
Lazy Functional Incremental Parsing

Jean-Philippe Bernardy
Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg

bernardy@chalmers.se

Abstract
Structured documents are commonly edited using a free-form edi-
tor. Even though every string is an acceptable input, it makes sense
to maintain a structured representation of the edited document. The
structured representation has a number of uses: structural naviga-
tion (and optional structural editing), structure highlighting, etc.
The construction of the structure must be done incrementally to
be efficient: the time to process an edit operation should be pro-
portional to the size of the change, and (ideally) independent of the
total size of the document.
We show that combining lazy evaluation and caching of intermedi-
ate (partial) results enables incremental parsing. We build a com-
plete incremental parsing library for interactive systems with sup-
port for error-correction.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; D.2.3 [Coding Tools and Techniques]: Pro-
gram editors; D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages

General Terms Algorithms, Languages, Design, Performance,
Theory

Keywords Lazy evaluation, Incremental Computing, Parsing, Dy-
namic Programming, Polish representation, Editor, Haskell

1. Introduction
Yi (Bernardy, 2008; Stewart and Chakravarty, 2005) is a text editor
written in Haskell. It provides features such as syntax highlighting
and indentation hints for a number of programming languages (fig-
ure 1). All syntax-dependent functions rely on the abstract syntax
tree (AST) of the source code being available at all times. The feed-
back given by the editor is always consistent with the text: the AST
is kept up to date after each modification. But, to maintain accept-
able performance, the editor must not parse the whole file at each
keystroke: we have to implement a form of incremental parsing.
Another feature of Yi is that it is configurable in Haskell. Therefore,
we prefer to use the Haskell language for every aspect of the
application, so that the user can configure it. In particular, syntax is
described using a combinator library.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’09, September 3, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-508-6/09/09. . . $5.00

Figure 1. Screenshot. The user has opened a very big Haskell
file. Yi gives feedback on matching parenthesis by changing the
background color. Even though the file is longer than 2000 lines,
real-time feedback can be given as the user types, because parsing
is performed incrementally.

Our main goals can be formulated as constraints on the parsing
library:

• it must be programmable through a combinator interface;
• it must cope with all inputs provided by the user, and thus

provide error correction;
• it must be efficient enough for interactive usage: parsing must

be done incrementally.

To implement this last point, one could choose a stateful approach
and update the parse tree as the user modifies the input structure.
Instead, in this paper we explore the possibility to use a more
“functional” approach: minimize the amount of state that has to
be updated, and rely as much as possible on laziness to implement
incrementality.

1.1 Approach

In this section we sketch how lazy evaluation can help achieve
incremental parsing.
An online parser exhibits lazy behavior: it does not proceed further
than necessary to return the nodes of the AST that are demanded.
Assuming that, in addition to using an online parser to produce
the AST, it is traversed in pre-order to display the decorated text

Figure 2. Viewing the beginning of a file. The big triangle repre-
sents the syntax tree. The line at the bottom represents the file. The
zagged part indicates the part that is parsed. The viewing window
is depicted as a rectangle.

presented to the user, the situation right after opening a file is
depicted in figure 2. The window is positioned at the beginning
of the file. To display the decorated output, the program has to
traverse the first few nodes of the syntax tree (in pre-order). This
traversal in turn forces parsing the corresponding part of the input,
but, thanks to lazy evaluation, no further (or maybe a few tokens
ahead, depending on the amount of look-ahead required). If the
user modifies the input at this point, it invalidates the AST, but
discarding it and re-parsing is not too costly: only a screenful of
parsing needs to be re-done.
As the user scrolls down in the file, more and more of the AST
is demanded, and the parsing proceeds in lockstep (figure 3). At
this stage, a user modification is more serious: re-parsing naively
from the beginning can be too costly for a big file. Fortunately we
can again exploit the linear behavior of parsing algorithms to our
advantage. Indeed, if the editor stores the parser state for the input
point where the user made the modification, we can resume parsing
from that point. Furthermore, if it stores partial results for every
point of the input, we can ensure that we will never parse more than
a screenful at a time. Thereby, we achieve incremental parsing, in
the sense that the amount of parsing work needed after each user
interaction depends only on the size of the change or the length of
the move.

1.2 Contributions

Our contributions can be summarized as follows.

• We describe a novel, purely functional approach to incremental
parsing, which makes essential use of lazy evaluation;

• We complete our treatment of incremental parsing with error
correction. This is essential, since online parsers need to be
total: they cannot fail on any input;

• We have implemented such a system in a parser-combinator
library and made use of it to provide syntax-dependent feedback
in a production-quality editor.

Figure 3. Viewing the middle of a file. Parsing proceeds in linear
fashion: although only a small amount of the parse tree may be
demanded, it will depend not only on the portion of the input that
corresponds to it, but also on everything that precedes.

