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Abstract. This paper is concerned with testing properties of polymor-
phic functions. The problem is that testing can only be performed on spe-
cific monomorphic instances, whereas parametrically polymorphic func-
tions are expected to work for any type. We present a schema for con-
structing a monomorphic instance for a polymorphic property, such that
correctness of that single instance implies correctness for all other in-
stances. We also give a formal definition of the class of polymorphic
properties the schema can be used for. Compared to the standard method
of testing such properties, our schema leads to a significant reduction of
necessary test cases.
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1 Introduction

How should one test a polymorphic function?
A modern and convenient approach to testing is to write specifications as

properties, and let a tool generate test cases. Such tools have been implemented
for many programming languages, such as Ada, C++, Curry, Erlang, Haskell,
Java, .NET and Scala [2, 3, 6, 7, 16, 20, 24, 27]. But how should one generate
test cases for polymorphic functions? Parametrically polymorphic functions, by
their very nature, work uniformly on values of any type, whereas in order to run
a concrete test, one must pick values from a specific monomorphic type.

As an example, suppose we have two different implementations of the stan-
dard function reverse that reverses a list:

reverse1 , reverse2 : ∀a. [a ]→ [a ]
In order to test that they do the same thing, what monomorphic type should we
pick for the type variable a? Standard praxis, as for example used by QuickCheck
[7], suggests to simply use a type with a large enough domain, such as natural
numbers, resulting in the following property:
∀ xs : [N ]. reverse1 xs reverse2 xs

Intuitively, testing the functions only on the type N is “enough”; if the original
polymorphic property has a counter example (in this case a monomorphic type
T and a concrete list xs : [T ]), there also exists a counter example to the
monomorphic property (in this case a concrete list xs ′ : [N]).

However, how do we know this is enough? And, can we do better than this?
This paper aims to provide an answer to these questions for a large class of



properties of polymorphic functions. We give a systematic way of computing the
monomorphic type that a polymorphic property should be tested on. Perhaps
surprisingly, we do this by only inspecting the type of the functions that are
being tested, not their definition. Moreover, our method significantly improves
on the standard testing praxis by making the monomorphic domains over which
we quantify even more precise. For example, to check that reverse1 and reverse2
implement the same function, it turns out to be enough to test:
∀ n : N. reverse1 [1 . .n ] reverse2 [1 . .n ]

In other words, we only need to quantify over the length of the argument list, and
not its elements! This is a big improvement over the previous property; for each
list length n, only one test suffices, whereas previously, we had an unbounded
number of lists to test for each length. This significantly increases test efficiency.

Related Work There are a few cases in the literature where it has been shown
that, for a specific polymorphic function, testing it on a particular monomorphic
type is enough. For example, Knuth’s classical result that verifying a sorting
network only has to be done on booleans [19, sec. 5.3.4], can be cast into a
question about polymorphic testing [11]. The network can be represented as a
polymorphic function parametrised over a comparator (a 2-element sorter):

sort : ∀a. (a × a → a × a)→ [a ]→ [a ]
Knuth has shown that, in order to check whether such a function really sorts,
it is enough to show that it works for booleans; in other words checking if the
following function is a sorting function:

sort Bool : [Bool ]→ [Bool ]
sort Bool = sort (λ(x , y)→ (x ∧ y , x ∨ y))

Another example is a result by Voigtländer [28], which says that in order to
check that a given function is a scan function, it is enough to check it for all
possible combinations on a domain of three elements.

The result we present in this paper has the same motivation as these ear-
lier results, but the concrete details are not exactly the same. In section 4, we
compare our general result with Knuth’s and Voigtländer’s specific results.

Contributions and outlook Our main contribution is a schema for testing poly-
morphic properties effectively and efficiently. We explain the schema both from
a theoretical and practical point of view. Our examples are aimed at giving prac-
titioners a good intuition of the method (section 2) and demonstrate some of its
applications (section 4). A more formal exposition is provided in section 3. We
cover related and future work in sections 5 and 6 and we conclude in section 7.

2 Examples

In this section, we discuss a number of examples illustrating the idea behind
our method in preparation for the more formal treatment in the next section.
We are using Haskell-like notation and QuickCheck-like properties here, but our
result can be used in the context of other languages and other property-testing
frameworks.



Example 1. Let us first compare two implementations of the function filter :
filter1 ,filter2 : ∀a. (a → Bool)→ [a ]→ [a ]

A parametric polymorphic function knows nothing about the type it is being
used on. So, the only way an element of type a can appear in the result, is if
it was produced somehow by the argument of the function. We can analyse the
type of the arguments of the functions under test, in order to see in what way
the arguments can be used to produce an element of type a. The monomorphic
type A we are going to construct to test the functions on will represent all such
ways in which the arguments can be used to produce an a.

In the case of filter , the only way we can produce elements of type a, is by
using an element from its argument list (the predicate (a → Bool) can only
inspect elements). So, a natural choice for A is to be the index of the element
from the argument list it used:

data A = X N
In other words, X i stands for the ith element (of type a) from the input list. Now,
we have not only fixed a type to use for a, but also decided which elements the list
xs should be filled with, once we know the length. Thus, the final monomorphic
property becomes:
∀ n : N, p : A→ Bool . let xs = [X 1 . .X n ]

in filter1 p xs filter2 p xs
The construction we apply here can be seen as a kind of symbolic simulation:
we feed the function with symbolic variables (here represented by naturals), and
examine the output. This becomes more clear in the next example.

