THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

ON SOME PROBLEMS IN SYSTEMS
BiorLoGy AND GEOMETRIC FLOWS

Tobias Geback

CHALMERS ‘ GOTEBORG UNIVERSITY

Department of Mathematical Sciences
Division of Mathematics
Chalmers University of Technology and Géteborg University
Goteborg, Sweden, 2005

On Some Problems in Systems Biology and Geometric Flows
Tobias Gebéck

(©Tobias Gebéck, 2005

Licentiate Thesis
ISSN 1652-9715/No. 2005:8

Department of Mathematical Sciences

Division of Mathematics

Chalmers University of Technology and Géteborg University
SE-412 96 Goteborg

Sweden

Telephone +46 (0)31 772 1000

Printed in Géteborg, Sweden 2005

ON SOME PROBLEMS IN SYSTEMS BIOLOGY AND
GEOMETRIC FLOWS

Tobias Geback

Abstract

This thesis consists of three distinct parts.

The first part concerns spatial modeling of signaling pathways in cukary-
otic cells, which are systems that enable cells to respond to outside stimuli
and changes in the environment. The signaling is performed through a series
of enzymatic reactions that starts at the cellular membrane and ends in the
nucleus. We focus on modeling the transport of enzymes through diffusion and
show that the inclusion of diffusion in the model may have a large impact on
the output, compared to spatially homogenecous models. The system is mod-
eled using partial differential equations in three space dimensions, which are
solved using finite differences and the Immersed Interface Method.

The sccond part of the thesis discusses this Immersed Interface Method and
its application to three-dimensional, time-dependent problems. Furthermore,
the method is extended to work on Boolean grids, which are grids with a
special structure that makes it possible to reduce the number of grid nodes
while retaining the same accuracy of approximation.

The third and last part contains the proof of convergence for an algorithm
to compute generalized mean curvature flows with right-angle boundary con-
ditions. Mean curvature flows describe the evolution of a surface which at each
point is assigned a normal velocity depending on the mean curvature of the
surface at that point. We consider flows where the velocity is equal to an in-
creasing, continuous function of the mean curvature. Furthermore, we assume
that the surface is located inside a convex domain and that whenever it inter-
sects the domain boundary, it should do so at a right angle. The algorithm
is based on a convolution-thresholding scheme and we show the convergence
of the output, as the time step tends to zero, to the viscosity solution of the
corresponding mean curvature PDE.

Keywords: systems biology; MAPK signaling pathways; reaction-diffusion
cquation; Immersed Interface Method; Boolean grids; curvature flows; viscosity
solutions; convolution-thresholding schemes

Acknowledgements

First of all, I would like to thank my supervisor Alexei Heintz for coming
up with many of the ideas behind this work and for his encouragement and
good advice, as well as for pleasant times with guitar and violin in hand.

I also wish to thank my co-supervisor Per Sunnerhagen at Dept. of Cell
and Molecular Biology, Géteborg University, for sharing his knowledge on
signaling pathways and for reading and commenting on Part I of this thesis.
Furthermore, my “pair” Ph.D. student in biology Claes Molin deserves thanks
for interesting discussions regarding cell biology and other topics.

I would also like to thank Ricards Grzibovskis who has taken time to adapt
his code for computing mean curvature flows, which was used to generate the
nice illustrations at the end of Part III.

I am grateful to Peter Kumlin for reading and giving valuable comments
on Part III of this thesis, and to Mohammad Asadzadeh for doing the same
work with Part II.

A thought of gratitude also goes to the National Research School in Ge-
nomics and Bioinformatics, which provides the financial support for my Ph.D.
studies.

Finally, I would like to thank my family for their care and support and my
friends for giving me other things to do and think about.

Tobias Gebéck
Goteborg, March 2005

Preface

This thesis consists of three independent parts. The first part concerns
spatial modeling of intracellular signaling pathways, which is the project sup-
ported by the National Research School in Genomics and Bioinformatics. The
text in part I is supposed to be less demanding than in the other two parts,
making it accessible to biologists and other people with limited knowledge of
mathematics. That said, there still are some equations appearing now and
then, but those parts could be skipped if the reader has trouble understanding
the mathematical symbols. Also, having some background knowledge in biol-
ogy is preferable, although some effort has been made to give the necessary
background and to explain the terms used.

Part 1I describes the computational method used to perform the calcula-
tions in Part I, as well as an extension of that method to Boolean grids, which
makes it possible to reduce the number of grid nodes when performing the
calculations. Part II requires more mathematical knowledge and a reader who
is inexperienced in mathematics will find it hard to follow.

Part I1I is not related to the two first parts, but it is a continuation of my
master thesis concerning algorithms for computing mean curvature flows, that
is, the motion of surfaces which are assigned a velocity at each point depending
on the mean curvature of the surface. Reading (and understanding) this part
requires a proper mathematical background.

SPATIAL MODELING OF MAPK SIGNALING
PATHWAYS

Tobias Geback

Abstract

MAPK signaling pathways in cukaryotic cells are sequences of enzymatic
reactions that convey a signal from the cellular membrane to the nucleus, in
response to some stimulus. They constitute an often vital signaling system
which enables the cell to react to changes in the environment and to survive
such changes.

We investigate the effects of spatial models for signaling pathways. First,
we add a diffusion term to the Kholodenko model for general MAPK signaling
pathways. This has a large effect on the amplitude of the oscillations that
the model predicts, indicating that such oscillations have a smaller effect in a
model that takes into account the spatial distribution of proteins, compared
to the original space-independent model.

Seccond, we investigate a simple spatial model for the HOG pathway in
the yeast Saccharomyces cerevisiae. We are able to reproduce the nuclear
relocation of the Hogl protein and also see that diffusion in the model is so
fast that differences in protein concentration throughout the cell are small,
even though reactions are localized only at the membrane.

The calculations are performed in three space dimensions using finite dif-
ferences and the Immersed Interface Method, which is described in part 1T of
this thesis.

CONTENTS GLOSSARY

1 Introduction amino acid the 20 different building blocks that make up proteins
1.1 Signaling pathways .) . o . o o .
1.2 Outline differential equation an equation involving derivatives, whose solution is a function of

one or more variables
The Kholodenko model with diffusion
2.1 Introduction

2.2 The Kholodenko model

2.3 Adding diffusion

2.4 Results gene a DNA sequence coding for a protein
2.5 Discussion

enzyme protein that speeds up specific reactions in the cell

eukaryotic cell a cell containing a nucleus, as opposed to bacteria

genome the collection of all the genes of an organism, coded for by DNA
Spatial modeling of the HOG pathway in yeast
3.1 The HOG pathway

3.2 The model

3.3 Results

3.4 Discussion in vivo cxperiment performed inside a living organism

HOG High Osmolarity Glycerol

in vitro cxperiment performed in an artificial environment, outside the organism

References kinase enzyme whose function is to phosphorylate other enzymes
MAPK Mitogen Activated Protein Kinase
ODE Ordinary Differential Equaqtion; a differential equation in one variable, often time

osmosis the process that strives to even out the concentration of solutes across a mem-
brane

PDE Partial Differential Equation; a differential equation in several variables, such as
space and time

phosphorylation the addition of a phosphate group (PO3) to a protein

1. INTRODUCTION

1. INTRODUCTION

The ordinary bakers’ yeast Saccharomyces cerevisiae, which is a unicellular fungus, is a
very widely studied organism among cell biologists. The reasons for this are many. One
is that for a long time there has been a commercial interest for brewers and bakers to
understand the organism in order to maximize its output of alcohol and carbon dioxide.
Another reason is that it is a relatively simple unicellular eukaryotic organism that is easy
to handle in the lab and can be used as a model organism for higher eukaryotic organisms,
such as plant and mammal cells. Nowadays, another reason for studying yeast is that it
is already very well studied, which means that more extensive studies can be performed,
trying to understand more complex processes in the cell. For example, the complete yeast
genome has been sequenced and it contains approximately 6.300 genes (cf. human genome
approx. 30.000 genes) [1]. Furthermore a complete library of gene deletions has been
set up, i.e. for (almost) every single gene, there is a yecast strain available that has this
particular gene deleted from its genome, enabling biologists to casily study the effects of
removing a gene from a cell under different conditions, thus hopefully learning more about
the function of that gene. Also, there are many research groups continually working on
different aspects of the yeast cell, making the amount of data available comparatively large.

Having said that, however, it should be noted that even the simple yeast cell is not at
all understood by the biologists. There are many genes coding for proteins with unknown
function and even if the gene codes for a protein that has a known function, this function
may depend on other proteins and substances, so that the overall behavior is not very
well understood anyway. The cell as a whole is a very complicated system, where proteins,
DNA, RNA, lipids and other molecules work together to define the behavior of the cell. And
although there has been a tremendous increase in knowledge about the cell during the last
decades, only small parts of the complete system are well understood. For example, a single
protein coded for by a single gene may be studied to determine its amino acid sequence,
its three-dimensional structure, its active sites, where it may bind to other proteins, etc.
This gives very valuable information about the protein, but does not tell the whole story,
since questions like “When is it expressed from the DNA?”, “What activates/deactivates
the protein?”, “Where is it located?” and so on, must also be answered to give a complete
picture. The answers to this kind of questions do not depend solely on the protein itself,
but also on other proteins and molecules in the cell, as well as outside stimuli and the
overall “state” of the cell.

The complexity of these questions is the basis for systems biology, which is the research
area that tries to look at larger systems of proteins and cellular functions, often using
mathematical modeling in order to understand the behavior of that particular system.
There is no single definition of systems biology and it is not very fruitful to try to come
up with one, since these “systems” may be very different in character and the methods
applied to study them may also vary accordingly. The philosophy of systems biology is
not without controversies, since there is no long tradition of using mathematical modeling
in cell biology, but there are a few examples where modeling has been successful as a
complement to the experimental data in order to understand the behavior of a cellular

SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

system (see [8], [12]).

1.1. SIGNALING PATHWAYS

One type of cellular system that is suited for mathematical modeling is signaling pathways.
We will be concerned here with MAPK! pathways. Specifically, we have the High Osmo-
larity Glycerol (HOG) pathway in yeast in mind, but most of what is said here applies to
other pathways as well. See [1, chapter 15] for general information about signaling path-
ways and [4] for a review of the HOG pathway. The signaling in a MAPK pathway starts
at the cellular membrane, where it is activated by some stimulus, such as the presence of a
specific substance (c.g. pheromones) in the environment or a more general environmental
change, such as change in osmotic pressure or oxidative properties of the environment.

This stimulus is sensed in one way or another by receptors or other mechanisms at
the membrane. These sensing mechanisms then convey a signal to another protein by
phosphorylation (i.c. adding a phosphate group to one of the amino acids of the target).
This starts a chain of phosphorylation events, which convey the signal through two or
three steps, where each step consists of the phosphorylation of a target kinase, that is
an enzyme which, once activated by phosphorylation, may phosphorylate other target
proteins. So, as is scen in figure 2.1, the signaling cascade moves from the MAP-kinase-
kinase-kinase (MKKK) which activates the MAP-kinase-kinase (MKK), which activates
the MAP-kinase (MAPK), which in turn moves to the nucleus where it may activate
or deactivate transcription factors that control gene expression. The MAPK may also
have other functions by controlling the activity of enzymes throughout the cytoplasm and
nucleus. Activation of kinases in the chain may require a double phosphorylation of two
amino acids in the protein, which are both performed by the higher-level kinase.

The effect of the signaling pathway is that the cell is able to sense changes in the
environment and convey the information of this change to the nucleus or other inner parts.
There the cell can produce the appropriate response to the stimulus, which is often vital for
the survival of the cell. With the multiple steps in the chain, the cell is able to amplify the
signal and may also increase the steepness of the response, creating a switch-like response so
that the signal is more or less either “on” or “off” [5]. In addition to the activating kinases,
there are also deactivating phosphatases, which remove the phosphate from the enzymes,
thereby deactivating them (a dephosphorylation need not be deactivating, but in this case
it is). Thus, when the stimulus disappears, or the cell has adapted to the new environment,
the signaling pathway switches back off through the action of the phosphatases.

It should also be mentioned that (as always in biology) things are more complicated
than they seem. For example, the osmosensing mechanism is often not very well known
and may include many proteins; the phosphorylation events may take place when the
kinases are organized in scaffolds or large protein complexes; and the cell is full of other
enzymes and molecules which may influence the signaling pathway, producing different
results depending on which state the cell is in. The models we discuss here focus on

1Mitogen Activated Protein Kinase

1.2 OUTLINE

the phosphorylation cascade and the movement of the phosphorylated MAPK from the
membrane to the nucleus. They are of course great simplifications, but may hopefully
provide some insight into the reality.

1.2. OUTLINE

In the following sections, we study two spatial models of MAPK signaling pathways. In
section 2, we investigate the effects of diffusion on the oscillations predicted by a model of
a MAPK cascade, including a negative feedback loop. In section 3, we study a model of the
nuclear relocalization of the yeast MAPK Hogl. The two sections are almost independent
and contain separate results and discussion parts.

SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

2. THE KHOLODENKO MODEL WITH DIFFUSION

2.1. INTRODUCTION

In the year 2000, Boris N. Kholodenko [6] published a model of general mitogen-activated
protein kinase (MAPK) signaling cascades, which was shown to give rise to oscillatory
behavior for a range of parameter values. An essential feature of the model is a negative
feedback loop, meaning that the end product of the pathway inhibits the activating reaction
(see figure 2.1). The model received some attention, since the appearance of oscillations
was a rather unexpected effect which could have interesting implications for the biology of
the cells. However, no oscillations have actually been observed for signaling pathways in
real cells. There could be numerous reasons for this, for example that the abundance of
proteins is measured as the total protein content in a large number of cells, which means
that unsynchronized oscillations will not show up in measurements. But it is perhaps
more probable that the model does not agree well enough with reality, meaning that the
oscillations in MAPK-pathways are artifacts which do not occur in nature. Specifically, the
feedback loop in the model may be a too simple model of the feedback that is known to be
present (since the signaling is turned off after a while). It is also a fact that the signaling
does not take place at one point in space but involves movement of proteins through the
cell. Some of the reactions take place only at the cell membrane, while some may take place
wherever the participating proteins encounter each other. This should have an effect on
the oscillatory behavior, since as proteins at the end of the reaction chain move away from
the membrane, they cannot take part in the feedback, which should then be attenuated.
The purpose of the following sections is to incorporate diffusion of proteins into the model
and study the effect that this has on the oscillations and the behavior of the pathway.
Although the Kholodenko model may not be an accurate model, it is quite convenient to
study an oscillating system, since the oscillations are easily seen and effects on them are
easily detected.

2.2. THE KHOLODENKO MODEL

The structure of the Kholodenko model for MAPK signaling pathways is shown in figure
2.1. The pathway is activated by a stimulus of some kind, which causes the MKKK to be
phosphorylated. This activates the MKKK, which then in turn is able to phosphorylate the
MKK at two different sites. The active double-phosphorylated MKK (MKKPP) may then
activate the MAPK by phosphorylation, again at two sites. In a real cell, the MAPKPP
continues to perform some action, which sooner or later will turn the signaling cascade
off, by some means which are to a large extent unknown (and may differ between different
MAPK pathways). In the Kholodenko model, this is modeled by that the MAPKPP
inhibits the phosphorylation of the MKKK. This is the negative feedback loop, which is
needed in order to create oscillatory behavior.

2.2 THE KHOLODENKO MODEL

Cytoplasm

Figure 2.1: The Kholodenko model. The signaling pathway is activated by some stimulus
which leads to phosphorylation of the MKKK, which in turn phosphorylates the MKK in
two steps. The double-phosphorylated form of MKK then phosphorylates the MAPK, also
in two steps. The end product (MAPKPP) then has the effect of inhibiting the stimulus,
thus forming a negative feedback loop. Here, we also add the additional assumption that
the MKKK is fixed at the cell membrane, while the other proteins are free to diffuse
through the cytoplasm.

The corresponding ordinary differential equations may be written as

duy /dt Vg — Uy

duy/dt v — Ug

duy/dt v — U3

duy/di V3 + Vs — Vg — Vg
dug/di Vg — Vs

dug/dt Vig — U7

duy/di vy + Vg — Vg — V1g
dug/di vg — Ug

where the concentrations of MKKK through MAPKPP are denoted u;, j =1,...,8 with
numbers as in the boxes in figure 2.1, and the fluxes of the reactions are denoted v;, i =
1,...,10 and also numbered as in figure 2.1. The expressions for the fluxes are given in
table 2.1.

SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

Flux Rate equation Parameter values
Vi /(1 + (ug/Kn)") (K1 +wi)) Vi=25 n=1; K;=9; K, =10;
Vaup/ Kz + us) Vy = 0.25; K, = 8;
kugug /(K3 + u3) k3 = 0.025; K3 =15;
kyugug/ (Kq + uy) kq = 0.025; K4 =15;
Vsus/ (K5 + us) Vs =0.75; K5 =15;
Voua/ (K + u4) Vo = 0.75; Kg = 15;
krusug/ (K7 + uz) kr =0.025; K; =15;
kgugur/(Ks + us) ks = 0.025; Kg = 15;
Vaus /(Ko + us) Vo =0.5; K9 =15;
Viour /(Ko + uz) Vip = 0.5; K9 = 15;

Table 2.1: Fluxes and parameter values in the Kholodenko model. The values are the ones
given in the original article [6].

The output of the model with these parameter values is shown in figure 2.2. We see
the concentrations of MAPK and MAPKPP and note that they oscillate heavily, and that
the oscillations are sustained. The oscillations are present for a range of parameter values,
although the frequency and amplitude may vary.

2.3. ADDING DIFFUSION

‘We now wish to add spatial movements of proteins to the Kholodenko model. We assume
that the MKKK is fixed at the membrane and that MKK and MAPK may diffuse freely
through the cell cytoplasm. This means that the reactions 1, 2, 3 and 4 take place only
near the membrane, where MKKK is present, while the other reactions take place all over
the cell.

The geometry that we use is a near spherical cell of diameter 9 um in three dimensions
with no inner structure. This is of course a great simplification, but still it is a more
advanced model than the original one, which does not include the space dimension at all.
The size of the cell is the approximate size of a yeast cell, which is a rather small cell
compared to other cukaryotic cells. A diffusion term is added to all the equations for the
MKKs and MAPKSs, yiclding the eight equations

dui/dl = vy — 1

dug/dt = vy — vy

duz/dt = d3Auz+ vg — vy

dug/dl = diAus+ vz +vs — v — Vg
dus/dt = d;Auz+ vy —vs

dug/dt = dgAug+ vig— vy

duy/dl = dyAur+ vy +vg — vg — v1g
dug/dt = dsAug+ vs — vy

with u; = uj(z,y,2,1), 7 =1,...,8, and A = §?/92® + 9%/9y* + 8?/8z* denoting the

2.4 RESULTS

n
o
o

concentration (nM)

80 120
time (min)

Figure 2.2: Typical behavior of the Kholodenko model. The graph shows the concentration
of MAPK (solid) and MAPKPP (dashed) for times up to 150 minutes. We sce the sustained
oscillations in concentration.

Laplacian. Here d; are the diffusion cocfficients, which are now additional parameters in
the model, describing how fast the diffusion of proteins is. These are known (sce e.g. [10])
to be much lower inside the cell than in water (up to 10 times), because the cell is full of
obstacles such as the cytoskeleton and other proteins. For simplicity, we assume that all
the diffusion cocfficients are equal, i.e. d3 = ... = ds = d. For globular (ncar-spherical)
proteins in water, the diffusion coefficient may be estimated from the relation

dec - W3 (2.1)

where W is the molecular weight (see [9]). Fitting of measurement values for medium-sized
proteins tabulated in [2, chapter 7] gives ¢ & 2.7-10% if W is measured in Daltons and d in
um?/s. For the MAPK Hogl in yeast, which has a molecular weight of 48.8 kDa, this gives
d = 74 um?/s for free diffusion in water, which we use as a reference value. The equations
for the fluxes are the same as before, i.e. the ones given in table 2.1.

The equations were solved using the Immersed Interface Method and finite differences
on uniform grids with 54 x 54 x 54 nodes. The method is described in Part II of this thesis.

2.4. RESULTS

We study the results of the model for two different values of the diffusion coefficient, d,
namely di = dy/10 and d, = dy/1000, with dy = 74 um? /s being the approximate diffusion
coefficient in water for Hogl.

SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

The higher value dp for the diffusion coefficient is so large that the molecules have time
to move around the entire cell faster than the reactions produce any significant changes
in concentration. This means that the proteins will be evenly spread across the cell at
all times. This is seen in figure 2.8 for two of the components in the pathway (MKK and
MAPKPP). The figure shows concentrations for times between 0 and 50 min on a line
through the center of the cell. One sees that the concentration is the same in the center
of the cell as at the edge. One can also sce that the oscillations arc not as large as for
the original model. This is shown more clearly in figures 2.4 and 2.5, which should be
compared to figure 2.3 for the original model. Here concentrations for all components in
the model are shown. Samples are taken at the membrane (figure 2.4) and at the center
of the cell (figure 2.5). It is clear that the oscillations have a much smaller amplitude now
that we have added diffusion. Furthermore, the oscillations scem to be damped, so that the
amplitude decreases with time. This has been confirmed by running longer simulations,
where the oscillations slowly fade away. The diffusion acts as a damper for the system.

A similar behavior is seen with the lower value d = dy, for the diffusion coefficient (figures
2.6 and 2.7). The oscillations again have a lower amplitude and are again damped. Here,
however, the proteins do not have time to diffuse through the cell before the reactions
produce significant changes in phosphorylation levels. This is scen clearly in figure 2.9,
where again concentrations of MKK and MAPKPP are shown along a line through the
cell center for different times. It is clear that the concentrations arc different in the center
and at the membrane. However, the oscillations are present and approximately equal in
period and amplitude in the center and at the membrane, and also approximately equal
to the previous case (with d = dy).

A final example is shown in figure 2.10. There, we show the result of the same model
with slow diffusion (d = d.), but in a larger cell with a diameter of about 90 pm?/s. Now
the phosphorylated proteins do not have time to move very far from the membrane before
they are dephosphorylated. Therefore the oscillations occur only near the membrane, while
in the center all the kinases are in their inactive (unphoshorylated) state. This of course
makes the signaling pathway useless, since its main purpose is to convey the signal of
phosphorylations to the cell nucleus, which it fails to do when distances are large, diffusion
slow and dephosphorylation reactions comparatively fast.