1.3 Interface and Outlook

Our goal is to provide a combinator library with a standard inter-
face, similar to that presented by Swierstra (2000).
Such an interface can be captured in a generalized algebraic data
type (GADT, Xi et al. (2003)) as follows. These combinators are
traditionally given as functions instead of constructors, but since
we make extensive use of GADTs for modeling purposes at vari-
ous levels, we prefer to use this presentation style everywhere for
consistency. (Sometimes mere ADTs would suffice, but we prefer
to spell out the types of the combinators explicitly, using the GADT
syntax.)

data Parser s a where
Pure :: a → Parser s a
(:∗:) :: Parser s (b → a)→ Parser s b → Parser s a
Symb :: Parser s a → (s → Parser s a)→ Parser s a
Disj :: Parser s a → Parser s a → Parser s a
Fail :: Parser s a

This interface supports production of results (Pure), sequencing
(:∗:), reading of input symbols (Symb), and disjunction (Disj ,
Fail). The type parameter s stands for the type of input symbols,
while a is the type of values produced by the parser.
Most of this paper is devoted to uncovering an appropriate repre-
sentation for our parsing process type, and the implementation of
the functions manipulating it. The core of this representation is in-
troduced in section 3, where we merely handle the Pure and (:∗:)
constructors. Dependence on input and the constructor Symb are
treated in section 4. Disjunction and error correction will be imple-
mented as a refinement of these concepts in section 5.
Parsing combinator libraries usually propose a mere run function
that executes the parser on a given input: run :: Parser s a →
[s] → Either Error a . Incremental systems require finer control
over the execution of the parser. Therefore, we have to split the
run function into pieces and reify the parser state in values of type
Process .

We also need a few functions to create and manipulate the parsing
processes:

• mkProcess :: Parser s a → Process s a: given a parser
description, create the corresponding initial parsing process.

• feed :: [s] → Process s a → Process s a: feed the parsing
process a number of symbols.

• feedEof :: Process s a → Process s a: feed the parsing
process the end of the input.

• precompute :: Process s a → Process s a: transform a
parsing process by pre-computing all the intermediate parsing
results available.

• finish :: Process s a → a: compute the final result of the
parsing, in an online way, assuming that the end of input has
been fed into the process.

Section 2 details our approach to incrementality by sketching the
main loop of an editor using the above interface. The implementa-
tion for these functions can be given as soon as we introduce de-
pendence on input in section 4.
Sections 3 through 5 describe how our parsing machinery is built,
step by step. In section 6 we discuss the problem of incremental
parsing of the repetition construct. We discuss and compare our ap-
proach to alternatives in section 7 through section 10 and conclude
in section 11.

2. Main loop
In this section we write an editor using the interface described
in section 1.3. This editor lacks most features one would expect
from a real application, and is therefore just a toy. It is however a
self-contained implementation which tackles the issues related to
incremental parsing.
The main loop alternates between displaying the contents of the
file being edited and updating its internal state in response to user
input. Notice that we make our code polymorphic over the type of
the AST we process, merely requiring it to be Show -able.

loop :: Show ast ⇒ State ast → IO ()
loop s = display s >> update s >>= loop

The State structure stores the “current state” of our toy editor.
data State ast = State
{

lt , rt :: String ,
ls :: [Process Char ast]
}

The fields lt and rt contain the text respectively to the left and
to the right of the edit point. The field ls is our main interest: it
contains the parsing processes corresponding to each symbol to
the left of the edit point. The left-bound lists, lt and ls , contain
data in reversed order, so that the information next to the cursor
corresponds to the head of the lists. Note that there is always one
more element in ls than in lt , because we also have a parser state
for the empty input.
We do not display the input document as typed by the user, but
an enriched version, to hightlight syntactic constructs. Therefore,
we have to parse the input and then serialize the result. First, we
feed the remainder of the input to the current state and then run the
online parser. The display is then trimmed to show only a window
around the edit point. Trimming takes a time proportional to the
position in the file, but for the time being we assume that displaying

is much faster than parsing and therefore the running time of the
former can be neglected.

display :: (Show ast)⇒ State ast → IO ()
display s@State { ls = pst : } = do

putStrLn ""

putStrLn $ trimToWindow
$ show
$ finish
$ feedEof
$ feed (rt s)
$ pst

where trimToWindow = take windowSize ◦
drop windowBegin

windowSize = 10 -- arbitrary size
windowBegin = length (lt s)− windowSize

There are three types of user input to take care of: movement,
deletion and insertion of text. The main difficulty here is to keep the
list of intermediate states synchronized with the text. For example,
every time a character is typed, a new parser state is computed and
stored. The other editing operations proceed in a similar fashion.

update :: State ast → IO (State ast)
update s@State { ls = pst : psts } = do

c ← getChar
return $ case c of

-- cursor movements
’<’→ case lt s of -- left

[] → s
(x : xs)→ s { lt = xs, rt = x : rt s, ls = psts }

’>’→ case rt s of -- right
[] → s
(x : xs)→ s { lt = x : lt s, rt = xs

, ls = addState x }
-- deletions

’,’→ case lt s of -- backspace
[] → s
(x : xs)→ s { lt = xs, ls = psts }

’.’→ case rt s of -- delete
[] → s
(x : xs)→ s {rt = xs }

-- insertion of text
c → s { lt = c : lt s, ls = addState c}

where addState c = precompute (feed [c] pst) : ls s

Besides disabling buffering of the input for real-time response, the
top-level program has to instantiate the main loop with an initial
state, and pick a specific parser to use: parseTopLevel .

main = do hSetBuffering stdin NoBuffering
loop State {

lt = "",
rt = "",
ls = [mkProcess parseTopLevel]}

As we have seen before, the top-level parser can return any type.
In sections 4 and 5 we give examples of parsers for S-expressions,
which can be used as instances of parseTopLevel .
We illustrate using S-expressions because they have a recursive
structure which can serve as prototype for many constructs found in
programming languages, while being simple enough to be treated
completely within this paper.

data SExpr = S [SExpr] | Atom Char

The code presented in this section forms the skeleton of any pro-
gram using our library. A number of issues are glossed over though.
Notably, we would like to avoid re-parsing when moving in the file
if no modification is made. Also, the displayed output is computed
from its start, and then trimmed. Instead we would like to directly
print the portion corresponding to the current window. Doing this
is tricky to fix: the attempt described in section 6 does not tackle
the general case.

