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Abstract

The dependence of modern wireless communication systems on the fidelity of
the transmitter has increased the importance of modeling these components.
Behavioral modeling is a commonly used technique to find the input-output
relationship of a system, without the need for the knowledge of the specific
components. There have been many models proposed in the literature, which
has made it difficult to choose models suitable for the application at hand. By
analyzing and categorizing these models depending on the type of distortions
they can describe, it becomes possible to understand their distortion handling
capabilities. Such an analysis led to the design of two new behavioral models,
one customized for power amplifiers and the other for modulators.

Once different models are analyzed, their usefulness is determined in an
experimental setup. Different models have different modeling capabilities.
While some may be able to model any nonlinear function with high accu-
racy, others may be capable of modeling at low computational cost. The
accuracy /complexity tradeoff for some commonly-used behavioral models is
analyzed in this thesis.

In Paper [A], a new behavioral model is proposed for power amplifiers
that combines two commonly used modeling techniques. The performance of
this model is shown to be better than the two models it is based on, and issues
in identification are also discussed.

In Paper [B], a new dual-input model is constructed for modulators. This
model has the ability to describe nonlinear imbalance in a modulator. Differ-
ent variants of this model are also proposed, to reduce the computational
complexity.

In Paper [C], a detailed analysis on the accuracy/complexity tradeoff for
some commonly-used power amplifier behavioral models is presented. After
finding the computational complexity in floating point operations per sample,
an experimental setup is used to show that among models studied, the gener-
alized memory polynomial model has the best accuracy/complexity tradeoff.

Keywords

Behavioral modeling, computational complexity, digital predistortion, I/Q im-
balance, nonlinear models, power amplifier, transmitter, Volterra series, wire-
less communications
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Chapter 1

Introduction

The general trend for modern wireless data communication systems has been
the need for speed. Communication data rate has constantly increased, from
2.4 Kbits per second for Advanced Mobile Phone System (AMPS), to the
objective of a nominal data rate of 1 Gbit/s for relatively stationary nodes
in the International Mobile Telecommunications-Advanced (IMT-Advanced)
standard. This progress has been hampered greatly by the limited frequency
resources allocated to such systems, which has in turn increased the impor-
tance of spectrum utilization. Coupled with the other major trend in radio
frequency (RF) communication — the increase in number of users — it has
forced modern digital wireless systems to adopt more complex modulations
schemes with varying amplitude. Such signals depend heavily on the fidelity
of the transmitter hardware, i.e. any slight distortion created might render
the system impractical to use. This thesis attempts to address the latter issue
by means of modeling the transmitter, as a necessary basis for any distortion
cancelation technique. Such models may also be of interest when evaluating
the performance of wireless commination systems in system level simulations.

1.1 Modeling RF transmitters

The RF transmitter architecture has historically been developed in two sepa-
rate tracks. Communication system engineers have generally been focused on
mapping the information into symbols, while RF engineers have been realizing
these symbols in hardware. The first group is mainly concerned with the data
rate and quality of service, while the second group worries about practical
issues in constructing the hardware. As signal processing power increases and
costs decrease, these two tracks have begun to somewhat merge. The use of
signal processing tools to alleviate hardware problems has become more com-
mon, and will be necessary for future generation systems. A block diagram of
such modern transmitters can be shown in Fig. 1.1.

From Fig. 1.1 it can be noticed that the modulator is associated with the
analog circuitry that produces a real-valued passband modulated signal from
the complex-valued baseband signal. The dashed box in the figure represents
the entire act of modulating a bit stream into a waveform suitable for the RF
channel, as defined by Shannon [1].
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Figure 1.1: Block diagram of a simplified modern transmitter architecture.

Many different approaches can be taken to model the transmitter. De-
pending on the type of data needed for identification, models can be divided
into two main groups: physical and circuit models, and empirical models [2,3].
Physical models give an accurate description of a device based on fundamen-
tal physical laws [4]. In circuit models, electrical circuit elements and circuit
theory are used to model the system. Such techniques have high precision
limited only to the quality of the device models. This precision has a high
price in simulation time, limiting the use of these type of models in practice
for modeling wireless systems.

Empirical models attempt to model the system with no a priori knowledge
of the internal circuitry of the devices. They are commonly called behavioral
models, or black-box models, and are constructed from the sampled measured
input and output signals. These models typically are used for applications like
digital predistortion and system level modeling [2]. The accuracy of these mod-
els depend heavily on the model structure and parameter identification pro-
cedure. Many different behavioral models have been proposed and developed
by researchers [2,4-6]. By comparing model performance, identifying efficient
model structures becomes possible. Such an analysis can help in choosing a
suitable model structure for simulations and predistortion, or by providing a
platform to construct novel behavioral models. Therefore, the thesis focuses
on analyzing transmitter behavioral models and comparing their performance.