It is clear that what determines the spatial behavior of the system is a combination
of the length scale, the diffusion coefficient and the reaction rate. In order to sec this
more clearly, we may make the equations non-dimensional. To illustrate this, we take the
cquation for us (MKKPP), but include only the dephosphorylation reaction with flow vs.
The equation then becomes

Ous

Ous Vsus
ol

=dAu — .
Ks +us

If we introduce the non-dimensional space variables (¢,7,{) = h !(z,y,2), the non-

dimensional time 7 = d/h? - { and the non-dimensional concentration v = uz/ug, with

2.4 RESULTS SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

Space-independent model At membrane

w
o
o

w
o
o

N

o

o
N
o
o

concentration (nM)

concentration (nM)

- 4 = =

20
time (min)

o

o

concentration (nM)
concentration (nM)

time (min) time (min)

—— MAPK
- - —MAPKP
MAPKPP

concentration (nM)
concentration (nM)

time (min) time (min)

Figure 2.3: The concentrations of the eight components of the original (space-independent) Figure 2.4: Concentrations for the eight components in the space-dependent model with
model. fast diffusion d = dy. The values are taken at the membrane.

2.4 RESULTS p SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

Center of cell At membrane

w

o

o
w
o
o

N

o

o
N
o
o

concentration (nM)

concentration (nM)

20 30
time (min)

concentration (nM)
concentration (nM)

time (min) time (min)

—— MAPK
-~ ~MAPKP
MAPKPP [

concentration (nM)
concentration (nM)

time (min) time (min)

Figure 2.5: Concentrations for the eight components in the space-dependent model with Figure 2.6: Concentrations for the eight components in the space-dependent model with
fast diffusion d = dj;. The values are taken at the center of the cell. slow diffusion d = dy. The values are taken at the membrane.

2.4 RESULTS

Center of cell

w
o
o

— MKKK
— — — MKKKP

concentration (nM)

20 30
time (min)

concentration (nM)

time (min)

—— MAPK
- - —~MAPKP
MAPKPP

concentration (nM)

time (min)

Figure 2.7: Concentrations for the eight components in the space-dependent model with
slow diffusion d = dy. The values are taken at the center of the cell.

SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

II///I/II//II///,I//
[l
QSN
il il
il
.

concentration ("M)
concentration (nM)

iy
Tl
/'/’///7”////,,////11

5 30

X (um) time (min) X (um) time (min)

Figure 2.8: Concentrations of MKK (left) and MAPKPP (right) in the model with fast
diffusion d = dp. The values are taken on a line through the center of the cell for times
up to about 50 minutes. The concentrations are almost equal throughout the cell.

I
0

i
L
il

concentration ("M)
concentration (NM)

I I;I/I//I/Il;l/;l;,/ g 77
I /IIIII/III/////////I/I/////IIII//////// l\\\\\\{ll/////'//””/
I NS
Ly
X (um) time (min) time (min)
Figure 2.9: Concentrations of MKK (left) and MAPKPP (right) in the model with slow

diffusion d = dr,. The values are taken on a line through the center of the cell for times up
to about 50 minutes. The concentration gradient is clearly visible.

2.4 RESULTS

N w
S =3
3 3

S
]

concentration (nM)
concentration (nM)

time (min) time (min)

Figure 2.10: Again, concentrations of MKK and MAPKPP with slow diffusion d = d,, but
this time in a cell with diameter 90 pm. The values are taken on a line through center.
Here, the phosphorylated proteins do not have time to diffuse far before the phosphate is
removed, so the whole oscillation takes place at the membrane.

scaling coefficients h, k and uo with dimensions [h] = m, [k] = s and [ue] = M, we get

ov h2V, v

or Ay = ‘dug Ks/ug+ v’
with A¢ denoting the Laplacian in the (&, 7, {)-variables. The typical size of the diffusion
term is now 1, while the typical size of the reaction term is A = h?V5/(dup). This is
the quantity that determines the influence of the reaction compared to the influence of
diffusion. The values of the A for the three examples discussed here are summarized in
table 2.2. We sce that in the first case A < 1, indicating that reactions are slow compared

Example | h (um) | d (um?/s) | V5 (nM/s) | uo (nM) | A
1 10 7.39 0.75 300 3.38-10°2
2 10 0.0739 0.75 300 3.38
100 0.0739 0.75 300 3.38 - 102

Table 2.2: The ratio A for the three examples.

to diffusion, so that molecules have time to travel across the cell before changing their
phosphorylation state. This leads to homogeneous mixing of the diffusing components and
no concentration gradients are observed. This is exactly what we see in figure 2.8 for the
first example. For the second example, we have A =~ 1 and diffusion and reaction are
comparable, meaning that mixing of components is not complete. Thus we expect to see
some concentration gradients, but also some diffusion of reaction products through the
cell, which is what figure 2.9 shows. Finally, in the third example, A > 1, meaning that
reactions are much faster than diffusion, leading to highly localized reactions with small
exchange of material. This is seen in figure 2.10.

16 SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

2.5. DIscussIoON

Much could be said about the Kholodenko model and whether oscillations really do occur
in signaling pathways in rcal cells. Onc of the weakest points of the model is perhaps that
the stimulus that activates the pathway is assumed to be “on” all the time, only being
inhibited temporarily when the level of MAPKPP is high. This assumes that the cell never
really responds to the signal, which is pretty absurd, since the purpose of the signal is to
cause the cell to respond and adapt to new conditions. Once the cell has adapted, the signal
must cease, or the cell will probably die or at least spend all its energy on useless tasks.
So, it is maybe not so probable that we will observe oscillations in signaling pathways in
real cells.

However, this numerical experiment has shown a number of other things of more general
interest, which are easy to observe because oscillations is an effect that is casily studied.
First, when we include the spatial distribution of proteins, we see that the oscillations
are severely damped compared to the original model, almost independent of the diffusion
coefficient as long as it is not too small. This shows that by neglecting diffusion and
spatial distribution when modeling, one may overlook important aspects and draw false
conclusions about the behavior of the system. Of course, the principal behavior is in
large determined by the space-independent reaction terms, but our simulations show that
the amplitude of the effect may be diminished significantly by the addition of diffusion.
Furthermore, in our examples, the oscillations are not sustained, but seem to diminish
with time, indicating that the system is damped by the diffusion. This is a different type
of behavior than the sustained oscillations and is also an important thing to keep in mind
when doing space-independent modeling of biochemical processes. The reason for this
dependence on diffusion is that the problem is directly space-dependent, since we know
that the first reactions take place only at the membrane, while the proteins at the end of
the chain may move about freely. Thus, purely time-dependent modeling can be expected
to produce errors for all signaling pathways, since these are space-dependent by nature,
while for example space-independent metabolic models may be assumed to be more correct,
since the space-dependence is not so obvious in that case.

There is of course a reason for not using full spatial modeling, in particular three-
dimensional modeling, since the solving of systems of PDEs take so much more time than
solving a system of ODEs. The images shown here are results of simulations that took 10
minutes or more. This should be compared to fractions of a second for solving the space-
independent model. The amount of time needed to solve the space-dependent equations
makes it impossible to use for example parameter fitting algorithms, since such algorithms
require a large number of simulations with different parameter settings. Therefore, space-
independent ODE models are of great importance, but one should be aware that one is
neglecting something and that it may be worthwhile to see what happens in a space-
dependent model.

3. SPATIAL MODELING OF THE HOG PATHWAY IN YEAST 17

3. SPATIAL MODELING OF THE HOG PATHWAY IN YEAST

3.1. THE HOG PATHWAY

One rather well-studied MAPK signaling pathway is the Hogl-pathway in the yeast Saccha-
romyces cerevisiae, where HOG stands for High Osmolarity Glycerol and the MAP kinase
Hogl is the last enzyme in the signaling chain, whose purpose is to sense that the osmotic
pressure on the cell membrane increases and produce the appropriate response (see [4]).
That is, if solutes (e.g. salt) are added to the solution outside the cell, the process called
osmosis will strive to level out the difference in solute concentration over the membrane by
forcing water to flow out of the cell. This is potentially harmful for the cell, since it then
starts to shrink and if that goes on, the cell can not function anymore and eventually it
will die.

To avoid this sad fate, the cell has to respond in some way to this new environment.
It does so by starting to produce glycerol and accumulating it inside the cell, which evens
out the solute concentrations and thereby prevents water from flowing out of the cell. And
the link between the sensing of osmotic pressure and the response in the form of glycerol
production is the HOG pathway. It is not really well known how the actual sensing of the
change in osmotic pressure takes place, but there are enzymes at the cell membrane that
are somchow activated, which leads to the activation of Hogl through a few intermediate
kinases. The pathway is shown in figure 3.1 with some of its surrounding components.
When Hogl has been activated, it enters the nucleus and once there it affects transcription
of several genes through the transcription factors shown at the bottom of the figure.

A central feature of the signaling pathway is that Hogl enters the nucleus. This can
be viewed in the microscope by genetically adding a Green Fluorescent Protein (GFP) tag
to the Hogl protein, which makes the molecules shine bright green when viewed under
ultraviolet light. This is a powerful method to view the localization of proteins in the
cell and the results look like figure 3.2. One should be aware, however, that the GFP is
a protein of about the same size as Hogl, so that the Hogl-GFP fusion is a much larger
protein than wild-type Hogl, which could affect the kinetics and function of the protein.
Still, the Hog1-GFP fusion is functional in the sense that it is able to carry out its function
in the signaling pathway.

3.2. THE MODEL

Figure 3.3 shows the model that we are studying here. It is a model of the center part
of the Hogl-pathway, where Hogl itself is involved. The focus is on the transport of
activated Hogl into the nucleus. For simplicity, we assume that the MAPKK Pbs2 sits
at the membrane in its phosphorylated form, ready to phosphorylate Hogl-molecules that
come close to the membrane. This assumes that the upper part of the pathway that is
not included in the model has reached an equilibrium and that phosphorylation of Hogl
can only take place at the membrane, which is believed to be true. There is also a small
amount of spontancous phosphorylation of Hogl both in the nucleus and in the cytoplasm.

SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

Plasma
membrane

Nuclear
envelope

Figure 3.1: A schematic diagram showing the essentials of the HOG pathway, including the
two different osmosensing mechanisms at the top, phosphatases on the right, cytoplasmic
targets on the left and nuclear targets (transcription factors) at the bottom. Hogl is seen at
the center of it all and it is indicated that upon osmotic stress, it moves from the cytoplasm
to the nucleus.

3.2 THE MODEL

Figure 3.2: Hogl-GFP in wild-type yeast cells, under normal osmotic conditions on the
left and after addition of NaCl on the right. The nuclei can be seen as bright spots in the
right image, indicating that Hogl has entered the nucleus. The positions of the nuclei may
be verified by staining with a special dye (DAPI) (not shown). The images are generated
by Claes Molin.

Membrane

Nucleus

Ptp2

Figure 3.3: The model for the Hogl-pathway. The MAPKK Pbs2 is assumed fixed at the
membrane in its phosphorylated form, meaning that the pathway is constantly active. The
phosphatases Ptp2 and Ptp3 are distributed evenly throughout the nucleus and cytoplasm
respectively. Hogl is free to diffuse through the cell, but at the nuclear membrane, the
transport is regulated. Unphosphorylated Hogl is transported in and out of the nucleus
at equal rates, while phosphorylated Hogl (Hoglp) is transported into the nucleus at a
higher rate than it is transported out.

SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

Figure 3.4: A cross section of the cell used in the model. The nucleus is shown as the
bright spot.

The two phosphatases in the model, Ptp2 and Ptp3 arc assumed to be evenly distributed
in their respective domains, the nucleus and the cytoplasm. They are responsible for
the dephosphorylation of Hogl. The only diffusing components of the model are thus
Hogl and Hoglp, which are free to move in the cytoplasm and in the nucleus, but not
between the two compartments. The transport through the nuclear membrane is regulated
so that unphosphorylated Hogl is transported in and out of the nucleus at cqual rates.
Phosphorylated Hogl (Hoglp) is transported out of the nucleus at the same rate, but
transported into the nucleus at a much higher rate. The geometry used for the model
is a simplified three-dimensional cell with an off-center spherical nucleus and a slightly
cllipsoidal cell membrane. No other internal cell structure is included. A cross section of
the model cell is shown in figure 3.4.

The model is of course a very simplified one. We disregard the fact that the phosphory-
lation of Hogl takes place in two steps, so that the active form is double-phosphorylated.
‘We also ignore the upper part of the pathway, the osmosensing mechanism and the phos-
phorylation of Pbs2. Also, the targets of Hogl are not included in the model and there is
no feedback loop to turn off the signaling pathway. The transport of proteins through the
nuclear membrane is also simplified. Here, we use the assumption that the flux through
the membrane is proportional to the concentration of proteins, which is of course a sim-
plification of the rather complex transport system that shuttles the proteins in and out
of the nucleus. And finally, the inner structure of the cell is not included other than in a
reduction of the diffusion constant because of the obstacles.

3.2 THE MODEL

We denote the concentrations of unphosphorylated and phosphorylated Hogl by wy
and up, respectively, the nucleus by Qu, the cytoplasm by Q¢ and the nuclear and plasma
membranes I'y and I'c. The model then leads to the following partial differential equations

Oup /0t = dyAug — fo(um,up), inQg,
Oup /0L dpAup + fo(ug,up), in Qc,
Oug /0L dgAug — fy(um, up), in Qy,
Oup /Ot dpAup + fn(ug,up), inQy,
OJup/on 0, on e
dup/On = 0, on ¢
dpduy/on auugv) — buu(HC), on 'y

dpOup/on ﬂPU;N) - bpuf’, on 'y

Vpesoum _ VP:pauP
Kpyss +up Kpys +up
_ VPtpzup

Kpipa +up

fC(UH, UP) + kspCuII

fn(um, up) + kspnum-

Here, dy and dp are diffusion constants, which we assume to be equal. The four first
equations are diffusion-reaction equations with one diffusion term and one reaction term,
the two first describe the cytoplasm and the two last the nucleus. The reaction terms
make use of Michaelis-Menten kinetics (see e.g. [2, chapter 4]) for the enzyme reactions,
which is a standard way of modeling such reactions. Next follows boundary conditions at
the plasma membrane, which say that the flux through the membrane is zero, i.e. that no
protein molecules may leave the cell. The two last rows are boundary conditions at the
nuclear membrane, both saying that the flux out through the membrane equals a constant
times the nuclear concentration at the membrane minus a constant times the cytoplasmic
concentration on the outside of the membrane. We also need initial conditions that describe
the concentrations at time ¢{ = 0. These are shown in figure 3.5 and are chosen so that the
system is near its equilibrium. Most of the Hogl molecules are in the unphosphorylated
state and are evenly distributed between nucleus and cytoplasm. A small fraction of the
molecules are phosphorylated and these have a higher concentration in the nucleus than
in the cytoplasm.

Table 3.1 shows the parameter values used for the simulations. The diffusion coefficients
are taken to be dy/1000, where dy is the diffusion coefficient of Hogl in water, estimated
from equation (2.1). The reaction coefficients are chosen in the same range as for the
Kholodenko model, but their exact values are quite arbitrarily chosen to get a result which
resembles the in vivo behavior. The parameters a and b describing the efficiency of the
nuclear transport are also rather arbitrarily chosen to get a reasonable result and are not
based on experiments. For comparison, one simulation was also done with faster diffusion
(dg = dp = dy/10).

SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

dn 0.074um?/s | dp 0.074um?/s
ag 1dy um/s |ap 1dp pm/s
b 1dy um/s | bp 3dp um/s
Vpbsz 1.0 nM/s Kppsz 50.0 nM
Vpys 0.210M/s Kpys 15.0 1M
Veyz 0.2 nM/s Kpyy 15.0 1M
ke 0.0002 57 ksypy 0.0002s7"

Table 3.1: Parameter values

The equations were solved using the Immersed Interface Method and finite differences
on uniform three-dimensional grids with 54 x 54 x 54 nodes. The method is described in
Part II of this thesis. The final simulations shown here, involving some 200 time steps,
took up to 30 minutes to complete on a standard computer.

3.3. RESULTS

Figure 3.5 shows the initial conditions used in the 3D simulations. The images only show
the concentrations in a slice through the center of the cell, but the concentrations are
assumed to be uniform throughout the nucleus and the cytoplasm. The values chosen are
near the equilibrium of the system when the pathway is not activated. The exact values
used are 100 nM for Hogl and 1.5 nM and 3.2 nM for Hoglp in cytoplasm and nucleus
respectively, but changing these values slightly does not alter the behavior of the system
much, so the exact values are not very important.

Then at time ¢ = 0, the signaling is turned on, in this model by activating Pbs2, that
is setting Vpps2 to a non-zero value. In figure 3.6 we see the simulated response as it would
appear in the fluorescence microscope, namely the total concentration of Hogl ([Hogl] +
[Hog1p]) at the start and the end of the simulation. The simulation ends at 22 minutes when
the concentrations are approaching the steady-state levels with the signal turned on. In a
real cell the level of phosphorylation would again turn down when the cell started to adapt,
but since this adaptation is not included in the model, the concentrations just approach
a steady state with high concentration in the nucleus, mostly containing phosphorylated
Hogl and lower concentrations outside.

To see the time evolution of the system, we show in figure 3.7 concentrations along
a line through the center of the cell for all times and for Hogl and Hoglp separately.
We see that the levels of Hoglp are gradually increasing and that Hoglp is transported
into the nucleus, while unphosphorylated Hogl is moved out of the nucleus as the levels
become lower in the cytoplasm when Hogl is phosphorylated. One also notes that there
are concentration gradients in the cytoplasm, arising from the fact that the diffusion is
not fast enough to even out the concentrations at the same rate that the reactions change
them. The dimensionless parameter A defined in section 2.4 is here

A= h*Vpyss - (1079)*-1.0

dug 74101100 13D

3.3 REsuLTS

45
4

35
3
25
2
15
1
0.5

Figure 3.5: Initial conditions for the simulation in 3D, with unphosphorylated Hogl on the
left and phosphorylated Hogl (Hoglp) on the right. The images show a slice through the
center of the cell, with the nucleus visible in the right image. Note the different scales on
the two images.

H t=22.3 min H

Figure 3.6: The total Hogl concentration ([Hogl] + [Hoglp]) at the start (left) and end
(right) of simulation. These images are comparable to the ones seen in the fluorescence
microscope. The ragged edges are artifacts arising from the space discretisation.

SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

o
® & N
3 3 3

IS
]

7
77
)

7
7)

Hog1 concentration (nM)
Hog1p concentration (NM)
n @
8 33

.
So

7
)

N

Z

time (min) time (min)

Figure 3.7: Concentrations of Hogl (left) and Hoglp (right) for slow diffusion. The values
are taken along a line through the center of the cell and the nucleus. The nuclear relocation
of Hoglp is clearly seen. There is a slight concentration gradient in the cytoplasm.

Y%

7

/7
l/////////,/,////////;//// .

.

.
g
. 4

Zic //////
e’

//////////|
5 .

X (um) 0o time (min) time (min)

Hog1 concentration (M)
Hog1p concentration (nM)

Figure 3.8: Concentrations of Hogl (left) and Hoglp (right) for slow diffusion, when the
signal is turned off after Hoglp has accumulated in the nucleus. The concentrations return
to their original state.

3.4 DIsCUSSION

Hog1 concentration ("M)
Hog1p concentration (nM)

\
\Y
\\\\\\\.

\

time (min) time (min)

Figure 3.9: Concentrations of Hogl (left) and Hoglp (right) for fast diffusion. Here the

concentration gradient is no longer present and the response is slightly faster than in the
example with slow diffusion.

indicating that reactions arc slightly faster than diffusion, which should produce gradients
in the concentration levels.

In figure 3.8, we also show the return to the original state when the signaling pathway
is turned off. Starting at the final levels of the previous simulation, and setting Vpysy = 0,
we see that the system returns to its original state with low levels of phosphorylated Hogl
and almost equal concentrations in nucleus and cytoplasm.

Finally, we also show a simulation with a larger diffusion cocfficient (dy = dp = do/10 &
7.4um?/s). The results are shown in figure 3.9. Now, diffusion is fast enough to level out
the concentrations, so that they are uniform in nucleus and cytoplasm, respectively. The
response in the nucleus is also slightly faster than in the slow diffusion simulation.

3.4. DISCUSSION

The results shown above show that it is possible to reproduce in simulations the nuclear
relocation of Hogl that is observed when yeast cells are exposed to osmotic stress. The
model used is a very simple one, including only two diffusing components and only the
final steps of the phosphorylation chain. The results should therefore not be used to draw
far-reaching conclusions about the actual behavior of the cell.

What we see, however, is that only with the small diffusion cocfficient dy/1000 do we
observe concentration gradients and interesting spatial effects. This value for the diffusion
coefficient is much smaller than the values observed for similar proteins inside living cells
(up to 10-fold reduction compared to diffusion in water [10]). For the larger diffusion
coefficient dy/10, which is more in agreement with observed values, concentrations are
practically constant in each of the compartments. This indicates that diffusion is fast
compared to the reactions involved, so that full spatial modeling with PDEs might not be
of crucial importance for the simple model with the parameter values used here. However,

26 SPATIAL MODELING OF MAPK SIGNALING PATHWAYS

the behavior of the system is very much dependent on the enzyme rates, especially for the
phosphatases Ptp2 and Ptp3. The values for the reaction rates used here are not based
on direct measurements, but are taken to be near the values in the Kholodenko model,
which are based on in vilro measurements for MAP kinases in mamimalian cells. Those
values may not be correct for the reactions in our model. So, we can not determine from
our simple model whether the explicit modeling of spatial effects shown here is of crucial
importance. In any case, one must remember that cell signaling is a spatial phenomenon,
so that spatial features should be taken into account, in one way or another. What we
have developed is a method to simulate full spatial models that could be used to compare
the output with results from simpler, less computationally intense methods.

In the end, what decides whether a biological model is good or bad, is if it compares
well with measurements of the real phenomenon in live cells. So, to be certain about what
type of models arc needed, one should compare the results to precise measurements. This,
however, is not an easy task. The types of measurements available at present to determine
spatial distributions of proteins inside the cell are fluorescence microscopy experiments,
yielding images such as those in figure 3.2. In order to compare these to the results of the
computations made here, one would like to follow a single cell and take images at intervals
of seconds or less, which is very hard to do. Furthermore, one would ideally like to be able
to view phosphorylated and unphosphorylated Hogl separately, which is not possible at
present.

One may also discuss if a diffusion PDE is an appropriate model for the transport of
proteins inside the cell. First of all, the number of molecules is relatively small. The esti-
mated number of Hogl molecules in the yeast cell is about 7000 [3], giving a concentration
of around 50 nM. Since the diffusion equation is obtained as the limit when the number
of molecules tend to infinity, it may not be an accurate model. The random fluctuations
arising from the small number of molecules may also influence the reactions. However, as
long as there is no data to compare to, it is hard to decide between models. But it would
be interesting to investigate the differences between a PDE model and a stochastic model
for the signaling pathway.

Another issue related to diffusion is that the cell is full of obstacles, consisting of
organelles, cytoskeleton networks, large protein complexes etc. This makes the assumptions
underlying the diffusion model invalid. It has been shown (see [11], [10], [7]) that these
obstacles do not only cause a reduction in the diffusion coeflicient, but may give rise to the
phenomenon called anomalous (sub)diffusion. For anomalous diffusion, the mean square
displacement of the molecules is no longer proportional to time ({(z(£)?) o t), but to some
power a < 1 of time ({z(t)2) o t*). This may give rise to new interesting phenomena and
is also a subject that would be interesting to study.