3. Producing results
Hughes and Swierstra (2003) show that the sequencing operator
must be applicative (McBride and Paterson (2007)) to allow for
online production of results. This result is the cornerstone of our
approach to incremental parsing, so we review it in this section,
justifying the use of the combinators Pure and (:∗:), which form
the applicative sub-language.
We also introduce the Polish representation for applicative expres-
sions: it is the essence of our parsing semantics. This section culmi-
nates in the definition of the pipeline from applicative language to
results by going through Polish expressions. Our final parser (sec-
tion 5) is an extension of this machinery with all the features men-
tioned in the introduction.
A requirement for online production of the result is that nodes are
available before their children are computed. In terms of datatypes,
this means that constructors must be available before their argu-
ments are computed. This can only be done if the parser can ob-
serve (pattern match on) the structure of the result. Hence, we make
function applications explicit in the expression describing the re-
sults.
For example, the Haskell expression S [Atom ’a’], which stands
for S ((:) (Atom ’a’) []) if we remove syntactic sugar, can be
represented in applicative form by using @ for applications.

S@((:)@(Atom@’a’)@[])

The following data type captures a pure applicative language em-
bedding Haskell values. It is indexed by the type of values it repre-
sents.

data Applic a where
(:∗:) :: Applic (b → a)→ Applic b → Applic a
Pure :: a → Applic a

infixl 4 :∗:

The application annotations can then be written using Haskell syn-
tax as follows:

Pure S :∗: (Pure (:) :∗: (Pure Atom :∗: Pure ’a’)
:∗: Pure [])

We can also write a function for evaluation:
evalA :: Applic a → a
evalA (f :∗: x) = (evalA f) (evalA x)
evalA (Pure a) = a

If the arguments to the Pure constructor are constructors, then we
know that demanding a given part of the result forces only the
corresponding part of the applicative expression.
Because our parsers process the input in a linear fashion, they
require a linear structure for the output as well. (This is revisited
in section 5). As Hughes and Swierstra (2003), we convert the
applicative expressions to their Polish representation to obtain such
a linear structure.
The key idea of the Polish representation is to put the applica-
tion in a prefix position rather than an infix one. Our example

expression (in applicative form S@((:)@(Atom@’a’)@[])) be-
comes @S (@(@(:) (@Atom ’a’)) [])

Since @ is always followed by exactly two arguments, grouping
information can be inferred from the applications, and the paren-
theses can be dropped. The final Polish expression is therefore

@S@@(:)@Atom ’a’ []

The Haskell datatype can also be linearized in the same way. Using
App for @, Push to wrap values and Done to finish the expression,
we obtain the following representation.

App $ Push S $ App $ App $ Push (:) $
App $ Push Atom $ Push ’a’ $ Push [] $ Done

data Polish where
Push :: a → Polish → Polish
App :: Polish → Polish
Done :: Polish

Unfortunately, the above datatype does not allow to evaluate ex-
pressions in a typeful manner. The key insight is that Polish ex-
pressions are in fact more general than applicative expressions: they
represent a stack of values instead of a single one.
As hinted by the constructor names we chose, we can reinterpret
Polish expressions as follows. Push produces a stack with one
more value than its second argument, App transforms the stack
produced by its argument by applying the function on the top to
the argument on the second position and pushing back the result.
Done produces the empty stack.
The expression Push (:) $ App $ Push Atom $ Push ’a’ $
Push [] $ Done is an example producing a non-trivial stack. It
produces the stack (:), (Atom ’a’), [], which can be expressed
purely in Haskell as (:) :< Atom ’a’ :< [] :< Nil , using the
following representation for heterogeneous stacks.

data top :< rest = (:<) {top :: top, rest :: rest }
data Nil = Nil
infixr 4 :<

We are now able to properly type Polish expressions, by indexing
the datatype with the type of the stack produced.

data Polish r where
Push :: a → Polish r → Polish (a :< r)
App :: Polish ((b → a) :< b :< r)→ Polish (a :< r)
Done :: Polish Nil

We can also write a translation from the pure applicative language
to Polish expressions.

toPolish :: Applic a → Polish (a :<Nil)
toPolish expr = toP expr Done

where toP :: Applic a → (Polish r → Polish (a :< r))
toP (f :∗: x) = App ◦ toP f ◦ toP x
toP (Pure x) = Push x

And the value of an expression can be evaluated as follows:
evalR :: Polish r → r
evalR (Push a r) = a :< evalR r
evalR (App s) = apply (evalR s)

where apply∼(f :<∼(a :< r)) = f a :< r
evalR (Done) = Nil

We have the equality evalR (toPolish x) ≡ evalA x :<Nil .
Additionally, we note that this evaluation procedure still possesses
the “online” property: prefixes of the Polish expression are de-
manded only if the corresponding parts of the result are demanded.
This preserves the incremental properties of lazy evaluation that we

required in the introduction. Furthermore, the equality above holds
even when ⊥ appears as argument to the Pure constructor. In fact,
the conversion from applicative to Polish expressions can be un-
derstood as a reification of the working stack of the evalA function
with call-by-name semantics.

