
A JavaScript Mode for Yi

Master of Science Thesis in the Programme Computer Science: Algorithms,
Languages and Logic

DENIZ DOGAN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, June 2009

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

A JavaScript Mode for Yi

DENIZ A. M. DOGAN

© DENIZ A. M. DOGAN, June 2009

Examiner: PATRIK JANSSON

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2009

Abstract

Yi is a text editor written in the lazy functional programming language
Haskell, which makes it possible to define precise editing modes using an
abstract syntax tree provided online using the lazy and incremental parser
library in Yi.

We have developed a JavaScript mode for this editor using this parser
library to accurately point out possible errors in the source code. The
mode accurately highlights syntactical errors as the user types and pro-
vides a verifier to check the semantics of the source code. It supports most
of the syntax from JavaScript 1.8 and can readily be extended with more
functionality. The mode can also be used as a starting point for future
developers of C-like modes for Yi.

Writing a responsive parser for Yi proved non-trivial, because of the
trade-off between parser performance and accuracy. This report describes
how to write a mode for Yi and the different problems encountered during
the working process of the JavaScript mode. It also describes in what ways
the problems were solved.

Sammanfattning

Yi är en textredigerare skriven i det lata funktionella programspråket
Haskell, som gör det möjligt att definiera noggranna redigeringslägen med
hjälp av ett abstrakt syntaxträd som tillhandahålls av det lata och inkre-
mentella parsningsbiblioteket i Yi.

Vi har utvecklat ett JavaScript-läge till denna redigerare med hjälp av
detta parsningsbibliotek för att exakt utpeka möjliga fel i källkoden. Läget
markerar syntaktiska fel medan användaren skriver och tillhandahåller en
verifierare för att kontrollera semantiken i källkoden. Det stödjer större
delen av syntaxen i JavaScript 1.8 och kan enkelt utökas med mer funk-
tionalitet. Läget kan även användas som en utgångspunkt för framtida
utvecklare av C-lika lägen till Yi.

Det visade sig att det inte är trivialt att skriva en parser till Yi p.g.a.
avvägningen mellan prestanda och noggrannhet. Denna rapport beskriver
hur lägen till Yi skrivs och de olika problemen vi stötte på under utveck-
lingen av JavaScript-läget. Den beskriver även hur vi löste problemen.

3

Acknowledgments

First and foremost I would like to thank my supervisor Jean-Philippe
Bernardy for his guidance and support throughout this project.

I would also like to thank Anders Karlsson and Stevan Andjelkovic
for many fruitful discussions about Haskell, Yi and the JavaScript mode.
Further kudos goes to Patrik Jansson and Jan Rochel for reviewing this
report, and also Tobias Olausson, Mosaver Ahmad, Shahrouz Zolfaghari,
Johan Knutzen, Ivan Majdandzic, David Karlsson, Johan Ahl, Andreas
Sjöström and Erik Brendengen. Thanks to Piotr Budziszewski for being
my opponent for this thesis.

Special thanks to Steve Yegge for writing js2-mode and for taking the
time to answer any questions I had about it.

4

Contents
1 Introduction 7

1.1 Motivation . 7
1.2 Aim . 7
1.3 Delimitations . 8

2 How JavaScript works 9
2.1 Reserved words . 9
2.2 Statements . 9
2.3 Identifiers . 10
2.4 Variables . 10
2.5 Arrays . 11
2.6 Functions . 11
2.7 Objects in JavaScript . 12
2.8 Strings . 13
2.9 Regular expressions . 13
2.10 Comments . 14

3 What is Yi? 14
3.1 User configuration . 14
3.2 Keymaps . 14
3.3 Yi modes . 14

4 Writing a mode for Yi 15
4.1 Main components . 15
4.2 Integrating the parts . 16
4.3 Wrapping it up . 16

5 Yi lexers 16
5.1 How Alex works . 16
5.2 Interaction with Yi . 17

6 The incremental Yi parser 18
6.1 The essential combinators . 19
6.2 More expressive parsers . 19
6.3 Defining an abstract syntax tree 20
6.4 Parser preference and recovery 22
6.5 Sequencing without failing . 24
6.6 Finding the best path . 25
6.7 Annotating the AST with errors 25

7 Syntax highlighting 26

5

8 The JavaScript mode 27
8.1 The JavaScript lexer . 27
8.2 The JavaScript parser . 30
8.3 Indentation behavior . 33
8.4 Syntax highlighting . 34

9 Conclusions 36
9.1 Results . 36
9.2 Future work . 36

References 38

6

1 Introduction
JavaScript is a programming language, originally developed by Netscape, which
has become increasingly important in web development since its introduction in
1995. It is a dynamically and weakly typed language with a C-like syntax, based
on ECMAScript [4]. Contrary to popular belief, the language is not directly
associated with the Java programming language or Sun Microsystems. The
language was initially called LiveScript, but the name was eventually changed
because the support for Java in Netscape Navigator was first available at about
the same time as JavaScript [7].

1.1 Motivation
There are lots of different JavaScript development environments available today,
both as separate editors and as plug-ins for IDEs. However, many of these suffer
from drawbacks, some more than others.

This section lists the most common drawbacks that have been identified find
in the existing environments for JavaScript development. Extreme corner cases,
such as e.g. Microsoft’s Notepad, have been excluded as they were not intended
for programming in the first place.

Too heavyweight This category includes environments which use too much
memory and/or CPU time, e.g. Eclipse.

Too simplistic Environments and editors which lack support for the most ba-
sic features, such as some form of “clever” indentation of blocks, e.g. GNU
nano.

Too restricted Some programs require a specific operating system to be able
to use them and some are only free for a short period of time. This
category includes e.g. Notepad++ and IntelliJ IDEA.

Proof-of-concepts One of the most well-known examples of this is Mozilla
Labs’ Bespin [11] which is an in-browser editor and looked promising at
first. However, it turned out to be only a nice proof-of-concept, suffering
from severe performance issues on some computer systems.

Yi is a text editor written in Haskell which supports advanced syntax high-
lighting for some programming languages and file formats [1]. It is under active
development and has come a long way since the project was started by Don
Stewart in 2004 [17]. Yi will be discussed further in section 3.

1.2 Aim
The idea for this project was much inspired by js2-mode, a precise JavaScript
mode for Emacs [9], written by Steve Yegge, which has support for syntax
highlighting and error checking among other features [20]. It works by building
an abstract syntax tree of the edited file to accurately report errors to the user.

7

js2-mode had a few annoying quirks though, such as the suboptimal indentation,
the lack of support for JavaScript 1.8 and the mode being sluggish on larger
JavaScript files.

The aim of this project is to create a JavaScript mode for Yi, with both the
necessary precision to find common JavaScript syntax errors and sufficient per-
formance to be able to use like any other editor. It should be able to accurately
highlight regions in which the parser found errors and warn the user about po-
tentially “dangerous” code. An example of dangerous code is functions that are
inconsistent in their returning behavior, e.g. one path of execution returning a
value while another one does not.1

Figure 1: js2-mode in Emacs, displaying a JavaScript file with a few errors: miss-
ing semi-colons and inconsistent return behavior. This is largely what
we tried to accomplish in the JavaScript mode for Yi.

1.3 Delimitations
The Yi editor is well-documented [1] [2] [17] and has been under active de-
velopment since 2004. However, prior to this thesis, there was no thorough
documentation on how suitable the editor was for mode development. There-
fore, for this project we decided not to make any major modifications to the
core of Yi (described in section 6), specifically not the parsing library. This
was to give an accurate idea of how fitting the Yi project was for developing a

1While functions which do not explicitly return anything implicitly return undefined (see
section 2.4), it is usually not what the programmer had intended and should be avoided.

8

new mode for it. This report could then be used as the basis for future projects
revolving Yi modes, as any major problem encountered will be discussed.