REFERENCES

REFERENCES

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular

2

[

[12

]

Biology of the Cell. Garland Science, 4th edition, 2002.

C. P. Fall, E. S. Marland, J. M. Wagner, and J. J. Tyson, editors. Computational Cell
Biology. Springer, 2002.

S. Ghaemmaghami, W.-K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure,
E. K. O’Shea, and J. S. Weissman. Global analysis of protein expression in yeast.
Nature, 425:737 741, Oct 2003.

S. Hohmann. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol
Biol Rev, 66(2):300 372, 2002.

C.-Y. F. Huang and J. E. Ferrell, Jr. Ultrasensitivity in the mitogen-activated protein
kinase cascade. Proc. Nall. Acad. Sci. USA, sept 1996.

B. N. Kholodenko. Negative feedback and ultrasensitivity can bring about oscillations
in the mitogen-activated protein kinase cascades. European Journal of Biochemisiry,
267:1583 1588, 2000.

M. J. Saxton. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys
J., 66(2:1):394-401, 1994,

1. Swameye, T. G. Miiller, J. Timmer, O. Sandra, and U. Klingmdiller. Identification
of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased
modeling. PNAS, 100(3):1028 33, 2003.

G. A. Truskey, F. Yuan, and D. F. Katz. Transport Phenomena in Biological Systems:
A Textbook for Biomedical Engineers. Prentice Hall, 2003.

M. Wachsmuth, W. Waldeck, and J. Langowski. Anomalous diffusion of fluorescent
probes inside living cell nuclei investigated by spatially-resolved fluorescence correla-
tion spectroscopy. J. Mol. Biol., 298:677 689, 2000.

M. Weiss, H. Hashimoto, and T. Nilsson. Anomalous protein diffusion in living cells
as seen by fluorescence correlation spectroscopy. Biophys J., 84(6):4043-52, 2003.

H. S. Wiley, S. Y. Shvartsman, and D. A. Lauffenburger. Computational modeling
of the EGF-receptor system: a paradigm for systems biology. ZTrends Cell Biol.,
13(1):43 50, 2003.

THE IMMERSED INTERFACE METHOD ON
UNIFORM AND BOOLEAN GRIDS

Tobias Geback

Abstract

The Immersed Interface Method (IIM) is a method which allows the use
of finite differences in non-rectangular domains, by immersing interfaces into
a rectangular domain which is discretised by a uniform grid. The finite differ-
ences near the interface are then corrected using the size and position of the
jumps in the solution and its derivatives across the interface.

The method presented here is the Explicit Jump IIM developed by Wieg-
mann and Bube, but we also present some additional details on how to apply
the method in three dimensions, using Robin boundary conditions and to time-
dependent problems.

‘We then apply the IIM to Boolean grids. These are grids that use com-
binations of a number of Cartesian grids to achieve greater accuracy of ap-
proximations, while using fewer grid nodes. The use of IIM on such grids
requires some new development of the estimation of jumps on the boundary.
We show numerically that the resulting Boolean 1IM gives second order error
convergence with respect to the smallest step size in the grid, meaning that
the required number of nodes needed for a given maximal error is considerably
smaller than on uniform Cartesian grids.

CONTENTS

1 The Immersed Interface Method
Introduction
EJIIM theory
Estimating jumps at boundaries
Applying boundary conditions
Solving the lincar system
Other equations

Immersed Interface Method on Boolean grids
Introduction

Boolean interpolation

2.2.1 The algebraic theory

2.2.2 Boolean grids

2.2.3 Application to finite difference solvers
Applying IIM to Boolean grids

2.3.1 Boolean approximation of jumps

Examples

2.4.1 Example 1 Boolean approximation

2.4.2 Example 2 Finite differences on Boolean grids
2.4.3 Example 3 — IIM on Boolean grids

References

—_
OO WD

1. THE IMMERSED INTERFACE METHOD

1. THE IMMERSED INTERFACE METHOD

1.1. INTRODUCTION

The use of finite difference methods for solving partial differential equations has a few
advantages, mainly that they are easy to implement and that they may be easily and
quickly solved using Fast Fourier Transform (FFT) methods. The drawbacks are that
these methods demand a rectangular domain with a uniform grid and also that it is not
straightforward to obtain accuracy estimates and convergence results.

The immersed interface method overcomes the first of these problems, in that it allows
the solution and its derivatives to be discontinuous along interfaces. This makes it possible
to immerse a boundary into a rectangular grid, let the solution be zero outside the boundary
and apply boundary conditions to the solution along the boundary. The finite differences
near the boundary are then corrected using the jumps in the solution at the boundary, so
that the differences remain valid even though the solution is discontinuous. Therefore, the
method makes it unnecessary to spend time on making grids adapted to the geometry and
also allows the use of FFT-based methods even though the domain is not rectangular.

The ideas behind the immersed interface method were first conceived by Peskin [13] and
used in computations on heart flows, with moving boundaries. The method was further
developed by LeVeque and Li [11], [12] and used with finite differences on Cartesian grids.
Finally, Wiegmann and Bube [16], [15] gave the method a clearer formulation and extended
it to more general problems. They call their method the “explicit jump immersed interface
method” or EJIIM, and that is the method we will be concerned with here.

We will first describe the general idea behind the EJIIM and then proceed to the prob-
lem of implementing the method. This will include treatment of three-dimensional prob-
lems and time-dependent problems, which is not included in the original article. We will
also discuss some additional boundary conditions which were not discussed by Wiegmann
and Bube.

This presentation contains no proofs of convergence or error estimates. Wiegmann and
Bube provide proofs of convergence for the method in one dimension and also in two dimen-
sions for the special case when the jumps at the boundary are known beforchand. Other
proofs or error estimates are not known and here we only confirm numerical convergence.

1.2. EJIIM THEORY

The basic idea of the IIM is that standard finite differences, such as

u(z; + h) — 2u(z;) + u(z; — h)
h2

Uge (Ti) = +0(h?) (1.1)
are not valid for non-smooth functions, since they are based on Taylor-expansions. How-
ever, they may be corrected using the size and position of the discontinuities in % and its
derivatives. Let us denote the jump in the m:th derivative in u : R — R at a point @ € R

THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

by
[u™], = lim «™(z) — lim u™(z),
z—at zra”
where, of course, u©® = u.
Following [16], we give two lemmas that contain the essence of the EJIIM. The proofs
are essentially exercises in the use of Taylor expansions and we refer the reader to the
original article [16].

Lemma 1.1 (cf. [16, lemma 1]) Lel h > 0 and assume u~ € C*'(ja— h,) and u* €
C"*' (e, + h]). Then let

u(z) = { w(e) forz<a,

ut(z) forz>a.

For z € (a — h,a), we then have

! !
hk z+h—a)k
u(z + h) = E kf (z) + E %[U(M]Q—O—O(h”]),

h)ku Z (k)] FORY,

k=0

Using this lemma in the expressions for finite differences on a uniform 1d-grid {z;}
with grid spacing h, we get the next lemma.

Lemma 1.2 (cf. [16, lemma 3]) Lel z; < a < z;,1 and suppose u € C*([z; — h,@)) N
C'((a, xj + h]), with derivatives extending continuously to a. Then the following approzi-
mations hold:

Uz(-rj) _ u(zj+1) - U(Ij 1 o i I]+1 - 0‘)]a + O(hi), (1.2)

2h hm

s (I]+) u(ZJ+2)2h U(ZJ o Z (ZJ a)™ m)]a+0(h2): (1_3)

u(mig) = 2u(zg) Fu(r;) 1 (T4 —a)™ 2
aa(ay) = M) =28 ~ g 2 e 00, (1.9

u(zjy2) = 2u(xj11) + u(z;) " (zj—)™

! m, 2 -
h? W 2e i [w™], +O(h?). (1.5)

Uaz (T541) =

1.2 EJIIM THEORY

Tit1

N
|

Figure 1.1: Immersed boundary in 2D. The immersed boundary intersects the grid at
points a1 = (Tay, Yo,) and ag = (Tay, Ya,). Interface intersection points (I1Ps) are marked
by ’o’ and anchor points are marked by ’e’.

The application of these results to higher dimensions is now straightforward. In the
situation in figure 1.1, for example, the Laplacian at (z;,y;) would be approximated as

Az,) = u(Zig, Yj) +u(@io, y5) + U(xzzyjﬂ) +u(zi, Y1) — 4u(i, y5)

1.
@ir1 = o)™ (m) 1 W1 = Vo)™ (m) 2 (16)
ey + g D TR M, + O(RY).
m=0 :

m!

[1™]a, = u™F () = ™ () = lim w™(z,y) - lim ul™(z,y),
(z,9) =« (z,y) =
(z,y)eQ (z,y)eQ”

with o = (Zag,¥ay), £ = 1,2, which in this case gives a different sign for the jump
compared to the previous definition (for the one-dimensional case), accounting for the plus
signs for the corrections in (1.6), while there is a minus sign in (1.4). This new definition
makes it unnecessary to keep track of coordinate directions at the interface when adding
corrections.
This means that on a uniform grid with an immersed boundary, the discrete Laplacian
may be calculated as
AU +0C, (1.7

THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

where A, is the standard N x N finite difference matrix for the Laplacian, U is the vector
of function values at the grid points, ¥ contains the coefficients for the correction terms
from (1.6) and C = ([t]a, [uV]a;, [4@]ay, .. .)T is a vector containing the jumps of u and
its derivatives at the points where the interface intersects the grid. So (1.6) corresponds
to one row of (1.7).

We will now consider the problem of solving the Poisson equation

Au(z) = f(z) z€Qf, (1.8)

where QF is a domain in R? or R®. We wish to apply boundary conditions of the following
types

@) = g(0),
BERE!

[g—z =aut(z) — bu (z),
for z € 8Q7, that is Dirichlet, Neumann or Robin boundary conditions.

In order to apply the EJIIM, we let the domain Q* be embedded in a rectangular arca
discretised by a uniform grid and let Q denote the domain outside the interface 9Q*.
Setting f(z) = 0in Q~ and thus u~ = 0, the above boundary conditions become the regular
Dirichlet, Neumann and Robin boundary conditions for u* in Q*. The corresponding lincar
system of equations becomes

AU +YC =F.

The problem here is that the jumps C are unknown, so we need to find an additional
relation that specifies these jumps. Some of the jumps are determined by the boundary
conditions at I' = 9Q*, while others must be determined in another way. This is done by
creating an interpolation matrix DT, which, given the function values, estimates the jumps
at the boundary. Thus the entire equation system may be written

AU+ Y0 = F,
C=D"U + B, (1.10)

where Fj contains function values of the right hand side f and F, contains the known
jumps derived from boundary conditions.

1.3. ESTIMATING JUMPS AT BOUNDARIES

The jumps at the boundary are estimated by Lagrange interpolation, meaning that for
cach interface intersection point (IIP), i.c. for each point where the interface intersects the
grid (see figure 1.1), we select a number of grid nodes on one side of the boundary and
calculate the interpolating polynomial of degree d, say. This polynomial and its derivatives

1.3 ESTIMATING JUMPS AT BOUNDARIES

are then evaluated at the boundary. Doing the same from the other side of the interface,
we may take the difference and get an estimate of the jump at the IIP, given function
values at the grid nodes. The number of grid nodes needed to construct a polynomial of
degree d in n dimensions is (";d).

As an example, let us consider a second order polynomial in two dimensions (i.c. d =
n =2). We select (:) = 6 grid nodes p; = (2, y;), ¢ = 1,...,6 with corresponding function
values uy, . .., us and set up the equation system

Y 1%
Y2 T2Y2
Ys T3 Tsys
Y1 T T4y
T5 Ys T5Ys5
T Ys L6Ye

in order to construct the polynomial
P2(I, y) = agp + a10Z + ao1y + agr® + anzy + aozyz-

We wish to solve this system for the coefficients ajx, which leads to the requirement that
the determinant of the 6 x 6-matrix (the so called Vandermonde determinant) must be
non-zero. This in turn leads to restrictions on the choice of the grid nodes p;. These
restrictions were studied by Chui and Lai [4] for arbitrary n and d. They give a sufficient
criterion for selection of nodes so that the Vandermonde determinant is non-zero, which
they call Node Configuration A.

Definition 1.1 (Node Configuration A in R) Any set of distinct points in R salisfies
Node Configuration A in R.

Definition 1.2 (Node Configuration A in R*) Lel X7 = {z1,...,zn7} be a sel of
N} = (";d) distinct points in R™. X; salisfies Node Configuration A in R if there exisl
d+ 1 hyperplanes K*,i=0,...,d with
TNy 4155 TNy € Kf
and
TNP 41502 TNP € K7\ (K}, U...UKg)
for j=0,...,d—1, and such thal each sel of poinls

X ={anr 1, awn), 0<j<4d,

viewed as poinls in R"™' salisfies Node Configuralion A in R"~'.

Theorem 1.3 (cf. [4, theorem 4]) If X2, with n > 1 and d > 0, salisfies Node Config-
uralion A, then the corresponding Vandermonde delerminant is non-zero.

THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

Figure 1.2: Examples of node configurations in two dimensions. The two on the left satisfy
Node Configuration A, while the one on the right does not.

In the definition we use the convention N"; = 0 for all 7. Also note that (N} —
NP,) = Nj7', so that the (n — 1)-dimensional hyperplane K7 contains Nj~' points,
which by an orthogonal transformation may be regarded as points in R"~! for which the
node configuration problem could again be posed. Therefore Node Configuralion A is well
defined.

The recursive definition of the node configuration may seem hard to interpret in all its
generality, so let us see what it means in our above example with n = 2 and d = 2. In that
case, the hyperplanes become lines, and the definition says that we should be able to sclect

d+1 = 3 lines, such that N} = (}?) = 3 points lic on the first one, N} = ('T!) =2

on the second (but not on the first) and N§ = (*+°) =1 on the third. Furthermore the
set of points on each of these lines should satisfy Node Configuration A, which they do
automatically, since they are on one-dimensional sets. Two valid node configurations and
one invalid are shown in figure 1.2.

In three dimensions, the hyperplanes become planes, and for a second order polynomial,
we need to be able to choose 3 planes, containing 6, 3 and 1 nodes respectively, making
(3;2) = 10 nodes in total. And on each of the planes, the nodes should satisfy Node
Configuration A in two dimensions.

1.4. APPLYING BOUNDARY CONDITIONS

Having seen how to create interpolating polynomials, we return to the problem of estimat-
ing the jumps in the vector C in (1.10), i.c. we need to determine the matrix DT and the
vector Fj in the equation

C =DTU + F,.

Here, we do this in three dimensions, since the two-dimensional problem is presented
in [16], while three-dimensional problems are not treated. In order to determine DT, we
first find all the interface intersection points (IIPs). For each of these points, there is a
coordinate direction X; = z,y or z, which is the direction of the grid line on which the

1.4 APPLYING BOUNDARY CONDITIONS

IIP is located. Along this grid line, there are two anchor points, one on each side of the

interface, which are the grid nodes closest to the IIP and whose finite difference stencils

are affected by the discontinuity at the IIP (see figure 1.1). We denote these p; and p_.
Now, for each IIP «;, we see from lemma 1.2 that we need to estimate the jumps

fuly = wt (o) —u (o), [,y = (o) — ux, o)y uxx]y = uh x, (05) — i x, ()

in order to get accurate finite difference approximations of order O(h). We will see from
numerical results that it is in fact enough to have O(h) approximations at the boundary
in order to get overall O(h?)-convergence. This behavior is confirmed for all IIM methods
and may be loosely motivated by the fact that the boundary is a lower-dimensional set so
that in three dimensions, for example, the number of points with O(k) errors is O(h~2)
rather than O(h~*). One may also use O(h?) estimates at the boundary. This still gives
overall O(h?) errors for the solution, although the actual errors may be smaller (see [16,
example 1]).

In order to approximate the jumps, we select stencils of grid nodes around each of
the anchor points according to Node Configuration A in the previous section and define
matrices P;;. and P;_ in analogy with the matrix in (1.11), using coordinates relative to
p4 and p_, respectively. We also define restriction matrices R;; and R;_, consisting of
only 1’s and 0’s and serving only to select and reorder the grid nodes used in the stencils.
In this way, we see that ijrlRHU is a vector containing the coefficients of an interpolating
polynomial near a; on the +-side of the interface. Using this we may estimate

ut(ay) hy by b (hg)? (R)? (BE)P hghy hfhi hyhf
1 0 0 2nrf 0 0 bt ht 0 ’P]-jrleJrU,
0 0 O 2 0 0 0 0 0

1
uf(aj) | =~ |0
0

uf(ay)

where we have set b = Ta; — Tp,, ctc, and with similar expressions for derivatives in other
coordinate directions. Naming the matrix of coefficients on the left Q;,, we may now write

0 'P_Jrl 0 R+ _ —1 .
ij [6 ,P]il} [R]; U= Q]'PJ R;U. (1.12)

It is now time to incorporate the boundary conditions (1.9) into the equation for C.
This is done by creating a matrix £; and a vector F3 ;. The vector Fj ; contains the known
jump information derived from the boundary conditions, while the matrix £; defines linear
combinations of estimated function values at ; giving the contributions to the jumps that
have to be estimated from the solution U.

In the case where Q7 is immersed into a rectangular domain and u = 0 outside Q*, then
of course u~ = 0 everywhere along with its derivatives, so it is not necessary to estimate

THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

u~(a;). However, by describing the method in this more general context, it may also be
applied when the interface is an interface between two domains where u is nonzero.

In the case of Dirichlet boundary conditions, this is very simple. Suppose we have a
boundary condition that says [u] = g(z) on the interface. Then, if for example the grid
intersects the interface in the z-direction at o;, we write

[u]; 00000 0 -0 9(aj)
[ug; [=101 0 -+ 0 =1 0 - 0] QP 'RU+ (1.13)
[zl 00100 -1--0 0

where Fj; is the vector on the right and £; is the leftmost matrix, so that we get

[ub‘ 9(04]')
[uzl | = £;QP; 'RU + Foj = | uf () = u; (o))

[t2:]; ub,(ag) — uy(a)

Now setting D = £;Q;P;'R;, we have
C;=DjU + Fy. (1.14)

By just stacking the contributions from all IIPs, we arrive at (1.10).

For other boundary conditions, things are more complicated. Consider for example
Neumann conditions, du/dn = h(x) on the interface. Then we are interested in derivatives
in the coordinate directions, while the boundary condition is given in the normal direction
of the interface. We define the normal direction through the two angles (6, ¢), 0 <6 <,
0 < ¢ < 2, as in spherical coordinates and introduce a new Cartesian coordinate system
(&,m,¢) which is oriented so that the &-axis points in the normal direction, the 7-axis is
perpendicular to the ¢-axis and lies in the (z,y)-plane, and the (-axis is perpendicular to
the other two and has positive z-component. This coordinate tranformation yields

sinf cosg —sing —cosf cosg| [[uel;
sinf sing cosg —cosfsing| |[uyl; (1.15)
cos @) 0 sin 0

sin 6 cos ¢ sinfl sing cosf
—sing cos @ 0 [uy]; (1.16)
—cosf cosgp —cosfsing sinf| |[u.];

By the boundary condition, we know that [u¢]; = h(a;), so using (1.15) we get [ug);, [uy)];
and [u.]; expressed in h(a;), [uy]; and [uc];, which, using (1.16) may be expressed in the
quantities wf (a;) —u, (), uf () —u, (a;) and uf(a;) —u; (@), which we get from (1.12).
Thus, we get for example

[uz]; = sin® cos ¢ h(ey) + (sin® ¢ + cos® 8 cos® @) (u} (o) — ug ()
+sin g cos (cos® 0 — 1) (u} () — u, () — cosf sin cos ¢ (ud () — u; (),

1.5 SOLVING THE LINEAR SYSTEM

where the first term is known and therefore included in Fy;, while the coefficients of
the second term are included in £;, so that we get (1.14) once more. The expressions
for [uy]; and [u.]; are derived similarly, while [u]; = ut(a;) — v (oy) and [ux;x,]; =
"}(jxj (o) — ux,x, () fori=1,2,3.

Finally, we consider Robin boundary conditions, i.c. du/dn = au® — bu~. Using the
above notation, this leads to the expression

uf =ug =au’ —bu” =afu] - (b —aju,

which gives us
1 b -
fuly = ~uf a5) + (— Du (ag),

Furthermore, we need to impose the implicit condition that uz = u,, which we impose
by sctting h(a;) = 0 in the Neumann case above. In summary, this leads to the above
expression for [u];, expressions similar to the Neumann case (but with Fz; = 0) for [ux];
and the same expressions as before for [ux; x;];-

This way, we construct the sparse matrix DT and the vector Fj by stacking the contri-
butions from each IIP. If we have multiple interfaces with different boundary conditions, we
just include the IIPs from all the interfaces and use the corresponding boundary condition
for each IIP according to the above treatment.

Finally, we need to construct the sparse matrix ¥ in (1.10). This matrix contains the
cocfficients of the jumps in (1.2) to (1.5), placed at appropriate positions, so that the
corrections affect the corresponding anchor points. Since the corrections are additive, the
W-matrix is easy to construct.

‘We also remark that it is possible to apply other types of boundary conditions, such as
in composite material problems illustrated in [16], by the same method as shown here.

1.5. SOLVING THE LINEAR SYSTEM
Through the previous sections, we have arrived at the system of equations
AU +VC = Fy,

C=D"U + B,
which is (1.10). Solving for U in the first equation and inserting this into the second, we
get

U=A(~¥C+ F),

(14 DTA'W)C = DTA'F, + Fa.

Here, the second equation is a ’small’ system of equations for C' with 3N;7p rows (where
Nirp is the number of IIPs). It may be solved using iterative methods to avoid forming

the matrix on the left explicitly, which would be unfeasibly memory-consuming for three-
dimensional problems, since the matrix is not sparse. We use the BiICGStab method (see

10 THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

e.g. [10], [2]) to solve the system and since we then only need to be able to form the matrix-
vector product (I + DTA,TI\II)C, our only remaining problem is to apply A;‘. Since our
domain is embedded in a rectangular uniform grid, we may use the Fast Fourier Transform
to achieve this efficiently (sce e.g. [14, chapter 19]). If N is the total number of grid nodes,
the FFT is applied in O(N log N) operations and this is the most time-consuming part of
cach iteration in the BiCGStab algorithm. We have used the library FFTW [1] to get a
fast implementation of the FFT in C.

Having solved for C, all that remains is to compute U from the first equation by
applying A;! once more.

