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In this paper, we investigate predictive control approaches to the problem of
roadway departure prevention via steering and braking. We assume a sensing
infrastructure detecting road geometry and consider a two layers architecture
consisting of a threat assessment and an intervention layer. In particular, the
upper threat assessment layer detects the risk of roadway departure or vehi-
cle instability within a future time horizon. If a risk of roadway departure or
vehicle instability is detected, the lower intervention layer is enabled. The lat-
ter is designed based on Model Predictive Control (MPC) approaches, where
steering and braking interventions are the result of an optimization problem.
This is formulated on the basis of vehicle state measurements and coming road
information (e.g., road geometry, surface adhesion) and repeatedly solved over
a moving future time horizon.

Simulation and experimental results are presented, showing that the proposed
approach effectively exploits road preview capabilities in order to issue earlier
and less intrusive interventions, compared to standard Electronic Stability Con-
trol (ESC) systems.
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1. INTRODUCTION

Roadway departure related crashes account for a great share of all traffic related accidents.
According to [1], in developed countries about half of all fatal and a third of all severe
vehicle accidents are due to single vehicle crashes.

Over the last three decades, several research and technological advancements have con-
tributed to the reduction of fatal roadway departures. Probably the first milestone in active
safety dates back to the seventies, when Antilock Braking Systems (ABS) were put into
production on passenger cars [2]. Successively, in the mid-1990s, car manufacturers began
to equip vehicles with Electronic Stability Control (ESC) systems which have proven to
be quite efficient in reducing the amount of fatal roadway departures that are caused by
loss of vehicle control. Studies showed that ESC systems reduce the amount of fatal single
vehicle crashes by 30-50% for cars and 50-70% for Sport Utility Vehicles (SUVs) [3].

A drastic increase of the overall vehicle safety is expected from future active safety
systems, which are envisioned to rely on sophisticated sensing infrastructures providing
preview of the coming road and information about the surrounding environment. Such
preview capabilities are expected to enable early interventions, in order to prevent the
vehicle from working in unsafe operating conditions where classical active safety systems
are activated. Moreover, the possibility of partially or completely replacing the driver with
an autonomous driving system will enable the possibility to recover vehicle control in
critical scenarios, where the coordination of multiple vehicle actuators might lead to more
effective evasive maneuvers.

Such vision of future active safety systems has motivated extensive research on control
of autonomous vehicles. An important milestone in this field was achieved already in 1987
when Dickmanns and Zapp demonstrated a vehicle that drove autonomously over 20 km on
the German Autobahn [4]. Despite the advances in the field of autonomous vehicles, vehicle
manufacturers have shown little interest in developing new active safety systems based
on autonomous driving, and autonomous vehicles have been rather confined to military
applications. Instead, the main contribution to the automotive industry from initiatives
like DARPA’s grand challenge has been the development of sensor fusion algorithms [2].
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Figure 1. Overview of the suggested accident prevention architecture.

The development of these sensing systems has lead to a class of emerging active safety
systems that have started to appear on the passenger cars market. These systems are
usually referred to as Advanced Driver Assistance Systems (ADAS) and an example of
such a system is the lane keeping system that warns or assists the driver when the vehicle
might leave its lane. Contrary to ESC, lane keeping systems are effective in situations
where the vehicle is about to leave its lane due to, e.g., driver distraction [2, 5].

In this paper, we assume the availability of advanced sensing systems, providing preview
of the road geometry, and consider a general accident avoidance architecture. The two
main components of such architecture are a threat assessment and an intervention layer.
By using predictive approaches, both layers are designed in order to exploit the available
preview capabilities. In particular, the threat assessment layer includes a decision making
module that, based on threat level and type, decides the type of intervention that the
intervention layer has to issue. For example, depending on the threat level, the decision
making module might request an intervention ranging from a less intrusive warning to an
autonomous driving intervention where steering, braking and accelerating are coordinated
in order to perform high demanding evasive manoeuvres where a normally skilled driver
would fail. In this paper we present a preliminary study of the considered architecture,
focusing on the threat assessment and the intervention layers. The paper is structured as
follows: in Section 2 we propose a general architecture for safety systems, in Section 3 we
present the modeling the design of the threat assessment and the intervention layers are
based on, Sections 4 and 5 describe the threat assessment and intervention layers, respec-
tively, and in Section 6 we present simulation and experimental results from a roadway
departure prevention system implemented using the proposed architecture.