1.2 Distortion in RF transmitters

The transmitter architecture shown in Figure 1.1 has three main sources of
distortion: the modulator, the power amplifier and the antenna. The thesis
is focused on the distortions created by the modulator and PA as the two
dominant sources of distortion in the transmitter architecture [7].

The distortion created by the analog front end of modulators in amplitude
and phase is commonly referred to as in-phase/quadrature imbalance — 1Q
imbalance [8]. These impairments are generally created in the conversion of the
complex-valued baseband signal to the real-valued analog signal, and can result
in both linear and nonlinear distortion. When dealing with these distortions,
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Figure 1.2: Input-output characteristics of an ideal and a practical power
amplifier.

special care has to be taken into consideration regarding the nonlinear order
terms, as discussed in section 2.1.1.

Power amplifiers are one of the main power consuming devices in the trans-
mitter architecture [9], and have a severe impact on the communication system.
Power amplifiers are ideally designed to linearly amplify the communication
signal to the required output power level to overcome channel losses. In prac-
tice, these devices tend to have nonlinear behaviors, especially when driven
close to saturation. As wireless standards adopt spectrally-efficient amplitude-
varying modulated signals, the requirements on power amplifier linearity be-
comes more stringent. A typical input-output amplitude characteristic for a
power amplifier is shown in Figure 1.2.

From Figure 1.2, two of the main distorting effects of the power amplifier
can be noticed. The ideal input-output amplitude relationship should be a
linear line, as seen in the figure. However, in a practical amplifier, as the
amplitude increases, the output becomes saturated and the power amplifier
gain diminishes. This is the dominant effect behind what is known as the power
amplifier nonlinear distortion. For communication signals in standards such
as Global System for Mobile communications (GSM), where the amplitude is
constant and has no information, this is not an important factor, i.e., the gain
will be constant for a constant amplitude. This does not hold for signals that
have varying amplitude, and the amplification of the communication samples
will no longer be constant. This will result in a loss of information and hence,
an increase in bit-error-rate (BER), if not dealt with properly.

Another power amplifier distortion that is visible from Figure 1.2, is what is
known as the power amplifier memory effect. The output of a power amplifier
not only depends on the communication sample at time ¢, but also on samples
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Figure 1.3: Adverse effects of power amplifier distortion on adjacent users.

that have passed before this time. Hence, the input-output relationship is
no longer a one-to-one function, and the same input sample may result in a
range of output samples depending on the signal history. This is mainly due
to electrical and thermal dispersion effects [10], and shows itself in the figure
as the blurring when the amplitude increases.

The adverse effects of power amplifier distortion mentioned were seen in
the time domain in Figure 1.2. These effects will distort the signal constella-
tion and introduce noise, before the signal even leaves the transmitter. The
unwanted noise will then result in a loss of signal-to-noise ratio (SNR) and an
increase in the error vector magnitude (EVM) at the receiver. However, these
distortions also have an impact on the frequency response of the communica-
tion system, resulting in what is known as spectral regrowth. This corresponds
to the spectral leakage of power into adjacent channels of the frequency spec-
trum. Figure 1.3 shows the effects of the distortion of a power amplifier in
the frequency domain. It can be observed that spectral regrowth results in
out-of-band leakage that may not satisfy the requirements set by frequency
regularization organizations [11]. For example in this figure, the out-of-band
distortion is so strong that it partially masks an adjacent user and distorts its
communication.

In order to reduce and remove these transmitter impairments, identifying
the distorting effects becomes critical. Therefore, behavioral modeling can
help to identify these effects and in the design of digital predistortion tech-
niques. Digital predistortion (DPD) is a linearization technique where the
signal is passed through an expanding filter to reverse the compressing effect
of the power amplifier. DPD has been shown to reduce the size and cost for
linearization compared to other linearization methods [12], and has the added
benefit of being independent of the operating frequency.
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1.3 Thesis outline

The thesis is organized as follows. In Chapter 2, a theoretical mathematical
background for behavioral modeling of transmitters is established. Consider-
ations on the requirements of power amplifier behavioral model structure is
explained. Some commonly-used power amplifier behavioral models are cate-
gorized, allowing for a better understanding of the differences between mod-
els. A novel power amplifier model based on combining techniques used in
the literature is also presented. Behavioral modeling of modulators is briefly
discussed and a dual-input model is presented. Finally, parameter estimation
for behavioral models is analyzed and some important issues are reviewed.
In Chapter 3, some important models are evaluated with respect to both ac-
curacy and complexity. First, some common accuracy measures are defined
and discussed. Then behavioral modeling complexity is presented. Finally a
comparative analysis on the accuracy/complexity tradeoff for power amplifier
behavioral models is analyzed. A summary of the appended paper is presented
in Chapter 4 and future work is presented in Chapter 5.
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Chapter 2

Behavioral Modeling of
Transmitters

As discussed in the previous chapter, modeling the transmitter is an impor-
tant pre-requisite for modern wireless communication system design. As the
main source of distortion in the transmitter, power amplifiers have received
considerable attention in the literature, and many power amplifier models have
been proposed. The nonlinear models developed for power amplifiers can also
be used to model modulators and in fact complete transmitters [13], with cer-
tain considerations. Therefore, while in this chapter the focus is mainly on
power amplifier behavioral modeling, it can be applicable to modulator and
transmitter modeling as well.