Example 2. Let us take a look at a typical polymorphic property, relating the
functions reverse and append (++)
∀ a: ?,∀xs, ys : [a ]. reverse (xs ++ ys) reverse ys ++ reverse xs

We can view the left- and right-hand sides of the property as two different
polymorphic functions that are supposed to deliver the same result. Where can
elements in the result list come from? Either from the list xs, or the list ys.
Thus, the monomorphic type A becomes:

data A = X N | Y N
And in the property, we not only instantiate the type, but also the elements of
the lists:
∀ n,m : N. let xs = [X 1 . .X n ]

ys = [Y 1 . .Y m ]
in reverse (xs ++ ys) reverse ys ++ reverse xs

Finally, an example of a property that does not hold.

Example 3. Take a look at the following property which claims that map and
filter commute (which is incorrect as formulated).
∀ a: ?,∀p : a → Bool , f : a → a, xs : [a ].

map f (filter p xs) filter p (map f xs)
A typical QuickCheck user may pick a to be N, and running QuickCheck might
produce the following counterexample1:
1 Using a recent QuickCheck extension to show functions.



p = {1→ True, → False }; f = { → 1}; xs = [3]
In other words, if p is a predicate that holds only for 1, and f is the constant
function 1, and if we start with a list [3], the property does not hold.

Investigating the left- and right-hand sides as functions from p, f , and xs to
lists, we see that an element of type a may either directly come from the list xs,
or be the result of applying f . Expressing this in terms of a datatype, we get:

data A = X N | F A
And the property turns into:
∀ p : A→ Bool ,n : N. let xs = [X 1 . .X n ]

in map F (filter p xs) filter p (map F xs)
The only arguments we need to quantify over are the predicate p and the length
of the list xs: the function f is fixed to the constructor F . But there is one more
advantage; the counterexample that is produced is more descriptive:

p = {F (X 1)→ True, → False }; f = F ; xs = [X 1]
We clearly see that p holds only for the result of applying f to the (only) element
in the list xs.

3 Generalisation

In this section we present a systematic formulation of our schema to test poly-
morphic functions. Additionally we expose the main theoretical results that back
up the method and argue for their correctness. We assume familiarity with basic
notions of category theory, notably the interpretation of data types as initial
algebras [4, ch. 2].

3.1 Revisiting reverse

We start by going through all the necessary steps for one particular concrete
example, namely testing two implementations of reverse against each other:

reverse1 , reverse2 : ∀a. [a ]→ [a ]
The method we use makes a clear distinction between arguments (values that
are passed to the function) and results (values which are delivered by the func-
tion, and should be compared with other results). Furthermore, the arguments
are divided up into two kinds; arguments that can be used by the function to
construct elements of type a, and arguments that can only be used to observe
arguments of type a.

The first step we take in order to compute the monomorphic instance is to
transform the function under test into a function that makes these three parts
of the function type explicit. The final type we are looking for is of the form:
∀ a. (F a→ a)× (G a→X )→H a

for functors F ,G ,H and a monomorphic type X . The argument of type F a→a
can be used to construct elements of type a, the argument of type G a→X can
be used to observe arguments of type a (by transforming them into a known type
X ), and H a is the result of the function. We call the type above the canonical



testing type; all polymorphic functions of the above type can be tested using our
method, if there exists an initial F -algebra.

How do we transform functions like reverse into functions with a canonical
testing type? We start by “dissecting” arguments that can produce as into func-
tions that produce exactly one a. For reverse, the one argument that contains
as is of type [a ]. We now make use of the fact that all lists can be represented
by a pair of its length and its indexing function, and we thus replace the list
argument with an argument of type N × (N→ a) (we will say more about this
transformation in section 3.5). After re-ordering the arguments the new type is:
∀ a. (N→ a)× N→ [a ]

which fits the requirement, with F a = N, G a = (), X = N, and H a = [a ].
For the original function reverse1 (and similarly for reverse2 ), we can define

a corresponding function with a canonical testing type as follows:
reverse1 ′ : ∀a. (N→ a)× N→ [a ]
reverse1 ′ = reverse1 ◦ project

This uses an auxiliary function to project the arguments of the new function to
the initial arguments:

project : (N→ a)× N→ [a ]
project (x , obs) = map x [1 . . obs ]

Observe that if the new arguments properly cover the domain (N→a)×N, then
the original arguments also properly cover the domain [a ]. It means that the
transformations that we have performed to fit the canonical testing type do not
weaken the verification procedure.

What have we gained by this rewriting? Our main result says: to test whether
two polymorphic functions with a canonical testing type are equal, it is enough
to test for equality on the monomorphic type A, where A is the least fixpoint of
the functor F , and to use the initial algebra α : F A→A as the first argument.

For the reverse example, the least fixpoint of F is simply N and the initial
algebra is the identity function. Thus, to check if reverse1 ′ and reverse2 ′ are
equal, we merely have to check
∀ obs : N. reverse1 ′ (id , obs) reverse2 ′ (id , obs)

Writing the transformation explicitly is cumbersome, and indeed we can avoid it,
by picking arguments directly from the image of the partially applied projection
function, that is, from the set {project (id , obs) | obs ∈ N}. By doing so, we
obtain the property given in the introduction.
∀ n : N. reverse1 [1 . .n ] reverse2 [1 . .n ]

3.2 Overview

In general, given a function of type ∀a. σ[a]→H a, the objective is to construct
a type A, and identify a set of arguments of type σ[a := A] to test it against. To
do so, we proceed with the following three steps.