2. ARCHITECTURE

The architecture underlying the roadway departure prevention algorithm proposed in this
paper is sketched in Figure 1. This is a general architecture that, in principle, can be used
for any accident prevention scenario, e.g., collision avoidance.

By using measurements of the vehicle state and road and environment information, e.g.,
road geometry and surface adhesion, the threat assessment layer evaluates the risk of acci-
dent or vehicle instability over a future finite time horizon. During normal, i.e., safe driving
conditions the driver has full control of the vehicle. When the risk of accident or vehicle
instability is detected, instead, the decision making layer is activated and, depending on
the risk, the type of intervention is decided. In particular, in normal driving conditions the
driver’s commands are passed through the intervention module and sent directly to the
vehicle. In unsafe driving conditions, instead, the driver can be either assisted by the inter-
vention module correcting his or her commands, or completely excluded in an autonomous
driving mode. In general, the type and intrusiveness of the intervention issued by the in-
tervention module, depend on the detected risk of accident. For instance, if excessive speed
is detected early in advance when approaching a curve, a simple warning might be issued
to the driver. As the vehicle approaches the curve and the speed is not reduced, a slight
braking might be issued in order to slow down the vehicle and safely perform the curve.
In case of more severe risk of accidents, e.g., unexpected slippery road surface or obsta-
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Figure 2. Notation for the double track vehicle model.

cles, a combined steering and differential braking intervention might be issued in order to
autonomously compensate for a slippery surface or avoid an obstacle.

In the next sections, examples of threat assessment and intervention layers are presented
for a roadway departure application. In this paper, the threat assessment layer is based on
vehicle, driver and environment models. In particular, a driver model is used to generate
the commands (i.e., steering, braking and accelerating) to the vehicle based on the road
geometry and environment information. A vehicle mathematical model is then used to
predict the vehicle behavior over a finite time horizon under the generated driver’s com-
mands. The vehicle behavior is then evaluated in order to detect the risk of accidents, e.g.,
lane departure, vehicle instability, collision with obstacles. Such evaluation might consist of
either a simple set of rules or a complex function of the predicted vehicle state trajectory.
For instance, the predicted vehicle motion along a coming curve might be evaluated in
order to detect unsafe deviation from the road centerline.

Once the risk of accident is detected, the decision making module determines the type
and intrusiveness of intervention to be issued by the lower intervention layer. Again, the
decision making system might consist of either heuristic rules or complex functions designed
based on the system model. The output of the decision making module, might be a selection
of an appropriate low level controller for issuing an intervention, ranging from a warning
to the driver to a full autonomous driving completely excluding the driver. In this paper,
we design a low level steering and individual wheel braking controller based on MPC
approaches and, according to the considered architecture, the decision making module
might reconfigure the controller in order to steer, brake or do both. Moreover, the decision
making system might also bound the steering and braking interventions in order to affect
the intrusiveness of the intervention.

3. MODELING

In this section we briefly describe the driver and vehicle modeling used for designing the
threat assessment and the intervention layers.

3.1. Vehicle modeling

The threat assessment layer presented in this work is based on the vehicle model in [6]. This
is a standard four wheels vehicle model that captures the most relevant dynamics for the
considered application. In particular, the considered vehicle model describes longitudinal,
lateral and yaw dynamics, taking into account longitudinal and lateral load transfer and
the nonlinear characteristics of the tyres. The interested reader is referred to [6] for further
details.

We denote by ξ and u the state and input vectors, respectively, and describe the vehicle’s
motion in an inertial frame, subject to longitudinal, lateral and yaw dynamics, through a
set of nonlinear differential equations that can be written in the following compact form

ξ̇(t) = fveh(ξ(t), ud(t), uγ(t), d(t)), (1)

where ξ = [vy, vx, ψ, ψ̇,X, Y, ω1, ω2, ω3, ω4]T , with vy and vx the lateral and longitudinal
vehicle velocities in the vehicle body frame, respectively, ψ the vehicle’s heading angle in
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a global frame, ψ̇ the yaw rate, X and Y the position of the vehicle’s center of gravity in
the global frame and ω(·) the wheels angular velocities, with the lower subscripts (·)1, (·)2,
(·)3 and (·)4 indicating variables at the individual wheels as in Figure 2. Moreover ud =
[δ, T1, T2, T3, T4]T , where δ denotes the front wheel steering angle and T(·) denote wheel
torque, is the driver’s command vector, uγ = γi (ξ, ud, d) is a control signal vector computed
through a low level feedback controller γi defined next in Section 5 and d is a vector of
exogenous signals from the environment. fveh is then a nonlinear function and is defined
in, e.g, [6]

