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Abstract—In this paper we study the problem of finding
capacity-maximizing constellations in BICM for asymptotically
low signal-to-noise ratios (SNRs). We base our analysis on the
so-called Hadamard transform and on a linear approximation
of the BICM capacity for asymptotically low SNRs. We fully
characterize the set of constellations, input distributions, and bi-
nary labelings that achieve Shannon’s limit Eb/N0 = −1.59 dB.
For equiprobable input distributions, a constellation achieves this
limit if and only if it is a linear projection of a hypercube.

I. INTRODUCTION
Bit-interleaved coded modulation (BICM) was first intro-

duced in [1], and later analyzed in detail in [2], [3]. When
compared to a coded modulation (CM) scheme, and from a
capacity point of view, BICM is suboptimal [2, Sec. III-A],
however, if BICM is used with an appropriate binary labeling,
the difference becomes very small. BICM is nowadays a de
facto standard, and it is used in many of the existing wireless
systems, e.g., HSDPA, IEEE 802.11a/g or 802.16, etc. Unlike
the CM capacity, the BICM capacity strongly depends on
the binary labeling used. Caire et al. conjectured that Gray
labelings maximize the BICM capacity [2, Sec. III-C], where
the binary reflected Gray code (BRGC) and Ungerboeck’s
set partitioning where compared. This was recently disproved
in [4], where it was shown that a non-Gray binary labeling
maximizes the BICM capacity for M -ary pulse amplitude
modulation (M -PAM) constellations and low signal-to-noise
ratios (SNRs).
An analytical characterization of BICM for low SNRs was

presented in [5], where an asymptotic linear approximation
of the BICM capacity as function of the constellation and
its binary labeling was developed. It was showed in [5] that
there is a bounded loss between the BICM capacity with Gray-
mappedM -PAM and the CM capacity for very low SNRs, i.e.,
that BICM with this configuration does not reach the Shannon
limit (SL) −1.59 dB. Based on the results of [5], Stierstorfer
and Fisher showed in [6] that BICM for low SNRs can achieve
the SL for M -PAM constellations if the binary labeling is
properly selected.
The results in [4]–[6] motivate the fundamental question

about the optimal capacity-maximizing binary labelings for
BICM, or more generally, optimal “constellations” (binary
labelings, input distributions, and constellation points). Some-
how surprisingly, this question has received very little attention
in the literature apart from [4]–[6]. The analysis presented
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in [4] is based on a full search (therefore with obvious
limitations), and the results in [6] are limited to regular
M -PAM and M -ary quaternary amplitude modulation (M -
QAM) constellations with equiprobable input distributions.
In this paper, we analyze the problem of selecting optimum
constellations for BICM and asymptotically low SNRs. We
base our analysis on the linear approximation of the BICM
capacity of [5] and on the so-called Hadamard transform [7,
pp. 53–54]. The main contribution of this paper is to identify
the set of constellations that make BICM achieve the SL
Eb/N0 = −1.59 dB for asymptotically low SNRs.

II. PRELIMINARIES

A. Binary Labelings

Definition 1 (Binary labeling): A binary labeling1 L of or-
der m ∈ Z+ is represented by a matrix of dimensions
M = 2m by m, where each row corresponds to one of the M
length-m distinct binary codewords, L = [cT

0 , . . . , cT
M−1]

T,
where ci = [c0,i, c1,i, . . . , cm−1,i] ∈ {0, 1}m.
Definition 2 (±1 labeling): For any labeling matrix L, a

modified labeling matrix Q = Q(L) is defined by reversing the
order of the columns and applying the mapping (0 → 1, 1 →
−1), i.e.,

qki !

{

−1, if cm−1−k,i = 1

1, if cm−1−k,i = 0
(1)

with i = 0, . . . , M − 1 and k = 0, . . . , m − 1.
Definition 3 (Labeling expansion): To expand a labeling

Lm = [cT
0 , . . . , cT

M−1]
T into a labeling Lm+1, do the fol-

lowing. Repeat each codeword once to obtain a new matrix
[cT

0 , cT
0 , . . . , cT

M−1, c
T
M−1]

T, and then obtain Lm+1 by ap-
pending one extra column [0, 1, 1, 0, 0, 1, 1, 0, . . . , 0, 1, 1, 0]T

of length 2M .
Definition 4 (Labeling repetition): To generate a labeling

Lm+1 from a labeling Lm = [cT
0 , . . . , cT

M−1]
T by repetition,

do the following. Repeat the labeling Lm once to obtain a new
matrix [cT

0 , . . . , cT
M−1, c

T
0 , . . . , cT

M−1]
T. Add an extra column

from the left, consisting of M zeros followed by M ones.