4. Adding input
While the study of the pure applicative language is interesting in its
own right (we come back to it in section 4.1), it is not enough to
represent parsers: it lacks dependency on the input.
We introduce an extra type argument (the type of symbols, s), as
well as a new constructor: Symb. It expresses that the rest of the
expression depends on the next symbol of the input (if any): its
first argument is the parser to be used if the end of input has been
reached, while its second argument is used when there is at least
one symbol available, and it can depend on it.

data Parser s a where
Pure :: a → Parser s a
(:∗:) :: Parser s (b → a)→ Parser s b → Parser s a
Symb :: Parser s a → (s → Parser s a)→ Parser s a

Using just this, as an example, we can write a simple parser for
S-expressions.

parseList :: Parser Char [SExpr]
parseList = Symb

(Pure [])
(λc → case c of
’)’→ Pure []
’ ’→ parseList -- ignore spaces
’(’→ Pure (λh t → S h : t) :∗: parseList

:∗: parseList
c → Pure ((Atom c):) :∗: parseList)

We adapt the Polish expressions with the construct corresponding
to Symb, and amend the translation. Intermediate results are repre-
sented by a Polish expression with a Susp element. The part before
the Susp element corresponds to the constant part that is fixed by
the input already parsed. The arguments of Susp contain the con-
tinuations of the parsing algorithm: the first one if the end of input
is reached, the second one when there is a symbol to consume.

data Polish s r where
Push :: a → Polish s r → Polish s (a :< r)
App :: Polish s ((b → a) :< b :< r) → Polish s (a :< r)
Done :: Polish s Nil
Susp :: Polish s r → (s → Polish s r)→ Polish s r

toP :: Parser s a → (Polish s r → Polish s (a :< r))
toP (Symb nil cons) =
λk → Susp (toP nil k) (λs → toP (cons s) k)

toP (f :∗: x) = App ◦ toP f ◦ toP x
toP (Pure x) = Push x

Although we broke the linearity of the type, it does no harm since
the parsing algorithm will not proceed further than the available
input anyway, and therefore will stop at the first Susp. Suspensions
in a Polish expression can be resolved by feeding input into it.
When facing a suspension, we pattern match on the input, and
choose the corresponding branch in the result.
The feed function below performs this duty for a number of sym-
bols, and stops when it has no more symbols to feed. The dual
function, feedEof , removes all suspensions by consistently choos-
ing the end-of-input alternative.

feed :: [s]→ Polish s r → Polish s r
feed [] p = p
feed (s : ss) (Susp nil cons) = feed ss (cons s)
feed ss (Push x p) = Push x (feed ss p)
feed ss (App p) = App (feed ss p)
feed ss Done = Done

feedEof :: Polish s r → Polish s r
feedEof (Susp nil cons) = feedEof nil
feedEof (Push x p) = Push x (feedEof p)
feedEof (App p) = App (feedEof p)
feedEof Done = Done

For example, evalR$feedEof $feed "(a)"$toPolish $parseList
yields back our example expression: S [Atom ’a’].
We recall from section 2 that feeding symbols one at a time yields
all intermediate parsing results.

allPartialParses = scanl (λp c → feed [c] p)

If the (n+ 1)th element of the input is changed, one can reuse the
nth element of the partial results list and feed it the new input’s tail
(from that position).
This suffers from a major issue: partial results remain in their
“Polish expression form”, and reusing offers little benefit, because
no part of the result value is shared between the partial results: the
function evalR has to perform the the full computation for each
of them. Fortunately, it is possible to partially evaluate prefixes of
Polish expressions.
The following function performs this task by traversing a Polish
expression and applying functions along the way.

evalL :: Polish s a → Polish s a
evalL (Push x r) = Push x (evalL r)
evalL (App f) = case evalL f of

(Push g (Push b r))→ Push (g b) r
r → App r

evalL x = x
partialParses = scanl (λp c → evalL ◦ feed [c] $ p)

This still suffers from a major drawback: as long as a function
application is not saturated, the Polish expression will start with a
long prefix of partial applications, which has to be traversed again
in forthcoming partial results.
For example, after applying the S-expression parser to the string
abcdefg, evalL is unable to perform any simplification of the list
prefix:

evalL $ feed "abcdefg" (toPolish parseList)
≡ App $ Push (Atom ’a’:) $

App $ Push (Atom ’b’:) $
App $ Push (Atom ’c’:) $
App $...

This prefix will persist until the end of the input is reached. A
possible remedy is to avoid writing expressions that lead to this
sort of intermediate result, and we will see in section 6 how to
do this in the particularly important case of lists. This however
works only up to some point: indeed, there must always be an
unsaturated application (otherwise the result would be independent
of the input). In general, after parsing a prefix of size n, it is
reasonable to expect a partial application of at least depthO(log n),
otherwise the parser is discarding information.