Remark 1 : The tyre forces are computed in this paper by using the Pacejka magic
tyre formula [7]. This is a nonlinear static function whose parameters are calibrated on
experimental data. We let α denote the tire slip angle, κ denote the longitudinal slip ratio,
µ denote the friction coefficient, Fz denote the vertical load at each wheel respectively and
write the tyre formula as

fx = fx0Gxα(α, κ, Fz) (2)

fy = fy0Gxκ(α, κ, Fz) + SV yκ (3)

where fx0, fy0 are the tyre forces under pure slip conditions, Gxα, Gxκ are weighting
functions, SV yκ the κ-induced side force and fx, fy are the longitudinal and lateral tyre
forces under combined slip conditions. A thorough explanation of the magic tyre formula
can be found in, e.g., [8].

Next we design a low level controller in the intervention layer, based on a simplified ver-
sion of the vehicle model (1) where the lateral and longitudinal load transfers are omitted.
We denote the simplified vehicle model as

ξ̇(t) = fsimpl(ξ(t), u(t)). (4)

3.2. Driver modeling

The threat assessment method considered in this paper is based on a mathematical model
of the driver. Literature on driver modeling is enormous [9]. In our study we are interested
in very simple model structures, enabling the design of a low complexity model based
threat assessment algorithms.

In this paper the driver is described through a dynamical model, where the vehicle’s
state and the environment information (e.g., road geometry, obstacles position and speed)
are exogenous signals:

ẋ(t) = fdriver(x(t), ξ(t), hdref (d(t))). (5)

In (5), x denotes the driver state vector, ξ is the vehicle state defined as in Section 3.1.
hdref (d(t)) is a map to extract a reference and might be a trajectory planner algorithm.
We also define an output map

ud(t) = hdriver(x(t), ξ(t), d(t)), (6)

where the output ud, depending on the application, can in general contain the steering
angle, the deceleration request, the engine torque and the gear selection or any other
command signal the driver might use to control a vehicle.

In general, the model (5), (6) can range from the very simple structure used in this
paper to complex model structures accounting for a large amount of exogenous signals.
For instance, the model (5), (6) could be a hybrid model, where different driver dynamics
are selected depending on the vehicle operating regions and drowsiness estimated through,
e.g., cameras in the rear-view mirror.

In our roadway departure prevention application, we describe the driver’s steering and
braking behavior through two decoupled controllers. In general, modeling of drivers brak-
ing behavior is complex, the drivers acceleration or deceleration commands depend on
several factors like current velocity, road surface condition, road geometry and distance to
preceding vehicle, to mention a few. For the sake of clearness and simplicity, in order to
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Figure 3. Definition of the control errors in (8), ey denotes the vehicle’s lateral displacement from the
road at a distance ds ahead of the vehicle’s center of gravity. ψ denotes the vehicle’s heading angle and
ψpath denotes the roads heading angle at the preview point which is tprev seconds ahead of the vehicle.
Finally eψ denotes the difference between ψpath and ψ.

demonstrate the proposed system architecture, in this study we assume that the driver is
always trying to reduce speed. We model the braking behavior as a PI-controller

Ttot = Kp(κmax − κref ) + KI

∫
(κmax − κref )dt,

T1,2 = 0.7Ttot, T3,4 = 0.3Ttot

κmax = max
i∈{1,2,3,4}

κi

(7)

where Kp and KI are the proportional and integral gains, respectively and κref denotes
the slip reference.

The modeling of the driver’s steering behavior is inspired by [10–12]. In [12], it is stated
that the “pursuit” part of the human control system, using preview information about the
oncoming road, generates the larger part of the steering commands while the closed loop
portion only reduces the residue error. The driver’s steering command is here modeled as
the output of a proportional controller, with gains Ky and Kψ

δ = Kyey + Kψeψ(tprev), (8)

where ey denotes the lateral displacement of the vehicle from the road centerline and
eψ(tprev) denotes the difference between the vehicles yaw angle and the tangent of the
road centerline at a point tprev seconds ahead. An illustration of the errors is provided in
Figure 3. The time preview could alternatively be replaced by a distance preview as in [13].
A map of preview distances could then be defined for different velocities and environments
(e.g. urban or highway) and the driver model would then be an hybrid model where different
driver dynamics are selected depending on environment and vehicle operating region.