1Hereafter we use lowercase letters x to denote a scalar and boldface letters
x to denote a vector of scalars. Capital letters X denote random variables,
P(·) denotes probability, E[·] denotes expectation, and pX(x) denotes the
probability density function of the random vector X. Blackboard bold letters
X represent matrices or vectors, XT denotes the transpose of X, and xi,j

represents its (i, j)th entry of X where all the indices start at zero.



In this paper we are particularly interested in the binary
reflected Gray code (BRGC) [8] and the natural binary code
(NBC).
Definition 5 (Binary reflected Gray code): The BRGC of

order m, denoted by Gm, is generated by m − 1 recursive
expansions of the trivial labeling L1 = [0 1]T, for any m ≥ 1.
Definition 6 (Natural binary code): The NBC of order m,

denoted by Nm, is generated by m − 1 recursive repetitions
of the trivial labeling L1 = [0 1]T, for any m ≥ 1.
Example 1 (Binary labelings G3 and N3):

G3 =

























0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

























, N3 =

























0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

























, Q(N3) =

























+1 + 1 + 1
−1 + 1 + 1
+1 − 1 + 1
−1 − 1 + 1
+1 + 1 − 1
−1 + 1 − 1
+1 − 1 − 1
−1 − 1 − 1

























.

We denote the base-2 representation of the integer 0 ≤ i ≤
M − 1 by the vector b(i) = [bm−1(i), bm−2(i), . . . , b0(i)],
where bm−1(i) is the most significant bit of i and b0(i) the
least significant. Using this notation, the NBC given in Defini-
tion 6 can be alternatively defined as the codewords ci that are
the base-2 representations of the integers i = 0, . . . , M − 1,
which is in fact the reason for the name “natural binary code,”
i.e.,

Nm = [b(0)T, . . . ,b(M − 1)T]T. (2)

B. The Hadamard Transform

The Hadamard transform (HT) is a discrete, linear, orthogo-
nal transform, like for example the discrete Fourier transform,
but its coefficients take values in ±1 only. Among the different
applications that the HT has, one that is often overlooked is
as an analysis tool for binary labelings [9].
The HT is defined by means of an M × M matrix, the

Hadamard matrix, which is defined recursively as follows
when M is a power of two [7, pp. 53–54].

H1 ! 1 H2M !

[

HM HM

HM −HM

]

, M ≥ 1

Example 2 (Hadamard matrix H8):

H8 =

























+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1

























. (3)

In the following, we will drop the index, letting H represent
a Hadamard matrix of any size M = 2m. Hadamard matrices

have the following appealing properties.

HT = H, H−1 =
1

M
H. (4)

It can be shown that the elements of a Hadamard matrix are

hij =
m−1
∏

k=0

(−1)bk(i)bk(j),

from which we observe for future use that for all i =
0, . . . , M − 1 and l = 0, . . . , m − 1,

hi,0 = 1, (5)

hi,2l =
m−1
∏

k=0

(−1)bk(i)bk(2l) = (−1)bl(i). (6)

At this point it is interesting to note the close relation between
the columns of the matrix N3 in Example 1 and the columns
of H8 in (3). Generalizing, it follows from (5) that for any m,
the columns of Q(Nm) are simply the columns 2l of H for
l = 0, . . . , m − 1, which will be used later.
The HT operates on a vector of length M = 2m, for any

integerm, or in a more general case, on a matrix withM = 2m

rows. The transform of a matrix X is denoted X̃ and has the
same dimensions as X. It is defined as

X̃ !
1

M
HX (7)

and the inverse transform is

X = HX̃. (8)

Equivalently,

x̃j =
1

M

M−1
∑

i=0

hijxi, xi =
M−1
∑

j=0

hijx̃j , (9)

where we have introduced the row vectors xi and x̃j such that

X =
[

xT
0 , . . . ,xT

M−1

]T
, X̃ =

[

x̃T
0 , . . . , x̃T

M−1

]T
.

Because of (5), the first element of the transform is simply the
mean x̃0 = 1

M

∑M−1
i=0 xi.