1. Transform the function to test and its type (∀a. σ[a]→H a) into a function
with its type in the canonical form (∀a. (F a→a)×(G a→X )→H a), where
F ,G ,H are functors. This must be done through an embedding-projection



pair ((e, p) : σ[a] ⊆ (F a → a) × (G a → X )). The purpose is to identify all
the ways (for the function) to construct values of type a, and express them
as an algebra of the functor F . (Sect. 3.5).

2. Calculate the initial algebra (µF , α) of the functor F . Parametricity and
initiality implies that fixing the algebra to α and a to µF still covers all
cases. Note that the type argument has now been removed. (Sect. 3.3)

3. Re-interpret the fixing of the algebra to α in step 2 in the context of the
original type, using the projection produced in step 1. The arguments to test
the function on are picked in the set {p (α, s) | s ∈G (µF )→X }. (Sect. 3.4)

After these steps the type argument is gone, and testing can proceed as usual.
We detail the procedure and argue for its validity in the following sections.

3.3 The initial view

In this section we expose and justify the crucial step of our approach: the re-
moval of polymorphism itself. We begin with showing that applications of (some)
polymorphic functions can be expressed in terms of a monomorphic case.

Suppose that the polymorphic function has the type (∀a. (F a→a)× (G a→
X ) → H a), that is, its only way to construct values of type a are given by
an algebra of functor F , (X is a constant type where a cannot appear). Then,
instead of passing a given algebra to a polymorphic function, one can pass the
initial algebra, and use the catamorphism of the algebra (often called fold and
denoted ([ ]) in the sequel) to translate the results. If the function can also
observe the values of the polymorphic parameter, then the observation functions
passed as argument must be composed with the catamorphism.

By passing the initial algebra, the type parameter is fixed to µF . The appli-
cations of the catamorphism handle the polymorphism, effectively hiding it from
the function under test. The following theorem expresses the idea formally. Our
proof relies on parametricity [29] and properties of initial algebras [4, ch. 2]

Theorem 1. Let F ,G ,H be functors and let f : (∀a :?.(F a→a)× (G a→X )→
H a). If there is an initial F -algebra (µF , α), then
∀ t : ?, p : F t → t , r : G t →X .

ft (p, r) = H ([p]) (fµF (α, r ◦G ([p])))

Proof. We apply the parametricity theorem (restricted to functions) on the type
of f , following mechanically the rules given by Fegaras and Sheard [12], theorem
1. After simplification we obtain:
∀ f : (∀a : ?.(F a→ a)× (G a→X )→H a),

t1 , t2 : ?, % : t2 → t1 ,
p1 : F t1 → t1 , p2 : F t2 → t2 . r : G t1 →X ,

p1 ◦ F % = % ◦ p2 ⇒ ft1 (p1 , r) = H % (ft2 (p2 , r ◦G %))
This equation expresses a general case (ft1 (p1 , r)) in terms of a specific case
(H % (ft2 (p2 , r ◦ G %))), under the assumption p1 ◦ F % = % ◦ p2 . Here, we hope
to find specific values for t2 , q and % which verify the assumption, and obtain a
characterisation of the polymorphic case in terms of a monomorphic case.



Satisfying the assumption (p1 ◦ F % = % ◦ p2 ) is equiv-
alent to making the diagram on the right commute.
Let us pick the following values for t2 , p2 and %:

– t2 = µF , the least fixpoint of F ;
– p2 = α, the initial F -algebra;
– % = ([p1 ]), the catamorphism of p1 .

We know from properties of initial algebras and cata-
morphisms that these choices make the diagram com-
mute. Thus, the assumption is verified, and the proof
is complete.

t2F t2

t1F t1

p2

%F %

p1

Theorem 1 shows that we can express a polymorphic function in terms of
a particular monomorphic instance, but the expressions still involve applying
(polymorphic) catamorphisms. In the case where we have a function to test (f )
and a model (g) to compare against, we can apply theorem 1 to both sides and
simplify away the catamorphisms.

Theorem 2. Let F ,G ,H be functors, let f , g :∀a :?.(F a→a)×(G a→X )→H a.
If there is an initial F -algebra (µF , α), then

∀ s : G (µF )→X . fµF (α, s) = gµF (α, s)
⇒ ∀ a : ?, p : F a→ a, r : G a→X . fa (p, r) = ga (p, r)

Proof. If fµF (α, s) = gµF (α, s) holds for any s, then in particular the equality
fµF (α, r ◦ G ([p])) = gµF (α, r ◦ G ([p])) holds. Applying H ([p]) to both sides of
the equality preserves it, and then we can use theorem 1 to transform both sides
and obtain that fa (p, r) = ga (p, r) holds for any choice of a, p and r .

3.4 General form of arguments

The results of the previous section apply only to functions of type (∀a. (F a →
a)× (G a→X )→H a). In this section we show that we can extend these results
to any argument types which can be embedded in (F a→ a)× (G a→X ).

Definition 1. An embedding-projection pair (an EP) is a pair of functions e :
A→ B, p : B → A satisfying p ◦ e = id. Because it constitutes evidence that
covering B is enough to cover A, we write (e, p) : A⊆ B to denote such a pair.