4.1 Zipping into Polish

In this section we develop an efficient strategy to pre-compute
intermediate results. As seen in the above section, we want to avoid

the cost of traversing the structure up to the suspension at each step.
This suggests to use a zipper structure (Huet, 1997) with the focus
at the suspension point.

data Zip s out where
Zip :: RPolish stack out → Polish s stack → Zip s out

data RPolish inp out where
RPush :: a → RPolish (a :< r) out →

RPolish r out
RApp :: RPolish (b :< r) out →

RPolish ((a → b) :< a :< r) out
RStop :: RPolish r r

Since the data is linear, this zipper is very similar to the zipper for
lists. The part that is already visited (“on the left”), is reversed. Note
that it contains only values and applications, since we never go past
a suspension.
The interesting features of this zipper are its type and its meaning.
We note that, while we obtained the data type for the left part by
mechanically inverting the type for Polish expressions, it can be
assigned a meaning independently: it corresponds to reverse Polish
expressions.
In contrast to forward Polish expressions, which directly produce
an output stack, reverse expressions can be understood as automata
which transform a stack to another. This is captured in the type
indices inp and out , which stand respectively for the input and the
output stack.
Running this automaton requires some care: matching on the input
stack must be done lazily. Otherwise, the evaluation procedure will
force the spine of the input, effectively forcing to parse the whole
input file.

evalRP :: RPolish inp out → inp → out
evalRP RStop acc = acc
evalRP (RPush v r) acc = evalRP r (v :< acc)
evalRP (RApp r)∼(f :<∼(a :< acc))

= evalRP r (f a :< acc)

In our zipper type, the Polish expression yet-to-visit (“on the right”)
has to correspond to the reverse Polish automation (“on the left”):
the output of the latter has to match the input of the former.
Capturing all these properties in the types (though GADTs) allows
to write a properly typed traversal of Polish expressions. The right
function moves the focus by one step to the right.

right :: Zip s out → Zip s out
right (Zip l (Push a r)) = Zip (RPush a l) r
right (Zip l (App r)) = Zip (RApp l) r
right (Zip l s) = Zip l s

As the input is traversed, in the implementation of precompute ,
we also simplify the prefix that we went past, evaluating every
application, effectively ensuring that each RApp is preceded by
at most one RPush .

simplify :: RPolish s out → RPolish s out
simplify (RPush a (RPush f (RApp r))) =

simplify (RPush (f a) r)
simplify x = x

We see that simplifying a complete reverse Polish expression re-
quires O(n) steps, where n is the length of the expression. This
means that the amortized complexity of parsing one token (i.e.
computing a partial result based on the previous partial result) is
O(1), if the size of the result expression is proportional to the size
of the input. We discuss the worst case complexity in section 6.

In summary, it is essential for our purposes to have two evalua-
tion procedures for our parsing results. The first one, presented in
section 3, provides the online property, and corresponds to call-by-
name CPS transformation of the direct evaluation of applicative ex-
pressions. It underlies the finish function in our interface. The sec-
ond one, presented in this section, enables incremental evaluation
of intermediate results, and corresponds to a call-by-value trans-
formation of the same direct evaluation function. It underlies the
precompute function.

5. Adding Choice
We kept the details of actual parsing out of the discussion so far.
This is for good reason: the machinery for incremental computation
and reuse of partial results is independent from such details. Indeed,
given any procedure to compute structured values from a linear
input of symbols, one can use the procedure described above to
transform it into an incremental algorithm.
However, parsing the input string with the interface presented so
far is highly unsatisfactory. To support convenient parsing, we can
introduce a disjunction operator, exactly as Hughes and Swierstra
(2003) do: the addition of the Susp operator does not undermine
their treatment of disjunction in any way.

5.1 Error correction

Disjunction is not very useful unless coupled with failure (other-
wise any branch would be as good as another). Still, the (unre-
stricted) usage of failure is problematic for our application: the
online property requires at least one branch to yield a successful
outcome. Indeed, since the evalR function must return a result (we
want a total function!), the parser must conjure up a suitable result
for any input.
If the grammar is sufficiently permissive, no error correction in
the parsing library itself is necessary. An example is the simple
S-expression parser of section 4, which performs error correction
in an ad-hoc way. However, most interesting grammars produce a
highly structured result, and are correspondingly restrictive on the
input they accept. Augmenting the parser with error correction is
therefore desirable.
Our approach is to add some rules to accept erroneous inputs. These
will be marked as less desirable by enclosing them with Yuck
combinators, introduced as another constructor in the Parser type.
The parsing algorithm can then maximize the desirability of the set
of rules used for parsing a given fragment of input.

data Parser s a where
Pure :: a → Parser s a
(:∗:) :: Parser s (b → a)→ Parser s b → Parser s a
Symb :: Parser s a → (s → Parser s a)→ Parser s a
Disj :: Parser s a → Parser s a → Parser s a
Yuck :: Parser s a → Parser s a

5.2 Example

In this section we rewrite our parser for S-expressions from section
4 using disjunction and error-correction. The goal is to illustrate
how these new constructs can help in writing more modular parser
descriptions.
First, we can define repetition and sequence in the traditional way:

many , some :: Parser s a → Parser s [a]
many v = some v ‘Disj ‘ Pure []
some v = Pure (:) :∗: v :∗: many v

Figure 4. A parsing process and associated progress information. The process has been fed a whole input, so it is free of Susp constructors.
It is also stripped of result information (Push , App) for conciseness, since it is irrelevant to the computation of progress information. Each
constructor is represented by a circle, and their arguments are indicated by arrows. The progress information associated with the process is
written below the node that starts the process. To decide which path to take at the disjunction (Best), only the gray nodes will be forced, if
the desirability difference is 1 for look-ahead 1.