Finally, using
∑M−1

j=0 ‖x̃j‖2 = trace
(

X̃TX̃
)

, (7), and (4),
we note that an analogy of Parseval’s theorem holds, i.e.,

M−1
∑

j=0

‖x̃j‖
2 =

1

M

M−1
∑

i=0

‖xi‖
2. (10)

III. A LINEAR APPROXIMATION OF THE CAPACITY
A. System Model
In this section, we analyze the BICM scheme shown in

Fig. 1. The information sequence is passed to a rate-kc binary
channel encoder (ENC) which generates a vector of coded bits.
This vector is interleaved and then partitioned into length-m
codewords c = [c0, . . . , cm−1]. The codewords are mapped
to constellation points in an N -dimensional Euclidean space
using a memoryless mapping rule M : {0, 1}m → X , where
the input alphabet X = {x0, . . . ,xM−1}. The probability of
transmitting a symbol x ∈ X is denoted P(x).



c′ c
ENC π M M−1

x

z
y

π−1 DEC
l l′

Figure 1. A BICM scheme: A channel encoder, an interleaver, a mapper, an
AWGN channel, and the inverse processes at the receiver’s side.

We assume a zero-mean constellation, i.e., E[X] = 0, and
a given average symbol energy Es = E[||X||2]; no other
constraints are imposed on the constellation. Moreover, we
emphasize that the constellation X, in our notation, is a list,
not a set. The mapper M is then defined as a one-to-one
mapping rule that associates each codeword with one symbol,
i.e., (ci ∈ L) ⇔ (xi ∈ X). Based on these definitions,
changing the binary labeling of the system can be seen as
permuting the rows of X.
We consider transmission over the discrete-time memoryless

additive white Gaussian noise (AWGN) channel

y = x + z, (11)

where y ∈ RN is the output vector and z are samples of
independent Gaussian random variables with zero mean and
variance N0/2. The signal-to-noise ratio (SNR) is given by
γ ! Es/N0. At the receiver’s side, the demapper (M−1)
computes soft information on the coded bits, which are then
deinterleaved and passed to the channel decoder (DEC), which
generates an estimate of the information bits.
The capacity of a BICM system can be shown to be [4,

Sec. II-B], [3, Sec. 3.2]

CBI
L (γ) =

m−1
∑

k=0

I(Ck;Y),

where C = [C0, . . . , Cm−1] are the binary random variables
representing the bits in the codewords c in Fig. 1, and I(X;Y)
is the average mutual information between X and Y.
With a BICM scheme and a good code, it is possible to

transmit information with arbitrarily small error probability at
a bit rate of kc < CBI

L
but not kc > CBI

L
. The BICM capacity

depends on both the labeling and the SNR.

B. The coefficients of the linear approximation
Based on the results of [10] and a Taylor expansion of C

around γ = 0, C(γ) = (αγ + βγ2 + O(γ2))/ log 2, it was
shown in [5] that when transmitting at the BICM capacity,

Eb

N0
=

γ

αγ + O(γ)
log 2, (12)

where2

α =
2

Es

m−1
∑

k=0

1
∑

u=0

∥

∥

∥

∥

∑

i∈Ik
u

xiP(xi)

∥

∥

∥

∥

2

(13)

2The original expression was given as a function of conditional probabilities
PX(x) (using the notation in [5]), whose values are twice our P(xi). Also,
we need an expression for constellations without energy normalization. A
factor of 4/Es was included in (13) to implement these changes.
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Figure 2. Coefficient α for 103 randomly generated labels of order m = 3
and an M -PAM constellation. αBI−PAM

G3
is shown for comparison.

and Ik
u is the subset of indices i ∈ {0, . . . , M − 1} such that

xi is labeled with u ∈ {0, 1} at bit position k = 0, . . . , m−1.
At low SNR (low capacity), we obtain

lim
γ→0

Eb

N0
=

log 2

α
. (14)

Since for reliable transmission we require Eb/N0 ≥ log 2 [10,
Sec. I], the constant α can be interpreted as the penalty of a
certain BICM system over an optimal CM scheme. Thus,

α ≤ 1. (15)

In this paper we are interested in the analysis of α in (13) for
BICM with different constellations and binary labelings.
For the special case of nonbinary M -PAM constellations,

it was shown in [5] that the BRGC does not achieve the SL,
even if the number of points grows to infinity, because

α = αBI−PAM
Gm

!
3M2

4(M2 − 1)
< 1 (16)

ifm > 1. In contrast, the NBC achieves α = 1 for allM -PAM
constellations [6]. The following example shows that many
binary labelings are better than G3 (higher value of α). It also
shows labelings with very low values of α, which translates
into a very high Eb/N0 limit in (14).
Example 3 (Random labelings for 8-PAM): In Fig. 2 the

coefficients α for 103 randomly generated labelings of order
m = 3 are presented. The limit for G3 in (16) is also shown.
In the following section, we find all combinations of con-

stellations, input distributions, and labelings that yield α = 1.