Given an EP2 (e, p) : σ[a] ⊆ (F a → a) × (G a → X ), one can transform the
arguments calculated in the previous section (α paired with any function of type
G (µF )→ X ) into σ[a] by using the projection component, p. The existence of
the embedding guarantees that the domain of the original function is properly
covered. This idea is expressed formally in the following theorem.
2 Strictly speaking, this is a polymorphic EP — one EP for each type a.



Theorem 3. Let F ,G ,H be functors and let f , g :∀a. σ[a]→H a. If there is an
initial F -algebra (µF , α) and an EP (e, p) : σ[a]⊆ (F a→ a)× (G a→X ), then

∀ s : G (µF )→X . fµF (p (α, s)) = gµF (p (α, s))
⇒ ∀ a : ?, l : σ[a]. fa l = ga l

Proof. Apply theorem 2 to f ′ = f ◦ p and g ′ = g ◦ p as follows:

∀ s : G (µF )→X . fµF (p (α, s)) = gµF (p (α, s))
⇔ {by definition of ◦, f ′ and g ′}
∀ s : G (µF )→X . f ′µF (α, s) = g ′µF (α, s)

⇒ {by theorem 2}
∀ a : ?, q : (F a→ a)× (G a→X ). f ′a q = g ′a q

⇒ {by e l being a special case of q}
∀ a : ?, l : σ[a]. f ′a (e l) = g ′a (e l)

⇔ {by definition of ◦, f ′ and g ′}
∀ a : ?, l : σ[a]. fa ((p ◦ e) l) = ga ((p ◦ e) l)

⇔ {by the EP law: p ◦ e ≡ id}
∀ a : ?, l : σ[a]. fa l = ga l

Properties used for testing are not always expressed in terms of a model, but
very often directly as a predicate: they are merely Boolean-valued functions. We
can specialise the above result to that case: given a polymorphic predicate, it is
enough to verify it for the initial algebra.

Theorem 4. Let F ,G be functors, let f : ∀a. σ [a ]→ Bool. If there is an EP
(e, p) : σ[a]⊆ (F a→ a)× (G a→X ) and an initial F -algebra (µF , α), then

∀ s : G (µF )→X . fµF (p (α, s))
⇒ ∀ a : ?, l : σ[a]. fa l

Proof. Substitute const True for g in theorem 3.

One might think that theorem 3, about models, follows from theorem 4, about
properties, using f (p, r) = test (p, r) model (p, r). This is in fact invalid in
general, because one cannot assume that equality ( ) is available for arbitrary
types. Indeed, our usage of parametricity in the proof assumes the opposite.

The above results show that it is enough to test on arguments picked from
the set I = {p (α, s) | s : G (µF )→X }. This could be done by picking elements
s in G(µF )→ X and testing on p(α, s). However, for the efficiency of testing, it
is important not to proceed as such, because it can cause redundant tests to be
performed. This is because the projection can map different inputs into a single
element in I. A better way to proceed is to generate elements of I directly.



3.5 Embedding construction

The previous section shows that our technique can handle arguments that can be
embedded in (F a→ a)× (G a→X ). In this section we show that all first-order
polymorphic arguments can be embedded. Our proof is constructive: it is also a
method to build the EP. It is important to construct the embedding because it
is used in computing the set of arguments to test the property on.

The general form of a first order argument is a function of type C a → D a,
where C and D are functors and D is polynomial. Note that non-functional
values can be represented by adding a dummy argument. Similarly, the above
form includes n-ary functions, as long as they are written in an uncurried form.
We structure the proof as a series of embedding steps between the most general
form and the canonical form. EPs for each step are composed into the final EP.
The overall plan is to split all complex arguments into observations or construc-
tors, then group each class together. Lemmas detailing these important steps
are given after the top-level proof outline.

Theorem 5. Let Ci and Di be functors. If Di are constructed by sum, products
and fixpoints (0, 1,+,×, µ), and none of the Ci a are empty, then there exist
functors F , G and an EP (e, p):∀a : ?.×i (Ci a→Di a)⊆(F a→a)×(G a→X ).

Proof. ×i (Ci a→Di a)
⊆ {by lemma 2}
×i (Ci a→ (Si × (Pi→ a)))

≡ {by distributing → over ×}
×i (Ci a→ Si)× (Ci a × Pi→ a)

≡ {by letting Fi a = Gi a × Pi}
×i (Ci a→ Si)× (Fi a→ a)

≡ {by commutativity and associativity of ×}
×i (Ci a→ Si)××i (Fi a→ a)

⊆ {by lemma 1}
(G a→X )××i (Fi a→ a)

≡ {by (τ1 → a)× (τ2 → a) ≡ (τ1 + τ2)→ a}
(G a→X )× (F a→ a)

where G a =×i (Ci a); X =×i Xi and F a = +i (Fi a).

Lemma 1. For all types σ1, σ2 and non-empty types τ1, τ2 (witness1 : τ1 and
witness2 :τ2 ) then there exists (e, p) : (τ1 → σ1)×(τ2 → σ2) ⊆ τ1×τ2 → σ1×σ2.