1.6. OTHER EQUATIONS

The immersed interface method may also be applied to other types of equations. First of
all, it is straightforward to apply it to the heat equation

wy(z, t) — dAu(z, t) = f(z,1), zeQ, 1>0,

with suitable boundary conditions, using for example an implicit Euler scheme in time. In
that case we get

(I/At — dAR)Uny1 — d¥Chyiq = Uy /AL + F,
Chy1 = D 'Upyr + B,

Upy1 = (I/AL — dAR) " H(dUCpyy + Un /AL + FY),
(I — DT(1/At — dAR)T'dV)Cryy = DT(T)AL— dAR) T (Fy 4 Un/AL) + Fy,

where the operator (I/At — dA,) ™" may be applied using FFT and the second equation
solved using BiCGStab for cach time step.

It is also possible to solve equations in multiple domains with boundary conditions
between the domains or with different coefficients in the equation in different domains.
The technique is exactly as described in the previous sections. See section 1.7 and [16] for
examples.

Other combinations of spatial derivatives than the Laplacian may also be considered,
although they are not discussed here. It should be clear, however, from the discussion
above how the immersed interface method should be applied to these cases.

It is also in principle possible to use the method for moving boundary problems, where
one would like to avoid costly grid generation. It would then, however, be necessary to
compute the matrices DT and ¥ at every time step.

1.7. EXAMPLES

Qur first example is solving the Poisson equation inside an ellipsoid £ with half-axes
0.44, 0.3 and 0.3, centered at (0.5,0.5,0.5). The equation we solve is given in spherical

1.7 EXAMPLES

Figure 1.3: EJIIM for the Poisson equation inside an ellipsoid in 3D. The solution was
computed on a 40 x 40 x 40 grid and is shown on the left. Errors compared to the exact
solution are shown on the right. Values are shown on selected slices through the domain.

coordinates as

Au(r,0,¢) = f(r,0,9), (r,0,9) € E,
u(r,0,¢) = g(r,0,0), (1,0,¢) € OF,

where f(r,0,¢) = —5sin(3y) and g(r,0,¢) = r?sin? #sin(3p), which gives the solution
u(r,8, p) = r?sin?@sin(3p) in E. The solution and the errors are shown in figure 1.3.
We see that this non-trivial problem can be solved with reasonable accuracy, even on the
rather coarse 40 x 40 x 40 grid used here. The solution took less than a second to compute
on a standard computer. The errors are of order O(h?), which is shown more clearly for
another example in section 2.4.3.

The second example shows that more complicated equations and boundary conditions
may be solved using the immersed interface method. We solve the heat equation in two
dimensions. The domain consists of two concentric circular discs, C and Cy, with C inside
Cy. We apply Neumann boundary conditions at dCy and Robin boundary conditions at
0C;. The problem may be written as

ou

a1 (@,9,1) — Au(z,y,8) = 0, (z,y) € CLUGy, 1 >0,

ou

ai(layvt) =0 (z,y) € 0Cy, 120,

O ayt) = 10ua(ay) — Bua(e,), (@) €0Cs, 120,

u(z,y,0) = wu(.y), (z.9) € C1UCa.

Here, ug(z,y) is a bell-shaped function inside C; shown at the top of figure 1.4. uy and u;
are the values of u at dC4, on the outer and inner side of the boundary.

THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

I

’im&@

[
'““

Figure 1.4: EJIIM for the heat equation inside two concentric discs. The initial data is
shown at the top and the solution at ¢ = 0.03 below. The domain boundaries are clearly
visible in the second figure.

The method used is the one described in section 1.6 with implicit Euler time stepping.
The boundary conditions are implemented as described earlier.

Obviously, the exact solution is not known for this problem, so we have nothing to
compare to. However, the example shows that it is possible to solve multiple boundary,
time-dependent problems with a range of boundary conditions using the immersed interface
method. Here, for simplicity, we have used only circular and elliptical domains, but in the
method itself there are no limitations on the shape of the domain. Further examples are
given by Wiegmann and Bube [16] and in part I of this thesis.

2. THE IMMERSED INTERFACE METHOD ON BOOLEAN GRIDS

2. THE IMMERSED INTERFACE METHOD ON BOOLEAN
GRIDS

2.1. INTRODUCTION

There is a constant desire to make computations as fast and efficient as possible, in order
to be able to solve larger problems with higher accuracy, or just to minimize the time spent
waiting for the computer to carry out the calculations. The Boolean grids presented here
provide one method to make computations faster by using less data, while still obtaining
the same accuracy in the calculations.

The Boolean methods were originally developed in the 1960’s in order to represent
surfaces used in computer-aided design (CAD). They were first used by Coons [3] to cre-
ate interpolatory surfaces, coinciding with prescribed values on the boundary of the unit
square. The theory was then developed in a series of articles by Gordon [8], [7], resulting
in an abstract theory of commutative projectors which is presented here in section 2.2.1.
There is also a book by Delvos [6], where the methods are presented in some detail.

As we will see, it is straightforward to use finite differences on Boolean grids and one may
use FFT-based methods to solve PDEs on such grids, gaining several orders of magnitude
in the number of points needed for a given accuracy. However, just as for uniform grids,
these methods can only be applied to rectangular regions. Therefore it is interesting to
apply the Immersed Interface Method from the previous section to Boolean grids in order
to get a similar decrease in computational time even for problems in irregularly shaped
domains.

The outline of our presentation is as follows. In section 2.2, we present the abstract
theory of Boolean interpolation and construct Boolean grids on which we apply finite
differences and the immersed interface method. In section 2.3, we discuss how to extend
the immersed interface method to work on the Boolean grids and finally, in section 2.4, we
give some numerical examples of the use of Boolean grids for interpolation and equation
solving.

As for the IIM on uniform grids, we do not have any proofs of convergence or error
estimates for the IIM on Boolean grids. We only confirm numerical convergence and
superiority to the uniform IIM.

2.2. BOOLEAN INTERPOLATION
2.2.1. THE ALGEBRAIC THEORY

The following presentation is taken from Gordon [7] and is an abstract algebraic approach
to approximation theory, giving a motivation for the use of Boolean approximations.

We consider an arbitrary function space F. On this space, we define M projectors P;,
j =1,...,M, meaning that P; : 7 — &; is a linear transformation with the property
P;P; = P;. Here @; is a subspace of F for j =1,..., M.

14 THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

A function 7 = P;f € ®; is called the approximation of f € F, and the function f —
is called the remainder.

We define multiplication and addition of projectors in the natural way and note that
the associative and distributive rules hold for projectors defined on the same domain F.
Furthermore, we assume that multiplication is commutative, i.e.

PPy = PPy forall jk=1,...,M.

It is obvious that the product of two commutative projectors, A = P;P, is again a
projector, since AA = A. This is not true, however, for the sum of two projectors, since

(Pj + Py)(Pj + Py) = PjPj + P;Py + PyPj + Py Py = Pj+ Py + 2P;P, # P; + Py.
Therefore, we introduce the Boolean addition, denoted by & and defined by
P;® Py =P+ P, — PPy (2.1)

It is easy to check that P; @ P is again a projector.
We also need to compare projectors in order to decide which are better than others.
To this end, we introduce the ordering relation < defined by

P,< P, & PP, =P, (2:2)

that is, if P; < Py, P; removes at least as much of the function f as P does, or ®; C ®;.

Now, we may define the space ¥ as the set of all projectors which can be built up as
combinations of the P;, j = 1,..., M, under the operations of multiplication and Boolean
addition. The set VU is now a distribulive latlice under the partial ordering <. This means
that for all projectors A, B,C € ¥, the following properties hold (and are easily checked):

i) reflexivity A<A
i anti-symmetry A< Band B< A= A=B
i) transitivity A<Band B<C=A<LC
i idempotence A A=Aand AA=A
commutativity A® B=B@ A and AB=BA
associativity ~ A(BC) = (AB)C and A® (BeC)=(AeB)oC
vii) distributivity A(B®C)=AB® AC and A® (BC)=(A@B)(Aa&C)
viig) consistency A<B&AB=A<A®B=8B

It is a property of every lattice that any pair {4, B} of elements has both a least upper
bound (denoted sup), that is the least element C such that C > A and C > B, and a
greatest lower bound (denoted inf), that is the largest clement D such that D < A and
D < B. These are given explicitly by

sup{A,B} = A& B,
inf{A, B} = AB.

2.2 BOOLEAN INTERPOLATION 15

It follows that every finite lattice has a unique mazimal element M € ¥, that is an
clement satisfying A < M for all A € ¥, and a unique minimal element L, for which
L < Aforall Ae . It is easily seen that

M=sup{P}}L, =P ®P® - ® Pu,
L=inf{P}}L, = PiPy- Py

It is also interesting to study the range of the projectors in W. It is clear that the range
of P;® Py, is ®; U ®; and that the range of P;P; is ®; N ®;. Thus, the range of M is the
largest space formed from the ®;:s, namely ®;U- - -U®y; and the range of £ is the smallest
space, &1 N --- NPy
Finally, we introduce the remainder operator or the complement of a projector A,
namely
A=1-A,

where I is the identity operator. It is clear that A’ is a projector, and that
AA'=AA=0, Ao A =1

Now for cach Pj, we set R; = P; = I — P; and note that although in general R; ¢ W, the
set of combinations of these remainder operators also form a distributive lattice, denoted
W', Also, if we allow the three operators multiplication, Boolean addition and complement
to work on the projectors, we generate a Boolean algebra, where additionally de Morgan’s
laws hold

(Ae B) = A'B, (AB)' =A@ B'.

Now, the final statement is that given a commutative set of projectors {P;}}L;, the
identity operator, I has a mazimal decomposilion

I=MoM =M+M =P &---®Py+(RiRy--Ru), (2:4)
and a minimal decomposition
I=LOL =L+L =PP-Py+ (R @ @ Ry). (2-5)

Here, RiRp -+ Ry = inf{R;}}L, € ¥ and Ry @ --- ® Ry = sup{R;}}L, € ¥’ as before.
This means that by choosing the algebraically maximal projector M, we minimize the
remainder and vice versa.

2.2.2. BOOLEAN GRIDS

We now wish to apply the abstract results from the previous section to the problem of
creating a grid on which we wish to apply finite difference solvers. This could be done in
many ways, depending on how one defines the projectors P, ..., Py. Here, we only discuss
the grids that we actually use and the reason for using those will be clear later on.

16 THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

First, assume a two-dimensional problem, where we want to approximate the smooth
function f(z,y) on a rectangle Q = [ag,b,] X [a,,b,]. We introduce step sizes hi, =
(by — ag)/ (N1 — 1) and hyy = (by — ay) /(N — 1), interpolation points {z My, {yi};v;']“,
with z; = a; + hi (i — 1), y; = ay + k1 4(j — 1), and define the interpolating projectors P}
and Py1 by

P 1w y) = 3 o p)ei(a),

Niy

[P, fl(x,y) = Zf(z,yj)%(y),

where ¢;(z) and ;(y) are piccewise linear hat functions, satisfying ¢;(zy) = &y and
i(yk) = djx. Using these two projectors, we may define the algebraically maximal and
minimal projectors as

M,y =P} & P} =P} + P} — PiP,,
L., = PLP.

We see that the minimal projector £,y is the regular interpolation operator, that interpo-
lates f(z,y) only on the nodes (z;,y;). The maximal projector, however, is different. It
interpolates f(z,y) along the lines z = x; and y = y; and since the values at the nodes
(2, y;) are included both by P} and P,, onc occurrence is removed by subtracting P, P, .
Since P! f is piccewise linear in z, we see that P, f approximates f(z,y) to an accuracy
of O(h7,), that is
RLf = (I—P)f = O(k3,).

This obviously holds for Py1 too, and we may therefore deduce from (2.4) that the remainder
of the maximal projector My, is given by

My f = (1= May)f = RR,f = O(hi .17 ,),
while for the minimal projector the remainder is
Loyf =~ Loy)f = (RL @ R))f = (R + Ry — RuR))f = O(hY, + ki).

‘We see that the maximal projector has a fourth order error, while the standard interpolation
operator, which is minimal, has a second order error. This can also be easily checked by
using Taylor expansions of f. One then sees that for the maximal operator, the second
order terms are eliminated by subtracting the term P} Pylf, so that only fourth and higher
order terms remain.

There is, however, a difference between M,, and £, in that M, f is not fully discre-
tised, since it still has a continuous variable along the lines z = z; and y = y;. But along
these lines, we can afford a finer discretisation. We introduce new (smaller) step sizes ho,

2.2 BOOLEAN INTERPOLATION

Figure 2.1: The two-dimensional Boolean grid with step sizes hy and hy. The grid consists
of three parts, the horizontal lines (Ga1), the vertical lines (Gy2) and the coarse grid (G11)
consisting of the intersection nodes of these lines. These three are combined as in (2.6)
below to create the Boolean approximation.

and hy, and projectors P} and Py, identical to P' except for the step size. Since the error
in P2f is of order h3,, we sce that to preserve the O(h7 h3,) error estimate, we should
set

hoe = hay = highiy,

or hy = h? if the step sizes are equal in the two directions. This results in a grid like the
one in figure 2.1. It is important to ensure that the nodes for P! are a subset of the nodes
for P2, so that P! and P? commute and that P! < P2

The resulting projector may be expressed in several ways, which are all equal, as can be
shown by direct calculation using the rules (2.3) and the fact that P; < PZ and P, < P;.
Denoting the resulting projector by P, we have

Puy = PP} @ PP} = PIP}(P} @ F)) = PIF, + PPy — P, F,. (2.6)
The last form shows the three uniform grids which we must combine in order to get the
Boolean approximation, namely the grids G, with steps hy, and hyy, Gio with steps i,

and hyy and the coarse grid Gy with steps ki, and hyy. Using the second form of P,y
and de Morgan’s laws, we may also express the remainder as

R.y = R} ® R, © RyR, = R2 + R, + R,R, — RiR, — R,R,

where we again see that the resulting error will be of order O(hZ + h{), so that a choice of
hy = h? is optimal.

18 THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

There is another way to view the error cancellation property of the Boolean grids, as is
shown by Bungartz ct al. [3]. This view is based on an error splitting for the approximation
of the form

uls v —u = ey(he) + ey (hy) + Rlha, hy),

where e, only depends on hg, x and y, e, depends only on hy, z and y and |R(hs, hy)| <
c(hghy)? for some constants ¢ and v independent of z and 3. We can now study combina-
tions as the ones above, namely

gheshy — @haihy | yheahy o hehy
for some o > 0. Then, the resulting error is

ety —y = eg(ahs) + ey(hy) + R(ahg, hy) + ez (he) + ey(ahy) + R(hg, ahy)
— ea(ha) — ey(hy) = R(ha, hy)
= ez(ah;) + e,(ahy) + R(hg, hy).

Now, if e, and e, are the dominating terms and o is small, then we have reduced the
error. For example, if e (hs) = O(h3), ex(hy) = O(h2) and v = 2 as is the case for the
projections above, and if a = hy = hy, then @ — u = e, (h2) + e,(h?) + R(h, h) = O(hY),
while uh® — u = e, (h) + e,(h) + R(h,h) = O(h?) exactly as above. This idca may be
pursued further, taking combinations of a series of grids to eliminate errors while using as
few points as possible. This combination technique was introduced by Griebel et al. [9]
and is summarized in [3].

Assuming Ny, = Niy = Ny and Nyp = Ny = Nj, the number of nodes used in the
Boolean approximation (2.6) is

Np = 2NN, + N{ = O(N{),

if we choose Ny proportional to N2. This should be compared to the case of a standard
grid, where the number of points needed to achieve the same order of accuracy is

Ns = N? =N} =O(Ny),

since we must choose N of the same magnitude as Ny in order to get an error of order h3.
‘We therefore see that by using a Boolean grid, we save one order of magnitude in N; while
retaining the same accuracy of approximation.

So far for two-dimensional problems. In higher dimensions, one would expect even
greater gains and we will now derive an approximation scheme and show that it is indeed
so. We consider the same problem in three dimensions. As before, given a smooth function
f defined on a box Q = [ay, by] X [ay, by X [a,, b,] € R®, we define the projector P! by

[P)@, ,2) = 3 (o9, 2)in(a),

2.2 BOOLEAN INTERPOLATION

Figure 2.2: The building blocks of Boolean grids in 3D. The maximal grid corresponding
to Pf;’z is shown on the left and the intermediate grid of P,,. on the right. The maximal
grid is created by using a two-dimensional Boolean grid on each of the sides of the cube
and is a combination of 13 different grids. The intermediate grid is created by discretising

lines in each coordinate direction, and consists of only four different grids.

where ¢; are hat-functions as before, z; = a; + (i — 1)hy, and hy, = (by — a,)/ (N — 1).
We similarly define P}, P}, hyy, b1, Ny and N,. It is clear that P} f interpolates f on
the planes z = z; and that the error introduced by this approximation is O(h%). Now,
to make a full Boolean approximation, we would make an approximation on each of the
planes z = z; using the two-dimensional Boolean grid introduced above, resulting in a
projection for this direction given by

P = (PPl @ PIP))P;,

where we have introduced the projectors P2 and P2 for a = y, z, corresponding to the step
sizes hyq and hg g, respectively. Defining 'P;‘" and PM similarly and taking the Boolean
sum, we get the final Boolean projector in three dimensions,

Pi. =P e P o PM
= (P;PZ:‘ @ PZQP;)PI1 ® (P2P3 @ Pij)Py' (] (PfP; @ P;P;‘)Pz1
— P123 @ P132 @ P213 @ P231 e; P31'2 e) PETI (27)

zy2 zy2 zy2 zy2 zy2 zy2>
where we have used the notation Pz’fy’j = P;PyJPf. This would result in a grid made up of
cubes like the one on the left of figure 2.2. In order to estimate the error of this projection,
we study the remainder operator
M M
R — 1 _ nyz — R]23R132 R213R231 RS]ZRg?;L’

Yz ayzt oy oy loy 2 oy

20 THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

with
R = R'& R!6 RS = R+ R+ R} - RLR: - R} — FIR} + RLRLR

and so on. Using this in the expression for ’Rﬁ;’z, and remembering that RY, > RJ, if
i < j for @ = z,y, 2, one could in principle write out the full expression for the remainder
using only regular '+’ and -’ operations. This expression would include terms of the type
RR}R], R2RZ and R, as well as terms which lead to higher order errors. Thus, assuming
for simplicity that the step sizes are equal in all directions (i.e hj, = hjy = h;, = h; for
j =1,2,3), and using the fact that R}, f = O(h3), we sce that

Riyy.f = O(hS + b3 + 13),

from which we deduce that it is optimal if AS = h3 = h2, i.e. hy = hZ = h}. In that case,
we will get an error of order hf, while the number of points used is

Np = 3N, (2N3 N3 — N2) — 3NZN; + N = O(NP),

while in order to have the same accuracy on a regular grid, we neced Ng = N§ = O(NY)
grid nodes, i.c. a difference of 3 in the exponent.

This seems very good indeed, but there is a problem with this approach, which is seen
if we expand (2.7) into an expression containing only regular '+’ and =’ operators. Then
we get 13 distinct terms, which is far too many for our purposes, since it requires a lot
of overhead calculations as will be seen in the next section. It may also be a problem to
actually create and use such Boolean grids, since even a fairly large by will create a very
small ks and make the number of points needed very large. Therefore, we take a middle
way, reducing the number of terms but paying for this by getting a reduction in accuracy,
although we still maintain a clear advantage over the regular grid.

So, using the same definition of PJ as above, we create the projector

Py = PiP)P; & PP} P, @ PIPP) = P, & P © Py}, (2.8)
which corresponds to first projecting the function onto lines {x = z;, y = y;}, which are
spaced with the step size hy, then discretising these lines with step size hy and finally take
the Boolean sum of the three directions. This gives a grid like the one on the right of
figure 2.2. Expanding P,,, using the algebraic rules, we see that

211 121 112 111
sz; = szz + nyz + szz - 2szz! (2'9)
giving us just four terms. The remainder becomes
R —_ RZHR]Z] RHQ
TYz —

ayz eyz teye

R =R.® R, &R, = R. + R, + R, — R2R) — R2R} — R)R] + R.RR],

2.2 BOOLEAN INTERPOLATION 21

which means that Ry, includes terms of the type R2 and RR] as well as higher order
terms. Therefore,
Rayef = O(hi + 1),

and we see that a choice of hy = h? gives the optimal O(h?) error. The number of points
used is now
Np = 3N{N, — 2N{ = O(N}),

while for a regular grid Ny = N3 = O(N{) for the same accuracy.

2.2.3. APPLICATION TO FINITE DIFFERENCE SOLVERS

It is clear from the previous section that if we can create some approximation method
with second order errors in each direction, we can use the Boolean grids defined there to
improve accuracy, while using few grid nodes (as compared to standard grids). Specifically,
we want to use these grids for finite difference approximations of derivatives, in particular
the Laplacian in two or three dimensions.

Starting in two dimensions, we therefore define the standard finite difference approxi-
mation of the second derivative in z by

u(@ip1, y) = 2u(zi y) +u(@i1,y)
2 '

Di,hu(xu y) =

which is second order accurate, that is, the error in the approximation is O(h?). D;}h is
defined similarly. The discrete Laplacian is then given by

Ay ul(@iy y5) = Di ul®is y5) + Dy @i, 5)-

Assuming for simplicity that the step sizes are equal in the two directions (hy g = hyy = hy
and hyy = hay = hs), we may then investigate the Boolean approximation of the Laplacian,
which according to (2.6) should be defined as

Ai,hzu(‘r’ y) = Athhlu(I’ y) + Ah)y’lzu(L y) — Ahl-,hlu(x5 y).

The accuracy of this approximation is then O(h{ + h3), i.e. O(h{) if we choose hy = h?.
It is again easy to see why the errors cancel out. The two first approximations have one
fine direction and one coarse. The derivatives in the coarse direction are cancelled by
subtraction of the last term, which is coarse in both directions. It should be emphasized
that the O(h!)-accuracy holds not only on the Boolean grid in figure 2.1, but at any point
inside the domain, as long as we use the Boolean combination of the three components.
That is, having calculated the three contributions Ap, p,u, Ag; pyu and Ay, u on the three
grids, we may linearly interpolate on each of these and combine these interpolations by the
Boolean scheme to get the value at any point. These interpolations introduce new error
terms, and the error is in general larger, but the order of the error is the same as before.
In three dimensions, things are very much the same. We use the intermediate scheme
defined by (2.8) on the grid on the right of figure 2.2, which consists of four grids. Three

22 THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

H
o|
b

max error

10°
of unknowns

Figure 2.3: Comparison of different types of Boolean immersed interface methods applied
to the Poisson equation inside a circle in R?, where the solution is a sixth degree polynomial.
The errors for the naive scheme, where three complete solutions by IIM are combined by
the Boolean scheme, are denoted by '+’. The errors for IIM on uniform grids are denoted
by ’o’. It is seen clearly that in the naive method, the errors are not eliminated in the way
we want.

grids are fine in one direction and coarse in the other two, while the last grid is coarse in
all directions. Again, using the appropriate Boolean scheme given by (2.9), we set

AP U@, Y, 2) = Dy g g 0(2, Y, 2) + Ay gy (2, Y, 2)
+ Dby g ha (2, Y, 2) = 280 (2, Y, 2),

to get an O(h? + h3)-approximation.