2 How JavaScript works
This section is intended as a short introduction to JavaScript, and mainly its
syntax. You do not need to read the entire section, but you should familiarize
yourself with how the language works to understand what is being discussed in
later sections.

JavaScript is a dynamically and weakly typed programming language, which
takes syntactic inspiration from other C-like languages. It is a prototype-based
language, providing only a few primitive objects, such as arrays, strings and
numbers. JavaScript is case-sensitive and ignores any extra whitespace charac-
ters in between tokens.

The language is a superset of ECMAScript [4] and developed by the Mozilla
Foundation. One could say that JavaScript is the language that is understood
by Mozilla Firefox [6] and not entirely like the language understood by Windows
Internet Explorer [14], which is JScript [13]. JScript is also the name of Internet
Explorer’s JavaScript interpreter.

This thesis focuses only on JavaScript 1.8.

2.1 Reserved words
The set of reserved words tends to change between JavaScript versions. The
ECMAScript standard [4] lists the words in Figure 2 as reserved.

Apart from the reserved words, there are also words reserved for future use,
to be used if the need for them should arise. These are listed in Figure 3. Since
they are not reserved in the same way as e.g. function is, they can still be used
for e.g. variable names, but programmers are encouraged to avoid them.

break case catch continue default delete
do else false finally for function
if in instanceof new null return
switch this throw true try typeof
var void while with

Figure 2: Current reserved words according to the ECMAScript specification.

2.2 Statements
Statements are what make up a JavaScript program. There are several different
statements in JavaScript, most of which have been borrowed directly from other
programming languages, such as C.

9

abstract boolean byte char class
const debugger double enum export
extends final float goto implements
import int interface long native
package private protected public short
static super synchronized throws transient
volatile

Figure 3: Words reserved for future use according to the ECMAScript specifica-
tion.

Among other statements, there are the compound statements if..else state-
ments, for loops, while loops, do..while loops, for..in and try..catch. Their
behavior should already be fairly apparent to the reader and therefore many
compound statements have been omitted in this report.

Just like in many other languages, you can group statements in a block
statement, which is simply written as {, followed by zero or more statements,
followed by }.

The semicolon is used after each statement to separate it from other state-
ments, but is in fact optional in JavaScript. However, it is considered a bad
programming practice to omit the semicolon, because of potential ambiguities
that may occur [5].

Any valid JavaScript expression is also a valid statement.

2.3 Identifiers
Since JavaScript supports Unicode, the set of valid identifiers is larger than in
many other languages. Almost any sequence of Unicode characters is a valid
identifier unless it is a reserved word.

The ECMAScript standard states that a valid identifier begins with a dollar
sign ($), an underscore, any Unicode letter or a Unicode escape sequence (e.g.
\u0055). It can be followed by virtually anything [4]. This means that \u0055
standing on its own is in fact a valid variable name, albeit probably not a very
good one.

2.4 Variables
Variables are declared using the var keyword followed by a non-empty comma-
separated list of valid identifiers and optional assignments [5]. See Figure 4 for
examples. Values which have not been assigned any value are implicitly assigned
the value undefined.

undefined is a special value in JavaScript. It is different from null and is
only used in special cases, such as uninitialized variables and as the return value
in functions which do not explicitly return a value.

10

Leaving out the var keyword in a variable assignment implicitly declares
them, but then always in the global scope [5].

var x; // x == undefined
var x, y; // x == undefined , y == undefined
var x = 3; // x == 3
var x = 3, y; // x == 3, y == undefined
var x = y = 3; // x == 3, y == 3

Figure 4: A few example variable declarations in JavaScript

2.5 Arrays
Arrays in JavaScript are similar to arrays and lists in many other languages.
They can be created using either the shorthand [] syntax or the longer new
Array(). The user can define arrays with contents on the fly, e.g. [1, 2, 3, 4]
which returns an array filled with the numbers 1 through 4.

Indexing in arrays is done using the familiar x[i] syntax, where x is an array
and i is the zero-based index, as in [1, 2, 3, 4][0], which returns 1, the first
element in the array.

A significant difference between arrays in JavaScript and those of many other
languages is that in JavaScript lists are heterogeneous, i.e. they can contain
values of different types [5]. This means that e.g. [1, "hello"] is a valid array
in JavaScript. This particular array holds a number and a string.

2.6 Functions
The syntax for declaring new functions in JavaScript is straight-forward as can
be seen in Figure 5. Functions can take any number of arguments and may
optionally return a value using the return statement. Functions which do not
explicitly return any value always return undefined.

Functions may be declared inside other functions and inner functions are
not available outside of the function in which they were declared. JavaScript
functions are also first-class and may therefore be passed just like any other
expressions, a feature which is useful for passing callback functions in event-
driven programming or for higher-order functions. Being first-class, anonymous
functions, or function literals, are supported. Function literals are written just
like any other function, but with the identifier omitted [5].

Since version 1.8, JavaScript supports a shorter function declaration syntax
which is just like the traditional function declaration syntax, but with the curly
brackets and the return keyword omitted.

11

// The traditional syntax.
function squareAndMultiply(x, y) {

return (x * x) * (y * y);
}

// Uncommon , but valid syntax.
var squareAndMultiply =

new Function("x", "y", "return (x * x) * (y * y)");

// New syntax , supported since JavaScript 1.8.
function squareAndMultiply(x, y) (x * x) * (y * y)

Figure 5: A few different versions of the same function squareAndMultiply,
which takes two parameters, x and y. It returns the product of the
squares of each parameter. The lowermost version is only supported in
JavaScript version 1.8 and newer.

2.7 Objects in JavaScript
In JavaScript, creating an object is just a matter of explicitly writing its proper-
ties using a specific JavaScript notation. This format is called JSON (JavaScript
Object Notation) and both acts and looks much like dictionaries in Python. An
example JavaScript object is shown in Figure 6.

The properties of objects are retrieved using a period followed by the prop-
erty name, e.g. ronald.address. They can also be retrieved using array syntax,
e.g. ronald["address"] or even a mix of both, as in ronald.address["street"].

var ronald = {
name: "Ronald Smith",
birth: 1963,
firstName: function () {

return ronald.name.split(" ")[0];
},
address: {

street: "Abbey Road",
city: "London"

}
};

var x = ronald.firstName() + " on " + ronald.address.street;

Figure 6: An example JavaScript with an object representing Ronald Smith, born
in 1963. It contains his name (a string), his birth year (a number),
his address (another object with two properties) and a function for
retrieving his first name. The program assigns the value “Ronald on
Abbey Road” to the variable x.

12

2.8 Strings
As we saw in Figure 6, strings are written using the double-quote syntax found in
many other languages. They can also be written using the single-quote syntax,
just like in e.g. Python. Single characters in strings can be accessed using
array indexing (see section 2.5), but unlike languages such as C, strings are
not represented as arrays of characters. Instead, a single character is simply
represented as a string consisting of one character.

Strings are concatenated using the + operator and hold some basic methods,
such as substring and split, for extracting substrings and splitting a string up
in parts, respectively.

JavaScript strings may consist of any Unicode characters.

2.8.1 Escape sequences

Like many other programming languages, JavaScript supports some escape se-
quences. The most important escape sequences are shown in Figure 7.

Some languages which resemble JavaScript in these escape sequences allow
the user to write strings across multiple lines by putting a trailing backslash
character at the end of each line (see Figure 8). This is explicitly forbidden in
ECMAScript, but all of the major JavaScript interpreters support this.

As a last note on escape sequences, any unrecognized escape sequence in a
string will simply be interpreted as whatever is on the right hand side of the
backslash, e.g. "\#\%\$" will be interpreted as "#%$".