Proof. The embedding applies the embedded functions pair-wise.
e (f1 , f2 ) = λ(t1 , t2 )→ (f1 t1 , f2 t2 )

The projection can be constructed by providing dummy arguments (witness) to
missing parts of the pair. It is safe to do so, because that part of the pair is
ultimately ignored anyway.



p h = (λt1 → fst (h (t1 ,witness2 )),
λt2 → snd (h (witness1 , t2 )))

Lemma 2. Let D be a functor constructed by sum, products and fixpoints. Then
there exist types S, P and (e, p) : D a ⊆ S × (P → a)

Proof. D represents a data structure, which can be decomposed into a shape (S)
and a function from positions inside that shape to elements (P → a). (Abbott
et al. [1] provide a detailed explanation). The shape can be obtained by using
trivial elements (S = D 1). For testing purposes, only structures with a finite
number of elements can be generated, and therefore one can use natural numbers
for positions (P = N). The projection can traverse the data structure in pre-
order and use the second component of the pair (N→ a) to look up the element
to put at each position. The corresponding embedding is easy to build.

3.6 Correctness in practice

We have reasoned in a fast-and-loose fashion: our proofs rely on the strongest
version of parametricity, which holds only in the polymorphic lambda-calculus.

Applying them to real-world languages (like Ada, Haskell, Java, ML, etc.) is
merely “morally correct” [8]. We assume that the functions under test are well-
behaved with respect to parametricity: they should not make use of side-effects,
infinite data structures, bottoms, etc. In the context of random or exhaustive
testing, these assumptions are generally valid. Therefore, our results are readily
applicable in practice with a very high level of confidence.

Still, we could extend the result by using a more precise version of para-
metricity, as for example Johann and Voigtländer [18] expose it.

4 More Examples

4.1 Multiple type parameters

While the theoretical development assumes a single type parameter, we can
apply our schema to functions with multiple type parameters. The basic idea
is to treat parameters one at a time, assuming the others constant. We do not
justify this formally, but merely show how to proceed on a couple of examples.

Example 4 (map). Consider the ubiquitous function map, which applies a func-
tion to each element in a list.

map : ∀a b. (a → b)→ [a ]→ [b ]
As usual, we are interested in testing a candidate map function against a known-
working model.

We first aim to remove the type parameter a. To do so, we isolate the con-
structors for a by embedding the list argument into a shape (the length of the
list) and a function giving the element at each position (see lemma 2). We obtain
the type ∀a b. (a → b) → N → (N → a) → [b ]. We see from the type that the
only constructor is an algebra of the functor F a = N. The initial F -algebra is



data A = X N
After substitution, we have the type ∀b. (A → b) → N → (N → A) → [b ], and
we know that the third argument is fixed to X .

We can proceed and remove the type parameter b. There is only one con-
structor for b, which is already isolated, so the initial algebra is easy to compute:

data B = F A
After substitution, we have the type (A→ B)→ N→ (N→ A)→ [B ], and we
know that the first argument is fixed to F . The second and third arguments can
be projected back into a list, so we get the final property:
∀ n : N. let xs = [X 1 . .X n ]

in map1 F xs map2 F xs
Note that the function to pass to map is fixed: again, only testing for various
lengths is enough!

Example 5 (prefix). In Haskell, the standard function isPrefixOf tests whether
its first argument is a prefix list of its second argument. isPrefixOf normally uses
the overloaded equality (( ) : a → a → Bool) to compare elements in the first
list to elements in the second one. Instead we consider a more general version
that explicitly takes a comparison function as parameter. In that case, the types
of elements in input lists do not have to match. This generalisation is captured
in a type as follows:

isPrefixOf : ∀a b. (a → b → Bool)→ [a ]→ [b ]→ Bool
In this example, the type arguments are completely independent, so we can

remove both at once. Both lists can be embedded into a shape (N) and a function
from positions (N → a) in the familiar way. We get the type: ∀a b. (a → b →
Bool)→ N→ (N→ a)→ N→ (N→ b)→ Bool .

Computing the initial algebras offers no surprise. We obtain:
data A = X N
data B = Y N
We have to test functions of type (A→ B → Bool)→ N→ (N→ A)→ N→

(N→ B)→ Bool , with the third argument fixed to X and the fifth fixed to Y .
Again, by using the projection, we know that we can instead generate lists of
X i and Y j to pass directly to the polymorphic function.

Thus, a property to check that two implementations of isPrefixOf have the
same behaviour is written as follows:
∀ eq : A→ B → Bool ,m : N,n : N.

let xs = [X 1 . .X m ]
ys = [Y 1 . .Y n ]

in isPrefixOf1 eq xs ys isPrefixOf2 eq xs ys

What if we had used the less general type ∀a. (a → a → Bool) → [a ] →
[a ]→ Bool (which is isomorphic to the standard type ∀a. Eq a ⇒ [a ]→ [a ]→
Bool)? In that case, the initial algebra would be

data A = X N | Y N
and the property would look exactly the same. The difference is that the func-
tion eq would be quantified over a larger set. It would only be passed values



of the form X i for the first argument, and Y i for the second argument, but
the generator of random values does not “know” it. Therefore, it might gener-
ate redundant test cases, where eq only differs in its results for argument-pairs
that are not in the form X i , Y i . As we have seen in the above example, this
redundancy is avoided by using the most general type. This is another example
where more polymorphism makes testing more efficient.

4.2 Assumptions on arguments

It can be quite challenging to write properties for functions whose arguments
must satisfy non-trivial properties. For example, generating associative func-
tions or total orders is not obvious. A naive solution is to generate unrestricted
arguments and then condition the final property on the arguments being well be-
haved. This can be highly inefficient if the probability to generate a well-behaved
argument is small. Since our technique fixes some parameters, it is sometimes
easier to find (or more efficient to generate) arguments with a complex structure.
We give examples in the following sections.