Solving for example the Poisson equation Au = f using finite differences on Boolean
grids is now straightforward. One simply solves the problem on cach of the component grids
and then combines the solutions using the Boolean scheme. This is shown in example 2 in
section 2.4.2.

2.3. AppPLYING IIM TO BOOLEAN GRIDS

Having successfully applied finite differences on the Boolean grids, we now try to implement
the Immersed Interface Method as described in section 1 on these grids in order to cope
with domains that are not rectangular.

2.3 AppLYING IIM TO BOOLEAN GRIDS 23

From the previous section, it might be suggested that one could use the Immersed
Interface Method straight away on the component grids and then combine them using the
Boolean scheme to get improved results. This does not work, however, since when we
introduce jumps in the finite differences, the errors no longer behave in the correct way to
be eliminated by the Boolean scheme. This is seen in figure 2.3.

Therefore, we need a slightly more elaborate method. The reason for not getting the
desired elimination of errors is clearly the estimation of the jumps at the boundaries,
since the results in section 2.4.2 show that finite differences work fine on Boolean grids.
So, instead of approximating the jumps on each grid individually, we use the Boolean
interpolation to get the jumps from the solution. That is, we must create a matrix D}
implementing this Boolean interpolation so that

C=DYU+F,

with U = [Uf UL UL)T containing the solution on the three grids (supposing we are
solving a two-dimensional problem). Here Uj; is the solution on the grid created by the
projection P;Jy As before, if we intend to solve the Poisson equation, we also have the
equation

AyU +¥C = Fi.

Here Aj, works on the three grids separately and W is divided into three blocks correspond-
ing to the grids. As in the uniform case, we also solve for C in the equation

(I + DEA'W)C = DEA'F + Fy

and then finally compute the solution U as

U* = BA;'(-VC + Fy).

Here B is a Boolean interpolation matrix, combining the three solutions Ui, Uz and Uiz
into the final solution U*, which could be defined on any grid.

The procedure outlined here is our Boolean IIM, resulting in the errors shown in section
2.4.3. The only difference to the uniform IIM described in section 1 is the jump approxi-
mation matrix D% and the interpolation matrix B. The interpolation matrix B uses the
Boolean schemes (2.6) and (2.9) in two and three dimensions respectively, together with
linear interpolation between grid nodes, in order to get the solution U* at the desired
points. The matrix D is slightly more complicated and we will now discuss how to form
it.

2.3.1. BOOLEAN APPROXIMATION OF JUMPS

Just as in the IIM on uniform grids, we need to approximate the jumps of the solution and
its derivatives on the boundary, using the values of the solution on the grid nodes. The
boundary conditions are implemented exactly as for the uniform grids (see section 1.4),
so what we need to do here is to create equivalents to matrices Q;, P; and R; in (1.12)

24 THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

Figure 2.4: Some IIPs on the Boolean grids. The IIPs are marked with circles and the
anchor points with crosses. In two dimensions, the IIPs are evenly distributed with spacing
ha. At A’ the IIP interferes with finite differences both on the fine grid (with step size
hy) and on the coarse grid (with step size hy). Two of the affected finite difference stencils
are indicated by dotted lines. In three dimensions the IIPs are distributed along the edge
of the grid cube, giving rise to a two-dimensional Boolean grid pattern.

2.3 AppLYING IIM TO BOOLEAN GRIDS 25

in order to estimate the values of u and its derivatives at the interface intersection points
(IIPs) from both sides of the interface.

So, first of all, we need to find all the IIPs, that is, all the points where the interface
intersects the grid lines and thus interferes with the finite differences. Suppose that we
want to calculate the Laplacian in two dimensions. Then the IIPs are all the points where
the interface intersects the fine grid, as is shown in figure 2.4. That is, we will have as
many IIPs as in the case of a uniform grid. In three dimensions, however, the IIPs are
distributed on the surface in a two-dimensional Boolean grid, meaning that we have much
fewer IIPs using a Boolean grid than a uniform one. This also implies that the vector C
will be smaller and thus the entire system of equations will be smaller.

Having found the IIPs, we assign to each of them two (or more) anchor nodes, on both
sides of the surface. These are the nodes where the finite difference is affected by the jump
in the solution at the IIP. The particular difference taken may be either of size hy or size
hg, as is shown in figure 2.4. From (1.4), we sce that this gives rise to corrections to the
regular second order difference D7u given by

2 3 m
) = Diutw) + > = O, 4 o(n). (2.10)
m=

Here, « is the location of the IIP, so that z; — @ < h, and h may be cither h; or hs. The
question now is how well we need to approximate the jumps and how many derivatives
we need. We saw earlier that in the uniform case it is enough to get an approximation of
order O(h) on the boundary in order to get overall O(h?)-convergence, and therefore that
we may ignore the jumps in the third derivative. In the Boolean case, however, it is not
quite clear what we need to do. We want overall O(h2)-convergence, but if we ignore the
jumps in third derivative in (2.10), we will at some points get errors of order O(hy), which
seems to be too large. Fortunately, our numerical results show that it is in fact sufficient
to use jumps in u, v’ and «” and use Boolean interpolation to approximate these to order
O(h3), O(h2) and O(hy), respectively. From (2.10), we then sce that we will get truncation
errors of order O(hy) at some nodes (where b = hy) and O(hs) at others, while the overall
error in the solution will be of order O(hZ). The explicit rcason that this approach works
is not known.

How this is done is most easily seen from figure 2.5. Suppose we want to approximate
the function values and the two first derivatives in the z-direction at the IIP oy with
coordinates (z%., yaj). We use regular Lagrange interpolation on each of the grids, that is,
given grid nodes with z-coordinates z1, ..., 2z, we set

L
i(z) =Y u(@)di(x),
=1

with the basis functions

dulx) = [T2

I — T

Z

26 THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

Figure 2.5: Interpolation stencil for jumps at the IIP marked by ’+’. The nodes in the Ggy
grid are marked by ’e’, in the Gy2 grid by "o’ and in the Gy; grid by 'o’.

To compute derivatives, we just differentiate the basis functions, getting

u 1 Lor—g
’ — Lk
z) = E
4(x) : T — T H -y
i=1 k=1
i#l k#Li
and so on. In this way, we may write for cach of the three grids

Ly Ly
a(z,y) =D > ulzn wei(z)diy)-

i=1 =1
Here, @ is of course the projection of u onto the space spanned by the basis functions,
so from the theory of section 2.2 we expect that if we combine the three grids according
to the Boolean sum, we would eliminate the largest errors. Therefore, we choose grid
nodes according to figure 2.5, with (at least) three nodes in the z-direction in order to
approximate second derivatives, and (at least) two nodes in the y-direction in order to
extrapolate the function to the IIP in that direction.

One could also understand the choice of nodes in the following way. What we really
want is a fine (hy) approximation in the z-direction using the grid Gai, which is fine in
that direction. But since we must extrapolate in the y-direction, we introduce large (k1)
errors in that direction. These are eliminated by subtracting the approximation on the
coarse grid Gy, but this in turn adds large (h;) errors in the z-direction. These are finally
climinated by adding the approximation on the Gy, grid, which does not introduce new
errors in the y-direction.

2.4 EXAMPLES 27

These principles may be used to approximate any derivative to any order of accuracy, if
one uses enough grid nodes for the approximation. For our purpose it is best to use as few
grid nodes as possible, since the more nodes we use, the more coupled the resulting system
of equations becomes, which makes it harder to solve. Already, the minimal number of 15
nodes shown in figure 2.5 is much more than the six nodes needed on uniform grids. One
should also note, however, that if the IIP lies on one of the coarse grid lines (as point A
in figure 2.4), it is sufficient to use the three nodes on the fine grid G;, and the Boolean
combination is then not needed. But, if one would like to solve the Neumann problem, one
would also need y-derivatives, which requires additional nodes in a configuration similar
to the one we have studied here.

Anyway, the final scheme may be expressed in matrix form as

P00
0 Pt 0 | RIU

0 0 Pht

where B = [=1 I I] performs the Boolean combination, R} consists only of 1’s and 0’s
and just reorders and renumbers nodes, while ’Pij,;+ performs the Lagrange interpolation to
evaluate @(ey;) and its derivatives using the grid Gix.

If we apply the same procedure on the other side of the interface (if necessary) to create
Pl-j,f and R}, and then create the matrix £; exactly as in section 1.4, we may estimate
jumps at the boundary as

[ul;
lug); | = L;BP;R;U,
[taals

which should be compared to (1.13). We set DF, ; = £;BP;R; and stack the contributions
from all the IIPs to get the matrix D% and the system of equations

C = DRU + Fy.

Being thus able to approximate the jumps, we may use the method outlined earlier to
apply the Immersed Interface Method on Boolean grids. For problems in three dimensions,
the same procedure is used. There is no need to use a three-dimensional approximation of
the jumps, so we can use the stencil shown in figure 2.5 for three-dimensional problems as
well.

2.4. EXAMPLES
2.4.1. EXAMPLE 1 BOOLEAN APPROXIMATION

In this example, we illustrate simple Boolean interpolation. A sixth degree polynomial in
two dimensions is sampled on a uniform grid with 64 x 64 nodes and on a Boolean grid with
N; = 8 and N, = 64. Both of these approximations are then linearly interpolated onto a

THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

20 40 60 80 40 60

Figure 2.6: Interpolation errors using a uniform grid (left) and a Boolean grid (right). The
errors are of about the same size, but the uniform grid has 64 x 64 = 4096 nodes, while the
Boolean grid uses 2 x 82 x 8 + 8% = 1088 nodes. Note the patterns of the errors, indicating
the grids on which the original sampling was done.

uniform grid with 127 x 127 nodes. On the Boolean grid, we use the Boolean combination
of the three different grids, while in the uniform case a regular linear interpolation is used.

Figure 2.6 shows the resulting errors. In this case, the errors on the Boolean grid are
slightly larger, but of approximately the same size as on the uniform grid. However, the
number of nodes used in the Boolean grid is 2 x 82 x 8 482 = 1088, while the uniform grid
uses 64 x 64 = 4096 nodes.

2.4.2. EXAMPLE 2 — FINITE DIFFERENCES ON BOOLEAN GRIDS

This example illustrates the use of finite differences on Boolean grids, as explained in
section 2.2.3. The Laplacian is applied to the function f(z) = sin(27z)sin(2my) on the
unit square using finite differences. The exact result is Af(z) = —8n2f(z). Figure 2.7
shows the result on a Boolean grid with N; = 12 and N; = 12 x 8 = 96. The values on
the Boolean grid are interpolated onto a uniform grid with 96 x 96 nodes and the errors
are calculated on this grid. Note that the structure of the Boolean grid is reflected in the
error image on the right of figure 2.7. This indicates that the errors are smaller on the
Boolean grid than in between grid lines, so that interpolation errors are greater than errors
resulting from finite differences on the grid itself.

Figure 2.8 shows the asymptotics of the same approximation compared to approxi-
mations on a uniform grid. On the left we see a log-log plot of the errors for the discrete
Laplacian applied to f(z) as above, while on the right we sce errors for the inverse Laplacian
applied to —872f(z) (so that the exact solution is f(z)), using zero boundary conditions
at the left edge (z = 0) and periodic boundary conditions at the other edges. The Boolean
grids used have values for N; ranging between 24 and 48 and with N, = N2/2. In the left

2.4 EXAMPLES

0.2 04 06 08

Figure 2.7: Finite differences on a Boolean grid with Ny = 12 and Ny = 12 x 8. The
discrete Laplacian was applied to the function f(z) = sin(27z) sin(27y) on a Boolean grid
and then interpolated to a full grid. The result is shown on the left with errors on the
right. The error image shows that the errors are smaller on the Boolean grid than between
grid lines.

oolean
~Uniform |-

10
of unknowns # of unknowns

Figure 2.8: Asymptotics for finite difference approximations on two-dimensional uniform
and Boolean grids for the forward Laplacian on the left and the inverse Laplacian on the
right. The graphs are log-log-plots of errors as function of the number of grid nodes. In
both graphs, the slopes of the lines are —1.00 for the uniform grids and —1.34 for the
Boolean grids. The Boolean grids use No = N7/2 and values of Ny range from 24 to 48
nodes.

THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

max error

s

unknowns # unknowns

Figure 2.9: Error asymptotics for the discrete Laplacian (left) and its inverse (right) applied
using finite differences on uniform and Boolean grids in 3D. The plots are log-log-plots of
the number of grid nodes versus the maximum error and the slopes of the lines are near
the theoretical values of —2/3 for the uniform grids and —1 for the Boolean grids.

figure, the slopes of the lines are —1.000 for the uniform grid and —1.339 for the Boolean
grid, while in the right figure, the slopes are —1.000 and —1.344, respectively. This agrees
well with the theoretical values, which state that on a uniform grid, the approximation
should be of order O(h?) = O(N~2), while the number of unknowns is O(N?), giving
the slope —2/2 = —1 in a log-log plot. On the Boolean grid, the number of unknowns
is 2NNy + N2 = O(N?) and the accuracy is O(h%) = O(N,2) = O(N;™"), since Ny is
proportional to N2. This should give a slope of —4/3 in the log-log plot, which agrees very
well with the numerical results.

In the last figure, figure 2.9, the asymptotics for the same problem in the unit cube in
3D is shown. Here f(z) = sin(2nz) sin(27y) sin(2n2) with Af(z) = —12n2f(z). The figure
shows results for the Laplacian on the left and for the inverse Laplacian on the right. The
Boolean grid is the intermediate grid with four components. N; ranges from 12 to 32 and
N; = NZ/4. The slopes of the lines for the uniform grid are both —0.667, which agrees
perfectly with the theoretical value derived from O(h?) = O(N~2) accuracy and O(N?)
unknowns. For the Boolean grid, the slope in the figure is —0.965 for the Laplacian and
—1.011 for its inverse, which agrees with the theoretical value of —1, arising from the fact
that the accuracy is O (h2) = O(N{) and the number of unknowns is SN2 Ny + N3 = O(N{).

The conclusion is that the theory works for standard finite differences and that by
using Boolean grids, the number of nodes may be reduced while still retaining the same
accuracy. It should be noted that the choices of Ny here are not necessarily optimal. Na
is proportional to NZ, which it must be, in order to achieve the correct asymptotics. But
given a specific Nj, it is not clear beforehand which is the optimal N,. There is a limit
where there is no use increasing N further, because the dominating error terms depend
only on N;. This limit is problem dependent, since the sizes of the error terms depend on

2.4 EXAMPLES

Figure 2.10: IIM on Boolean grid. On the left we see the numerical solution u(z,y)
to the Poisson problem in an ellipse computed on a Boolean grid with N; = 24 and
Ny =24 x 6 = 144. Level curves are drawn at the bottom, showing clearly the ellipse F.
The solution is zero outside the domain. On the right, we see the errors compared to the
exact solution on the Gy grid with small steps in the y-direction.

the magnitude of the derivatives of the solution f. Choosing optimal values of N, for all
N; will not change the slope of the lines, only the position, that is, it will not change the
asymptotics even if it changes the error values.

2.4.3. EXAMPLE 3 — IIM ON BOOLEAN GRIDS

Our final example shows the full immersed interface method on Boolean grids. We solve
the Poisson equation with Dirichlet boundary conditions inside an ellipse £ with center at
(0.5,0.5) and half-axes 0.44 and 0.38, i.e.

Au(z,y) = f(z,9), (z,9) € E,
u(z,y) = g(x,y), (z,y) € OF,

with f(z,y) and g(z, y) chosen so that the solution u(z, y) is a given sixth degree polynomial
(the same as in example 1). The solution and the distribution of errors on one of the
component grids (Gi2) are shown in figure 2.10. The results for different grid sizes are
listed in table 1. |[|En|ls denotes the maximum error compared to the exact solution
on the Boolean grid, while ||7||o denotes the maximum truncation error, i.c. Ty =
Apul + WCy — Fy, where ug and Cy are the node values and jumps for the exact solution,
respectively. The table also lists approximate computational times.

The asymptotics of the errors are shown in figure 2.11. There, asymptotics for a
corresponding three-dimensional problem is also shown, that is the Poisson equation inside
an ellipsoid with Dirichlet boundary conditions, whose solution is a sixth degree polynomial.
The corresponding data is shown in table 2. The numerical asymptotics for the errors

THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

-+ -Boolean
— > -Uniform

max error

10°
#of unknowns #of unknowns

Figure 2.11: Asymptotics of errors for IIM on Boolean grids. Errors for the solution to
the Poisson equation inside an ellipse in 2D on the left and inside an ellipsoid in 3D on
the right. The results on Boolean grids are compared to results for regular IIM on uniform
grids. On the Boolean grids, values of N, = NZ/4 are used throughout. The slopes of
the lines are —1.27 for Boolean grids and —0.97 for uniform grids in 2D, while for the
3D problem they are —0.91 and —0.66, respectively. This should be compared to the
theoretical values, which for O(h?)-convergence are —4/3, —1, —1 and —2/3 in the given
order (see example 2).

||En|| agree nicely with the theoretical values for O(h2)-behavior given in the previous
example. As expected, the truncation errors exhibit O(hs)-behavior in both two and three
dimensions, but even though these errors are large, the final errors in the solution are small.
The computational times listed indicate that the time needed to solve the problem grows
slightly faster than the number of unknowns. This is because the number of iterations
needed in the BiCGStab algorithm to solve the linear system of equations is not constant,
but tend to increase slightly with the number of unknowns. (e.g. from 17 to 21 in the 3D
problem).

We conclude that we are able to achieve O(hZ) error asymptotics for both two- and
three-dimensional problems on the Boolean grids. We also see from the error plots that
the number of grid nodes needed to get a specific error is much lower for the Boolean grids
than for the uniform ones.

2.4 EXAMPLES 34 THE IMMERSED INTERFACE METHOD ON UNIFORM AND BOOLEAN GRIDS

REFERENCES
[1] FFTW, http://www.fftu.org.
[2] IML++ (Iterative Methods Library), http://math.nist.gov/iml++/.

N time (s) | [Ewl vl [3] H. Bungartz, M. Griebel, and U. Riide. Extrapolation, combination, and sparse grid
74;‘2 <01T5 3];. °§ '; f’; techniques for elliptic boundary value problems. Comput. Methods Appl. Mech. Engrg.,
| ot © 116(1-4):243-252, 1994. ICOSAHOM’92 (Montpellicr, 1992).
11760 3.35¢-3 1.49

17408 .2 | 1.76¢-3 1.37 C. K. Chui and H.-C. Lai. Vandermonde determinant and Lagrange interpolation in
24624 .3 | 1.35¢-3 1.19 Re. In Nonlinear and convez analysis (Santa Barbara, Calif., 1985), volume 107 of

10 | 33600 .5 | 6.90c-4 1.34 Lecture Notes in Pure and Appl. Math., pages 23 35. Dekker, New York, 1987.
12| 57600 .9 | 3.94e-4 1.23

14 | 90944 4| 2.68¢-4 1.02 S. A. Coons. Surfaces for computer aided design of space forms. Technical report,
16 | 135168 5| 1.31c-4 0.86 Project MAC, Dept. of Mech. Engineering, MIT, 1964. Revised to MAC-TR-41, 1967.

Table 1: Results for Boolean IIM in two dimensions. ny = Ny/N; and Ny = N7 (2ng +1). F.-J. Delvos and W. Schempp. Boolean methods in interpolalion and approzimalion,
See text for details. volume 230 of Pitman Research Notes in Mathematics Series. Longman Scientific &
Technical, Harlow, 1989.

W. J. Gordon. Distributive lattices and the approximation of multivariate functions.
In Approzimations with Special Emphasis on Spline Functions (Proc. Sympos. Univ. of
Wisconsin, Madison, Wis., 1969), pages 223 277. Academic Press, New York, 1969.

W. J. Gordon. Blending-function methods of bivariate and multivariate interpolation
and approximation. SIAM J. Numer. Anal., 8:158 177, 1971.

M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution
of sparse grid problems. In Iterative methods in linear algebra (Brussels, 1991), pages
263 281. North-Holland, Amsterdam, 1992.

N ‘ n ‘ N ‘ time (s) ‘ IEx| ‘ Il C. T. Kelley. lterative methods for linear and nonlinear equations, volume 16 of
1| M2 tot Nl Nl S
20 5 1.2805 311 7 7403 378 Frontiers in Applied Mathemalics. Society for Industrial and Applied Mathematics

21| 626305 71| 3.760-3 2.49 (SIAM), Philadelphia, PA, 1995. With separately available software.

28 | 7| 4.83e5 13.2 | 2.50e-3 2.19 R. J. LeVeque and Z. L. Li. The immersed interface method for elliptic equations with
32| 8|8.19¢e5 26.6 | 1.37¢-3 1.91 discontinuous coefficients and singular sources. SIAM J. Numer. Anal., 31(4):1019

1044, 1994.
Table 2: Results for Boolean ITM in three dimensions. ny = Na/N; and Ny = N3 (3ny+1). !

See text for details. Z. Li. The immersed interface method: a numerical approcah to partial differential

equations with interfaces. PhD thesis, Dept. of Applied Mathematics, University of
Washington, Seattle, 1994.

C. S. Peskin. Lectures on mathematical aspects of physiology. In Mathematical aspects
of physiology (Proc. Summer Sem., Univ. Utah, Sali Lake City, Utah, 1980), volume 19
of Lectures in Appl. Math., pages 1-107. Amer. Math. Soc., Providence, RI, 1981.

REFERENCES 35

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
recipes in C. Cambridge University Press, Cambridge, second edition, 1992. The art
of scientific computing.

[15] A. Wiegmann. The explicit jump immersed interface method and inlerface problems
for differential equations. PhD thesis, Department of Mathematics, University of
Washington, Seattle, 1998.

[16] A. Wicgmann and K. P. Bube. The explicit-jump immersed interface method: Finite
difference methods for PDEs with piecewise smooth solutions. SIAM J. Numer. Anal.,
37(3):827-862, 2000.

APPROXIMATION OF GENERALIZED MEAN
CURVATURE FLOW WITH RIGHT-ANGLE
BOUNDARY CONDITIONS

Tobias Geback

Abstract

In this paper, we prove the convergence of an algorithm for computing
the evolution of surfaces, which move at each point with a velocity equal to
an increasing function of the mean curvature in that point. Furthermore, the
cntire evolution is assumed to take place inside a convex domain and wherever
the surface intersects the domain boundary, it should do so at a right angle. We
show that the approximations given by the algorithm converge to the viscosity
solution of the corresponding PDE as the time step tends to zecro.

The algorithm presented here is a generalization of the algorithm pre-
sented by Ishii and Ishii for regular mean curvature evolution with right-angle
boundary conditions and the algorithm by Grzibovskis and Heintz for the case
when the velocity equals an increasing function of the mean curvature, without
boundary conditions. These algorithms are in turn based on the convolution-
thresholding scheme devised by Bence, Merriman and Osher.