\t horizontal tab \n newline
\r carriage return \" double quote
\' single quote \\ backslash
\xXX hexadecimal character \xXXXX hexadecimal character
Figure 7: Some escape sequences recognized in JavaScript strings.

str = "This is a very long string and reading it becomes\
much easier if written this way. It is unfortunate that\
it is explicitly forbidden in ECMAScript.";

Figure 8: A multiline string as written in many programming languages.

2.9 Regular expressions
Regular expressions is another built-in object in JavaScript and even has its own
shorthand syntax for defining them, namely forward slashes. E.g. the statement
var rex = /A+B/ assigns the variable rex the regular expression matching at least
one A followed by a B. Regular expressions may also be created using the slightly
wordier new RegExp(), e.g. new RegExp("A+B") which is equivalent to /A+B/.

13

2.10 Comments
The comment syntax in JavaScript is just like the one in C, where anything on
the same line after and including // is a comment. Multiline comments begin
with /* and end with */. Multiline comments may not be nested [5].

Since JavaScript has a close connection to web development, HTML com-
ments are also comments in JavaScript. HTML comments begin with <!-- and
end with -->.2

3 What is Yi?
This section is intended as a short introduction to how Yi and Yi modes work.
Only the basic features in the editor will be explained and the terminology that
will be used in the rest of this thesis. It is assumed that the reader has some
basic understanding of how parsers work.

3.1 User configuration
Yi was written with extensibility in mind, taking inspiration from programs
such as xmonad [18], a window manager written in Haskell, and the Vim [15]
and Emacs editors. In xmonad, the end-users write their configurations in a
special Haskell module which is then recompiled and integrated with the window
manager without having to terminate it and restart it again. The recompiling
and reloading is usually done by hitting a special key combination. In Yi, it is
done by executing a special command inside of the editor.

It is also a bit like Emacs, e.g. letting the users create their own interactive
functions (also known as “commands”) and then making it easy to execute them
from within the editor. Emacs is built around a Lisp interpreter and lets the
user write Lisp code to modify the editor environment “on-the-fly”, without
having to restart it.

3.2 Keymaps
Yi comes with a few different keymaps which make the editor act like other
well-known editors, such as the aforementioned Vim and Emacs editors. It also
provides a keymap for users more comfortable with the “standard Windows”
key bindings for cutting, pasting, etc. Extensible as the editor is, the user can
quite easily write a new keymap if none of the shipped ones are good enough.

3.3 Yi modes
Modes are basically pieces of functionality that the user may enable and disable
at any time. This terminology has been borrowed from Emacs and modes in
Yi work about the same as they do in Emacs, with some minor differences. In

2There are more to the syntax than this, but the details have intentionally been left out of
this report, as they are not of great importance for this thesis.

14

Emacs there are different kinds of modes, such as major modes, minor modes
and global modes. The difference is not important for this report, because Yi
only has one kind, which is simply called “mode” (but this might be changed in
the future).

Similar as they may seem, there is a significant difference between developing
a mode for Yi and one for Emacs (apart from the fact that Yi uses Haskell and
Emacs uses Lisp). In Yi, the programmer of any non-trivial mode will write a
lexer, a parser and a syntax highlighter, whereas in Emacs, the majority of all
modes only have a syntax highlighter and some indentation functionality. How
mode writing for Yi works will be further discussed in section 4.

The different modes in Yi are generally loaded depending on the file exten-
sion, meaning that a file with the cpp extension would be loaded with the C++
mode and hs file with the Haskell mode. The JavaScript mode loads when the
user opens a file with the js file extension.

4 Writing a mode for Yi
This section is intended as a brief overview on to how modes in Yi are written
and used.

4.1 Main components
Most Yi modes consist of three main components: a
lexer, a parser and a syntax highlighter. The lexer is
generated using Alex and the parser is written using
the lazy incremental parser provided by Yi [2]. The
syntax highlighter is a function which takes the output
from the parser and returns a list of strokes. Strokes are
data structures which represent regions of characters,
also known as spans, and styles. Styles include but is
not limited to font color, slant and weight. More on this
in section 7.

For very simple modes, a parser is not necessary.
Instead, the lexer can just map regular expressions to
strokes directly, without using the parser as a middle
step. One example of such a simple mode is the Whites-
pace [3] mode shipped with Yi, which highlights the
background of any tab characters in green and any space
characters in red. Anything else is highlighted as a com-
ment.

For most modes the users will probably want some help with indentation,
which is fairly easy to implement for most programming languages using the
extensive indentation library provided by Yi.

15

4.2 Integrating the parts
The syntax of JavaScript is more structured than that of Whitespace, which is
why the parser needs to provide a syntax tree to correctly highlight code which
looks suspicious. E.g. one has to make sure that any opening curly bracket ({) is
matched by a closing curly bracket (}), that parameters in function declarations
are valid identifiers, etc. The parser is essentially a function which takes a list of
tokens as its input, provided by the lexer, and returns an abstract syntax tree
(AST). For non-trivial modes, the AST is annotated with special tokens which
are used to represent any errors that were found.

After the parsing has been done, the AST is passed to the syntax highlighter,
which is a function that traverses the tree and outputs a list of strokes depending
on its contents.

4.3 Wrapping it up
When the parser and syntax highlighter have been developed, they need to
be “glued together” to make it available to the end-user as a mode. In this
case, it has been done in the module Yi.Mode.JavaScript. This module contains
information about the mode, including the name of the mode, when it should be
loaded, which parser to use and how to perform syntax highlighting. The module
could contain several different modes for the same language, e.g. one which uses
a very precise parser and one which only performs syntax highlighting.

For the mode to be available to the rest of the users by default, it should
also be imported in the default Yi configuration and added to the mode table.
Whenever the user opens a new file in Yi, the mode table is searched for the
first mode that is appropriate, depending on either the file extension, the file
contents, or something else.

5 Yi lexers
The lexers for the programming languages supported in Yi are usually generated
using the Alex lexer generator [12]. Therefore, when referring to the lexer file in
the following sections, we are really referring to the Alex source file. When we
write simply lexers, we are referring to the generated Haskell module performing
the lexing.

5.1 How Alex works
The intention of this subsection is to give the reader a short introduction to how
Alex works. If you are already familiar with Alex, you may skip this part.

A lexer file consists of rules, macro definitions and actions. Lexer files usu-
ally have the x file extensions. When feeding a lexer file to Alex it outputs a
corresponding Haskell module using the rules it finds in the lexer file.

16

5.1.1 Alex macros

There are two different kinds of macros in Alex, namely character set macros
and regular expression macros. Lines defining character set macros always begin
with a dollar sign ($) whereas lines defining regular expression macros begin with
a “commercial at” (@).

Character sets are sets of characters that constitute meaningful entities, e.g.
lower-case letters (usually defined as [a-z]) or numbers ([0-9]).

Regular expression macros are used to make up more complex entities, such
as valid JavaScript identifiers, and defined using Alex’s own regular expression
syntax.

To represent Unicode characters in Alex, you use escape sequences such as
\xC0. These can be used in regular expressions the same way Latin characters
can, as in [\xD8-\xDE].

5.1.2 Rules and actions

A rule in Alex is a mapping between a macro and an action.
Actions consist of actual Haskell code which tells the lexer what to do when it

finds something matching the corresponding macro. The actions, being Haskell
code, must all have the same type. The exception to this is the “do nothing”
action, which is represented by a single single semicolon and handled by Alex
internally.

5.1.3 Lexer states

One can represent different states of the lexer, using so called start codes. Each
start code will represent one state in the lexer and are essentially names for each
respective state. Each state has its own set of rules which only apply when the
lexer is in that state.