4. THREAT ASSESSMENT LAYER

Consider the closed loop system, obtained by combining the vehicle and driver models (1)
and (5)-(6), respectively

ẋaug(t) = faug(xaug(t), γi, d(t)), (9)

where xaug =
[

ξ
x

]
and γi denotes the active low level controller, i.e., the signal uγ in (1) is

computed through the feedback controller γi. We discretize the model (9) with a sampling
time Ts

xaug(t + 1) = fDT
aug (xaug(t), γi, d(t)), (10)
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where, with an abuse of notation, the same symbols are used to denote the state and
exogenous signal vectors of the system (9) and its discrete time version (10).

We denote by Φγi

(
[ti, tf ] , xaug(ti), D[ti,tf ]

)
, where DN

t = [d(ti), . . . , d(tf )], a state tra-
jectory over the time interval [ti, ti + 1 . . . , tf ] obtained as a solution of the, in general non-
linear, differences equation (10), with initial condition

[
ξT (ti), xT (ti)

]T , when the feedback
low level controller γi is active.

We introduce a threat assessment function FN

(
t,Φγi

(
[ti, ti + N ] , xaug(ti), D[ti,ti+N ]

))
defined as follows

FN : R+ ×RNn −→ Rp, N, p ∈ N+, (11)

where n is the order of the closed loop system (9). Components of FN are positive if the
vehicle motion, predicted over a time horizon of N steps, through the autonomous system
model (10), violates safety constraints, less than or equal to zero otherwise. The definition
of the function FN (·, ·) is crucial in the considered accident avoidance architecture. In
particular, FN (·, ·) can range from a simple time invariant function, e.g., evaluating the
distance of the vehicle from the road centerline, to a complex time varying function detect-
ing the collision with moving objects. Moreover, depending on the complexity of FN (·, ·),
the computation of the vector D[ti,tf ], containing information about the surrounding envi-
ronment, might require the use of complex sensor fusion algorithms [14]. The function FN
is repeatedly evaluated every time step, based on the predicted trajectory Φγi found as
solution of (10) for the current state xaug(t) and active low level feedback controller γi.

We also define a set of k low level feedback controllers or intervention types Γ =
{γ1, ..., γk} and let %(γi) denote the level of intrusiveness of the controller γi. We can then
define a decision making function Ξ (H(t)) selecting the smallest element of the vector H(t)
defined as H(t) = [h1(t), . . . , hk(t)], with hi(t) = %(γi) + ρεi(t) and

εi(t) = argmin
ε≥0

ε

subj.to FN (t,Φγi) ≤ ε · 1,
(12)

with 1 a vector of appropriate dimension of which each element is one and ρ a weight
coefficient penalizing violation of the soft constraint. The decision making function will
thus, depending on the output of FN activate the least intrusive controller that can control
the vehicle without violating the safety constraints reflected by the function FN , which are
soft in order to guarantee feasibility. A model based decision making procedure is currently
the topic of ongoing research activities.

In our roadway departure application we define an output trajectory ᾱ =
hΦ(Φ

(
[ti, tf ] , xaug(ti), D[ti,tf ]

)
) where ᾱ denotes the trajectory of tyre slip angles over

the time interval [ti, ti + 1 . . . , tf ] and let the threat assessment function be

FN (t,Φ) = |ᾱ| − αbound · 1 (13)

where we remark that | · | in (13) denotes absolute value of each element in ᾱ, and 1 is,
again, a vector of appropriate dimension of which each element is one. Elements of the
function FN will then be positive if the tyre slip angle at any of the four wheels exceeds
the threshold αbound during the time interval [ti, ti + 1 . . . , tf ].

The tyre slip angle is closely related to the stability of the vehicle since a large slip angle
indicates that the vehicle is operated in the nonlinear region of the tyres. In the nonlinear
region, the possibility to control the vehicle through the steering wheel will be greatly
reduced thus compromising the stability of the vehicle, for further treatment of the effect
of large slip angles the interested reader is referred to e.g. [8, 15].