Checking for the end of file can be done as follows. Notice that if
the end of file is not encountered, we keep parsing the input, but
complain while doing so.

eof = Symb (Pure ()) (λ → Yuck eof)

Checking for a specific symbol can be done in a similar way: we
accept anything but dislike (Yuck !) anything unexpected.

pleaseSymbol :: Eq s ⇒ s → Parser s (Maybe s)
pleaseSymbol s = Symb

(Yuck $ Pure Nothing)
(λs ′ → if s ≡ s ′ then Pure (Just s ′)

else Yuck $ Pure (Just s ′))

All of the above can be combined to write the parser for S-
expressions. Note that we need to amend the result type to ac-
commodate for erroneous inputs.

data SExpr
= S [SExpr] (Maybe Char)
| Atom Char
| Missing
| Deleted Char

parseExpr = Symb
(Yuck $ Pure Missing)
(λc → case c of
’(’→ Pure S :∗: many parseExpr :∗: pleaseSymbol ’)’
’)’→ Yuck $ Pure $ Deleted ’)’

c → Pure $ Atom c)

parseTopLevel
= Pure const :∗: parseExpr :∗: eof

We see that the constructs introduced in this section (Disj , Yuck)
permit to write general purpose derived combinators, such as
many , in a traditional style.

5.3 The algorithm

Having defined our definitive interface for parsers, we can describe
the parsing algorithm itself.
As before, we linearize the applications (:∗:) by transforming the
Parser into a Polish-like representation. In addition to the the
Dislike and Best constructors corresponding to Yuck and Disj ,
Shift records where symbols have been processed, once Susp is
removed.

data Polish s a where
Push :: a → Polish s r → Polish s (a :< r)
App :: Polish s ((b → a) :< b :< r)

→ Polish s (a :< r)
Done :: Polish s Nil
Shift :: Polish s a → Polish s a
Sus :: Polish s a → (s → Polish s a)

→ Polish s a
Best :: Polish s a → Polish s a → Polish s a
Dislike :: Polish s a → Polish s a

toP :: Parser s a → (Polish s r → Polish s (a :< r))
toP (Pure x) = Push x

toP (f :∗: x) = App ◦ toP f ◦ toP x
toP (Symb a f) = λfut → Sus (toP a fut)

(λs → toP (f s) fut)
toP (Disj a b) = λfut → Best (toP a fut) (toP b fut)
toP (Yuck p) = Dislike ◦ toP p

The remaining challenge is to amend our evaluation functions to
deal with disjunction points (Best). It offers two a priori equivalent
alternatives. Which one should be chosen?
Since we want online behavior, we cannot afford to look further
than a few symbols ahead to decide which parse might be the best.
(Performance is another motivation: the number of potential paths
grows exponentially with the amount of look-ahead.) We use the
widespread technique (Bird and de Moor, 1997, chapter 8) to thin
out the search after some constant, small amount of look-ahead.
Hughes and Swierstra’s algorithm searches for the best path by di-
rect manipulation of the Polish representation, but this direct ap-
proach forces to transform between two normal forms: one where
the progress nodes (Shift , Dislike) are at the head and one where
the result nodes (Pure , :∗:) are at the head. Therefore, we choose
to use an intermediate datatype which represents the progress infor-
mation only. This clear separation of concerns also enables to com-
pile the progress information into a convenient form: our Progress
data structure directly records how many Dislike are encountered
after parsing so many symbols. It is similar to a list where the nth

element tells how much we dislike to take this path after shifting
n symbols following it, assuming we take the best choice at each
disjunction.

data Progress = S | D Int | Int :# Progress

The difference from a simple list is that progress information may
end with success (D) or suspension (S), depending on whether the
process reaches Done or Susp. Figure 4 shows a Polish structure
and the associated progress for each of its parts. The progress
function below extracts the information from the Polish structure.

progress :: Polish s r → Progress
progress (Push p) = progress p
progress (App p) = progress p
progress (Shift p) = 0 :# progress p
progress (Done) = D 0
progress (Dislike p) = mapSucc (progress p)
progress (Susp) = S
progress (Best p q) = snd $ better (progress p)

(progress q)
mapSucc S = S
mapSucc (D x) = D (succ x)
mapSucc (x :# xs) = succ x :# mapSucc xs

To deal with the last case (Best), we need to find out which of two
profiles is better. Using our thinning heuristic, given two Progress
values corresponding to two terminated Polish processes, it is
possible to determine which one is best by demanding only a prefix
of each. The following function handles this task. It returns the best
of two progress information, together with an indicator of which is
to be chosen. Constructors LT or GT respectively indicates that
the second or third argument is the best, while EQ indicates that a

suspension is reached. The first argument (lk) keeps track of how
much lookahead has been processed. This value is a parameter to
our thinning heuristic, dislikeThreshold , which indicates when a
process can be discarded.