E.g., in the JavaScript lexer file in Yi, there are three different states: the
initial state, the multiline comment state and the HTML comment state. The
initial state is the main state, which looks for reserved words, operators, single-
line comments, etc. Whenever the lexer sees /*, indicating the start of a multiline
comment, it switches to the multiline comment state. In the multiline comment
state, everything except for */ is regarded as a comment. When it reaches */, it
jumps back to the normal state again. The HTML comment state acts similarly
to the multiline comment state, but for HTML comments.

5.2 Interaction with Yi
The interaction between the Alex-generated lexer and Yi comes through a so
called wrapper. Wrappers can be seen as templates for lexers (actual Haskell
modules performing the lexing) with holes to be filled in by the lexer file. There
are some built-in wrappers available in Alex, but Yi provides its own custom
one to accommodate to its special online needs.

17

Among other things, the Alex wrapper in Yi contains an important container
data type called Tok, displayed in Figure 9. It is parametrized over its token
type, which will be called Token in this report. It also contains the length (as in
the number of characters) and the position (line and column) of the contained
token. Because the type Tok Token is so common in Yi, it is useful to give it the
type alias TT.

data Tok t = Tok {
tokT :: t -- The contained token.

, tokLen :: Size -- Its length.
, tokPosn :: Posn -- Its position in the file.
}

Figure 9: The Tok data type in the Alex wrapper in Yi.

To make the parsing much more powerful, as we shall see later, the Token
type should not be simply String, but instead an abstract data type where

each of its constructors represent a different part of the syntax. An example
definition of Token is given in Figure 10.

data Token = Reserved String
| Operator OperatorType
| Ident String
| Special String
| Comment CommentType

data OperatorType = Plus | Minus | Multiply | Divide

data CommentType = SingleComment | MultiLineComment

Figure 10: An example Token data type and other useful types.

6 The incremental Yi parser
In this section, we will try to give the reader a basic idea about how the lazy
incremental parser in Yi works. This is important to be able to understand why
some of the design choices in the JavaScript parser were made.

Here the term parser will be used to refer to both the parsing library provided
by Yi and the parser developed using the library. It should at all times be clear
which of the two is being referred to. Should it at any time be unclear, the
reader may safely assume that the parser refers to the parsing library and our
parser refers to the parser developed using the library.

18

6.1 The essential combinators
The parser, provided as a GADT (Generalized Abstract Data Type)3 named
Parser, holds a few different combinators for the programmer to express how the
parsing should be done. The most important ones from a parser programmer’s
perspective are the Appl combinator for sequencing, Disj for choice and Yuck for
“dislike”. The Yuck combinator will be explained in further detail in section 6.4.
The behavior of the Appl and Disj combinators should be fairly intuitive; Appl
is used for sequencing two parsers and Disj lets the parser choose between two
different parsing paths.

Parser is an instance of Functor, Applicative, Alternative, and Monad. Its
instance of Applicative declares (<*>) an alias for Appl and its instance of of
Alternative makes (<|>) an alias for Disj. These combinators in large follow
the same pattern presented by Hughes, Swierstra and Duponcheel [8] [19]. See
figure Figure 11 for the types of the parser interface.

The parser library also provides an equally important function, symbol.
symbol takes a predicate and returns a parser which will use that predicate
to determine whether or not it is successful. See Figure 12 for an example.

data Parser s a where
Appl :: Parser s (b -> a) -> Parser s b -> Parser s a
Disj :: Parser s a -> Parser s a -> Parser s a
Yuck :: Parser s a -> Parser s a
...

-- Convenient alias
type P s a = Parser s a

symbol :: (s -> Bool) -> Parser s s

Figure 11: Part of the parser interface, displaying only the types of symbol and
the combinators Appl, Disj and Yuck.

6.2 More expressive parsers
As seen in the previous subsection, one can use the Appl and Disj combinators
to easily describe what the parser should expect. But in reality, one cannot use
primitive strings to describe every single possible path of execution. The parser
has to be put together using broader building blocks to be able to express e.g.
“any identifier followed by any operator”.

To accomplish this, the lexer has to be modified. Abstracting away the
details, the parser will take a list of tokens as input, provided by the lexer, and
work its way through them, trying to make sense of the order of them. Using

3GADTs are an extension to GHC, the Glasgow Haskell Compiler, which lets the user
decide on the return type of each constructor explicitly [16].

19

-- An abstract syntax tree.
data Program = Hi String String

| Good String String

-- Parser for the "greeting language".
greeting = Hi <$> symbol (=="hello") <*> symbol (=="world")

<|> Bye <$> symbol (=="good") <*> symbol (=="bye")

Figure 12: Outline for a parser which parses ”hello world” or ”good bye”. <$>
is just another name for fmap, which is defined in the instance of

Functor for Parser.

simple strings as tokens is out of the question, so instead a new data type for
tokens will be used to be able to use pattern matching in the parser.

Assume that we have the token data type Token as shown in Figure 13. This
definition is conveniently placed in the lexer file.

data Token = Ident String | Oper String

Figure 13: A token data type. Ident represents identifiers and Oper operators.
The String in each constructor represents the the actual text which
makes up each token, e.g. Ident "hello" represents the identifier
hello and Oper "+" the addition operator.

These constructors are used to represent a fantasy mini-language consisting
solely of identifiers and operators. The lexer has been set up to put any iden-
tifiers it finds in the Ident constructor and operators in Oper. Anything else is
ignored in this example.

Having made this change, the parser will no longer take [String] as its
input, but rather [Token], giving it much more power, specifically the ability
to do pattern matching on the constructors, which represent the “meaning” of
each token. See Figure 14 for an example using this new token data type.

6.3 Defining an abstract syntax tree
So far, we have ignored any definition of an AST and intentionally kept it out of
the discussion as some abstract entity. We did this to put emphasis on deeper
concepts and the behavior of the parsing library.

Most readers who have developed a parser in Haskell before are probably
already familiar with the typical way to define an AST data type. An example
can be seen in Figure 15. The AST allows creation of trees composed of an
identifier followed by another tree or just a single operator.4 The Tokens in

4This is not a tree, as it has no branches, but it’s just for illustration.

20

-- Parser for identifiers.
pId = symbol (\t -> case t of

Ident _ -> True
_ -> False)

-- Parser for operators.
pOp = symbol (\t -> case t of

Oper _ -> True
_ -> False)

-- Parser for expressions with an infix operator.
expr = pId <*> pOp <*> pId

Figure 14: An example parser, expr, using the Token data type from Figure 13.
This parser accepts any two identifiers with an infix operator. pId
and pOp are parsers for identifiers and operators, respectively.

data Program = PIdent Token Program
| POper Token
| PErr Token

Figure 15: A data type for an AST. It can be constructed as either an identifier
followed by another program or an operator. It also has a constructor
for representing errors of any kind.

the first two constructors represent the identifier token and the operator token,
respectively. The Token in PErr will be discussed in further detail in section 6.7.

Using this AST definition, the previous example from Figure 14 is modified
to build an AST, as shown in Figure 16. Note the use of <$> which is another
name for fmap, which is defined in the Functor instance of Parser as fmap f = (
pure f <*>). pure in turn comes from the Applicative instance.5

Assume that the lexer makes identifiers of any alphanumeric sequence of
characters, operators out of the standard mathematical operators and ignores
anything else. Given the input “x y z +” the revised parser will give us the
AST shown in Figure 17.

program :: P Token Program
program = PIdent <$> pId <*> (POper <$> pOp <|> program)

<|> PErr <$> Yuck ...

Figure 16: A revised version of the parser from Figure 14, building a real AST.

5The definitions will not be explained any further than this, as they would require going
into too many details, which is outside the scope of this report.

21

PIdent (Ident "x")
(PIdent (Ident "y")

(PIdent (Ident "z")
(POper (Oper "+"))))

Figure 17: The output from the parser from Figure 16 when the lexer is given
the input “x y z +”.