5. INTERVENTION LAYER

In the lower level intervention layer the controllers in Γ are defined. In the roadway de-
parture application, these can e.g. be a set of controllers, with different configurations,
implemented using Model Predictive Control (MPC) approaches where the main concept
is to use a model of the plant to predict the future evolution of the system [16–19]. An op-
timal control problem is repeatedly solved over a finite time horizon at each sampling time
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instant. The open-loop optimal control minimizes a predefined cost function and the com-
puted optimal control is only applied to the plant during the following sampling interval.
At the next time step the optimal control problem is solved again, using new measure-
ments in order to take advantage of updated information about the road geometry and
the vehicle states. For the roadway departure prevention system, we start from the results
presented in [20–22] where a low complexity MPC algorithm is proposed in order to solve
an autonomous path following problem via active front steering and independent braking.

We dicretize the system (4) with a fix sampling time Ts, and linearize the discretized
system around the current operating point at each time sample to obtain

ξk+1,t = Atξk,t + Btuk,t + Et
αk,t = Ctξk,t +Dtuk,t

(14)

Where Et is an affine term, due to that the system is discretized in an operating point which
in general is not an equilibrium point. Note also that the linear models At,Bt, Ct,Dt, Et are
recomputed at each time sample, but are nevertheless time invariant during each prediction.
The variable αk,t denotes the tyre slip angle variation and is constrained in the optimization
problem in order to maintain vehicle stability. For the tracking variables we define the
output map

ηk,t =

[
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

]
ξk,t = [ψk,t, Xk,t, Yk,t]T (15)

We also formulate a cost function

J(ξ(t), ∆Ut, d(t)) =
Hp∑

i=1

||ηt+i,t − ηreft+i,t ||2Q +
Hc−1∑

i=0

||ut+i,t||2R + ρε (16)

where ηref = href (d(t)) denotes the reference, ∆Ut denotes the optimization vector, Hp
denotes the prediction horizon and Hc denotes the control horizon. Hp is chosen larger
than Hc and the control is kept constant during the prediction time beyond Hc. ε is a slack
variable used to induce soft constraints on α. ρ denotes the weight coefficient used in the
term ρε that penalizes violation of the soft constraints. By introducing the soft constraints
on α we penalize control inputs that causes the vehicle to operate in the nonlinear region
of the tyres, while maintaining feasibility of the solution in case there are no control inputs
that satisfies the constraint.

We are now ready to formulate the optimization problem to be solved at each time
sample as

min
∆Ut

J(ξ(t), ∆Ut, d(t))

subj.to ξk+1,t = Atξk,t + Btuk,t + Et

αk,t = Ctξk,t +Dt

ηk,t =

[
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

]
ξk,t

−αbound − ε ≤ αk,t ≤ αbound + ε
ε ≥ 0

k = t, ..., t + Hp

uk,t = ∆uk,t + uk−1,t

umin ≤ uk,t ≤ umax

∆umin ≤ ∆uk,t ≤ ∆umax

k = t, ..., t + Hc − 1
∆uk,t = 0,

k = t + Hc, ..., t + Hp

ξt,t = ξ(t)

(17)
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Figure 4. Shows the result of the proposed algorithm when applied on measured data. The parameter,
ESCmode, has the value one when the onboard ESC issues an intervention and zero otherwise. In (a) it

can be seen that the maximum predicted yaw rate error (which ESC uses to issue interventions) ∆ψ̇max is
increased and has a peak, before the onboard ESC decides to intervene. In (b) we see the results for βmax,
while (c) shows the result for αmax, which is considered in the proposed threat assessment algorithm.
Loss of control is thus well predicted by the algorithm, enabling the possibility to introduce an earlier
intervention.

In addition to the soft constraints on α we have added a number of hard constraints. We
constrain the values of the inputs i.e the steering angle and brake torques are only allowed
within a certain interval. The last constraint specifies that the acquired solution starts at
the current observed state ξ(t).

6. RESULTS

For the purpose of evaluating the algorithm, experimental testing has been conducted on
a test track. The track is short and wide with sharp curves and enables the possibility to
adopt a rough driving style and provoke the ESC system without risking to end up in a
major accident. The test vehicle was equipped with a differential GPS receiver, inertial
measurement unit and a DSP. The DSP fuses the sensor information and gives accurate
information about the vehicle’s position and orientation in an inertial frame and other
states needed in the algorithm. The DSP was also provided a digital map of the track
which enabled the possibility to measure e.g. the distance to the lane markings. In addition
we logged data from the onboard CAN-bus in the vehicle which gives information about
e.g. whether the ESC system is active or not.