CONTENTS

1 Introduction
The BMO-algorithm
Right-angle boundary conditions
Generalized mean curvature motion
Outline

Viscosity solutions

2.1 Introduction

2.2 Theory of viscosity solutions
2.3 Boundary conditions

2.4 Singular equations

2.5 Comparison

The algorithm
Properties of G, and G,
5 The convergence theorem
6 Examples

References

o W D

00 00 ~1 Ot Ot Ot

1. INTRODUCTION

1. INTRODUCTION

Consider a hypersurface I'g in R®. At each point z € T, assign a velocity v in the
normal direction, so that I'y moves at ecach point with velocity v(z)f (), creating a new
hypersurface. Continuing the process, a family {I';};5¢ is created, where the hypersurfaces
T'; evolve according to the normal velocity v(z, t). If we take v(z, t) = &, the mean curvature
of I'; at z, we get the mean curvature flow. Mean curvature flows have been studied since
the 1970:s, first by parametric methods from differential geometry, although it was soon
clear that for n > 3 these methods ran into problems even for smooth hypersurfaces I'y, as
the mean curvature flow could develop singularities (so that the curvature is not defined for
some z), see figure 1.1. A method to overcome these problems, was introduced by Brakke
[5], who used varifold theory to define weak notions of mean curvature flow (see also [8] for
a modernization of these results). This method, however, does not give unique solutions.

Figure 1.1: The mean curvature evolution of a dumbbell-shaped surface. The surface
develops a singularity after a finite time and is split into two. The image was produced by
R. Grzibovskis.

Then, following ideas from Osher and Sethian [17], Evans and Spruck [10] developed a
new approach to motion by mean curvature in which the hyper-surface I'y is viewed as a
level set of a continuous function f, so that

To={z eR" | f(z) = A}
for some A. The mean curvature evolution is then studied through the PDE
ou Vu
= i = in R®
a0 |Vul dw(\Vu) in R X (0, 00),
u=f on R* x {t =0},

(1.1)

which ensures that the level sets of u evolve according to their mean curvature, at least as
long as Vu # 0. This PDE is nonlinear and degenerate parabolic and has a singularity for
Vu = 0, which makes it rather hard to handle. However, the notion of wiscosity solutions
(see Crandall-Ishii-Lions [7]) provides a well-suited tool to handle such equations and to
prove the existence of a unique solution, which was done in [10].

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

A number of generalizations of this approach have appeared. Existence of a unique
solution to more general level set equations has been established by Chen, Giga and Goto
[6] and for very general cases, including the case where v = g(k) and g is any non-decreasing,
continuous function, by Ishii and Souganidis [16]. The Neumann problem for the mean
curvature equation has also been studied. In this case, the whole evolution takes place
inside a domain 2, whose boundary is intersected perpendicularly by the level sets of u.
The existence of unique solutions in this case was established by Sato [20] for convex € and
by Giga and Sato [11] for more general ©, but less general dependence on the curvature.
We will return to this later.

Curvature flows arise naturally in a range of situations, including fast reaction-slow
diffusion problems (sce [18]) and image processing (see [2]).

In 1992, Bence, Merriman and Osher [4] presented an algorithm to approximate motion
by mean curvature using the level set approach. The convergence of this algorithm was
proven using different approaches by Evans [9], Barles and Georgelin [3] and Ishii [13].
General thresholding schemes were also studied by Ishii, Pires and Souganidis [15]. Later,
two significant generalizations of the algorithm have been developed. In 2002, Ishii and Ishii
[14] published an algorithm for mean curvature flow with right-angle boundary conditions,
and about at the same time, Grzibovskis and Heintz [12] developed a scheme for motion
with normal velocity equal to a (nonlincar) function of the mean curvature (henceforth
called generalized mean curvature motion).

This work uses the methods used by Ishii and Ishii [14] to prove convergence of an algo-
rithm for such generalized mean curvature motion with right-angle boundary conditions.
In order to understand that algorithm, we will first briefly discuss the previous works.

1.1. THE BMO-ALGORITHM

A (slightly generalized) version of the Bence, Merriman and Osher-algorithm (BMO-
algorithm) can be described as follows (cf. Ishii [13]). First, fix a radially symmetric
convolution kernel, p, and define its contraction p¥*(z) = h~"/2p(z//h). Then, given a
set Gy C R®, choose a time-step h and compute the convolution M (z, h) = (VP exc,) ().
Set

Ci = {o e B [FOGh) > 3 [57() do}
e

and continue the process by computing MO (z, h) and defining C; and so on. We then end
up with a sequence {Cj}xen of closed sets in R and we set

Ch=Cy if kh<t< (k+1)h, >0

Now, letting h — 0, we obtain a flow of closed subsets in R* whose boundaries move with a
normal velocity equal to a constant times its mean curvature, where the constant depends
only on n and the choice of p.

In the original algorithm, M©(z,t) was the solution to the heat equation with initial
data x¢,, which corresponds to the choice of p as the Gauss kernel, and which leads to
motion by (n — 1) times the mean curvature.

1.2 RIGHT-ANGLE BOUNDARY CONDITIONS

1.2. RIGHT-ANGLE BOUNDARY CONDITIONS

As was alrcady mentioned, the above algorithm was extended by Ishii and Ishii [14] to the
case of right-angle boundary conditions. The extension works as follows. Given an open
domain C R* with C%-boundary, an initial set Cp, and a convolution kernel p, we define

Mz, h) = /ﬂp‘/ﬂ(y - o)X (y) dy

and set ’
Ci= (e € R | M) 2 5 [97y - 2) dy),
Q

which is the same as before, except that the integrals are taken over instead of R".
Defining the sequence {Cy}ren and C' as above and letting h — 0, we get a flow of sets
whose boundary not only moves by a constant times mean curvature but also intersects
the boundary of Q at a right angle, at least in a sense that will be clear later.

1.3. GENERALIZED MEAN CURVATURE MOTION

The last extension of the BMO-algorithm we will discuss is the scheme by Grzibovskis and
Heintz [12], that lets the boundaries of the sets move with a normal velocity v = g(k),
where k is the mean curvature and g : R — R is an increasing, continuous function.

The algorithm uses two different radially symmetric convolution kernels, p; and ps and
given a set C' we can define

. — 1
Rétw) = Wit = 5 [o=) dy

1
:/ 2"y — D)xely) dy—i/ oYMy —) dy
Rn ke

for ¢ = 1,2. Now, a crucial part of all the proofs of convergence of these convolution-
thresholding algorithms is an expansion of NE(z, h) in h of the form

NE(z,h) = aiVho(z) — b;Vhe(z) + o(h). (1.2)

a; =/ pi(y',0) dyf,
ne1

b_ — 1 2 . 1 d)

i =5 yipi(y',0) dy'.
Rn—1

Clearly, sctting N (z, h) = 0 gives v = z‘ix + o(v/h), which corresponds to the original
BMO-algorithm.

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

Now, using two convolution kernels, (1.2) gives us two linear equations for v and k.
Solving these, we get B B
1 byNy — b Ny
= 2124 o(Wh
N (Vh)
1 asNy — a1 N,y —
L al—als
Vi d h)

where d = a1by — asb; is the determinant. Thus, since we want to have v = g(k), we define

K=

F(Ny, No) = v —g(k) = (1.3)

1 bNy =N, (Lagl\'l—aﬂ\’z)
Vhoood Vi d

and a thresholding scheme
Crnr = {z € B | F(N*(x, h), N5 (2, b)) > 0},

for k € N.

In order for this scheme to converge to the actual generalized mean curvature motion,
it turns out that F' must satisfy the condition 8F/ON; > 0, i = 1,2, which leads to the
restrictions

d=a1by —azby > 0,

0<bi<g’<bl, (1.4)
a1 2
on g and p;, saying both that g must have bounded derivative both from above and below,
and that given a function g, the convolution kernels must be chosen with some care to fulfill
the inequalities. If one would like to use a function g with unbounded or zero derivative,
it is possible to use uniform approximations g, to g and still get a scheme that converges
as h and v tend to zero.

1.4. OUTLINE

The structure of the following sections is as follows. First, in section 2 we give an in-
troduction to viscosity solutions and give a background to the definition of solution and
comparison results that are used in section 5.

Having established the necessary background, the actual treatment begins in section 3,
where the algorithm is presented in more detail and all assumptions stated. In section 4,
a few crucial lemmas are proven. Then, finally, the last section sums it all up in the proof
that the algorithm converges to the solution of the level set equation as the time-step tends
to zero.

2. VISCOSITY SOLUTIONS

2. VISCOSITY SOLUTIONS

2.1. INTRODUCTION

The theory of viscosity solutions was developed during the 1980’s by M.G. Crandall,
L.C. Evans, H. Ishii, P.-L. Lions and others while secking solutions to the Hamilton-Jacobi
equations. The name viscosity solutions originates from the method of “vanishing viscos-
ity” which was used to solve first-order equations and which was consistent with the new
theory being developed. Now, however, viscosity solutions do not generally have much to
do with viscosity. The theory provides very general existence and uniqueness results and
allows merely continuous functions to be solutions of fully nonlinear second-order equa-
tions. An excellent account of the theory may be found in the “User’s guide o viscosity
solutions” by Crandall, Ishii and Lions [7]. Here, we give a short introduction to the theory
and introduce some concepts which will be used later on.

2.2. THEORY OF VISCOSITY SOLUTIONS

The theory of viscosity solutions applies to equations of the form
F(z,u, Vu, D*u) =0, (2.1)

where z € R", u = u(z) is a real-valued function, Vu € R" its gradient and D%*u € S(n)
the matrix of second derivatives of u. S(n) is the set of real, symmetric n x n matrices,
which is partially ordered by the relation <, where ¥ < X means Y ¢ < ¢X¢ for all
¢ € R". We also equip S(n) with the norm || X|| = max{|X¢| | £ € R*, |{| = 1}. Finally,
F:R* xR xR* x 8(n) = R is a function, which can take many forms.

For the theory to apply, we require F' to satisfy the monotonicity conditions

F(z,r,p,X) < F(z,s,p,X) ifr <s (2.2)

and
F(z,r,p,X) < F(z,r,p,Y)ifY <X, (2.3)

where 7,5 € R, z,p € R* and X,Y € S(n). If (2.3) holds, F is said to be degenerate
elliptic and if (2.2) also holds, F' is proper.
Now suppose that F' is proper and that u € C?(R") is a subsolution to F' = 0, i.c.
solves
F(z,u(z), Vu(z), D*u(z)) <0

for all z € R". Choose a test function ¢ that is also C?, and suppose that u — ¢ has a local
maximum at 2. Then we have V(u—¢)(£) = 0 and D*(u—¢)(2) < 0, i.e. Vu(d) = V()
and D?u(z) < D%*p(z), and by (2.3),

F(@,u(#), V(&) Dp(#)) < F (i, u(@), Vu(@), Du(@)) < 0.

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

We have thus replaced the derivatives of u with derivatives of test functions ¢, which we
choose to be well-behaved (i.e. at least C?). One could now try to define an arbitrary
function u to be a weak or generalized subsolution of (2.1) if

F(2,u(2), Vo), D*p(2)) < 0

whenever ¢ is C? and u — ¢ has a local maximum at z. However, a slightly different
definition proves more useful and we therefore note that since u — ¢ has a maximum at z,
u(z) < u(2) — (&) + ¢(x) for z near &, so a Taylor expansion of ¢ at Z gives

u(z) < u(@)+ (p,x — i)+ %(X(x —#),7—2) +o(jz — 3?) (2.4)

with p = V(%) and X = D?*p(&). Also, if (2.4) holds for some (p, X) € R" x S(n)
and u € C?, then p = Vu(2) and D*u(2) < X, so that if u solves F' < 0, it follows that
F(%,u(2),p, X) < 0 whenever (2.4) is true. Letting © C R" be locally compact, u: O — R
and Z € O, we therefore define the second-order “superjet” of u at & by

JZ u(2) = {(p,X) | (2.4) holds as z — &, with z € O}. (2.5)

Reversing the inequality sign in (2.4) gives us the definition of the “subjet” Jg u(%), or
equivalently, J§ u(%) = —Jg* (—u)(2). We also state the definitions of the sets of upper
and lower semicontinuous functions

USC(0) ={u: O — [—oc,00) | u!([—oc,a)) is open in O for cach a € R} 26)
2.6
LSC(0) = {u: O = (—o0,00] | u™" ((a,o¢]) is open in O for each a € R}
Finally, we arc able to define viscosity solutions for the equation (2.1).

Definition 2.1 Let F' be proper and O C R". Then u € USC(O) is a subsolution of
F=00n0if

F(zyu(z),p, X) <0 for all z € O and (p, X) € J5 u(z). (2.7)
Similarly, u € LSC(O) is a supersolution of F' =0 on O if
F(z,u(z),p,X) >0 for allz € O and (p, X) € J5 u(x). (2.8)

Finally, u is a (viscosity) solution of F' =0 in O if it is both a subsolution and a superso-
lution.

We note that since viscosity solutions are both upper and lower semicontinuous, they
are continuous. Also, in view of the discussion above, it may be noted that

Jgtu(z) = {(Ve(2), D*p(2)) | p € C? and u — ¢ has a local maximum at £},

JEu(@) = {(Ve(&), D*¢(#)) | ¢ € C* and u — ¢ has a local minimum at £},

2.3 BOUNDARY CONDITIONS

which may be used to facilitate the use of definition 2.1. We also note that the semijets
only depend on the set O if & € 90, so if that is not the case, we may drop the subscript.
We also need to define the closures of the semijets for z € O as
—2,4
Jo u@) = {(p,X) € R* x S(n) | Izx, pr, Xix) € O xR x S(n) :
(pr> Xi) € I u(zy) and (zx, u(ze), pr Xi) = (2, u(z),p, X)}
and note that if u is a subsolution of F' =0 in O, then F(z,u(z),p, X) < 0 for z € O and

(0, X) € J4Tu(z). If F is lower semicontinuous, this remains true if (p, X) € j?fu(z).
Similar remarks are true for supersolutions and solutions.

2.3. BOUNDARY CONDITIONS

Viscosity solutions also allow precise formulations of boundary conditions. Consider the
boundary value problem

(2.9)

F(z,u(z), Vu(z), D?u(2)) =0, z€Q
B(z,u(z), Vu(z)) =0, z €00

in an open set @ C R", where F' and B are both proper functions. The correct definition
of a viscosity solution of (2.9) is then

Definition 2.2 A function u € USC(Q) is a subsolution of (2.9) if

F(z,u(z),p, X) <0 z e, (,X)ejgru(z), 210)
B(z,u(z),p) A F(z,u(z),p, X) <0 z e dQ, (p,X)e 7%“1(:5). ’

u € LSC(R) is a supersolution of (2.9) if

F(z,u(z),p, X) 2 0 1€Q (p,X) €T3 ulw), @2.11)
B(z,u(@),p) V F(z,u(2),p,X) >0 2 €09, (p,X) € Jg u(z). .

Finally, u is a solution if it is both a subsolution and a supersolulion.

Here, a V b = max{a, b} and a A b = min{a, b}, so what the definition basically means
is that on the boundary, either the boundary condition or the equation should hold. That
we can not expect the boundary conditions to hold in a stronger sense is demonstrated by
an example in [7].

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

2.4. SINGULAR EQUATIONS

Since the equation we are interested in has a singularity for Vu = 0, we need to introduce
a third definition of viscosity solutions.

To start with, given a function u : @ — R, with @ C R", we introduce the upper and
lower semicontinuous relaxations

u*(z) = lil% sup{u(y) |y € |z —y| <e}, (2.12)
u,(z) = lil% inf{u(y) |y € Q |z —y| < e}, (2.13)
which are defined on © and take values in R U {oc} and R U {—o0} respectively.

Also, supposing our function F'is only defined on a dense subset W of L) =0 xRx
R* x 8(n), we may similarly define the relaxations F* and F, on W = L(Q) as

F* (@, u,p, X) = lim sup{F(y,v,0,Y) | (4,v,4,Y) € W, [[(2, 5,9, X) = (90,4, V)| <&},
Fu(@,u,p, X) = lim inf{F(y,v,q,Y) | (v,0,4,Y) €W, l|(2,u,p,X) - (v,v,0,Y)|| <},

where ||(z,u, p, X)|| is just the sum of the norms for cach component. Then, we can make
the following definition of viscosity solutions:

Definition 2.3 A funclion u: Q — R is a subsolution of (2.1) if u* < oo in Q and
Fy(z,u"(x),p,X) <0 for allz € Q, (p, X) € j;*u*(x},

a supersolution if u, > —oco in Q and
F*(z,u.(z),p, X) >0 for allz € Q, (p, X) € j?{_u*(z),

and a solution if it is both sub- and supersolution.

This definition is adopted from [6], where it is used for proving existence of solutions
of curvature flow equations and similar.

2.5. COMPARISON

We finally make some comments on the method generally used for proving existence of
viscosity solutions to suitable equations. Such proofs in general consist of three steps. The
first is to establish a comparison result, i.e that if u is a subsolution and v is a supersolution,
then u < v. From this result it follows immediately that if there is a solution, it must be
unique. It also follows that if u is a solution by the definition for singular equations given
above, then u is continuous. Furthermore, the comparison result proves helpful to us in
our proof of convergence in section 3.

The second step of a proof of existence is to construct a subsolution and a supersolution.
The third step is to invoke Perron’s method to show that in that case, there exists a solution.
See Crandall, Ishii, Lions [7] for details. For applications of the method, see also the proofs
of existence of solutions to level sct equations for mean curvature motion, e.g [6], [11], [20].

3. THE ALGORITHM

3. THE ALGORITHM

Now, having given the necessary background, we turn to the problem of extending the
algorithm for approximating generalized curvature flow to the case of right-angle boundary
conditions and prove its convergence as the time step tends to zero. For that purpose, let £
be an open, bounded domain in R* with C?-boundary 09. Given ug € C(Q), we consider
the level set equation

%(z, 1) — |Vu(z,t)| g(curv(u(z,t))) =0, z€, te(0,T)

Z—Z(x, H=o, zeon, Le (1) (3-1)

u(z,0) = uo(x), ze

for 7' > 0, where

curv(u(z)) = div (;38‘) IVu - Z (- “qui(l;)‘(f)) U, (1) (32)

”1

is n times the mean curvature of the level set of u passing through the point z, 7 is the
outward unit normal to Q and g: R — R fulfills the conditions

(i) g€C(R), g(0)=0
(i) g(z) = O(z) as z = oo (3.3)
(iii) g is increasing.

The PDE describes a function whose level sets {z € R" | u(z) = A} move with normal
velocity g(curv(u(z))) and intersect O at a right angle, at least formally. The equation is
degenerate parabolic and has singularities for Vu = 0, but in spite of these difficulties, Sato
[20] showed that if Q is convex, the equation has a unique viscosity solution in C'(Q x [0,7'))
for any 7" > 0. Furthermore, if g is lincar, Giga and Sato [11] proved that there is a unique
viscosity solution even if € is not convex. Since we are interested in nonlinear functions g,
we need the additional assumption that

Q is convex.

It should be noted, however, that we only use this assumption through the use of the
comparison principle from Sato [20]. So if a proof of existence of unique solutions is
constructed for the case of non-convex € for nonlinear g, the proof of convergence of the
algorithm will be valid for this case too.

Because of (1.4), the convergence of the algorithm also requires that

(iv) g€ CY(R) and 3¢;,¢ > 0:Vz € R: ¢'(z) € (G, Ca)s (3.4)

which of course implies (ii) and (iii). But we will then also show how to get around this
problem if we can find uniform approximations g, — g, where g fulfills (3.3), but has
unbounded or zero derivative and g, fulfills (3.3) and (3.4) for all v.

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

To formulate the approximation scheme, we choose non-negative, measurable, radially
symmetric weight functions, p; and p, satisfying the conditions

(i) /R"p,-(:::) dr < oo
) [0 <o

(iii) supp p; is compact,
as well as the conditions (1.4) depending on g, which we state again for convenience:

b b
0< <g <2
a3

d—albg—agbl >0

ai:/ pi(y',0) dy'
gn1
1
b = 7/ vipi(y',0) dy'
Rn—1

Condition (3.5) (iii) is not really necessary and could be replaced by conditions for rapid
decrease of p;, but since the proofs are much simpler when we assume compact support,
we use that assumption. See [14] for the proof when g is linear including the case when p
has non-compact support.

We now define
xh / (y — z)xely dyf—/ (y —)
[

for i = 1,2 and a mapping G, that maps subsets of R* to subsets of R?, by
Gu(C) = {z € R | F(N{ (2, h), Nf (2, h)) 2 0}
for C C R* with F' defined by (1.3), that is

1 byNi —biN; (1 agN; — alNZ)

E(M, ‘YZ):E d N d

In order to prove that this mapping produces a generalized mean curvature flow as h — 0,
we need to connect it to the PDE (3.1). For that purpose, given a function ¢ € C(2) and
a rcal number), we consider the super-level set {¢ > A} = {z € R” | ¢(x) > A} and set

N;(\) = N{"’»‘} (z, h) / ‘[—2)x{pon (¥) dy — —/ — 1) dy,
(3.7)
Ni(A) = NN (@,) / —) Xqeon (y) dy — 5/11 /"y —) dy,

3. THE ALGORITHM

for i=1,2. This notation does not explicitly show the dependence on z, h and ¢, but that
will be clear from the context. Finally, we also define mappings Gy, Gy, : C(Q2) — C(9Q)
corresponding to G, by

[Gngl(z) = sup{X € R | F(N1(}), N2(})) = 0} (3.8)

(Gl (@) = sup{A € R | F(R,(N), F(0) > 0} (3.9)
for h > 0 and ¢ € C(Q). Note that all symbols with tilde (5, N etc.) denote entities in
the case of no boundary conditions, while the same symbols without the tilde denote the
same entity in the domain Q.

The main result, theorem 5.1, is now that the repeated application of the mappings G,
gives us an approximation of the solution to the level set equation (3.1). For clarity, we
state the algorithm explicitly:

Algorithm 3.1
Given Q2 and g, choose functions py and py according to the assumplions above.
Choose an inilial set Cy.
For each ileralion k,
Choose a time-step iy,
For each point x € Q,
Calculate NE*"(z,4y), i =1,2.
Evaluate the function F(NS=' (z, 1), N&' (z, 1)
If FF >0, let x belong to C.
End loop
End loop

For efficient implementation of this and other BMO-type algorithms, see Ruuth [19] and
Grzibovskis-Heintz [12].

12 APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

4. PROPERTIES OF (G, AND G,

In this section, we prove some crucial properties of the operators G, and G,. We start
with the inclusion principle for G,.