IV. ASYMPTOTICALLY OPTIMUM CONSTELLATIONS

Shannon stated in 1959, “There is a curious and provocative
duality between the properties of a source with a distortion



measure and those of a channel” [11]. Many instances of
this duality have been observed during the last 50 years
of communications research. In this context, we point out
that the coefficient α is mathematically similar to the so-
called linearity index [9], which was used to indicate the
approximative performance of labelings in a source coding
application at high SNR. The usage of the HT in this section
was inspired by the analysis in [9].
Theorem 1 (Coefficient α for BICM): For any zero-mean

constellation X, probability distribution P(·), and labeling L,

α =
1

Es

m−1
∑

k=0

∥

∥

∥

∥

M−1
∑

i=0

qkixiP(xi)

∥

∥

∥

∥

2

.

Proof: Expanding the second sum of (13) and using the
identity a2 + b2 = 1

2 (a + b)2 + 1
2 (a − b)2, we obtain

α =
1

Es

m−1
∑

k=0

(

‖E[X]‖2 +

∥

∥

∥

∥

∑

i∈Ik
0

xiP(xi) −
∑

i∈Ik
1

xiP(xi)

∥

∥

∥

∥

2)

,

where the first term vanishes because of the zero-mean as-
sumption and the second term can be simplified using the
definition of qki in (1).
The problem of finding asymptotically optimum constella-

tions has three degrees of freedom: the labeling L, the constel-
lation points X, and the input distribution P(x). As mentioned
before, permuting the labeling L is equivalent to permuting the
rows of X. Hence, we can, without loss of generality, assume
a fixed value for L. We find it convenient to let L = Nm.
Similarly, it simplifies the analysis to assume an equiprobable
input distribution, which can also be done without loss of
generality, as specified in the following Lemma.
Lemma 1: For a given zero-mean constellation X′, labeling

L, and input distribution P(x′), there exists a constellation X

that, if used with NBC labeling and equiprobable input distri-
bution (P(xi) = 1/M, ∀i), has the same α. The constellation
is

(x0, . . . ,xM−1) = Π(P(x′
0)x

′
0, . . . ,P(x′

M−1)x
′
M−1),

where Π is the permutation that satisfies Nm = Π(L).
The existence and uniqueness of the permutation Π in

Lemma 1 follows directly from Definition 1, while the
proof of both constellations having the same α is trivial
based on Theorem 1. The significance of this Lemma is
that a joint optimization over the three degrees of freedom
[X′, L, {Px}] without loss of generality can be reduced to
[X, Nm, {1/M, . . . , 1/M}], which has only one degree of
freedom: the constellation points themselves.
The expression for α in Theorem 1 can be simplified further

using the HT, as elaborated on in the next Theorem. In
view of Lemma 1, we confine the analysis to the NBC and
equiprobable input distributions.
Theorem 2 (The HT and α): Consider an arbitrary constel-

lation X, whose points are equally likely and labeled by the

NBC. The coefficient α is given by

α =
1

Es

m−1
∑

k=0

‖x̃2k‖2,

where x̃2k are elements of the HD of X defined by (7).
Proof: For the NBC, we conclude from (1), (2), and (6)

that

qki = (−1)bk(i) = hi,2k . (17)

Letting P(xi) = 1/M, ∀i in Theorem 1 and using (9) yields

α =
1

Es

m−1
∑

k=0

∥

∥

∥

∥

∥

1

M

M−1
∑

i=0

hi,2kxi

∥

∥

∥

∥

∥

2

=
1

Es

m−1
∑

k=0

‖x̃2k‖2.

It follows from Theorem 2 and (10) that

α ≤
1

Es

M−1
∑

j=0

‖x̃j‖
2 =

1

MEs

M−1
∑

i=0

‖xi‖
2 = 1 (18)

independently of the labeling. In view of Lemma 1, this upper
bound holds for any zero-mean constellation, any labeling, and
any input distribution, which is in perfect agreement with (15).
We now proceed to determine the class of constellations and
labelings for which the bound (18) is tight.
Theorem 3 (Linear projection of a hypercube): For any la-

beling L and an equiprobable input distribution, α = 1 if and
only if there exists an m × N matrix V such that

X = Q(L)V. (19)

Proof: Consider first the NBC. Equality holds in (18) if
and only if x̃j = 0 for all j = 0, . . . , M − 1 except j =
1, 2, 4, . . . , 2m−1. For such constellations, (9) yields

xi =
m−1
∑

k=0

hi,2k x̃2k .