The test was conducted by a professional driver and in order to be able to test both pos-
itive (interventions issued when needed) and negative performance (no false interventions)
the driver was asked to adopt a rough driving style in some laps and a normal driving style
in other laps.

The threat assessment algorithm predicted all situations where the ESC system inter-
vened to reduce understeer within the prediction horizon. In addition, the threat level was
kept low when no loss of control was imminent. Figure 4 shows the result from one of the
test drives. We can see that the threat level increases significantly right before the ESC
system decides to intervene, enabling the possibility to assist the driver earlier.

In order to evaluate the complete system with the intervention layer included we chose
one specific curve scenario from the measured data in which there’s an intervention from
the onboard ESC system recorded. The curve and the threat assessment predictions can
be seen in Figure 5. We see that the threat level increases as the vehicle moves along the
curve and passes the threshold in good time before the onboard ESC system intervenes.
Imagine now that the vehicle would have been equipped with the proposed system and that
the decision making module, at this point, commands the intervention module to switch
to a completely autonomous mode. Figure 6 shows the simulation of such an intervention,
(a) − (d) shows the vehicle’s state during the intervention lasting for 3 seconds, we can
see that the controller follows pretty much the same trajectory as the driver did with
the exception that it keeps a higher velocity. In Figure 6.e we can also see that the tyre
slip angles are kept low throughout the whole simulation. The controller has no problem
maintaining stability due to the availability of differential braking and the possibility to
utilize the differential braking in a predictive manner. Since there is a penalty involved in
braking, the controller chooses not to brake more than required to follow the path while
maintaining stability.

In general, safety systems should only intervene when there’s an actual threat. Issuing
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Figure 6. (a)-(d) shows states of the vehicle during the autonomous intervention compared to the logged
data, we see that the controller successfully negotiates the curve. (e) shows the tyre slip angles during the
autonomous intervention, we can see that stability is maintained during the whole intervention.

early interventions, might lead to an increase in the total amount of interventions issued
by the safety system and it is thus important that the driver of the vehicle doesn’t perceive
these interventions as unnecessary and intrusive. There’s therefore an interest in setting
the thresholds of the safety system such that it intervenes at a stage where the driver
also perceives that there is a threat, or can at least agree with the safety system after
the intervention has been issued. There’s however also a value in issuing interventions
immediately when a threat has been identified since the control action can be kept smaller.
Consider that the thresholds of the roadway departure system would have been set to
αbound = 6, instead of αbound = 5, so that the autonomous intervention would have been
issued 0.5 seconds later. In order to evaluate whether such a decision strategy would be
more or less intrusive we consider Figure 7 which shows a simulation where the intervention
has been postponed 0.5 seconds, in (a)− (d) we see that it becomes more difficult to follow
the same path while maintaining stability. In (e) we see that the vehicle’s stability is
maintained due to the soft constraint imposed on the tyre slip angles, however, in order
to maintain stability the controller deviated from the path since the vehicle was in a state
making it difficult for the controller to follow the path without activating constraints.

Considering the intrusiveness, the important thing is however that the control signals
are greater in the postponed intervention. Figure 8 shows the applied control signals in
both interventions. We clearly see that, in the postponed intervention, applied brake torque
has a higher magnitude and that the variation in both torque and steering angle is more
evident. It is thus not an unreasonable claim that the later intervention can be experienced
as more intrusive by a driver.

A comparison between the control signals of the autonomous controller and the control
signals issued by the onboard ESC in combination with the driver can also give a hint
about the intrusiveness of an early predictive intervention. The driver’s steering command
is available in the logged data, however the wheel torques could not be recorded since they
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Figure 7. (a)-(d) shows states of the vehicle during the postponed intervention compared to the logged
data, in this case it is more difficult for the controller to stay on track. (e) vehicle stability indicators
during the postponed intervention, the vehicle’s motion is still stable.
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Figure 8. (a)-(d) shows the wheel torques applied during the autonomous interventions, we see that the
required control action is increased when the intervention is delayed. (e) shows the steering angle, the
delayed intervention has a higher change rate and is thus more intrusive.

are not available on the vehicle’s CAN-bus. In order to make a comparison we therefore
implemented a simple ESC controller. ESC systems are extensively treated in the literature
and we refer the interested reader to e.g. [23–25]. We also assumed that the driver applied
wheel torque according to the specific torque profile seen in Figure 9.(e)-(h). We applied the
assumed open loop torque profile and the logged steering angle profile, and simulated the
vehicle’s motion, under the influence of the ESC controller. The result is seen in Figure 9,
we see that the simulated vehicle states are very similar to those in the logged data.
This implies that the assumed torque profile is comparable to the torque applied on the
vehicle during the test drive. The simulation also serves as validation of the lateral and
yaw dynamics of the vehicle model.