Proposition 4.1 Let Gy be defined by (3.6). Then for all h > 0 and all closed sels
Cy,Cy C 2, we have
Cy C Cy = Gr(C1) C Gu(Cy).
Proof. Since the weight functions p; are positive, C; C Cj implies that Nfl < Nic“,
i=1,2 and since F is increasing in both arguments, we have F(N{', NSy < F(NC?, NE?)
and therefore
[FING, N§Y > 0) € {F(NE, M) > 0}

and Gn(C1) C Gn(Cy). n

From this principle, some properties of Gy, follow. Note that by the definitions of G),
and Gy, the connection between the two is

[Grel(x) =sup{r e R [z € Gu(fy > AP}

Proposition 4.2 For all h > 0 and u, u1,us € C(Q),

(i) Gh(u+C)=Gru+C, for allC € R,

(i) Gh(fou) =00 (Gpu), for any increasing, conlinuous function 6 : R — R.
(i) if wi(z) < ua(x) for all x € Q, then [Gyua](z) < [Ghus)(z) for allz € Q,
(iv) IGhur = Guua|| < |jur — usl| in sup-norm,

(v) Ghu(z) = inf{) € R | F(N:(\), N2())) < 0}
Proof.

(i) This follows directly from the definition (3.8) of G).

(ii) This also follows from the definition (3.8) of G}, since f commutes with the taking
of supremum.

(iii) Suppose u; < up in Q and that there is an 2 € Q such that [Ghu1](z0) > [Grua(zo).
Set Ay = [Gru](20) and Ay = [Gruz](z0), i.c.

A =sup{A | @0 € Gu({ur 2 AP}, Ae=sup{d |0 € Gu({ue 2 AP}, (41)
so that A\; > Ag. Then, for every € > 0, since also u; < uy,

{ur > M —e} C{ua > X —e} C{us >Ny — ¢},

4. PROPERTIES OF G} AND G,

which by proposition 4.1 implies
Gn({ur > M —€}) C Gr({ua > Xy —€}).

This in turn implies that A; < Ay by (4.1), which is a contradiction. Therefore we
must have [Gyui](z) < [Grusl(z) for all z € Q and we are done.

Let u1,us € C(Q). It is enough to prove that
(Grtr — Gruz)*floe < fl(ur — w2)* s

with ()* = max{0,-} and (-)~ = —min{0,-}. The result then follows immediately.
It is also only necessary to prove the plus-case, since the minus-case follows by the
same argument.

So, aiming for a contradiction, we assume that there is an zy € Q, such that

[Ghwa](wo) — [Grus](x0) > [[(ur — uz) oo = C.
Then, by (i), we get
[Gru](@o) — [Gh(uz + C)](z0) = [Gru1](ma) — [Ghuz)(zo) — C >0

But since u; < (ug 4+ C), this contradicts the result in (iii) with u; = u; and uy =
us + C.

Fix z € Q, let 7; be the radius of the support of p; for i = 1,2 and assume 1 < ry.
We arc interested in values of A for which F/(Ny(A), Na(A)) = 0. Since F' is increasing
in both variables and F'(0,0) = 0, we must then have Ny(A) > 0 and Ny(A) < 0 or
the other way around. Thus we must have

{u> AN Bu(z,rVh) # @ and {u> A} N Bu(z, riVh) # Ba(z,r:Vh)

for i = 1 or 2 or both. The only other possibility would be {u > A\}N By (z,71Vh) = @
and {u > A\}NB,(x, r2vh) = By (x,72v/h), but this is impossible since B, (z, r1v/h) C
By (z,r9Vh).

But then, for any A; and A; near where F' = 0, with A\; < Az, we have

{u > X} N Bz, reV'h) C {u> A} N By(z,riVh)

and therefore N;(Ag) < N;()A) with strict inequality for at least one of Ny and Ns.
We also have N;(A2) < N;(\) for the other one and therefore the function A —
F(N1(X), No())) is strictly decreasing near the points where it is zero, and thus
[Ghul(x) = sup{A € R | F(N;(\), No(\)) > 0} = inf{\ € R | F(N:()\), No()\)) < 0}.
n

Finally, the following proposition, which is analogous to lemma 3.1 in [14], is a crucial
part of the proof of our main theorem.

14 APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

Proposition 4.3 For all ¢ € C?(Q), 2 € Q and € > 0, there is a § > 0 such thal
(i) If z € Q@ and Vp(z) # 0, then
[Grpl(z) < () + hVe(2)| glcurv(p(2))) +eh, € Ba(2,6),h € (0,8] (4.2)
and

[Gnel(z) > () + h|Ve(2)| g(curv(p(2))) —eh, € Ba(2,6),h € (0,6] (4.3)

(ii) If z € 0Q and 0yp/07(2) > 0, then (4.2) holds for all z € B,(z,6) NQ and h € (0,6].
(iil) If 2 € 09 and 0p/0n(z) < 0, then (4.3) holds for all x € By(2,8) NQ and h € (0,4].

The proof uses the same idea as in [14], namely to compare this case to the problem
without boundary conditions in the whole of R*. The analogue of proposition 4.3 for that
case can be found in a different shape in Grzibovskis and Heintz [12, lemma 2] and is stated
as lemma 4.4 below. The rest of the proof is mainly concerned with comparing N;(A) and
Ni()) (with and without boundary conditions). This requires the rather lengthy proofs of
lemmas 4.5 and 4.6. Lemma 4.5 is proved exactly as in [14, lemma 3.1, case 1] and the
proof is therefore not given here. The setup for that proof is identical to the one in the
proof of lemma 4.6, which is given here and which we need because we have two convolution
kernels instead of one.

Lemma 4.4 (sce [12, lemma 2])
Let ¢ € C*(R") and z € R*. If Vip(2) # 0, then for each e > 0, there is a § > 0 such that

@hﬂﬂ](l) < ¢(z) + hVe(2)| g(curv(e(2))) + eh,
[Grl(w) = () + hIVp(2)] glcurv(e(2))) — eh
for all x € B,(2,6) and h € (0,6).

Proof of proposition 4.3. As in [14], the main idea behind the proof is to compare
Gho(z) to Gho(z) and use lemma 4.4 to get the desired result.

Let o € C?(Q) and € > 0. If 2 € Q and Dg(z) # 0, then since supp p; is compact,
there is a § > 0, such that for all z € B,(z,8) C Q and h € (0, 6], we have

(Grel(@) = Ghe(a).

So proposition 4.3, part (i), follows directly from lemma 4.4. To prove the rest of the
proposition, we assume z € 9 and d¢p/d7(z) > 0 and prove part (ii), noting that part
(iii) may be proved similarly.

Since ¢ € C?(Q) and 9Q is C?, we may extend ¢ so that ¢ € C?(B,(z,70)) for some
ro > 0. Using proposition 4.2 (v), we also set

A= [Gapl(@) = inf{u € R | F(Ny(), No(p)) < 0}

4. PROPERTIES OF G} AND G,

Yn

Figure 4.1: The sets Q,-i and Zf in case 1.

and
X = [Ghgl(@) = inf{p € R | F(Ni (), Nao(p)) < 0}.

Now, we wish to show that there is an hg > 0 such that A < X for cach z € B, (z,70) na
and cach h € (0, ho]. By the definition of A, we know that F(N;(X), No(X)) = 0 and by
the definition (1.3) of F(Ny, Na), we also know that F'(0,0) = 0. If we can show that
N;(\) < 0,4=1,2, we would know that F(N;(}), Ny(\)) < O (since F' is increasing in
both variables) and thus

A=inf{p € R | F(Ni(n), Na(p)) <0} < X (4.4)

The same result would be obtained if we could show that N,-(X) < N’,(X), i=1,2
To prove that N;(A) < 0 or that N;(A) < N;(A), we first define

=1y € Bala,riVh) | ply) <A} NQ,
Q; =1{y € Bala,riVh) | ¢(y) > A} N Q,
for i = 1,2, with r; = inf{r € R | supp p; C B,(0,7)}. Sece figure 4.1. We then consider

one p; at a time (i.e. i =1 or 2) and divide the treatment into three cases (cf. figures 4.1
and 4.2).

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

Figure 4.2: Case 2 on the left and case 3 on the right.

(v € Bulz,rivh) | o(y) = Xy € 99} # &
In general, we have

~ 1
Ni(X) = /ﬂpﬁ(y =)X (o5 (W) dy — E/npz‘/ﬁ(y —z)dy

1
:/ ﬂ,ﬁ(yfz)dyfi/ oMy) dy
Q Qfue;

:%</‘2;pﬁ(yfz)dy7/<gi+p2/ﬁ(yfz) dy)-

Lemma 4.5 below now shows that N;(X) < 0 and lemma 4.6 gives N o) < N(V).

{v € Baz,riVh) | ly) = A} C Q N

In this case, the intersection of the hypersurfaces {¢ = A} and 99 lies outside the
ball B, (z, rl-\/ﬁ). We then see that @ NQ°¢ = @ and therefore, starting as before,
we get

NGV (/gﬂ(y—z) w- [afw-n dy)
< % (/Wzi)p,ﬁ(y—) dy — /{M)pﬁ(y - 1) dy) = N;().

{v € Ba(z,1ivh) | 0(y) =X} C -
In this case, Q; = @ and since p; is positive, we can conclude N;(A) < 0 from the
expression in Case 1.

4. PROPERTIES OF G} AND G, 17

Now, we need to see what happens when we have two convolution kernels. Set r; =
inf{r € R | supp p; C B,(0,7)}, i = 1,2 and assume r; < 7,. Then, if case 1 applies to py,
then it obviously also applies to pz, so that N; (X) < 0 (and Ni(X) < JV,-(X)) fori=1,2
and therefore A < A by the argument leading to (4.4). If case 3 applies to pi, then cither
case 1 or 3 applies to pg, but in both cases we have again N;(A\) < Ofori=1,2and A < A.
Finally, if case 2 applies to p;, then either case 1 or 2 applies to ps. In both cases, we have
Ni(A) < N;(A) for i = 1,2 and thus A < A. Therefore, once we prove lemmas 4.5 and 4.6,
the proof is completed.

]

All that now remains is to prove the next two lemmas. As mentioned carlier, lemma
4.5 is proved by Ishii and Ishii [14] for regular mean curvature flow and there are only very
minor differences in our case, so we omit the proof. Besides, the same setup is used in the
proof of lemma 4.6, which we give in detail and which is needed in our case in view of the
discussion following the three cases above, because we have two convolution kernels.

Lemma 4.5 (cf. [14, lemma 3.1, case 1])

Let r;, Qf and Q; be defined as above, and assume that z € 0Q and dp/0n(z) > 0. Then
there is an rg > 0 and an hg > 0 such that for all x € B,(2,70) and h € (0, ho), it holds
that if {y € Bu(z,riV/h) | p(y) = N,y € 30} # @ (i.e. case 1 applies) then

/QJ’}/E(Z/ —z)dy > /Lrp,-ﬁ(y -) dy, (4.5)

and thus N;(A) < 0.

Lemma 4.6 Lel r; be defined as above, and assume z € 9Q and dp/0n(z) > 0. Then
there is an ro > 0 and an hy > 0 such that for all x € By (z,m9) and h € (0,hg) it holds
that if {y € Bu(z,7:Vh) | p(y) = Ny € 90} # & (i.e. case 1 holds), then

N:(¥) < Ni(3).
Proof. We wish to prove that N;(A) < N;(}), which is the same as
/ My — 1) dy—/ My —) d:t/S/~ My - 2) dy—/~ oMy — o) dy,
h Qf ar ar
with Qf defined above and

@* ={y € Bu(z,7:Vh) | p(y) < 5}
Qi ={y € Bal(a, T«\/ﬁ) [o(y) > A},

so that Qii = éf N Q. Rewriting this expression once more, we get

/ﬂl’/ﬁ(y*z)dyf/ oYy —) dy >0
z7 z}

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

7z ={y € Ba(z,rVh) N Q° | p(y) < A},
Z7 ={y € Bu(z,miVR) N Q° | p(y) > X}
as is illustrated in figure 4.1.

Given z € 9Q with d¢/0n(z) > 0, there is an 1o > 0 such that ¢ can be extended to
be in C?(B,(z,19)) (since Q is C? and ¢ € C?(Q)). The idea of the proof is now that

for any z € Bn(2,70) N, we may approximate the hypersurfaces { = A(z)} and 0 by
hyperplanes and show that for small h, since dp/dn > 0, the contribution from the set
denoted W in figure 4.3 is greater than the contributions from the the sets enclosed by
dashed lines, within which the two hypersurfaces must lie. But first we need to introduce
some notation.

We take a parameterization ¢ € C*(R"") of Q2 and choose coordinate system so that

Yn — 2 = Y(y' — &) for all y = (', ya) € Bu(z,7m0) N 0Q,
V'4(0) =0,
Yn — 20 > Y(y' — 2') for all y € B,(z,m0) N Q,
where V' = (9/0z1,...,0/0z,_1). Taking ro smaller if necessary, we may assume
Vap(y) < =7, Vo) S K, [V'Y(y' — 2)| < € for all y € Ba(z,70),
where V, = 9/0z, and v, K > 0 are independent of € > 0 and ry.

Now fix z € By,(z,79) N Q and a small hg > 0. Let h € (0, hg) and choose a point
£€ 00N {p = A} N B,(x,rivh). We then set
V'p(x)
Vap(z)’
and define the hyperplanes A and B by

A={yeR" [{(a,~-1),y—z) =0},
B={yeR" | ((b,-1),y =& =0} ={y eR" [{(b, 1),y —z) = ¢},
with ¢ = ((b, 1), & — z), see figure 4.3. We also note that |a| < K/ and |b| < ¢, so that

(@, =1), (5, ~1))] = Ka,b) + 1] > 1 —% >1 (4.7)

a(z) = b(¢) = V(&)

2

if e € (0,e9) with e = v/(2K), which in particular means that A and B are not perpen-
dicular.
We now need three elementary lemmas with counterparts in [14].

Lemma 4.7 (cf. Ishii and Ishii [14, lemma 3.4])

There ezists a 6 > 0 and a C; > 0 independent of x € By (2,0) such that if h € (0,6) and
z € By(z,8), then |\ — p(z)] < Cih.

. PROPERTIES OF G} AND G

Figure 4.3: The planc spanned by (a,—1) and (b, —1), showing the hyperplanes A and B
as well as the position of v and the distance d,.

Proof. This follows directly from lemma 4.4, using the fact that Vi (z) # 0.

Lemma 4.8 (cf. [14, lemma 3.6])

There ezists a Cy > 0, which is independent of x € By(z,10), and an hy > 0, such that if
y € Bu(z,1:V'h) salisfies p(y) = X, with h € (0,hy), and if a(z) = V'o(z)/Vap(x), then
[Vn — a — (a(z),y’ — 2')| < Coh.

Proof. This follows easily from lemma 4.7. See [14] for details.
Lemma 4.9 (cf. [14, lemma 3.3 (i)])

For anyr >0, a,b € R*! and c € R", with |a| < Ky, |b| < &1, and e,K, < 1, there is a
6 € (0,1), depending only on e and K, such that if

{y € Ba(0,7) [n = (b,¥) + 6 v = (a:y)} # 2,

I < Or.

V142
(Note that the quantily on the left is the orthogonal distance from the origin to the hyper-
plane {(5,~1),y) = c).

Proof. The proof is given in [14] and is a straightforward geometrical argument.

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

By lemma 4.8, we have

K(a,=1)y =) < Coh, if p(y) =X, y € By(x,rivh), (4.8)

and since 1y € C2(R"~!), we also have
(b, =1),y —z) — | < Csh, for all y € AN By (x,7:Vh), (4.9)

for some C3 > 0, independent of z € By(2,7q) and h € (0, hy).
We now restrict our view to the plane spanned by (a, —1) and (b, —1), which is obviously
perpendicular to both A and B. This is the view shown in figure 4.3.
We set
v=a+ Bi(a,—1) + B2(b,—1),

with

1+ {(a,b)
b= 1+ \a| 172 (02h T T D rih— 022h2) ,

(1+ |a?)'7?
o O

defined so that v is located as in figure 4.3, that is {(a, —=1),v — z)/(1 + |a|?)"/? = Cyh and
|v — x| = ryv/h. Here, D = (1 +|a>)(1+ [b]?) = (1 + {a, b))?. Expanding this expression, it
is easily seen that D > |a—b|?, so that it is zero only when @ = b. Assume for the moment
that a # b, so that D # 0 and v is well-defined.

Now,

(v—um,(b—1))
-+ P

1+ {a, by 1+ {a,b)
= 21/2 iz (2T 172 th— C3h?
A+ P+ ey \ " e VT
1 1/2(7 1/2
LRV S o erpere
D 12 1+ (a,b)

_ 21 _ 22)
= (<1+|a|2)<1 +\b|2)) Vrih = G e+ o

Investigating the first term, we sce first that 0 < v/r2h — C2Zh2 < r;v/h if h € (0, ho) with
ho < r?/C%. Using (4.7), we also sce that

dy =

D _(+1a)A+) = (T +(ab)? . (1 +(a.0)?
(1+lal?)(1 + [b]*) (1 +1al?)(1+[b?) (1 +1al?)(1 + b

1 — p2
Cai®parR st

4. PROPERTIES OF G} AND G,

For the second term, we may now use (4.7) to get the estimate

1+ (a,b)

3
(T a0 + e = 3

b +1
mga,m/mgczhg ‘;“ rivh < rvh (4.10)

if b € (0, ho) with hg < (r;(1— 61)/(3C5))> N
Also, by lemma 4.9, there is a 6, € (0,1) such that |c|/y/T + [b]2 < friv/h. We note
that

borVi+ Coh < B X R < r VR (4.11)
if h € (0, hg) with kg < (r;(1—6,)/(2C;3))2% Thcrcforc, we set = max{f;+1,0,+1}/2 <1
and ho < min{(r;(1 — 61)/(3C2))% (ri(1 — 62)/(2C3))?}. .

We are now ready to estimate the integrals over Z* and Z~ in (4.6). Letting b, denote
the unit vector in the (@, —1),(b, —1)-planc with {(b,—1),b,) = 0 and {(a, —1),b,) > 0, we
define

W = {y € B(a,riVh) |
1y = {y € By(x,riVh) |
T3 = {y € Bu(x,riVh) |

b,—1),y — 2)/v/T+ b > 0rv/h, (by,y —z) < 0}
(a,—1),y — z)| < Coh}
(b,—1),y — z) — ¢c| < C3h}

(
|
|

(
(
(
(see figure 4.3) and note that

275 ({y € Bulz,miVh) | {(b,=1),y —) > ¢+ C3h, (bi,y—z) >0} \T1)UW,
+ c ({y € Bulz,riVh) | {((b,—1),y —z) > ¢ — Csh, (by,y—z) <0}UT})\W.

The definition of # ensures that W # @. From this, it is clear that

/ﬂ,ﬁ(y—Z)dy—/ y—a dy>2/ iy —a dy—(/ /)m y—x)dy
z- zZ+ T1 Ty

(4.12)
Now, we see from (4.10) and (4.11) that

LMW) = ah™?,

for some a > 0 depending only on 6 and 7;, where £ is the n-dimensional Lebesgue
mecasure. From this we conclude that

/ y—x)dy> Cy,

for some Cy > 0, independent of z € By(z,19), € € (0,9) and h € (0, hy).

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

Furthermore, it is clear that £7(7}) < C3h™*+1/2 for some C5 > 0 depending only on
Cy, 1; and n, and that £(13) < Csh(™/2 for some Cy depending only on Cs, 7; and n.
Thus, by changing variables (y — z)/vh — §, we see

(-/T. /T;) Py — o) dy = (/T.(n) -/T;(h z)) ilf) &

LM(Ty(h2)) < CsvVh, L(Ta(h,2)) < Covh
j(h,r)={(—z)/Vh|yeD}, j=1.2

Therefore, we conclude that there is an hy > 0 such that if & € (0, hg), then

2/Wplﬁ(y7r)dyf(/T‘Jr/ﬁ)ﬂl/i(yfr)dyz(l,

for all 7 € By(z, o), which proves N;(A) < N;(2) by (4.12) and the discussion leading to
(4.6).
Finally, we need to cover the case a = b. In this case, we define

W = {y € Bu(a,rivh) | (b, ~1),y — x) > max{c + Csh, C3h}},

with W # @ if h is small enough. Then Z~ D> W \ 7} and Z* C 77 UT5, and the same
argument holds.
n

5. THE CONVERGENCE THEOREM

5. THE CONVERGENCE THEOREM

In this section, we prove the convergence of the output of algorithm 3.1 to the viscosity
solution of the level set PDE (3.1) as the time step h tends to zero. The proof is based on
the proofs by Ishii and Ishii [14] and Ishii [13].

We begin by defining the approximations u™ as follows. Given a function f € C(Q),
let u™ € C(Q x [0,7)) be defined for m € Z, by

u™(z,1) = [Gen © (Gh)'f](2), (5.1)

where h = T/m and | € N is chosen so that [h < ¢ < (I + 1)h. The main convergence
theorem is then the following.

Theorem 5.1 Choose [€ C(Q) and let {u™}_, be defined by (5.1). Then u™ — u
locally uniformly on Q x [0,7") as m — oo, where u is the unique viscosily solution of the

PDE N
R (2,1) — [Vau(z,)]glcurv(u(z, 1)) =0 z €9, L€ (0,T),

%(l,l):(] ze?ﬂ, L€ (0,7),
u(z,0) = f(z) zeq,
which exists by theorem 3.12 in Salo [20].

The idea of the proof is to define u(z, ¢) and u(z,t) by

u(z,t) = 113‘1] sup{u™(y,s) | m>e"',(y,5) €A% [0,T), |z —y|+|s— | <e},

u(z, 1) = lim inf{u™(y,) | m>e™", (y,5) € Ax[0,T), |z —yl +|s - t| <},

and prove that these are sub- and supersolution respectively of the level set PDE. It then
follows from the comparison result by Sato [20] (theorem 5.2 below) that @ < u and thus
(since @ > u by definition) that u = w = u is a solution.

First, we state the definition of a viscosity solution to the PDE (3.1) in accordance with
the definitions given in section 2. However, it is convenient to give the definition using test
functions instead of semijets as follows.

Definition 5.1 A funclion u € C(Q x [0,T))) is a viscosily subsolution of (3.1) if for any
© € C*Q % [0,T)) such that u — ¢ has a mazimum at (g, t,) € @ X [0,7), then

@10, ko) — |Vep(wo, to)|g (curv(p(zo, L)) <0
if Zo € Q and Vi (zo,lo) # 0 or 2o € 0Q and dp/dn (o, Lo) > 0, and

@ (0, 10) <0

24 APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

if 2o € Q, Vop(z0,10) = 0 and D2p(xo,to) = 0. o
u € C(Q x [0,T)) is a wiscosity supersolution of (3.1) #f for any ¢ € C*(Q x [0,7))
such that w — ¢ has a minimum al (xo,to) € Q x [0,7T), then

@0, ko) — |V (o, lo) g (curv(e(zo, o)) >0
if zg € Q and V(zo,ty) # 0 or zg € 02 and dp/0n(zy, lg) < 0, and
@ (w0, l0) >0

if zo € Q, V(xg,t0) = 0 and D?*p(x, 1) = 0.
u is a viscosily solution if il is both a sub- and a supersolution.