Example 6 (Parallel Prefix). A parallel-prefix computation computes the list
[x1, x1 ⊕ x2, . . . , x1 ⊕ . . . ⊕ xn], given an associative operation ⊕ and a list of
inputs x1, . . . , xn. How can we test that two given parallel-prefix computations
have equivalent outputs?

We start with the type ∀a.(a→ a→ a)→ [a]→ [a]. To isolate the construc-
tors, we rewrite the list type as usual and get ∀a.(a → a → a) → N → (N →
a) → [a]. We can group the constructors to make the algebra more apparent:
∀a.((a× a+ N)→ a)→ N→ [a]. The next step is to pick the initial algebra.

One might be tempted to use the following datatype and its constructors for
the initial algebra.

data A = OPlus A A | X N
However, we must take into account that the operation passed to the prefix com-
putation must be associative. The OPlus constructor retains too much informa-
tion: one can recover how the applications of ⊕ were associated by examining
the structure of A. In order to reflect associativity, a “flat” structure is required.
Thus, one should work with lists, as follows:

type A = [N]
x n = [n ]
oplus = (++)

The final property is therefore:
∀ n : N. let xs = map x [1 . .n ]

in prefix1 oplus xs prefix2 oplus xs

The problem of testing parallel prefix networks has been studied before, no-
tably by Sheeran, who has presented a preliminary version of our result in an
invited talk in Hardware Design and Functional Languages [25]. Voigtländer [28]
presents another monomorphic instance: he shows that it is enough to test over
a 3-value type (3). At first sight, it might seem that testing over 3 is better than



over N. However, merely substituting the type-variable with 3 still requires test-
ing all combinations of the other arguments, yielding 113×3n tests3 to cover the
lists of length n, while by our method a single test is enough for a given length.
Again, the efficiency of our method comes from the fixing of more arguments
than the type variable.

The above explanation to deal with associativity relies very much on in-
tuition, but it can be generalised. One must always take in account the laws
restricting the input when computing the initial algebra: that is, one must find
the initial object of the category of algebras that respect those laws. We direct
the interested reader to Fokkinga [13] for details.

Example 7 (Insertion in sorted list). Consider testing an insertion function which
assumes that its input list is strictly ascending. That is, its type is ∀a. (a →
a → Bool) → a → [a ] → [a ], but the list argument is restricted to lists that
are strictly ascending according to the first argument, which in turn must be
a strict total order. After breaking down the list as usual one must handle the
type ∀a. (a → a → Bool)→ a → N→ (N→ a)→ [a ].

Forcing the list to be sorted can be tricky to encode as a property of an
algebra. So, instead of constraining the lists, we put all the burden on the first
argument (an observation): it must be a strict total order that also makes the
list ascending. This change of perspective lets us calculate the initial algebra
without limitation. We obtain

data A = Y | X N
The element to insert is Y , and as in many preceding examples, the function

receives lists of the form [X 1 . .X n ]. This makes generating suitable orders
(A→A→Bool) easy. Indeed, for such an order (ord) to respect the order of the
list, it must satisfy the equation:

ord (X i) (X j ) = i < j
Therefore, we only need to decide on how to order Y with respect to X i . That
is, decide where to position Y in the list. For an input list of length n, there are
exactly n + 1 possible positions to insert an element. The final property shows
how to define the order given a position k for Y .
∀n : N, k : {0 . .n }. let xs = [X 1 . .X n ]

in insert1 (ord k) Y xs insert2 (ord k) Y xs
where ord k (X i) (X j ) = i < j

ord k Y Y = False
ord k (X i) Y = i 6 k
ord k Y (X j ) = k < j

Example 8 (Sorting network). A generator of sorting networks can be repre-
sented as a polymorphic function of type ∀a. (a × a → a × a) → [a ] → [a ].
The first argument is a two-element comparator. Note that, by parametricity,

3 Voigtländer [28] shows that only some combinations are relevant, but the number of
tests is still quadratic in the length of the input list. 113 is the number of associative
functions in 3 → 3 → 3.



the function cannot check whether the comparator swaps its inputs or not. It is
restricted to merely compose instances of the comparator.

Let us apply our schema on the above type. We use the isomorphism τ →
a × b ∼= (τ → a) × (τ → b) to split the first argument, and handle the list as
usual. We obtain the following type.
∀ a. (a × a → a)→ (a × a → a)→ N→ (N→ a)→ [a ]

If we overlook the restrictions on the constructors, the initial algebra is
data A = Min A A | Max A A | X Int

As usual, the sorting function is to be run on [X 1 . .X n ]. The comparator is
built out of Min and Max . Therefore, to fully test the sorting function, it suffices
to test the following function.

sort Lat : N→ [A]
sort Lat n = sort (λ(x , y)→ (Min x y ,Max x y)) [X 1 . .X n ]

The output is a list where each element is a comparison tree: a description of how
to compute the element by taking minimums and maximums of some elements
of the input. In order to verify that the function works, we are left with checking
that the output trees are those of a correct sorting function.