By comparing the torques applied on the vehicle using the ESC controller to those
issued with the MPC controller we see that the torque magnitudes of the MPC controller
are significantly lower. This is specially remarkable since the ESC controller operates in
lower velocity. In addition we note that the MPC applies the torque more smoothly and
has it’s torque peaks earlier than the ESC controller. Since the ESC takes action only once
the vehicle has already become unstable it applies more sudden and evasive control action
to stabilize the vehicle. The speed reduction with the autonomous controller is very small
and we can note that the controller almost only brakes wheels 2 and 3 to reduce speed
with a slight overweight on wheel 2 to generate yaw moment.

To evaluate how well the ESC controller would have managed the situation if the driver
wouldn’t have braked we also simulated a case in which the driver’s logged steering angle
was fed to the vehicle model, but without any driver braking. In Figure 10.(a)-(d) we
see the outcome of the simulation. As the vehicle approaches the curve and the steering
angle is turned counterclockwise the vehicle builds up yaw rate, but when the steering
angle starts moving in the opposite direction, the vehicle’s speed is too high, and it is too
difficult for the ESC controller to generate enough yaw moment to manage the situation. In
Figure 10.(e) we see a comparison of applied brake torques in the different situations that
has been considered in this section. We see that the magnitudes of the ESC systems control
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Figure 9. (a)-(d) compares the states of the vehicle during the simulated motion of the vehicle to those
logged during the test drive, we see that the simulated states are very similar to the logged states. (e)-(h)
shows the wheel torques applied during the simulation with the ESC controller. The dashed lines show
torques originating from the driver’s pedal commands, they are distributed with a fix ratio between front
and rear and doesn’t contribute to the vehicle’s yaw moment. The black solid line shows the total torque
applied at each wheel including the ESC commands, we see that the ESC applies brake torque at individual
wheels in order to generate additional yaw moment and assist the driver. By comparing the torques applied
by ESC to those applied by the MPC controller in Figure 8.(a)-(d) we see that the ESC intervenes with
higher magnitude and less smoothness than the MPC controller.
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Figure 10. (a)-(d) shows vehicle states in the case when ESC acts without the braking from the driver.
We see that without the speed reduction that was previously provided by the driver, there’s no possibility
for ESC to recover the situation. (e) shows a comparison of applied brake torque in the different cases
that has been demonstrated, we see that the MPC intervention, issued at the correct time, has smoother
and smaller control action than the rest.

action increases rapidly in the case where there was no braking provided by the driver, in
fact the magnitude becomes so high that one of the wheels lock since we didn’t implement
any ABS controller. An ABS controller, wouldn’t however have made any difference since
the vehicle has strayed too far from the path at the point where the wheel locks.

By comparing the torque profiles in Figure 10.(e) we see that the MPC controller is
superior. The preview capability of the MPC controller enables the possibility to build
up yaw moment in advance, thus enabling smaller and smoother control action than the
ESC controller. The smaller control action of the MPC controller leads us to assume that
the predictive intervention is less intrusive than the ESC intervention which is accepted
by drivers already. This in combination with that the vehicle’s motion was actually stable
during the whole maneuver, while the ESC intervened only once the vehicle had already
become unstable promises great advantage to the predictive approach.

7. CONCLUDING REMARKS

We have considered a general architecture for accident prevention systems and implemented
a roadway departure prevention system based on it. The architecture enables exploiting
preview capabilities in order to intervene earlier than traditional safety systems. Simulation
and experimental results confirm that such an architecture enables earlier, less intrusive
interventions with greater capability to keep the vehicle within stable operating regions.
This opens up for interesting research activities. Topics which are currently subject of
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ongoing investigation are on threat assessment, decision making and efficient and non
intrusive control design that, in addition, has low computational burden.
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