better S = (EQ ,S)
better S = (EQ ,S)
better (D x) (D y) =

if x 6 y then (LT ,D x) else (GT ,D y)
better lk xs@(D x) (y :# ys) =

if x ≡ 0 ∨ y − x > dislikeThreshold lk
then (LT , xs)
else min x y +> better (lk + 1) xs ys

better lk (y :# ys) xs@(D x) =
if x ≡ 0 ∨ y − x > dislikeThreshold lk
then (GT , xs)
else min x y +> better (lk + 1) ys xs

better lk (x :# xs) (y :# ys)
| x ≡ 0 ∧ y ≡ 0 = rec
| y − x > threshold = (LT , x :# xs)
| x − y > threshold = (GT , y :# ys)
| otherwise = rec
where threshold = dislikeThreshold lk

rec = min x y +> better (lk + 1) xs ys
x +>∼(ordering , xs) = (ordering , x :# xs)

Calling the better function directly is very inefficient though, be-
cause its result is needed every time a given disjunction is encoun-
tered. If the result of a disjunction depends on the result of further
disjunction, the result of the further disjunction will be needlessly
discarded. Therefore, we cache the result of better in the Polish
representation, using the well known technique of tupling. For sim-
plicity, we cache the information only at disjunction nodes, where
we also remember which path is best to take. We finally see why the
Polish representation is important: the progress information can-
not be associated to a Parser , because it may depend on whatever
parser follows it. This is not an issue in the Polish representation,
because applications (:∗:) are unfolded.
We now have all the elements to write our final data structures
and algorithms. The following code shows the final construction
procedure. In the Polish datatype, only the Best constructor is
amended.

data Polish s a where
...

Best :: Ordering → Progress →
Polish s a → Polish s a → Polish s a

toP :: Parser s a → (Polish s r → Polish s (a :< r))
toP (Symb a f) = λfut → Susp (toP a fut)

(λs → toP (f s) fut)
toP (f :∗: x) = App ◦ toP f ◦ toP x
toP (Pure x) = Push x
toP (Disj a b) = λfut → mkBest (toP a fut) (toP b fut)
toP (Yuck p) = Dislike ◦ toP p

mkBest :: Polish s a → Polish s a → Polish s a
mkBest p q =

let (choice, pr) = better 0 (progress p) (progress q)
in Best choice pr p q

The evaluation functions can be easily adapted to support disjunc-
tion by querying the result of better , cached in the Best construc-
tor. We write the the online evaluation only: partial result computa-
tion is modified similarly.

evalR :: Polish s r → r
evalR Done = Nil
evalR (Push a r) = a :< evalR r
evalR (App s) = apply (evalR s)

where apply∼(f :<∼(a :< r)) = f a :< r
evalR (Shift v) = evalR v
evalR (Dislike v) = evalR v
evalR (Susp) = error "input pending"

evalR (Best choice p q) = case choice of
LT → evalR p
GT → evalR q
EQ → error "Suspension reached"

Note that this version of evalR expects a process without any
pending suspension (the end of file must have been reached). In this
version we also disallow ambiguity, see section 5.5 for a discussion.

5.4 Summary

We have given a convenient interface for constructing error-
correcting parsers, and functions to evaluate them. This is per-
formed in steps: first we linearize applications into Polish (as in
section 4), then we linearize disjunctions (progress and better)
into Progress . The final result is computed by traversing the
Polish expressions, using Progress to choose the better alternative
in disjunctions.
Our technique can also be re-formulated as lazy dynamic program-
ming, in the style of Allison (1992). We first define a full tree of
possibilities (Polish expressions with disjunction), then we com-
pute progress information that we tie to it, for each node; finally,
finding the best path is a matter of looking only at a subset of the
information we constructed, using any suitable heuristic. The cut-
off heuristic makes sure that only a part of the exponentially grow-
ing data structure is demanded. Thanks to lazy evaluation, only that
small part will be actually constructed.

5.5 Thinning out results and ambiguous grammars

A sound basis for thinning out less desirable paths is to discard
those which are less preferable by some amount. In order to pick
one path after a constant amount of look-ahead l, we must set this
difference to 0 when comparing the lth element of the progress
information, so that the parser can pick a particular path, and return
results. Unfortunately, applying this rule strictly is dangerous if
the grammar requires a large look-ahead, and in particular if it is
ambiguous. In that case, the algorithm can possibly commit to a
prefix which will lead to errors while processing the rest of the
output, while another prefix would match the rest of the input
and yield no error. In the present version of the library we avoid
the problem by keeping all valid prefixes. The user of the parsing
library has to be aware of this issue when designing grammars: it
can affect the performance of the algorithm to a great extent, by
triggering an exponential explosion of possible paths.

6. Eliminating linear behavior
As we noted in section 4, the result of some computations cannot
be pre-computed in intermediate parser states, because constructors
are only partially applied.
This is indeed a common case: if the constructed output is a list,
then the spine of the list can only be constructed once we get hold
of the very tail of it.
For example, our parser for S-expressions would produce such lists
for flat expressions, because the applications of (:) can be computed
only when the end of the input is reached.

evalL $ feed "(abcdefg" (toPolish parseList)
≡ App $ Push (Atom ’a’:) $

App $ Push (Atom ’b’:) $
App $ Push (Atom ’c’:) $
App $...