6.4 Parser preference and recovery
Just having sequencing and choice combinators in a parsing library is not very
useful on their own. One would really like to have more control over the parsing
than that, e.g. to express operator precedence and help the parser understand
ambiguous grammars. This is where the Yuck combinator comes into play.

6.4.1 Resolving ambiguities

Suppose that we have a parser which at some point gets to choose between
two separate paths which are identical, but mean different things. Recall that
JavaScript 1.8 defines a new function declaration syntax (see Figure 5 in sec-
tion 2.6). This new syntax introduces some ambiguity, e.g. in the declaration
function helloWorld() { }, where helloWorld could be a function which either
returns an empty object or a function which does nothing. It is in fact the
latter case, but this needs to be expressed this to the parser somehow, so that
it chooses the correct path and does not return an incorrect AST.

The outline for a simple JavaScript parser is shown in Figure 18. Notice
how the last part of the funBody parser can choose to parse either an object or
an empty body when parsing the above example. To persuade the parser into
choosing the latter, we can apply the Yuck combinator as shown in Figure 19.

6.4.2 Recovering from failure

One of the nicest thing about the Yi parser is its ability to let the programmer
express what to do should the parsing fail at some point. This is called recov-
ering and to accomplish this, one can use the recoverWith combinator. The
recoverWith combinator is just another name for Yuck, which was previously
used to resolve ambiguities. In fact, the different names for this combinator
comes from its two different uses: for recovering and for “disliking” paths.

In all of the previous examples, we have intentionally ignored the fact that in
most programming languages, while still writing code in the editor, the source
is not syntactically valid. The reason for leaving it out of the discussion until
now has been to be able to focus on the other parts of Yi, without dragging in
too many concepts at once.

Using what has been explained so far, Yi will simply crash reporting an error
telling the user that the parse failed if the she enters something unparsable.

22

-- Entry -point of the parser.
program = many stmt

-- Statement parser.
stmt = FunDecl <$> funDecl

<|> VarDecl <$> varDecl
<|> ForLoop <$> forLoop
<|> ...

-- Function declaration parser.
funDecl = FunDecl <$> res "function" <*> ident

<*> params <*> funBody

-- Function body parser.
funBody = FunBody <$> spc "{" <*> program <*> spc "}"

<|> FunBodyExpr <$> expr

-- Expression parser.
expr = ExprNum <$> number

<|> ExprObj <$> spc "{" <*> keyValues <*> spc "}"
<|> ExprStr <$> string
<|> ...

Figure 18: The outline for a parser for a subset of JavaScript. It is ambiguous
in the last pass of funBody, which could parse either a block with
no statements or an empty object, since their syntax is exactly the
same. The parser res is for reserved words and spc is for “special
characters”.

funBody = FunBody <$> spc "{" <*> many stmt <*> spc "}"
<|> FunBodyExpr <$> Yuck expr

Figure 19: A better definition of funBody. Notice the use of Yuck to tell the
parser that it should dislike (“yuck”) that path, urging it to choose
the first, correct one.

Naturally, this is unacceptable in a development environment, so one has to let
the parser make a choice to fail on its own, falling back to a recovery parser
should no other path be accepted.

See Figure 20 for an example parser where we have to recover. This parser
will only accept programs beginning with an identifier and will crash if it comes
across anything else. A better version can be seen in Figure 21 which will
recover gracefully if the first token in the input is not a valid identifier. The
only thing left now is to figure out what do recover with, which will be discussed
in section 6.7.

23

program = pId <*> (pOp <|> program)

Figure 20: A parser which expects an identifier followed by either an operator or
another program.

program = pId <*> (pOp <|> program)
<|> recoverWith ...

Figure 21: The same parser as in Figure 20 but will fail gracefully, utilizing the
recoverWith combinator.

6.5 Sequencing without failing
As can be read in the previous subsection, we can “fail gracefully” using recoverWith
, to choose what parser to use if the correct parser. However, it was only defined
what would happen should the first “subparser” in the sequence fail. In reality,
one has to take care of each separate subparser separately.

See Figure 22 for an example and note how it only recovers should the first
expr parser fail. If expr succeeds, the parser expects the oper parser and the
second expr parser to succeed, but will not attempt to recover on failure.

binExpr = BinExpr <$> expr <*> oper <*> expr
<|> BinExprErr <$> recoverWith ...

Figure 22: Only recovering on the first subparser.

Since this situation is so common, the code would quickly become unreadable
(consider longer parser sequences) if one inserted useful recoveries in each parser
sequence. Instead, we wrote a few small useful functions which do the “standard
recovery” in case the desired parser fails. These functions are what we call
please parsers, e.g. plzTok or plzExpr. The names of these functions should be
interpreted as “please, a token” and “please, an expression”, respectively. See
Figure 23 for the revised version of the earlier, unsafe, expression parser.

binExpr = BinExpr <$> expr <*> plzOper <*> plzExpr
<|> BinExprErr <$> recoverWith ...

Figure 23: A safer version of the parser from Figure 22.

24

6.6 Finding the best path
In section 6.4.2 we saw how we can apply the Yuck combinator to make the
parser dislike a certain path. This section explains in more detail how the
parser decides which path it likes the best.

The parser interface implements a rather simple heuristic for determining
the best of the possible paths. The basic idea is to count the number of Yucks
along all possible paths that it has to choose from and pick the one with the
lowest count. Any path which leads to failure is discarded and only used if there
are no other options.

Since the number of different paths grow quickly in most useful parsers, the
program would be rendered unresponsive if the parser went “all the way” down
each different path to determine the optimal one. To set a limit to the searched
depth, the Yi parser defines a function dislikeThreshold which states how many
Yucks on the same path it should accept before discarding that path.

Figure 24: The example of what the different parsing paths may look like in a very
short parser. White represents sequenced parsers, orange represents
Yuck, red represents parse failure and green represents success.

See Figure 24 for an example of what the paths may look like for a simple
parser. There are five paths in total, of which one fails (the red node) and
four succeed (the green nodes). None of the paths will reach dislikeThreshold,
which is set to five Yucks at the time of writing.

Using the heuristic mentioned above, the parser will pick the path leading
to the leftmost green node, even though it looks bad at first. This is because
there are two Yucks at all of the other paths, except for the path which fails.
The failing path is given the lowest priority of all of the paths, since no other
path fails altogether.

6.7 Annotating the AST with errors
The recoverWith combinator accepts any parser as its only argument, which
allows us to express exactly what we want the parser to do when it needs to
recover. In this thesis, we have found that the two most useful strategies for
recovery are what we call accept-anything recovery and the insertion recovery.

25

The idea of the accept-anything recovery strategy is simple: just accept any
one token and use that instead of whatever we really wanted. The insertion
recovery strategy is just as simple and basically creates a new token which is
used instead of what it found. In the JavaScript parser, we make extensive use
of both.

The accept-anything strategy is easily implemented, using the functions we
described in section 6.1, as recoverWith (symbol (const True)). This parser will
accept any token and so we have avoided a crash. However, there is a problem
with this approach: if there are no more tokens to consume, the parser will still
crash. To circumvent this problem, we use the insertion recovery strategy on
top of the accept-anything strategy.

See Figure 25 for a parser using a combination of these strategies, preferring
to consume the next token, but if that fails too, inserts an error token.

-- A convenience alias.
rec = recoverWith

expr = ExprNum <$> number
<|> ExprObj <$> spc "{" <*> keyValues <*> spc "}"
<|> ExprStr <$> string
<|> ExprErr <$> (rec (symbol (const True))

<|> rec (rec (pure errorToken)))

Figure 25: A parser for expressions which implements both the accept-anything
and the insertion recovery strategy. As before, spc is a parser for
special characters.

7 Syntax highlighting
Syntax highlighting can be done in a few different ways in Yi, we will describe
the most common way at the time of writing.