By classifying the models into groups, models can be differentiated based
on the type of distortions they describe, which can help when choosing a model
for an application. This can also help to better understand the important terms
in a behavioral model, which can result in constructing new models that are
better equipped to handle distortions, e.g., papers [A] and [B]. Therefore, an
overview of models proposed in the literature is presented in this chapter, and
important characteristics of each is briefly discussed.

As there are many models in the literature, it is a tedious task to list
all. Therefore, in this work, some models which are representative of most
models are chosen, and some of these models are analyzed further in Chapter 3.
Before analyzing behavioral models, some necessary theoretical background is
discussed, to layout a framework for the behavioral models. Finally, parameter
identification in behavioral models is analyzed, and some important issues are
discussed.

2.1 Theoretical background

Power amplifiers are passband devices, and discrete passband signals should
be used for behavioral modeling and identification. However, by assuming
that the input signal to the power amplifier is band-limited, computationally
efficient techniques can be constructed to represent the power amplifier with
discrete baseband models [14]. This greatly reduces the computational com-

7
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plexity, and is a necessary step for digital algorithms. This section focuses on
the theoretical issues for constructing baseband behavioral models.

2.1.1 Baseband representation of passband signals

For a real-valued passband signal #(t), the Fourier transform X (f) shows a
symmetry around zero frequency. Specifically, the real part of X(f) is an
even function and the imaginary part is odd. This means that it is possible
to reconstruct Z(t) uniquely from X (f) using only f > 0 [15]. The signal
containing only positive frequencies is called the analytical signal, Tanalytical (t),
and can be constructed by [16]

Xanatytical (f) = 2u(f) X (f), (2.1)

where X (f) is the Fourier transform of #(t) and u(f) is the step function. The
time-domain representation of the analytical function can be constructed by
taking the inverse Fourier transform of (2.1) and can be written as

manalytical(t) = j(t) + ].fj(t), (22)

where #(t) is called the Hilbert transform of Z(t) and is defined as

) L /OO #0) 4. (2.3)

T _t—10

From (2.2), the signal Z(t) can be recovered by the output of a system
with transfer function 2u(f) by simply taking the real value of the analytical
signal [15],

j(t) =R ['ranalytical(t)} . (24)

In passband signals, when the relative bandwidth of a signal is smaller
compared to the center frequency fo — a narrowband signal [17], the analytical
signal can be written in the form [15]

xanalytical(t) = x(t)ej%rfot, (25)

where fj is the center frequency and z(t) is a (generally) complex signal called
the complex envelope of Z(t). x(t) has a spectrum that is concentrated around
the origin of the frequency axis, commonly referred to as a baseband signal.
Thus, a real-valued narrowband passband signal has been effectively repre-
sented by a complex-valued baseband signal.

Combining equations (2.4) and (2.5), the narrowband signal Z(t) can be
written as [15]

Z(t) = x1(t) cos(2m fot) — zq () sin(27 fot), (2.6)

where

21(t) 2 R[z(8)] = #(t) cos(2m fot) + & (t) sin (27 fot), (2.7)

and
rq Y Sa(t)] = #(t) cos(2n fot) — F(t) sin(2r fot), (2.8)
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Figure 2.1: Vector representation of complex-baseband signal Z(t).

or alternatively [16]

~ ej27rf0t$(t) + e—jQWfOtx*(t)
#(t) = - , (2.9)

where z*(t) is the complex conjugate of x(t). x1(t) is commonly called the
in-phase component of z(t) and zq(t) the quadrature, and this representation
is called cartesian representation.

Another common representation is the instantaneous amplitude A, (t) and
the instantaneous phase @, (t) defined as

A (t) EE(H)] = \/21(1)? + 20 (1)? (2.10)

0o (t) ¥ arg [#(t)] = tan™! Z?((f)) . (2.11)

This representation is commonly called polar representation. The relationship
between these representations of the narrowband signal is shown in Figure 2.1.

2.1.2 Baseband model structure

In the previous section the baseband representation for passband signals was
presented. However, when dealing with behavioral models, it is possible to find
certain characteristics in the baseband model structure. This section analyzes
these properties.