Note that this must be checked modulo the laws which restrict our initial
algebra. Min and Max must faithfully represent 2-element comparators which
can be passed to the polymorphic function. Therefore, the type A must be un-
derstood as a free distributive lattice [10] where Min and Max are meet (∧) and
join (∨) and Xi are generators.

The correctness of the function can then be expressed as checking each ele-
ment of the output (ok) against the output of a known sorting function. Formally:

ok =
∨

M⊆{1...n},#M=n−k

(∧
i∈M

Xi

)

There are (at least) two possible approaches to proceed with the verification.

1. Verify the equivalence symbolically, using the laws of the distributive lattice.
This is known as the word problem for distributive lattices. One way to do
this is to test for syntactical equivalence after transformation to normal form.

2. Check the equivalence for all possible assignments of booleans to the vari-
ables X i , meet and join being interpreted as Boolean conjunction and dis-
junction. This is valid because truth tables are a complete interpretation of
free distributive lattices. In effect, proceeding as such is equivalent to testing
the sorting function on all lists of booleans.
This second way to test equivalence shows that our technique is essentially
(at least) as efficient as that of Knuth [19], provided that properties of the
distributive lattice structure are cleverly exploited.

5 Related work

Universe-bound polymorphism Jansson et al. [17] have studied the testing of
datatype-generic functions: polymorphic functions where the type parameter is



bound to a given universe. This restriction allows them to proceed by case analy-
sis on the shape of the type. In contrast, our method makes the assumption that
type parameters are universally quantified, taking advantage of parametricity.
Since universal quantification and shape analysis are mutually exclusive, Jans-
son’s method and ours complement each other very well.

Shortcut Fusion Shortcut deforestation [14] is a technique to remove intermedi-
ate lists. A pre-requisite to shortcut deforestation is that producers of lists are
written on the form g (:) [ ], or essentially, g α where α is the initial algebra of
the list functor. In general, functions that are normally written in terms of the
initial algebra must be parametrised over any algebra, thereby adding a level of
polymorphism. This is the exact opposite of the transformation we perform.

Similarity with our work does not stop here, as the correctness argument for
shortcut deforestation also relies heavily on polymorphism and parametricity.

Church Encodings The purpose of Church encodings is to encode data types in
the pure lambda calculus. Church encodings can also target the polymorphic
lambda calculus [5], and the resulting types are polymorphic. In essence, the
Church encoding of a data type is the type of its fold (catamorphism). Hinze
[15] provides an illuminating example.

Theorem 1 describes (almost) an inverse of Church-encoding: we aim at re-
covering the datatype underlying polymorphic types. It is not exactly an inverse
though: the church-encoded type might be encapsulated in a polymorphic func-
tion, which may expose only some of its constructors. Therefore we target these
constructors instead of directly targeting the datatype.

Defunctionalisation Reynolds [22] describes defunctionalisation: a transforma-
tion technique to remove higher-order functions. Each lambda-abstraction is
replaced by a distinctive constructor, whose argument holds the free variables.
Applications are implemented via case-analysis: the tag of the constructor tells
which which abstraction is entered.

Danvy and Nielsen [9] have shown that defunctionalisation works as an in-
verse to church encoding. Thus, theorem 1 can be seen as a special case of de-
functionalisation, targeted at the constructors of a polymorphic type. However,
our main focus is not the removal of function parameters, but of type parame-
ters. Indeed, our embedding step, which introduces function parameters, is often
crucial for the removal of polymorphism. Note also that we do not transform
the function under test. In fact, only the arguments passed to the function are
defunctionalised. The constructing functions are transformed to constructors of
a datatype, and the observations have to perform case-analysis on this datatype.

Concretisation Pottier and Gauthier [21] introduce concretisation: a generali-
sation of defunctionalisation that can target any source language construct by
translating its introduction form into an injection, and its elimination form into
case analysis. They apply concretisation to Rémy-style polymorphic records and
Haskell type classes, but not removal of polymorphism altogether.



QuickCheck As explained in the introduction, the standard way to test polymor-
phic functions in QuickCheck [7] is to substitute N for polymorphic parameters.
In the first runs, QuickCheck assigns only small values to parameters of this type,
effectively testing small subsets of N. As testing progresses, the size is increased.
This strategy is already very difficult to beat! Indeed, we observe that, thanks to
parametricity, if one verifies correctness for a type of size n, the function works
for all types of size n or less. Additionally, because of the inherent nature of
testing, it is only possible to run a finite number of test cases. Therefore, the
standard QuickCheck strategy of type instantiation is already very good. We can
do better because, in addition to fixing the type, we also fix some (components
of) parameters passed to the function. In effect, meaningless tests (tests that are
isomorphic to other already run tests, or tests that are unnecessarily specific)
are avoided.

criterion traditional new

type N µF
constructors FN → N {α}
observations GN → X G(µF ) → X

Table 1. Comparison of the traditional QuickCheck praxis to the new method.

The situation is summarised in table 1. By fixing the constructors, a whole
dimension is removed from the testing space. Even though the space of observa-
tions is enlarged when µF >N (from G N→X to G (µF )→X ), the trade-off is
still beneficial in most cases. We argue informally as follows: if µF > N, then F
is a “big” functor, such as F a = 1 + a × a. This means that the set F N→N is
big, and as we replace that by a singleton set, this gain dwarfs the ratio between
G (µF )→X and G N→X , for any polynomial functor G .

Besides efficiency, another benefit to the new method is that the generated
counter examples are more informative, as seen on an example in section 2.

