15TH INTERNATIONAL SYMPOSIUM ON WOOD, FIBER AND PULPING CHEMISTRY

FINAL PROGRAMME ISWFPC 2009

Oslo, Norway June 15 - 18 2009

¹H NMR SPECTRA OF LIGNIN MODEL COMPOUNDS

Li, S.¹, Lundquist, K.^{2*}, Parkås, J.³ and Langer, V.⁴

 ¹ Physical Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
² Forest Products and Chemical Engineering, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
³ Södra Cell AB, R&D, Väröbacka, Sweden
⁴ Environmental Inorganic Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden

ABSTRACT

¹H NMR spectral data for lignin model compounds are of interest in connection with the interpretation of NMR spectra of lignins recorded by 1D (¹H NMR) and certain 2D spectroscopic techniques. A database comprising such spectral data is being created. Derivatization influences the peak positions in the ¹H NMR spectra of lignin models to a large extent. Similarly, an exchange of solvent often results in dramatic shifts of peak positions. Solvent and derivatization effects can be employed for the interpretation of lignin spectra in structural terms. Stereochemistry strongly influences the position of signals in ¹H NMR spectra. This offers a possibility to elucidate the stereochemistry of the structural elements in lignins based on ¹H NMR spectral data of model compounds.

BACKGROUND

A database comprising ¹H NMR spectral data of derivatized and non-derivatized lignin model compounds in different solvents is being created. Structural elucidation of lignin model compounds by X-ray crystallography [Ref. 1 and preceding work] provides a firm basis for the assignment of stereoisomers of the model compounds. ¹H NMR spectra of acetate derivatives and propionate derivatives of lignin model compounds dissolved in CDCl₃, CD₃COCD₃, CD₃SOCD₃, or pyridine d_5 have been recorded [2,3]. Spectra of non-derivatized model compounds in CD_3SOCD_3 [4] or dioxane- d_8 -D₂O (5:1) [2] solution have also been collected. The elucidation of structural features in lignins based on ¹H NMR spectral data of lignin model compounds is exemplified. Excerpts from the database are given below. It is commented on potential applications in lignin analysis.

RESULTS AND DISCUSSION

Erythro and *threo* forms of arylglycerol β -aryl ethers (acetate, CDCl₃)

The location of the H_{α} signal differ in *erythro* and *threo* forms (Figure 1).

Figure 1: Database sheets showing signal positions of acetylated *erythro* (top) and *threo* (bottom) forms of an arylglycerol β-aryl ether in CDCl₃.

^{*} Author for correspondence. E-mail: knutl@chalmers.se

Pinoresinol and syringaresinol (acetate, pyridine)

The locations of the H_{β} signal of acetylated pinoresinol and syringaresinol differ (Figure 2).

Figure 2: Database sheets showing signal positions of acetates of pinoresinol (top) and syringaresinol (bottom) in pyridine-d₅.

Phenolic groups of the guaiacyl and syringyl types (non-derivatized, CD₃SOCD₃)

The signal from the phenolic group in guaiacyl units and syringyl units are located at different positions (Figure 3). ¹³C NMR data for β -ether model compounds in CD₃SOCD₃ were recently published [5].

Figure 3: Database sheets showing signal positions of phenolic groups of the guaiacyl and syringyl types.

1-Aryl-2-aryloxy-1-propanones (acetate in CD₃COCD₃ and CDCl₃)

The signal from H_{β} in 1-aryl-2-aryloxy-1-propanones are located at different positions in CD₃COCD₃ and CDCl₃. Data for 1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)-1-propanone are shown (Figure 4).

Figure 4: Database sheets showing signal positions of 1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2methoxyphenoxy)-1-propanone in CD₃COCD₃ (top) and CDCl₃ (bottom).

CONCLUSIONS

Examinations of lignin model compounds show that the interpretation of ¹H NMR spectra of lignins in structural terms is facilitated by recording spectra of non-derivatized and derivatized lignin samples in different solvents.

REFERENCES

- 1. Langer, V., Li, S., Lundquist, K. (2008) "Conformation of 1-aryl-2-aryloxy-1-propanols: *threo*-1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1-propanol", *Acta Cryst* C64:o558-o560
- Lundquist, K. (1992) "Proton (¹H) NMR Spectroscopy", in *Methods in Lignin Chemistry* pp. 242-249, Lin, S.Y. and Dence, C.W. (eds.), Springer, Berlin
- Li, S., Lundquist, K. (1997) "Analysis of lignins as propionate derivatives by NMR spectroscopy", J. Wood Chem. Technol. 17:391-397
- Li, S., Lundquist, K. (2001) "Analysis of hydroxyl groups by ¹H NMR spectrometry", *Nord. Pulp Pap. Res. J.* 16:63-67
- 5. Bardet, M., Lundquist, K., Parkås, J., Robert, D., von Unge, S. (2006) "¹³C assignments of the carbon atoms in the aromatic rings of lignin model compounds of the arylglycerol β -aryl ether type", *Magn. Res. Chem.* **44**:976-979