In the passband, a memoryless power amplifier can be thought of as a
mapping of a real-valued input signal to a real-valued output signal [18]. Ap-
proximating this nonlinearity by a power series — under a range of general
conditions for the power amplifier like stability, continuity, fading memory,
etc. [2] — the output can be written as

K
() = > b (1), (2.12)
k=1

where Z(t) is the passband power amplifier input, by, are real-valued coefficients,
and ¢(t) is the passband output. From [17], since the output of a power
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amplifier is normally passed through a passband filter centered at +fj, only
terms that are centered around this frequency will contribute to the output
signal. Therefore, (2.12) can be constructed in baseband form as [15][p.69]

K
y(t) = Y bea(t)[a]*7", (2.13)
k=1

k odd

where
1 k \-
b = 216_1(“>bk (2.14)
2

Two important observations can be made from these equations. First, in
(2.13), only odd order power terms exist, as the even order terms are far from
the carrier frequency. Secondly, that in (2.14), since by, is real-valued, by, are
also real-valued. Therefore, only amplitude-amplitude distortions (AM/AM)
are generated by a memoryless power amplifier. By allowing the by to be
complex-valued, quasi-memoryless models can be constructed, which can also
account for some amplitude-phase distortions (AM/PM). These kinds of com-
plex baseband power series form the basis for most of the power amplifier
models presented in subsequent sections.

By considering the baseband representation, behavioral models can be con-
siderably simplified and many parameters can be reduced. Therefore, all mod-
els presented in this thesis will be in baseband form and the reductions dis-
cussed in this section are applied.

Model structure categories

Categorizing power amplifier behavioral models can help in understanding
their differences and in comparing their model structures. It can also help in
choosing a model based on the type of distortions we are interested in. In
wideband wireless systems, power amplifier distortion is mainly attributed to
three types of physical phenomena, [19]

e Static and memoryless nonlinearities from device characteristics.

e Linear memory effects, which may be attributed to time delays, or phase
shifts, in the matching networks and the device and circuit elements
used.

e Nonlinear memory effects, that may be caused by non-ideal bias net-
works, trapping effects, temperature dependence and other sources.

Correspondingly, power amplifier models have been compared with respect to
what kind of memory effects they can describe [2,5,19]. Therefore it has be-
come common to classify single-input single-output power amplifier nonlinear
behavioral models in three main categories: memoryless models, models with
linear memory and models with nonlinear memory. A similar classification is
used in this chapter.
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2.2 Memoryless models and models with linear
memory

As described in the previous section, a complex power series can be used for
power amplifier modeling. As the input-output relationship only depends on
the instantaneous sample, this type of model is commonly called a static or
memoryless model. In this section, first an overview of these type of mod-
els is presented, then some models that considered linear memory effects are
presented.

2.2.1 Memoryless models

Historically, traveling wave tubes (TWTs) were the first widely deployed power
amplifiers. Since these devices are inherently wideband and have a near-
constant delay, memoryless models were able to effectively predict the inter-
modulation distortion created by these devices [5].

A commonly used memoryless model is the complex power series model
(2.13). In this model, the input output relationship is expressed as

P
y(t) = Y apa(t)](t)”, (2.15)
p=1
p odd
where a,, are the coefficients for each nonlinear order.
Other popular memoryless models are the Saleh models [20], both the
original model and the modified version, and the Rapp model [21]. The original
Saleh model — in Cartesian form — can be written as

R0 = O (2.16)
Sly(t) = —zOF (2.17)

(1+ Bole(®)]?)®

where a1, 1, aqg, and B are the fitting parameters. An interesting observation
of Saleh’s model is that

_ OR[y(1)]

Sly()] = (2.18)

9 ar—aq;Bi—Bq

In the modified Saleh model two extra parameters are added to model the
phase shift and a varying exponent. This model is analyzed further in [5]
and [20]. The Rapp model uses two parameters to model power amplifiers,
one representing the smoothness factor and the other the saturation level.
More memoryless models can be found in [5], like the Fourier series models,
Bessel-Fourier models, Hetrakul and Taylor models and etc.

2.2.2 Models with linear memory

The memoryless models have acceptable performance for narrowband systems.
As the signal bandwidth increases, memory effects become more apparent.
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Figure 2.2: The block diagram of the two-box and three-box models.

The models presented in this section were the first models that attempted to
address these effects, by using linear memory.

In the simplest case, authors have suggested that the memory effects and
the nonlinearities can be separated. This has resulted in a class of commonly
called two-box models. In this class, a nonlinearity is followed by a linear filter
— known as the Hammerstein model — or a filter is followed by a nonlinear
function — the Wiener model [22] as depicted in Figure 2.2. These models can

be written as
P M p
y(t) = g ap ( E h(m)x(t — m)) (2.19)

y(t) = Z h(m) Z apz?(t —m) (2.20)

for the Hammerstein model.

An interesting observation for these two models is that the Hammerstein
model is linear in the parameters, while the Wiener model is not. This will
later prove important when parameter identification is discussed.