In Haskell, there is another pitfall to substituting the polymorphic parameter
by N: type classes. Imagine for example that the type parameter is constrained
to be an instance of the Eq typeclass. Because N is such an instance, it is possible
to use it for the type parameter, but this badly skews the distribution of inputs.
Indeed, on average, the probability that a b, for generated a and b tends to
be very small. A better strategy would be to have a different instance of Eq
for each run, each with a probability of equality close to 1/2. Our method does
not suffer from this problem: we insist that the methods of classes are explicitly
taken into account when identifying the constructors and the observations.

Exhaustive Checking We argue in the previous section that using N for type
parameters is a sensible approach for random testing. However, as Runciman
et al. [23] remark, this does not work as well for depth-bound exhaustive testing:
the dimension of the test space for constructors (FN→ N) grows exponentially



as the depth of the search increases. They suggest to use smaller types to test
on (such as the unit or Boolean), but the user of the library is left to guess
which size is suitable. Our method kills two birds with one stone: we conjure up
a suitable type parameter to use, and prevent the exponential explosion of the
search for constructors by fixing them. Therefore, we believe that our method is
an essential improvement for exhaustive testing of polymorphic functions.

Symbolic execution Tillmann and Schulte [27] generate test cases by symbolic
execution of the property to check. As we have mentioned in section 2, our
technique can be understood as symbolic execution, therefore, generating test
cases by symbolic execution potentially subsumes our method. The advantage
of our approach is that it is purely type-based: the monomorphic instance is
independent of the actual definition of the property. Therefore, it can work with
an underlying black-box tester for monomorphic code.

6 Future work

While the scope of this paper is the testing of polymorphic functions, our tech-
nique to remove polymorphism is not specific to testing: any kind of verification
technique can be applied on the produced monomorphic instance. This suggests
that it has applications outside the domain of testing, maybe in automated the-
orem proving. This remains to be investigated.

Automated test-case generation libraries typically address the problem of
generating random values for monomorphic arguments. We have addressed the
problem of calculating values for type arguments. A natural development would
be to unify both approaches in the framework of a dependently-typed program-
ming language. A first step towards this goal would be to give a detailed account
of parametricity in presence of dependent types.

With the exception of computing initial algebras with laws, the technique
described here is completely algorithmic. Therefore, one can assume that it is
easy to automate it and build a QuickCheck-like library to test polymorphic
properties. However, such a tool would need to analyse the type structure of
the functions it is given, and languages based on the polymorphic lambda cal-
culus typically lack such a feature. Moreover, this very feature would invalidate
the parametricity theorem, since it relies on universally quantified types being
opaque, thereby invalidating our “monomorphisation” transformation. A long
term area of research would be to design a programming language where para-
metricity and type-analysis can be specified on a case-by-case basis. As a short-
term goal, we propose to mechanise the technique as an external tool rather than
a library, or require the programmer to explicitly inform the polymorphic test
generator about the type structure.

We have shown how to get rid of polymorphism using the “initial view” of the
type parameters. As there exists a dual to shortcut fusion [26], we conjecture that
there exists a dual to our method, using the “final view”. That is, the function
should be transformed to isolate a co-algebra and fix it to the final element of



the category. Is is unclear at this point what would be the outcome of this dual
in terms of testing behaviour.

The technique that we present requires a specific form for the type of the
function to test. While our examples show that this form covers a wide range of
polymorphic functions that are commonly tested, one can still aspire for a larger
applicability. We hope to improve this aspect, either by showing that more types
can be embedded, or by amending the core theory. In particular, we address only
rank-1 polymorphism: extending to rank-n would be useful. Also, the restriction
that F must be a functor in (F a→ a)× (G a→X ) seems too specific. Indeed,
Church-encoding some types may lead to F being a type-function that is not a
functor, and there is a-priori no reason that the encoding cannot be reverted.
An example is given by Washburn and Weirich [30]: data T = Lam (T → T ) |
App T T is encoded as ∀a. ((a → a) → a) → (a → a → a) → a, and F a =
(a → a) + (a × a), which is not a functor. We hope to achieve this by fully
explaining our technique in a defunctionalisation setting.

7 Conclusion

We have presented a schema for efficient testing of polymorphic properties. The
idea is to substitute polymorphic values by a faithful symbolic representation.
This symbolic representation is obtained by type analysis, in two steps:

1. isolation of the constructors (yielding a functor F ); and
2. restriction to the initial F -algebra.

We suspect that neither of these steps is original, but we could not find them
spelt out as such, and therefore we believe that bringing them to the attention of
the programming languages community is worthwhile. Furthermore, the testing
of polymorphic properties is a novel application for these theoretical ideas.

We have shown on numerous examples, and informally argued that apply-
ing our technique not only enables testing polymorphic properties by removing
polymorphism, but yields good efficiency compared to the standard praxis of
substituting N for the polymorphic argument. In some cases, this improvement
is so dramatic that it makes the difference between testing being useful or not.
As another evidence of the value of the method, we have applied it to classical
problems and have recovered or improved on the corresponding specific results.

Giving a more polymorphic type to a given function enlarges its domain, so
one might think that this can increase the amount of testing necessary to verify
properties about that function. If our technique is applied, the opposite is true.

You love polymorphism, but you were afraid that it would complicate testing?
Fear no more! On the contrary, polymorphism can facilitate testing if approached
from the right angle.
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