As we explained before, the syntax highlighter will take the AST generated
by the parser as input and return a list of strokes. Recall that strokes represent
spans of characters and styles. Yi has a special data type called Span for repre-
senting spans in the buffer and its definition can be seen in Figure 26 together
with the definition of Stroke.

Notice that Stroke is the same type as Span StyleName, i.e. a span of “styling”.
In turn, StyleName is a predefined style, set in the Yi theme. Examples of styles
are defaultStyle, errorStyle, builtinStyle, etc. This means that the actual
colors and typefaces that are presented in the user interface depend on the user’s
current theme, giving the user the control to decide e.g. how errors should be
displayed.

The leaves of the AST will in this example have the type Tok Token (TT),
the most common construction in Yi modes today, which holds a token and

26

data Span a = Span { spanBegin :: !Point
, spanContents :: !a
, spanEnd :: !Point
}

type Stroke = Span StyleName

Figure 26: The definition of the data type Span in the source code for Yi,
parametrized over the type of its contents, and the definition of Stroke.

information about its position and size. The Alex wrapper in Yi provides a
function tokToSpan :: Tok t -> Span t which, as its type suggests, returns a
Span representing the given Tok.

The AST is not the only argument passed to the syntax highlighter. The
other arguments are the location of the cursor (also known as point), the position
of the first visible part of the edited file and the position of the last visible part
of the file. These arguments can be used to perform e.g. parentheses matching,
i.e. highlighting of the opening parenthesis if point is currently at a closing
parenthesis and vice versa6.

The resulting [Stroke] is usually created using difference lists, a well-known
technique giving us better performance than ordinary lists.

Note that the Stroke data type contains no information about the characters
it is styling, it only cares about the location of them.

8 The JavaScript mode
This section will describe the state of the JavaScript mode at the time of writing.
We will list the known drawbacks and explain how we solved some problems that
we encountered.

8.1 The JavaScript lexer
The JavaScript lexer is, as we described in section 5, generated using Alex. For
conciseness, when we write lexer in this section, we will always be referring to
the Alex file, as opposed to what we did before.

This section will assume that the reader is already somewhat familiar with
how Alex works. We will only be touching the surface of how the generated
lexer interacts with Yi, as it would require much more discussion than fits in
this report.

Writing the JavaScript lexer was quite straight-forward. We have defined
many different character set and regular expression macros to represent the
different tokens in JavaScript. A few simple ones are shown in Figure 27. As
can be seen, the $large and $small define a few extra ranges of characters that

6This has been done in one of the many Haskell modes for Yi.

27

are outside of the ASCII character set, for some Unicode compatibility, although
they are nowhere near complete.

@ops = "+" | "-" | "*" | "/" | ...
$large = [A-Z \xc0-\xd6 \xd8-\xde]
$small = [a-z \xdf-\xf6 \xf8-\xff]
$special = [\(\)\,\;\[\]\{\}\:\?]

Figure 27: An excerpt from the JavaScript lexer. @ops is a regular expression
macro matching the different operators in JavaScript. The other
three lines are character set macros defining which characters that are
upper-case, lower-case and have some special meaning, respectively.

The internal state in the lexer is simply an Int that will always be one of
0, 1 and −1. State 0 denotes the initial state, i.e. the entry point of the lexer;
state −1 denotes the multiline comment state for comments in /* and */; state
1 denotes the HTML comment state.

In the lexer, we also define the Token data type, as shown in Figure 28. In
the lexer rules, we will be using the different constructors of this data type to
make tokens out of the strings matching each separate lexer macro.

data Token = Res !Reserved
| Number !String
| Op !Operator
| Special !Char
| Number !String
| ValidName !String
| Comment !CommentType

Figure 28: Part of the Token data type, separating reserved words, numbers,
operators and special characters among other things.

Using our macros, we define the initial state in the lexer and set up which
rules that should apply in it, as can be seen in Figure 29. Notice how we discard
any whitespace characters, but take care of anything else.

cs is an alias for actionStringConst; a higher-order function that takes a
String -> token function and returns an Action. The String in the passed
function is the string that triggered the rule. m is an alias for actionAndModify,
which discards the string entirely and modifies the internal state of the lexer.

The opToOp and resToRes functions are custom functions which takes a string
and returns the right constructor depending on that string. Parts of these
functions can be seen in Figure 30. The reason that we don’t want to use
strings is that strings are generally slower to compare.

The multi-line comment state can be seen in Figure 31. Since nested com-
ments are forbidden in JavaScript, we can simply interpret any occurrence of /*

28

$whitechar+ ;
$special { cs $ (Special . head) }
@number { cs $ Number }
@ops { cs $ (Op . opToOp) }
@reservedid { cs $ (Res . resToRes) }
@varid { cs $ ValidName }
"/*" { m (const comment) $ Comment Start }

Figure 29: Part of the initial lexer state.

opToOp :: String -> Operator
opToOp "+" = Add'
opToOp "-" = Subtract'
...

resToRes :: String -> Reserved
resToRes "break" = Break'
resToRes "case" = Case'
...

Figure 30: Parts of the opToOp and resToRes functions.

as normal comment text. Again, we discard any whitespace characters, just like
we did in the entry-point lexer state. The HTML comment state looks much
similar to this state, which is why we have chosen to exclude it here.

$whitechar+ ;
"*/" { m (const 0) $ Comment End }
[^*]+ { c $ Comment Text }
. { c $ Comment Text }

Figure 31: The multi-line comment state in the JavaScript lexer at the time of
writing. There are still a few bugs to sort out, but it works somewhat
nicely. Notice how we go back to state 0 (the entry-point state) when
we reach the end of a comment.

One last important thing that we define in the lexer is tokenToStyle. It is
a simple function which takes a Token and returns the appropriate style to use
for that token. So we pattern-match on the constructor of the input Token to
return the right style, e.g. if it is a number, we return numberStyle, etc. This
function is essential to perform syntax highlighting.

29

8.2 The JavaScript parser
The goal we had with the parser was that it should be precise enough to detect
as many syntax errors as possible without becoming unreasonably slow. Given
the somewhat loose, but not simple, syntax of JavaScript, this was a hard task
to accomplish so we had to make some simplifications, as we shall see later in
this section.

8.2.1 Representing errors

In Figure 25, we made use of something called errorToken, but intentionally
kept it abstract to explain it here. Every non-trivial mode has some notion of
what an error token is, which will be used when recovering to denote an error in
the AST. The error token should have the type TT to typecheck with the other
leaves in the AST. In the JavaScript mode, errorToken is defined as Special '!'
at position 0 in the file and consists of no characters.

Special is the constructor for special characters, such as brackets, back-
slashes, commas, semicolons, basically any character which has a special mean-
ing in JavaScript, but is not an operator. Since ! is not a special character, but
an operator, using Special '!' will not be ambiguous to the syntax highlighter.
For convenience, we have also written a predicate named isError which takes a
TT and returns True if it represents an error and False otherwise.

8.2.2 Handling comments

The syntax of JavaScript allows comments between any two tokens, which be-
came a problematic part in writing the parser. The reason for having to handle
comments at all is that we have to syntax highlight them, so we can’t just
discard them.

The ideal way to handle comments would be to modify the lexer to separate
comments from the rest of the AST and then pass a tuple such as
(Tree, Comments) to the parser. That way, the parser wouldn’t have to deal
with comments at all and the comments would simply be passed along to the
syntax highlighter. Unfortunately, the Alex wrapper currently doesn’t support
this and since rewriting the wrapper wasn’t the goal with this project, we let
that be and looked for other solutions.