In order to better represent linear memory, a three-box model has also been
used in the literature. These models tend to have a linear filter — memory-
less nonlinearity — linear filter model structure, and are also called three-box
Wiener-Hammerstein models. Examples of such models are the frequency
dependent Saleh model [20], and the Poza-Sarkozy-Berger model [23]. It is
important to note that even after adding an additional filter, these models
are still not able to account for nonlinear memory effects [5]. A simple block
diagram of the three classes of models explained is shown in Figure 2.2.

Another class of models that deal with linear memory are parallel-cascade
models. In these models, parallel branches are constructed to enhance the
modeling capabilities. Two important models in this class are the polyspectral
model [24-26] and the Abuelma’aati model [27].

2.3 Models with nonlinear memory

As communication signals become more wideband in modern warless commu-
nication systems, the need for advanced models that can describe nonlinear
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memory effects becomes evident. Many mathematical tools have been sug-
gested for such modeling purposes, such as polynomial-based functions and
neural networks among others. The focus of this thesis is mainly on polyno-
mial based models, due to interesting properties in identification — like being
linear in the parameters — and ease of use.

2.3.1 Volterra series model

The Volterra series is a widely used mathematical tool for modeling any non-
linear function including memory. The Volterra series and the Volterra theory
was developed by Vito Volterra in the late 19" century [28]. It has been com-
monly described as a generalized Taylor series with memory, and the discrete
time passband Volterra series can be written as [29]

gVolterra[n] = Z Z Z A Z

p=1m1=0m2=0 mp
P
B s g | | & — s, (2:21)
k=1

where P is the nonlinear order and M is the memory depth of the model.
Following the considerations in section 2.1.1, in order to represent this model
in baseband terms, even order powers will disappear. However, another con-
sideration must also be taken. Substituting (2.9) instead of Hkpzl Z[n — myg),
and dropping the even order terms leads to

Yvolterra[1] = Z Z Z Z

p=1 mi=0mqo=0 mp
p odd
hpmy ma,- sm, [eﬂ’rfotx[n} + e_jzﬂfotx*[nﬂ
p
H [e72m ot g — my)] + e 720t [n — my]] . (2.22)
k=1

From (2.22), it can be observed that all terms where the number of z[n| terms
differ by anything other than one from the number of x*[n| terms, are not
centered at the center frequency fy and hence, do not contribute to the output
signal [17].

Using the discussions above, the discrete baseband representation of the
Volterra series can be formulated as

P M M M
yVolterra[n] = E E E e §
p=1 mi=0ma=m1  M(pi1)/2=M(p-1)/2
p odd
M M
X E : o E hl)ymhmz,'“ ,Mp
m(p+3)/2=0 mp=mp—1
(p+1)/2 P

X H x[n —my] H " [n — myg). (2.23)

k=(p+3)/2
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The series can be re-written in matrix form as
Yvolterra = Xh; (224)

where h is a vector containing all the coefficients hy, i, my,... m,, X is a matrix
containing all the permutations of z[n] from (2.23):

X(n,j) = H x[n — my) Hx* [n —my], (2.25)
where X (n, j) is the n*" row and j*" column entry. It is common to call (2.25)
the kernels of the Volterra series.

In this representation for the Volterra series, the issues discussed in section
2.1.1 are applied to construct the baseband model. However, for a modulator,
because the passband criterion is no longer valid, such a simplification can not
be done. In paper [B], a dual-input Volterra series is constructed to model
the modulator. This model enables the identification and compensation of
nonlinear distortions between the I and Q branches, which is not possible with
a normal baseband-derived Volterra series.

It has been shown that a wide class of nonlinearities can be represented at
good precision with a Volterra filter [30,31]. It is also interesting to note that
while the Volterra series is a nonlinear model, it is linear in the parameters
which greatly simplifies the identification process.

It can be noticed further from (2.23), that as the nonlinear order P or
memory depth M increases, the number of parameters grows rapidly. This
has rendered the Volterra series useful for only mildly nonlinear systems, and
much research has been done to find ways to reduce the number of parameters
and terms in the Volterra model. Two techniques have been utilized to alleviate
this problem, either pruning parameters from the Volterra series, or finding
recursive descriptions to decrease the needed memory depth and nonlinear
order. The two techniques and models based on them are described in the
next sections.

2.3.2 Reduced Volterra series based models

A popular technique to obtain behavioral models from the Volterra series is
to identify and construct a model based on the most important terms in the
series. Therefore in practice, these models are often named reduced Volterra
series models or pruned Volterra series models. An overview od some of the
most widely-used models are presented in this section.

Memory Polynomial

An important and widely used model is the memory polynomial (MP) model
[32,33]. This model can be described as both an extension of the normal
polynomial model to include memory, or as a reduction of the Volterra model
to only include diagonal terms. This model has also been called the parallel
Hammerstein model in literature [6]. The model can be written as

P
ympln] =)

M
iy m[n —m] [zfn —m][P~". (2.26)
0

m=
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It can be noticed that the memory polynomial model is also linear in the
parameters.