Letting vk ! x̃2k for k = 0, . . . , m − 1 and using (17), we
obtain

xi =
m−1
∑

k=0

qkivk, i = 0, . . . , M − 1. (20)

Letting V = [vT
0 , . . . ,vT

m−1]
T completes the proof for the

NBC. That the theorem also holds for an arbitrary labeling
follows from Lemma 1.
Example 4 (NBC for M -PAM): Let L = Nm and let

V = [v0, v1, . . . , vm−1]T = [−1,−2,−4, . . . ,−2m−1]T. With
qki given by (17), we obtain from (19) the constellation
XM−PAM ! [−M + 1,−M + 3, . . . , M − 1]T, which shows
that M -PAM with NBC labeling achieves the SL. In view of
Theorem 2, the optimality of M -PAM constellations comes
from the fact that the HT of XM−PAM has its only nonzero
elements in the m positions 1, 2, 4, . . . , 2m−1.
Example 5 (Asymmetric 4-PAM): Let L2 = N2 and let V =

[(a− b)/2, (a+ b)/2]T for any a, b ∈ R. We obtain from (19)
that X = [a, b,−b,−a]T. This shows that any non equally



2v0

2v1

2v2

111

110

101

100

001

010

001

000

Figure 3. A two-dimensional (N = 2) constellation with m = 3 that fulfills
Theorem 3 and therefore asymptotically achieves the SL. Graphically, it gives
the impression of a stretched and projected cube.

spaced but symmetric 4-PAM constellation achieves the SL
if NBC labeling is used. This holds even in the special case
when b = 0. The duplicate points would make the constellation
catastrophic for high-rate or uncoded transmission, but it is
nevertheless good at very low rates.
Theorem 3 has an appealing geometrical interpretation.

Writing the set of constellation points as in (19), each row ofQ

can be interpreted as a vertex of an m-dimensional hypercube,
and V as an m × N projection matrix. Hence, a BICM
constellation achieves the SL if and only if its constellation is a
linear projection of a hypercube. The constellation in Fig. 3,
where V was arbitrarily chosen as v0 = [0,−2.8]T,v1 =
[4,−0.8]T,v2 = [4.4, 2.5]T, exemplifies the concept. The
figure illustrates that the minimum Euclidean distance, which
is an important figure-of-merit at high SNR, plays no role at
all when constellations are optimized for low SNR.
In Fig. 4, we present various capacity curves: the AWGN

capacity, the CM capacity [12] with 8-PAM, and the BICM ca-
pacities for 8-PAM with NBC and BRGC. We observe that the
CM capacity and the BICM capacity using the NBC achieve
the SL. The intersection between the curves for G3 and N3

can be appreciated at approximately kc = 0.5 bits/dimension.
In this figure, we also include the BICM capacity for the
constellation in Fig. 3, and the BICM capacity for symmetric
and asymmetric 4-PAM constellations (cf. Example 5), all of
them achieving the SL.

V. CONCLUSIONS

We have derived necessary and sufficient conditions for a
BICM system to achieve the Shannon limit –1.59 dB in the
wideband regime [5], i.e., at low code rates or low SNR.
Interpreting the codewords of a binary labeling as the vertices
of a hypercube, a system achieves the BICM capacity if and
only if the constellation points form a linear projection of
this hypercube. Important special cases of this result are that
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BICM 8-PAM G3

BICM 8-PAM N3

Projected Cube
Symmetric 4-PAM
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–1.59 dB

4-PAM

8-PAM

Figure 4. AWGN capacity, CM capacity for 8-PAM, BICM capacities for
8-PAM with the BRGC and the NBC, BICM capacity for the constellation in
Fig. 3 (“Projected Cube”), and BICM capacities for symmetric (a = 3b) and
asymmetric (2a = 3b) 4-PAM.

regular M -PAM and (M1 × M2)-QAM constellations with
natural binary codes achieve the Shannon limit. The result is
generalized to non-equiprobable input distributions by rescal-
ing the amplitude of each constellation point proportional to
its probability.
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