motion. In connection with the effect of the wave direction on
structural motion, it has also been found that for high frequency waves the
beam wave could be the most critical sea state for a system with long
slender structures. Both the wave-induced motion and the slow drift motion
exhibit large responses in beam waves, which in turn cause large tension in
mooring cables.

Further improvement of the theoretical model is needed, however, for
example damping simulation near the resonant motion in roll. Detailed
hydrodynamic modelling, such as the discrete vortex method, may be
required for structures with sharp-cornered sections. Furthermore, it is
necessary, for a moored structural system exposed to a real sea state, to take
into consideration not only the lst-order wave-frequency forces but also the
second-order dynamic forces. The motion of a certain specified point on the
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structure, for example the connecting point between the structure and the
mooring cable, is caused by various combinations of the components of
structural motion, such as sway, surge, heave, pitch, roll and yaw. The
amplitude of the combined motions is affected by the phases of the
components. In addition to the combination of components of the same
frequency (wave frequency or slowly-varying frequency), the motion
associated with the wave frequency should be combined with different
components of the slow drift motion in order to obtain a reliable prediction
of the extreme load in the mooring cables.
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