The memory polynomial model, when originally purposed, included both
odd and even order power terms. However, because the amplitude operation
|z[n — m]| is an even function, as long as x[n] is an odd function, the consid-
erations of section 2.1.1 are met, and the corresponding terms will all be odd
functions, and contribute to the output signal [18,34, 35].

For modulators, using a similar approach, it is possible replace the dual-
input Volterra series in paper [B], with a dual-input memory polynomial model.
This will greatly reduce the number of parameters, and can help obtain better
performance.

Parallel Wiener

Similar to the parallelization of the Hammerstein model in MP, the Wiener
model can be parallelized as well. This model, known as the parallel-cascade
Wiener model [36], can also model nonlinear memory effects in a power am-
plifier. However, it suffers from the same complex identification as the Wiener
model, as it is no longer linear in the parameters.

Generalized Memory Polynomial

Morgan et. al in [17] proposed a new model that generalized the memory
polynomial model by including leading and lagging terms. This model can be
written as

P M
vanrlr = 303 hymozln — mllafn —mP?

+bp m gx[n — ml|z[n — m + g]|?, (2.27)

and is called the generalized memory polynomial (GMP) model. Compared to
the memory polynomial model, there is an extra degree of freedom in terms of
choosing the leading or lagging delay. By setting G = 0, it is observed that this
model becomes the memory polynomial model, i.e., the memory polynomial
model is a special case of the GMP model.

Baseband-derived Volterra

The authors in [35] derive a base-band Volterra series for power amplifier
modeling. By rewriting the Volterra series terms with amplitude and phase as
inputs, they generalize the memory polynomial model. The model structure
is somewhat similar to a “generalized” GMP structure. They also discuss the
difference of odd order power terms, and odd order functions.

Dynamic Volterra Series

In order to find ways to rewrite the Volterra series, in [37] a new mathe-
matical model for power amplifiers is presented based on modeling the static
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and dynamic parts separately. This work was constructed into the behav-
ioral model format in [38] and [39]. Further work was done in [40] and [41].
This model, known as the Volterra model with dynamic deviation reduction
(Volterra DDR), or the dynamic Volterra series representation, adds a param-
eter R by which the number of dynamics involved in the modeling are limited.
In this way, the number of parameters in the Volterra series may be reduced.
The baseband equivalent model expanded from [42] can be written as

P
yppr[n] = Z hpo  xn][z[n][P~!
— —
ppo—dld zero order dynamic
P M
2 D by gl muljala]
p=1 m;=1
p odd 15% order dynamics path 1
P M
202 s 2l = male? ]
p:3 mo=1 ot .
p odd 1%% order dynamics path 2

(2.28)

where up to 15* order dynamics are shown.

Sliding kernels dynamic Volterra series

An interesting modeling approach was proposed in [43], where the Volterra
series was modified by considering the Fourier integral in place of the convo-
lution, and the sliding kernels dynamic Volterra series model was constructed.
This model was further developed in [44], to describe longer-term memory
effects.

Switching models

Models which partition the input signal into regions and find different mod-
els for these regions have also been analyzed in the literature. Piecewise
Volterra filters were derived in [45], and it is shown that parameter esti-
mation remains a linear problem when the regions are partitioned. In [46],
a piecewise Hammerstein structure is used to construct the piecewise
model. In [47], spline functions are used to switch between different regions.
In [48], a model is proposed for envelope tracking applications based on vector
threshold decomposition. Normally for these types of models, each output
sample is involved with many models. Therefore, computational complexity
becomes a limiting factor in these type of model structures.

2.3.3 Generalized Volterra series based models

A second track of Volterra based behavioral modeling has been to find ways
to further exploit the recursive nature of a power amplifier. This can help
reduce the amount of memory depth needed when modeling. However, these
models tend to no longer be linear in the parameters, which complicates the
identification process.
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ITR models

The Volterra series is a natural expansion from a linear finite impulse response
(FIR) model [19]. In this format, it is assumed that the output signal can be
modeled with the input signal only. In practice, power amplifiers tend to
have long-term memory effects, that cannot be easily modeled by only using
the input signal. These effects originate from inherent feedback in the power
amplifier circuit and biasing networks. One solution was therefore, the use of
infinite impulse response filters (ITRs) in [49], but due to the recursive nature,
stability was a major problem.

Volterra model with Laguerre functions

In order to model longer-term memory effects and avoid the stability issues,
authors have proposed the use of orthonormal basis functions instead. In [50],
Zhu et. al. proposed the use of Laguerre functions as the basis for the Volterra
expansion, replacing the Dirac impulses of the Volterra FIR filter with a fixed-
pole orthonormal Laguerre function. This function decays exponentially to
zero at a controlled rate, and has a similar structure to an IIR filter with a
pre-decided pole to alleviate the stability issues.

Volterra model with Kautz functions

In [51], the Kautz function was suggested as an orthonormal basis. This model
is similar to the Laguerre-based model, except that in the Laguerre-based
model the orthonormal-basis poles are chosen to be real, while in the Kautz-
based model the poles are allowed to be complex as well.

