CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Improving GNSS-R sea level determination through inverse modeling of SNR data

Joakim Strandberg (Institutionen för rymd- och geovetenskap, Rymdgeodesi och geodynamik) ; Thomas Hobiger (Institutionen för rymd- och geovetenskap, Rymdgeodesi och geodynamik) ; Rüdiger Haas (Institutionen för rymd- och geovetenskap, Rymdgeodesi och geodynamik)
Radio Science (0048-6604). Vol. 51 (2016), 8, p. 1286-1296.
[Artikel, refereegranskad vetenskaplig]

This paper presents a new method for retrieving sea surface heights from Global Navigation Satellite Systems reflectometry (GNSS-R) data by inverse modeling of SNR observations from a single geodetic receiver. The method relies on a B-spline representation of the temporal sea level variations in order to account for its continuity. The corresponding B-spline coefficients are determined through a nonlinear least squares fit to the SNR data, and a consistent choice of model parameters enables the combination of multiple GNSS in a single inversion process. This leads to a clear increase in precision of the sea level retrievals which can be attributed to a better spatial and temporal sampling of the reflecting surface. Tests with data from two different coastal GNSS sites and comparison with colocated tide gauges show a significant increase in precision when compared to previously used methods, reaching standard deviations of 1.4 cm at Onsala, Sweden, and 3.1 cm at Spring Bay, Tasmania.

Nyckelord: GNSS-R , Inverse modeling , Sea level , Tide gauge

Denna post skapades 2016-09-16. Senast ändrad 2016-11-16.
CPL Pubid: 241876


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för rymd- och geovetenskap, Rymdgeodesi och geodynamik (2010-2017)


Fasta jordens fysik
Annan geovetenskap och miljövetenskap

Chalmers infrastruktur

Onsala rymdobservatorium

Relaterade publikationer

Denna publikation ingår i:

Inverse modelling of GNSS multipath signals