We remark that there is no condition in the case Vi(zq,%) = 0, D%*p(xg,to) # 0,
since it follows from the other cases by the argument given by Barles and Georgelin [3,
proposition 2.2], using the hypothesis (3.3) (ii) that g must not grow faster than linearly
towards infinity.

For clarity, we also state the comparison result by Sato [20] in slightly reduced form.

Theorem 5.2 ([20], theorem 2.1)
Let u(z,1) be a subsolulion and v(z,1) a supersolution of (3.1) according to definition 5.1.
If u(z,0) < v(z,0) in Q, then u(z,t) < v(z,t) in X x[0,7).

Before we begin with the actual proof of the convergence theorem, we also need a few
lemmas.

Lemma 5.3 For each z € Q, there is a C >0, a 6 > 0 and an hy > 0 such that

(Gl - =2P)(@) < |z — 2 + Ch,
[G(—|- —2)](@) 2 —|z — 2> = Ch

for all x € By(2,6) and h € (0,).

Proof. Fix z € Q. Since the convolution kernels p; have compact support, there is an
R > 0, such that supp p;/E(— 1) C Bp(z, RVR), i = 1,2, for any z € and any h > 0.
Furthermore, there is a § > 0 and an kg > 0 such that if h € (0, ho), then B, (z, RV/h) C Q
for any z € B,(2,96).

We fix such R, ho, § and an z € By(z,6). In order to estimate [G(|- —2[?)](z), we need
to see which level sets of the function & — |€—2|? that may reach . Therefore we investigate
the situation in figure 5.1, where y is on the level set {¢ € Q| |€ — 2|2 = A}, which is chosen
so that it intersects B, (z, RV/R) on the hyperplane {¢ € R* | (¢ — 2,2 — 2) = 0}.

Since F'(Ny, N,) is increasing in both variables and F'(0,0) = 0, we need to have either
N; > 0or N, > 0 in order to get F(Nq, N2) > 0. And since in the situation in figure 5.1, no
part of the super-level set {€ € Q| |€ — 2| > A} is in the left half of B, (z, RvV/'h), obviously
Ni(z,h) <0,i=1,2 and thus F (N, N2) < 0 so that

e G{Ee Q| l€— 2" 2 A=ly—2"}).

5. THE CONVERGENCE THEOREM

\

.

/

A=ly—zP

Figure 5.1: The setting in the proof of lemma 5.3.

Therefore,
(Ghll- —2")(2) = |z — 2 < |y — 2" = |z - 2I* = (RVR)’ = R*h

by the Pythagorean theorem, which gives the desired result with C' = R2.
A similar argument gives the result for —|z — 2|2

Lemma 5.4 Lel f € C*(Q) in (5.1). If0f/0A > 0 on O, then there is a constant C > 0
and an M € Z,, such thal

sup (u™(z,1) — f(x)) < Ct

zeQ,m>M
for allt € [0,T). If instead Of [0f < O on 09, then
dinf (u™(z,t) — f(z)) > —Ct.

zeQm>M

Proof. We assume /07 > 0 on 9 and prove the first inequality. The other case may
be proved similarly.
‘We prove that there is a C' > 0 and an hg > 0 such that

Guf(z) < f(z)+ Ch, for all z € Q, h € (0, hy), (5.3)

26 APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

which, if M is chosen so that 7'/M < hg, may be iterated to give the desired result.
We fix 2 € Q. If Vf(z) # 0, it follows from proposition 4.3 with & = 1 that there is a
61 > 0 such that
Grf (=) < f(2) + (IV(2)lg(curv(f(2))) + 1)h
holds for all z € By(2,8;) N Q and h € (0,6).
Now suppose that V f(z) = 0. Since we assume 9f/9n > 0 on 9Q, we then have z € Q.
Since f € C*(9Q), there is a 6, > 0, such that

If(z) = £(2)] < [ID*fllocl = 2I? (5.4)
for all z € By(z,6,) C Q. Taking Cy = 2||f||c/6% + || D*f ||, We then get
f@) < fz) +Cila — 2

for all = € Q. Applying G, to both sides of this inequality with z fixed, and using in turn
proposition 4.2 (i)-(iii), lemma 5.3 and (5.4), we get
Guf(2) < f(2) + G[Gn(| - —2P)|(2) < f(2) + Ci(la — 2" + Cah)
< f@) + (G + [1D* o)z — 2 + C1Coh
for all z € By(z,8;) and he (0, hy) for some hy > 0 and &3 > 0.

That is, for any z € Q and any € > 0, there are C > 0 and hg > 0 independent of &
and a § = 6(¢) > 0 such that

Guf(x) < f(z)+ Ch+e (5.5)

for all z € By(2,0) and h € (0,hg). Since Q is compact, it may be covered by a finite
number of such d-neighborhoods and taking the largest of the C:s and the smallest of the
hqg:s, (5.5) holds for all z € Q and h € (0, hy). Since € is arbitrary, we get (5.3).

]

Lemma 5.5 Lel f € C(Q) in (5.1). Then u(z,0) = u(x,0) = f(x) for allx € Q.

Proof. Take a sequence {f;} in C*(Q) satisfying

Ofr

o > 0 on 09

1
e = fllew < .

and define uj* as in (5.1) with fi instead of f.
Then, by lemma 5.4, there are constants Cy such that for each k € Z,

uf (y,t) — frly) < Cit

for all y € Q and ¢ € [0,7). Because of proposition 4.2 (iv) and since || fy — f|loo < 1/k, it
follows that

[u™(y, 1) — ui' (y,)| <

5. THE CONVERGENCE THEOREM

and thus 9
Wy, 1) ~) < Cel + 2 (55)

forally € Q, 1 €[0,T) and k € Z,.

For any fixed z € €2, we may now let m — oo, ¥y — z, ¢t — 0 and finally £ — oc to
conclude by the definition (5.2) of @ that

a(z,0) < f(z).

Since u(z,0) > f(z) by a similar argument and u(z,0) < u(z,0) by definition, the result
follows.
]

Proof of theorem 5.1. As already mentioned, the idea of the proof is to show that
u(x,t) (defined by (3.2)) is a subsolution and u(x,t) a supersolution of the level set PDE
(3.1). It then follows from lemma 5.5 and the comparison result by Sato [20] (theorem
5.2 in this text) that @(z,¢) < u(x,t) for all (z,1) € Q@ x [0,7) and thus u = 7 = u is a
viscosity solution of (3.1). By an argument in chapter 6 of Crandall, Ishii, Lions [7] it also
follows that u™ — w locally uniformly.

We prove that u(z, ¢) is a subsolution and note that the proof that u(z,) is a superso-
lution is similar.

So, we fix a function ¢ € C?(2 x [0,7")) and assume that @— ¢ has a strict maximum at
(xo, o). Since only the local behavior of ¢ is important, we may assume that this maximum
is global. Also, since we are only interested in d¢/dt, Vi and D*p, we may choose ¢ on
the form

o(@, 1) = p1(z) + (1)
for some functions ¢4, @s.

According to definition 5.1, in order to show that @ is a subsolution, there are two

distinct cases.

Case 1: zg € Q and Vi (2q) # 0, or zg € 0Q and O, /0n(xo) > 0.

Fix ¢ > 0. Then, setting M = |V (x0)|g(curv(e:(zo))), by proposition 4.3, there
is a d; > 0 such that
[Gapil(x) < ¢1(z) + Mh+ch (5.7)

for all z € B,(z9,61) and h € (0, 6;], with M = [V, (zo)|g(curv(e:(zq))).

Since (zg, o) is a strict global maximum point of w— g, by the definition of w there
is an m € Z, such that

sup (u™ —o)(x, 1) > sup W™ = ¢)(x,1)
By ((zoto),01) (2%(0,7))\ Bn+1((z0.t0),61)

and h =T1/m < é;. Then, we can choose (§,7) € Buy1((Zo, %), 61) so that

(U™ =)&) +eh > (u™ —) (x,0) (5-8)

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

for all (z,t) € @ x (0,7).
Now choose | € N so that lh < 7 < (I+1)h. By the definition of u™, we then have
u™(z,7) = [Grop o Gpu™(+, (I — 1)h)](z)
for all 2 € Q. Also, from (5.8) follows that
u"(z, (L= 1h) < i) +@a((l = DR) +eh+ (u™ = 9)(§,7),

which, using proposition 4.2 (i), (i) and (5.7), gives us

[Gru™ (-, (1= DR)]() < [Gapr](@) + @2((L = Dh) +eh + (™ = 9)(&,7) (59)

< @i(@) + Mho+ 22+ ga((L = 1)R) + (u™ = @) (&, 7) '

for all z € By (z,6).

In order to get a similar inequality for each 2 € §, we note that by proposition
4.2 (iv),
[u™(z,) < I £] (5.10)

for all (z,¢) € Q x [0,7] and we choose C' > 0 such that

2HfH+H801H+2[SUTD]\¢2\+\M\T§C, (5.11)
o,

0y € (0,01) and a function ¢y € C%(Q) with ¢ = @1 in Bp(wo, d2) NQ, ¥ > ¢y in
Q and ¢; > C in By,(x0,8;)° N Q. Then, by proposition 4.3, there is a d; € (0, &3]
such that

[Grp](z) < ¢ (x) + Mh +¢eh (5.12)

for all x € B, (xg,d3) and h € (0,43). By (5.10) and (5.11), we note that

[Gru™(, (1= D)R)](z) = Mh = 2¢h — ga((L = 1)) — (u™ = ¢} (& 7) < C,

and thus, using also (5.9) and the definition of ¢,
(Ghu™ (-, (1= 1)R))(2) = Mh—=2eh— @o((I = 1)h) — (u™ = ©)(§,7) < ¢i(z) (5.13)

for all z € Q.

Now, with m chosen so large that h < 63, we apply G,_y;, to both sides of (5.13)
and use (5.12) to get

u™(z,7) = [Grp 0 Gpu™ (-, (I — 1)h)](z)
< y(x)+ M(r —lh) +e(r —lh) + Mh+ 2ch
+ (L= Dh) + (u™ — ¢)(&,7)
<@i(x)+M(r—(L=1)h)+2e(r — (I —1)h)
+ (= DA) + (u™ — 9)(&,7)

5. THE CONVERGENCE THEOREM

for all z € B,(xo,d3), since h < 7 — (I — 1)h. Specifically for z = ¢, we get
u™& 1) < @i (§)+M(r— (I =1)h)+2e(r — (I=1D)h) +po((L - h) + (u™ — 9) (&, 7),
that is, since ¢(&,7) = ¢1(€) + (1),
ea(r) = ga((l = 1)h) < (M + 26)(7 — (I = 1)h).
Letting e — 0, so that m — oo, h — 0 and (§,7) — (0, to), we get
G0, t0) < M = |Vp(zo, Lo)lg(curv(p(zo, o)),
which is what we want according to definition 5.1.
20 € Q, Vi (z0) = 0 and D*p1(z0) = 0.
We need to prove that ¢} (2o, to) < 0.
Fix € > 0 and choose C. > 0 so that
¢1(2) < pi(zo) +ela — zol* + Cela — zo|*

for all z € Q. Also choose a small v > 0. Then there is a § = §(y) > 0 such that
for € € Bp(z0,d) C Q,

¢i(2) < @i€) + e +elo — €+ Colz — ¢! (5.14)

for all z € Q. We also assume § — 0 as v — 0.

As before, since (zg,p) is a strict global maximum of @ — ¢, there is an m =
m(7y) € N such that

sup (u™ —) > sup (™ = ¢)(z,1)
Brt1((20,t0),9) (@ (0,T)\Bn41((z0:40),5)

and with m(y) — oo as y — 0.
Now, set h =1'/m and choose (¢,7) € Bpi1((2o, to),) so that

(@™ =)&) + 72 > (u” = ¢)(w, 1)
for all (z,1) € © x (0,7). Also, choose k,! € N so that
kh<t—v<(k+1)h and h<T7<(l+1)h.
The definition of u™ then gives us that for all z € €,
u™(z,7) = [Grn o (G) ™ u™ (-, (k = 1)h)] ().
Choosing m larger if necessary, by lemma 5.3 there is a d2 > 0 such that

Gyl - =€) < |z = €* + Cn

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

for some C'> 0 and all 5 € (0, h], z € B,(&, d2).
Thus, applying Gj, to both sides of (5.14) and using proposition 4.2 (i), (ii) and
(iii), we get
[Ghprl(2) < @1(€) + e + [Gale] - =€+ Cel - =€)](2)
= @1(€) + e +elGall - —EP)](2) + Ce(Ga] - —€))(2))?
<€) +re+elle — €7 + Ch) + Celle — £ + CR),

for z € B,(€,6). Since [|Groilloe < |11, setting Cy = 2[|p1]|/83 < oo, we then
see that

[Ghprl(2) < @1(€) + e +(jz — £ + Ch) + Ce(|lw — £° + Ch)* + Calz — &I,
for all z € Q. We may then apply G} again to both sides, which gives us
[Gh, © Grapil(@) < 91(€) + 76 + (G (| - —€°)](2) + Cho)
+ Cel[Gy (|- =€)](@) + Cha)? + Co([Gy (| - =€) (2))?
< @i(€) +ret+e(lz =€ + Clha + ha))
+ Ce(|z — €)* + C(h1 + ho))? + Co(|z — &> + Cha)?,
for any hy, hy € (0, k] and z € B,(&, 62).
Therefore, with z = &, we may conclude
[Gron o (Gh) 1 1)(€) < ¢1(8) + 72 +£C(r — (k= D)) + C:C*(r — (k — 1)h)?
+ CoC*(1 — (k= 1)h)%,
since 7 — kh < 7 — (k — 1)h. And since from (5.15),
u™(z, (k= 1)h) < o(z, (k= 1)) + (u™ = ©)(§, 7) + e,

I—k+1

application of Gr_, o (Gj) on both sides gives

u™(§,7) < @1(€) +pa((k — 1h) + 276 + eC(r — (k = 1)h)
+CHCe + Co)(1 — (k= 1)R) + (u™ —)(, 7).

Moving the terms around, noting that v < 7 — (k — 1)k and finally dividing by
7 — (k= 1)h, we get

@a(7) = pa((k — 1)h)

G < % +C + C(C. + Co) (1 — (k — 1)h).

Finally, lettingy — 0, so that 7 — £y and 7—(k—1)h — 0, we get @ (t) < 2e+¢C,
i.e ¢)(zo, lo) < 0, since € is arbitrary.
n

5. THE CONVERGENCE THEOREM 31

Finally, we show how to get around the assumption (3.4) that g has bounded derivative
from above and below. The next theorem shows that if g does not have bounded derivative
it is enough to approximate g with functions g,, such that g, — g uniformly as v — 0.
‘We remark that if g has unbounded derivative, the derivative of g, must obviously tend to
infinity when v — 0, which means that in order to fulfill the inequalities (1.4) restricting
the choice of a; and b;, the radius 75 of the support of the convolution kernel p; must also
tend to infinity. In order to get a converging scheme, the choice of v and the time-step
h must be such that 7ov/h, which is the radius of the support of the scaled kernel pg/ﬁ, is
small. The exact choice of v depends on the exact definition of the approximations g, and
the choice of the kernel po.

Theorem 5.6 Lel g € C(R) have the properties (3.3) and let {g,}y5o be a family of
functions in C(R) that fulfill the assumplions (3.3) and (3.4), such that g,(k) — g(k) as
v — 0, uniformly for k € R. Define

Lbz(l/)]\h — b1 (v) Ny —g (L as(v) Ny — al(v)jv2)

A dw) A\) :

[Grel(@) = sup{A € R | F,,(N:(}), N2(N)) 2 0},

Fy (N1, Np) =

with N;, a;, b; and d as in (1.3). Finally, for f € C(Q) define
uy(z,1) = [GY 0 (G)'f1(2),
with h =T/m and lh < ¢ < (L+ 1)h.
Then there is a sequence {vm,}5_, with vy, — 0 as m — oo, such that

m
Vi,

(z,t) = u(z,t) as m — oo,

locally uniformly for (z,t) € Qx (0,7), where u(z,t) is the unique viscosity solution of the
level set PDE (3.1).

Proof. It follows from remarks 6.3 and 6.4 in [7], that if v, is a subsolution of a proper
cquation F(z,v, Vv, D*v) =0in aset O for n=1,2,..., and we define

7(z) = limsup’ vo(x) = im sup{ea(y) [n >, y€ O, [y—a| <; 7'} (5.16)
Jim

n—oc

then 7 is a subsolution of the equation G = 0, where
G(z,v,p,X) = liminf, F,(z,v,p, X)
n-—o00
= lim inf{Fa(y,0,0,Y) [n 2 j, (5,0,4,Y) €W, [[(,0,p,X) — (50,0, V)| <57},

with W dense in O x R x R* x §(n) (cf. section 2.4). Furthermore, v, — 7 locally
uniformly. The equivalent conclusion holds for supersolutions (with lim inf, and lim sup*

32 APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

interchanged). There may also be boundary conditions included in F,, and G (see also
section 7.A in [7]).

In our case, this means that solutions u,,, to the equations u; — |Vu|gy,, (curv(u)) =0,
with Neumann boundary conditions, tend locally uniformly to the solution u of the equation
uy — [Vulg(curv(u)) = 0 with Neumann boundary conditions. This is because

lim inf, |p|g,, (curv(p, X)) = lim sup” |p|g,,, (curv(p, X)) = |plg(curv(p, X)),
m—o0 m—o0

since g,,, — g uniformly. Here, curv(p, X) is defined as curv(u) (see (3.2)) with p = Vu
and X = D?u, but this notation is chosen to emphasize that the *-limits are with respect
to p and X, and not u.

Furthermore, theorem 5.1 shows that for each fixed v, the approximations u]' tend
to u, locally uniformly. Therefore, we can find a sequence {v,,}o_; such that for cach
compact K C Q x [0,7), it holds that for cach ¢ > 0, there is an M € Z, such that

[up (@, 6) — u(z,)| < Jup! (@, 1) — Uy, (@,)] + |t (@, 1) —u(z,t)| <e/2+e/2=¢

for all m > M and (z,t) € K. That is, u]!, — u locally uniformly as m — oc.

6. EXAMPLES

6. EXAMPLES

We conclude with two examples showing the output of the algorithm. The images have
been computed using the code developed by Ricards Grzibovskis for the case without
boundary conditions. The code has then been adapted to include boundary conditions by
him and Alexei Heintz, and used by them to generate time-series of two different evolutions
shown below. The images are generated using the VRweb software [1]. Because of lack of
time to adapt the code, the examples show only regular mean curvature evolutions, with
g(k) = k.

The first example is shown in figure 6.1 and shows the mean curvature flow of a cylinder,
which has been placed slightly off center inside a sphere. The intersections with the sphere
are to the left and right. The time points are chosen to produce interesting images, meaning
that the time intervals between subsequent images are not equal. However, time flows from
top to bottom. We see that, due to the boundary conditions, the cylinder becomes slightly
bent and thinner in the middle than at the edges. The thin bottleneck then rapidly
becomes thinner and eventually pinches off to produce two distinct surfaces, which both
quickly diminish and vanish at the boundary. This evolution is quite different from the
evolution of a closed cylinder without boundary conditions, since in that case the cylinder
would remain a single surface until it vanishes to a point.

The second example (see figure 6.2) shows an ellipsoid inside a sphere. This time the
cllipsoid has been shifted from the center of the sphere both in z and y directions to
produce an asymmetric evolution. Once again, the intersections with the sphere are scen
to the left and right and the evolution proceeds downwards from the top image. We see
that the surface adapts to the right-angle boundary condition at both edges and that the
thin neck on the left, where the surface intersects the boundary, becomes gradually thinner
until, finally, it releases from the boundary. The evolution then continues with the surface
quickly shrinking from the left to the right until it disappears at the right boundary (not
shown).

APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

Figure 6.1: First example (cylinder inside sphere).

6. EXAMPLES 36 APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW. . .

REFERENCES

[1] VRweb VRML browser, http://www2.iicm.edu/vrweb.

[2] L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel. Axioms and fundamental
equations of image processing. Arch. Rational Mech. Anal., 123(3):199 257, 1993.

[3] G. Barles and C. Georgelin. A simple proof of convergence for an approximation
scheme for computing motions by mean curvature. SIAM J. Numer. Anal., 32(2):484
500, 1995.

J. Bence, B. Merriman, and S. Osher. Diffusion generated motion by mean curvature.
In Computational Crystal Growers Workshop, pages 73 83. American Mathematical
Society, 1992.

K. A. Brakke. The Motion of a Surface by ils Mean Curvature. Princeton University
Press, Princeton, NJ, 1978.

Y .-G. Chen, Y. Giga, and S. Goto. Uniqueness and existence of viscosity solutions of
generalized mean curvature flow equations. J. Differential Geom., 33:749-786, 1991.

M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second
order partial differential equations. Bull. Amer. Math. Soc., 27(1):1 67, 1992.

K. Ecker. Regularity Theory for Mean Curvature Flow. Birkhduser Verlag, 2004.

L. C. Evans. Convergence of an algorithm for mean curvature motion. Indiana Univ.
Math. J., 42:533-556, 1993.

L. C. Evans and J. Spruck. Motion of level sets by mean curvature, I. J. Differential
Geom., 33:635-681, 1991.

Y. Giga and M.-H. Sato. Neumann problem for singular degenerate parabolic equa-
tions. Differential and Integral Equations, 6(6):1217-1230, 1993.

R. Grzibovskis and A. Heintz. A convolution-thresholding approximation of general-
ized curvature flows. to appear in SIAM J. Numer. Anal., 2004.

H. Ishii. A gencralization of the Bence, Merriman and Osher algorithm for motion
by mean curvature. In Curvature flows and related topics (Levico, 1994), volume 5 of
GAKUTO Internat. Ser. Math. Sci. Appl., pages 111-127. Gakkotosho, Tokyo, 1995.

H. Ishii and K. Ishii. An approximation scheme for motion by mean curvature with
right-angle boundary condition. SIAM J. Math. Anal., 33(2):369-389, 2001.

. L H. Ishii, G. E. Pires, and P. E. Souganidis. Threshold dynamics type approximation
Figure 6.2: Second example (cllipsoid inside sphere). schemes for propagating fronts. J. Math. Soc. Japan, 51(2):267-308, 1999.

REFERENCES 37

[16] H. Ishii and P. Souganidis. Generalized motion of noncompact hypersurfaces with
velocity having arbitrary growth on the curvature tensor. Tohoku Math. J., 47:227
250, 1995.

[17] S. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed:
Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79:12 49, 1988.

[18] J. Rubinstein, P. Sternberg, and J. Keller. Fast reaction, slow diffusion and curve
shortening. SIAM J. Appl. Math., 49:116 133, 1989.

[19] S. J. Ruuth. Efficient algorithms for diffusion-gencrated motion by mean curvature.
J. Comput. Phys., 144(2):603 625, 1998.

[20] M.-H. Sato. Interface evolution with Neumann boundary condition. Adv. Math. Sci.
Appl., 4(1):249-264, 1994.