Reduced-orthonormal model

In paper [A], we propose a new model that can combine both modeling tech-
niques. This model has a similar model structure to the memory polynomial
model, but adds an additional IIR-like filter using Kautz-functions to cap-
ture longer term memory effects. Therefore, this model can exploit longer
term memory effects with the correct choice of pole, like the Kautz-Volterra
model, but also has a much reduced number of parameters, like the memory
polynomial model. The block diagram of this model is shown in Figure 2.3.

2.3.4 Other models

For sake of completeness, some other important models which either could not
be easily classified into the three groups above or were not the main focus of
the thesis are discussed in this section.

Look-up tables (LUT)

A widely used technique to model and predistort power amplifiers, are lookup
tables. In this technique, the AM/AM and AM/PM characteristics of a PA are
used to construct tables for modeling and inverting the PA. In [52], multiple
lookup tables for different power levels are used to model and predistort the
power amplifier, enabling a faster response to changes in the PA characteristics.
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Figure 2.3: Block diagram of the reduced orthonormal model.

Artificial neural networks

Artificial neural networks (ANNs) have also gained recognition in recent years
[53] for PA modeling. It has been shown that the single-hidden-layer multilayer
perceptron (MLP) ANN have universal approximation capabilities [54, 55].
Two main approaches have been taken in ANN design for behavioral model-
ing, MLP and time-delayed neural networks (TDNN) [56-60], and radial-basis
function neural networks (RBFNNs) [61,62]. For TDNNs, it was shown in [2],
that the network is similar to the memory polynomial model in structure, with
a different nonlinear function. Different approaches have been taken to model
the power amplifier using TDNNs, the common approach has been to use two
real-valued TDNNs for the I and Q signals and then combine the output.
Another approach has been the use of a complex valued neural network [63].
In [56], one real-valued neural network is used with both I and Q as the input.
RBFNNSs consist of three layers, an input layer, a hidden layer, and an output
layer. The input layer to the hidden layer space has a nonlinear transformation
using Green’s function [64], while the hidden layer to output layer has a linear
transformation.

NARMA models

The nonlinear autoregressive moving-average (NARMA) model has been used
to model power amplifiers [5,65]. These models could also be treated as models
with nonlinear memory. In this model, a nonlinear feedback path is added to
enable the modeling of IIR terms. However NARMA models generally suffer
from the same stability issues as in [49]. Some studies on the stability and the
stability criterion for this model can be found in [66].

State-space models

Another type of behavioral model that has been used are state-space models
[67]. These models may include linear memory terms, or nonlinear terms,
based on the formulation. The main advantage with these models is the ability
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to model the power amplifier behavior as a full two port device, and not as
a single-input single output system. Such a model is proposed in [68], where
power amplifiers are modeled as nonlinear two-port RF networks. In [69], a
dual-input Volterra series model is proposed that takes both RF input and
supply power as inputs, to remove voltage ripple of the power supply.

Gray-box models

All models discussed in this thesis were black-box models. However, it is
important to also mention gray bor models. In these type of models, some
knowledge of the internal circuitry is used to find good behavioral models.
Identification of such models is discussed in [70], and in [71], the circuit struc-
ture is used to find the relationship between parameter terms and physical
phenomenon.

2.4 Model parameter identification

An important issue in behavioral modeling is parameter identification. It is
well-known that black-box models suffer from uncertainty in modeling [2], and
hence, the parameter estimation process has to be analyzed carefully.

2.4.1 Identification data signal properties

A power amplifier behavioral model will depend on the type of data that is
used in the identification procedure. Therefore, it is advantageous to identify
the behavioral model with the same communication signal that will be used in
the system, e.g. if the system is designed for a WCDMA signal, WCDMA-like
signals should be used for identification. This will guarantee that the input
signals are persistently exciting for the communication system [72], i.e., that
the power amplifier is excited with the correct frequency and amplitude range.

2.4.2 Identification algorithms

Different models will have different parameter identification strategies. All
models that are linear in parameters for example, may be identified by the
least-squares estimate (LSE) algorithm. This is an important advantage for
such models, as the least-squares algorithm guarantees global convergence [73].
The LSE solution can generally be written as [73]

h=(XTX)"" XHy, (2.29)

where X is a matrix containing all permutations of the input signal of a model
structure (for example from 2.23-2.24), h is the estimated parameters, and y
is the output signal.

For models that are not linear in parameters, iterative procedures have to
be used for parameter identification. There is no guarantee for global con-
vergence for these models, and in some cases local minima may hinder the
identification process. In this work, for the models discussed in section 2.3.3 a
full search of poles for each nonlinear order as in [51] is used. In this technique,
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after finding the optimum poles, the problem becomes a normal least squares
estimation.