Another way would be to make the default style in the JavaScript mode
be whatever the user has chosen as the comment style. This way, whenever
the lexer comes across a comment, it can just discard it, in the same way that
it discards whitespace, and all comments would still be sort of “implicitly”
highlighted by the default style. This is not a very robust solution for many
reasons, e.g. consider what would happen if the user has chosen a comment style
with a background color; then any whitespaces would also have a background
color, which would be unacceptable.

In the end, testing has shown that the best way to handle comments today is
a rather naïve way: in every part of the code, program the parsers to expect an

30

optional comment between any two tokens. This strategy has been implemented
in Anders Karlsson’s Haskell mode for Yi [10].

However, considering that we want to keep the AST easily traversable, we
decided on making comments only valid where statements are valid. Having
the AST cluttered with comments would make it cumbersome to extract the
useful information from it. That is a trade-off we were not willing to make, so
we believe that allowing comments only at the statement level is a reasonable
drawback. See Figure 32 and compare it to Figure 33 to see the difference in the
data type for function declarations when allowing comments only at a statement
level and anywhere in the code.

data Stmt = FunDecl TT TT TT [TT] TT Body
| Comment TT
| ...

Figure 32: The beginning of the data type for statements, allowing comments
only where statements are allowed. Each TT represents a token that
is part of the statement. In FunDecl, they represent the reserved
word function, the name of the function, the left parenthesis, the
parameters of the function, the right parenthesis and the function
body.

-- Represents comments.
type Cm = Maybe Stmt

data Stmt = FunDecl TT Cm TT Cm TT Cm [TT] Cm TT Cm Body
| Comment TT
| ...

Figure 33: The same data type as the one shown in Figure 32 but allowing com-
ments anywhere in the source code.

8.2.3 Making the parsing more efficient

Efficient parsing of JavaScript proved quite difficult, since we had to be able to
recover many times in some parts of the parser.

Consider a naïve function declaration parser like the one in Figure 34. Note
that we are using recovery at the name of the function, the brackets around
the parameters, the opening curly bracket and the closing curly bracket. The
details for the parameter parser has left out, but naturally we will have to do
some recovering in that as well. With each sequenced recovery, the number of
parsing paths to choose from can grow exponentially.

To solve this, what we want is really to find the errors as early as possible.
In order to do that, we split the function declaration parser into “edible” parts.

31

data Statement t = FunDecl t t t [t] t [Statement t] t
| ...

-- Parser for function declarations.
funDecl = FunDecl <$> res Function <*> plzTok name

<*> plzSpc '(' <*> many parameter
<*> plzSpc ')' <*> plzSpc '{'
<*> many statement <*> plzSpc '}'

Figure 34: A naïve parser for function declarations.

We make the parameters a separate entity of the function declaration and the
same with the function body. The result of this is shown in Figure 35.

data Statement t = FunDecl t t (Parameters t) (FunBody t)
| ...

data Parameters t = Parameters t [t] t
| ParErr t

data FunBody t = FunBody t [Statement t] t
| FunErr t

-- Parser for function declarations.
funDecl = FunDecl <$> res Function <*> plzTok name

<*> parameters <*> funBody

-- Parser for function bodies.
funBody = FunBody <$> spc '{' <*> many statement

<*> plzSpc '}'
<|> FunErr <$> recoverWith ...

-- Parser for parameters.
parameters = Parameters <$> spc '('

<*> plzTok name `sepBy` spc ','
<*> plzSpc ')'

<|> ParErr <$> recoverWith ...

Figure 35: A parser for the same thing as in Figure 34, but divided into a few
different smaller parsers. This prevents a potential exponential ex-
plosion of possible paths for the parser to choose from.

Using this little trick, it should be apparent that we can improve the parser
performance greatly. We have applied this technique in some other places in the
parser as well, e.g. in the for-loop parser and the variable declaration parser.
However, we tried to keep the applications of this trick to a minimum, to keep

32

the AST somewhat legible and easily traversable.

8.2.4 Verifying the semantics of the code

Part of the initial goal for this project was to not only do incremental syntax
checking, but also to check some of the semantics of the source code. Considering
the massive performance problems the JavaScript parser suffered from to begin
with, we never tried to perform online verification, as having that would only
put more unnecessary pressure on the editor, possibly resulting in sluggish and
unresponsive behavior.

Instead, we decided to write a separate verifier, which is called on-demand
by the user. The verifier takes the syntax tree from the parser, forcing it to
parse the entire source file, and does some basic error-checking and reports the
results to the user. It was written in about a day and at the time of writing
only looks for multiple function declarations and unreachable code.

The verifier is called using the keyboard sequence C-c C-l (Emacs notation
for holding Control and then pressing C and then L). When the verifier has
verified the source code, it opens up a new window in Yi into which it prints
the results of the verification, as can be seen in Figure 36.

8.3 Indentation behavior
One of the most important thing in a development environment is that it should
have good support for indentation. In Emacs, most modes automatically indent
the current line correctly according to the programming language that is being
used when the user hits the tab key anywhere on that line. This behavior has
been adopted to Yi and the JavaScript mode as well.

The functionality is provided in the form of different functions in Yi, working
in the BufferM monad, which is a special monad for handling buffers in Yi. Due
to lack of time, we could not implement indentation which is 100 percent correct,
but instead let the user “switch” between a few different indentation levels. With
each press of the tab key, the indentation cycles one step in the list of selected
indentation levels. The implemented indentation works roughly as follows:

1. Get the user’s preferred indentation width, I.

2. Get the current indentation of the first non-empty line preceding the cur-
rent one, B.

3. If point is at the beginning of the source code, switch between no inden-
tation and I.

4. Otherwise, switch between B, B + I and B − I.

We also implemented a function called newlineAndIndentB, which inserts a
new line in the editor at point and indents it to the level of indentation that
the previous line had. We bound this function to the Return key, to relieve the
user from having to press tab for each new line she makes.

33

Figure 36: A Yi session with a demo JavaScript source file. Note how the incre-
mental parser has highlighted the opening curly bracket for the last
function declaration, since it is missing a closing bracket. The bottom
window displays the output from the verifier, which has found mul-
tiple function declarations, both on the top level of the program and
duplicate inner function declarations. It has also found that the call
to greeting will never be made and thus warns the user about that.

8.4 Syntax highlighting
To be useful at all, the parser has to be able to not only find errors, but somehow
indicate where they occur. The indicator in Yi is usually provided by the syntax
highlighter which sets an “error style” (red background in the default Yi theme)
on the regions at which the parser failed. In other words, we have to be able to
narrow down the red background to regions of code where the error was located.

In the JavaScript parser, we have a few different data types which make up
the AST. The top-level data type is [Statement], with Statement having con-
structors for function declarations, variable declarations, loops, etc. Expressions
also have their own data type, Expr, and so on. Each of these different data
types have a constructor representing error, except for Statement, which doesn’t
need one, as it falls back on the recovery in the expression parser. This is pos-

34

sible because expressions are valid statements as well, so if the user enters an
unrecognized statement, it will try using the expression parser. If the expression
parser also fails, the expression recovery parser is used.

Since we have these different data types which can all be syntax highlighted,
we wrote a simple type class named Strokable (named after the Stroke type)
which can be seen in Figure 37. It has a single function toStrokes, which returns
Endo [Stroke], since we are using difference lists for improved performance, as
briefly mentioned in section 7.

class Strokable a where
toStrokes :: a -> Endo [Stroke]

Figure 37: The Strokable type class.

To define which constructor that represents failure in each data type, we
made another type class, named Failable. It has a predicate called hasFailed
which checks if the input represents failure (syntax error). This predicate is
used extensively in the definitions of toStrokes for our data types.