2.4.3 Bias and variance in parameter identification

When identifying a power amplifier behavioral model, it is important to be
aware of the two types of errors in parameter estimation; bias and variance.
In general, the expected value of the quadratic error in parameter estimation
can be approximated as [72] [p500-504]

. 2 N k
E |:‘ymodel(ZN) - ymodel(hk;ZN)‘ :| ~ VN(hk,ZN) + QAN s (230)
—_—
Bias Vari

where Vi is the sum of the squared errors, ﬁk are the estimated k parameters,
ZN is the input and output data vector, X is a scaling for the expectation of the
square of error, and N is the size of the data set. As the number of parameters
grow, the first term, the bias, becomes smaller since more parameters can
reduce the quadratic error, but due to the uncertainty in parameter estimation,
the second term, the variance, grows.

The implications of this fact is that in order to be able to identify the pa-
rameters properly, the data set size has to be large enough to avoid overfitting.
Overfitting occurs when the number of parameters becomes comparable to the
data set size. This phenomenon can be observed in the two tests in Figure 2.4.
In the first test, labeled closed test, memory polynomial models (2.26) with
different number of parameters are identified, and the same data set that was
used for identification is also used for validation. In the second experiment,
labeled open test, the model is identified with one set of data, and another
independent set of similarly generated data is used for validation. In these
experiments the data length size is kept fixed.

It can be seen that as the number of parameters increase, in the closed test,
the model performance consistently improves. However, this is misleading,
since in the open test the performance diminishes as the number of parameters
increase. This is because the uncertainty in the parameter estimation grows as
% grows, and overfitting occurs. Overfitting can be avoided by using different,
but statistically similar, data sets for identification and validation. All model
evaluation results presented in this thesis use different data sets for the model
identification and validation, respectively.

2.5 Discussion

Due to the importance of behavioral modeling, the detailed analysis of the
important issues in modeling of this chapter was necessary. It helped in un-
derstanding the sources of distortion and in constructing new models. The
parameter identification issues discussed were also important, for behavioral
modeling applications.

However, in practice, when modeling a power amplifier, we are faced with
many choices. As there are many models in the literature, it is not obvious
which one can be suitable for our application. By just looking at different
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Figure 2.4: Overfitting in power amplifier behavioral modeling identification.

model structures, we might be able to narrow down our model choice, but
there are still many models to choose from. Which model to use for a specific
application depends on many factors. Therefore, the focus of the next chapter
is a detailed comparison between different behavioral models. Some of the
methods to evaluate models are discussed, which can provide some guidance
on which models are more suitable than others.
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Chapter 3

Evaluation of Behavioral
Models

In the previous chapter, a number of power amplifier behavioral models were
presented. While the model structure may sometimes help in choosing a be-
havioral model, in most cases we are mainly interested in how well the model
can predict a power amplifier performance. In practice, in order to choose
a behavioral model over another, modeling accuracy is the most important
factor. This chapter deals with comparing different behavioral models perfor-
mance, and provides criteria to be able to choose behavioral models suitable
for the application at hand.

The first efforts to compare power amplifier behavioral models was done
in [74], which included neural networks, the Volterra series and Hammerstein
models. Isaksson et. al. extended this work in [6] with more behavioral mod-
els, input signals with different characteristics, and cross-validation. Signal
bandwidth effect was also analyzed.

In order to compare different behavioral models, two criteria have to be
established. The first and most obvious is the accuracy of the model. This
will measure how well the model is able to represent a power amplifier output
signal. However, this measure is not able to completely compare different
models, as it is a well-known fact that given high orders, the Volterra series
will be able to model any nonlinear function, and hence have negligible error.
Thus, a second criterion is the computational effort needed to construct the
behavioral model. Section 3.1 deals with the first measure and section 3.2
deals with the second.

3.1 Modeling accuracy

The most important criterion in behavioral model performance, is how accu-
rate the model prediction is compared to the true output signal of a power
amplifier. In literature, many measures exist for this comparison. A simple
measure has been to compare the AM/AM and AM/PM plots of the model
output vs. an ideal power amplifier output. Another technique is to plot the
time-domain signal or frequency response of the output of a model and a power

23
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amplifier and compare. These techniques do not yield a quantitative result,
and may be subject to the human interpretation.

In literature, many figures of merit (FOM) for comparison have been used.
A summary and comparison is presented in [75]. Some of the most important
measures are the normalized mean square error (NMSE), the error vector mag-
nitude (EVM), the adjacent channel power ratio (ACPR), the adjacent channel
power error measure (ACEPR), the weighted error-to-signal power ratio (WE-
SPR), the memory effect ratio (MER), and the memory effect modeling ratio
(MEMR).

It has been pointed out that NMSE, for all practical cases, will mainly be
affected by in-band errors [75]. This is because it is written as a power measure,
and the sum of squared errors. Since most of the power is in-band (Figure 1.3),
in-band errors will dominate. In some applications this may