For an example instance of Strokable, see Figure 38. The definitions of
errorStroker and normalStroker have been left out, as they are not needed to
understand the idea.

data Stmt t = FunDecl t t (Parameters t) (Block t) | ...

instance Strokable (Stmt TT) where
toStrokes (FunDecl fun name ps blk) =

let (<>) = mappend
s = if hasFailed blk

then errorStroker
else failStroker name

in s fun <> s name <> toStrokes ps <> toStrokes blk

failStroker :: TT -> TT -> Endo [Stroke]
failStroker x | isError x = errorStroker

| otherwise = normalStroker

isError :: TT -> Bool
isError (Special '!') = True
isError _ = False

Figure 38: Part of the instance of Strokable for Stmt. It determines a stroker to
use for the reserved word function and the identifier representing the
function name by seeing if the block of the function declaration has
failed. If so, it strokes the two tokens using the error style. Otherwise
it uses the errorStroker only if the identifier token has failed.

35

9 Conclusions
This project has shown that it is possible to write precise and somewhat efficient
incremental parsers using the incremental parsing library in Yi, although one
has to make trade-offs between performance and preciseness.

9.1 Results
The state of the JavaScript mode for Yi is still unstable at the time of writing,
but will will not crash on any input as far as we can tell.

The parser performance is acceptable for small JavaScript programs and
catches a majority of the possible syntax errors that can be made. Investigations
have shown that the inline array parser is one of the slowest parsers in the mode
and can probably be greatly improved.

The for-loop parser currently does not allow variable declarations in the
initialization field, but assignments are acceptable. Solving this problem should
not take too much effort, but requires some careful refactoring.

Comments are only allowed where statements are. While it should not be a
problem to allow comments between any two tokens, the code for the parsing
would become cluttered with optional comment parsers and is better left to do
when the mode reaches a more stable state. We are also aiming to make the
tree easily traversed by the verifier, which would not be as easy with comments
between tokens.

The JavaScript mode consists of 1113 lines of code at the time of writing.
Just about half of it lies in the parser module, roughly 25 percent in the lexer
(the Alex source file) and the rest is in the verifier and mode file. At the time
of writing, the latest release of Yi is version 0.6.1 and is available on Hackage
through http://hackage.haskell.org/package/yi. The latest development
version is available on the darcs repository at http://code.haskell.org/yi/.

9.2 Future work
As we have mentioned earlier, we wish to keep the tree easily traversed by the
verifier. A solution which would make the tree easily traversed would be to
write a conversion step in the middle which takes the AST provided by the
incremental parser and strip it down to make it easily traversed. This step
could also remove any comments in between tokens, as they are not needed to
verify any of the source code.

If future modes prove the incremental parsing to be too slow for normal
use in an editor, one could consider writing an asynchronous parser for Yi. By
asynchronous, we mean a parser which is run in the background when the user
is not writing anything or moving the cursor. As soon as the user starts writing,
if the parser hasn’t completed, it would just abort the parsing and start again
when the editor is idle again.

Alternative parsing strategies could be investigated, e.g. replacing the “dis-
liking” combinator Yuck with a “liking” combinator, defining which paths that

36

http://hackage.haskell.org/package/yi
http://code.haskell.org/yi/

should have higher precedence than other paths, instead of defining which paths
that should have lower precedence than others.

We have high hopes for the Yi editor and can definitely see it competing
with other major editors such as Emacs and Vim for users, even though it may
take some time to get there.

37

References
[1] Jean-Philippe Bernardy. Yi: an editor in Haskell for Haskell. In Proceedings

of the first ACM SIGPLAN symposium on Haskell, pages 61–62, Victoria,
BC, Canada, 2008. ACM.

[2] Jean-Philippe Bernardy. Lazy functional incremental parsing. In Proceed-
ings of the second ACM SIGPLAN symposium on Haskell, Edinburgh, UK,
2009. ACM.

[3] Edwin Brady and Chris Morris. Whitespace. http://compsoc.dur.ac.
uk/whitespace/index.php, 2004.

[4] Ecma International. ECMAScript Language Specification, 3rd edition, De-
cember 1999.

[5] David Flanagan. JavaScript: The Definitive Guide. O’Reilly, 5th edition,
2006.

[6] Mozilla Foundation. Mozilla Firefox. http://www.mozilla.com/
firefox/, 2009.

[7] Danny Goodman. JavaScript Bible. Hungry Minds, Gold edition, 2001.

[8] R. John M. Hughes and S. Doaitse Swierstra. Polish parsers, step by
step. Proceedings of the eighth ACM SIGPLAN international conference
on Functional programming, 2003.

[9] Free Software Foundation Inc. GNU Emacs. http://www.gnu.org/
software/emacs/, 2009.

[10] Anders Karlsson. Robust & Precise Incremental Parsing of Haskell. Mas-
ter’s thesis, Chalmers University of Technology, 2009.

[11] Mozilla Labs. Bespin. http://bespin.mozilla.com, 2009. An in-browser
JavaScript editor.

[12] Simon Marlow. Alex. http://www.haskell.org/alex/, 2007. A lexical
analyser generator for Haskell.

[13] Microsoft. Descriptions of Java, JScript, and JavaScript. http://support.
microsoft.com/kb/154585, 2007.

[14] Microsoft. Windows Internet Explorer. http://www.microsoft.com/
windows/internet-explorer/default.aspx, 2009.

[15] Bram Moolenaar. Vim. http://www.vim.org, 2009. VI Improved, a fork
of the older vi editor.

[16] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly
types: type inference for generalised algebraic data types. Technical Report
MS-CIS-05-26, University of Pennsylvania, jul 2004.

38

http://compsoc.dur.ac.uk/whitespace/index.php
http://compsoc.dur.ac.uk/whitespace/index.php
http://www.mozilla.com/firefox/
http://www.mozilla.com/firefox/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://bespin.mozilla.com
http://www.haskell.org/alex/
http://support.microsoft.com/kb/154585
http://support.microsoft.com/kb/154585
http://www.microsoft.com/windows/internet-explorer/default.aspx
http://www.microsoft.com/windows/internet-explorer/default.aspx
http://www.vim.org

[17] Don Stewart. yi: just syntax. http://www.cse.unsw.edu.au/~dons/yi.
html, 2007. The old homepage for Yi.

[18] Don Stewart and Spencer Janssen. xmonad. In Haskell ’07: Proceedings of
the ACM SIGPLAN workshop on Haskell workshop, page 119, New York,
NY, USA, 2007. ACM.

[19] S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting
combinator parsers. Second International Summer School on Advanced
Functional Programming Techniques, 2008.

[20] Steve Yegge. js2-mode: a new JavaScript mode for
Emacs. http://steve-yegge.blogspot.com/2008/03/
js2-mode-new-javascript-mode-for-emacs.html, 2008. Blog en-
try announcing the release of js2-mode.

39

http://www.cse.unsw.edu.au/~dons/yi.html
http://www.cse.unsw.edu.au/~dons/yi.html
http://steve-yegge.blogspot.com/2008/03/js2-mode-new-javascript-mode-for-emacs.html
http://steve-yegge.blogspot.com/2008/03/js2-mode-new-javascript-mode-for-emacs.html

	Introduction
	Motivation
	Aim
	Delimitations

	How JavaScript works
	Reserved words
	Statements
	Identifiers
	Variables
	Arrays
	Functions
	Objects in JavaScript
	Strings
	Regular expressions
	Comments

	What is Yi?
	User configuration
	Keymaps
	Yi modes

	Writing a mode for Yi
	Main components
	Integrating the parts
	Wrapping it up

	Yi lexers
	How Alex works
	Interaction with Yi

	The incremental Yi parser
	The essential combinators
	More expressive parsers
	Defining an abstract syntax tree
	Parser preference and recovery
	Sequencing without failing
	Finding the best path
	Annotating the AST with errors

	Syntax highlighting
	The JavaScript mode
	The JavaScript lexer
	The JavaScript parser
	Indentation behavior
	Syntax highlighting

	Conclusions
	Results
	Future work

	References