Section 4.1 explained how to optimize the creation of intermediate
results, by skipping this prefix. Unfortunately this does not improve
the asymptotic performance of computing the final result. The
partial result corresponding to the end of input contains the long
chain of partial applications (in reverse Polish representation), and
to produce the final result the whole prefix has to be traversed.
Therefore, in the worst case, the construction of the result has a cost
proportional to the length of the input.
While the above example might seem trivial, the same result ap-
plies to all repetition constructs, which are common in language
descriptions. For example, a very long Haskell file is typically con-
stituted of a very long list of declarations, for which a proportional
cost must be paid every time the result is constructed.
The culprit for linear complexity is the linear shape of the list.
Fortunately, nothing forces to use such a structure: it can always
be replaced by a tree structure, which can then be traversed in
pre-order to discover the elements in the same order as in the
corresponding list. Wagner and Graham (1998, section 7) recognize
this issue and propose to replace left or right recursive rules in the
parsing with a special repetition construct. The parsing algorithm
treats this construct specially and does re-balancing of the tree as
needed. We choose a different approach: only the result type is
changed, not the parsing library. We can do so for two reasons:

• Combinators can be parametrized by arbitrary values
• Since we do not update a tree, but produce a fresh version every

time, we need not worry about re-balancing issues.

Let us summarize the requirements we put on the data structure:

• It must provide the same laziness properties as a list: accessing
an element in the structure should not force to parse the input
further than necessary if we had used a list.

• the nth element in pre-order should not be further away than
O(log n) elements from the root of the structure. In other
words, if such a structure contains a suspension in place of an
element at position n, there will be no more than O(log n)
partial applications on the stack of the corresponding partial
result. This in turn means that the resuming cost for that partial
result will be in O(log n).

The second requirement suggests a tree-like structure, and the first
requirement implies that whether the structure is empty or not can
be determined by entering only the root constructor. It turns out that
a simple binary tree can fulfill these requirements.

data Tree a = Node a (Tree a) (Tree a)
| Leaf

The only choice that remains is the size of the sub-trees. The
specific choice we make is not important as long as we make sure
that each element is reachable in O(log n) steps. A simple choice
is a series of complete trees of increasing depth. The kth tree will
have depth k and contain 2k − 1 nodes. For simplicity, all these
sub-trees are chained using the same data type: they are attached
as the left child of the spine of a right-leaning linear tree. Such a
structure is depicted in figure 5.
We note that a complete tree of total depth 2d can therefore store at
least

∑d
k=1 2

k − 1 elements, fulfilling the second requirement.

1

2

3

4

5 6

7

8

9

10 11

12

13 14

Figure 5. A tree storing the elements 1 . . . 14. Additional elements
would be attached to the right child of node 7: there would be no
impact on the tree constructed so far.

This structure is very similar to binary random access lists as pre-
sented by Okasaki (1999, section 6.2.1), but differ in purpose. The
only construction primitive presented by Okasaki is the appending
of an element. This is of no use to us, because the function has
to analyze the structure it is appending to, and is therefore strict.
We want avoid this, and thus must construct the structure in one
go. Indeed, the construction procedure is the only novel idea we
introduce:

toTree d [] = Leaf
toTree d (x : xs) = Node x l (toTree (d + 1) xs ′)

where (l , xs ′) = toFullTree d xs

toFullTree 0 xs = (Leaf , xs)
toFullTree d [] = (Leaf , [])
toFullTree d (x : xs) = (Node x l r , xs ′′)

where (l , xs ′) = toFullTree (d − 1) xs
(r , xs ′′) = toFullTree (d − 1) xs ′

In other words, we must use a special construction function to
guarantee the online production of results: we want the argument
of Pure to be in a simple value (not an abstraction), as explained
in section 3. In fact, we will have to construct the list directly in the
parser.
The following function implements such a parser where repeated
elements are mere symbols.

parseTree d = Symb
(Pure Leaf)
(λs → Pure (Node s) :∗:

parseFullTree d :∗:
parseTree (d + 1))

parseFullTree 0 = Pure Leaf
parseFullTree d = Symb
(Pure Leaf)
(λs → Pure (Node s) :∗:

parseFullTree (d − 1) :∗:
parseTree (d − 1))

The function can be adapted for arbitrary non-terminals. One has
to take care to avoid interference between the construction of
the shape and error recovery. For example, the position of non-
terminals can be forced in the tree, as to be in the node correspond-
ing to the position of their first symbol. In that case the structure
has to be accommodated for nodes not containing any information.

6.1 Quick access

Another benefit of using the tree structure as above is that finding
the part of the tree of symbols corresponding to the edit window
also takes logarithmic time. Indeed, the size of each sub-tree de-
pends only on its relative position to the root. Therefore, one can
access an element by its index without pattern matching on any
node which is not the direct path to it. This allows efficient indexed
access without loosing any property of laziness. Again, the tech-
nique can be adapted for arbitrary non-terminals. However, it will
only work if each node in the tree is “small” enough. Finding the
first node of interest might force an extra node, and in turn force
parsing the corresponding part of the file.

7. Related work
The literature on parsing, incremental or not, is so abundant that a
comprehensive survey would deserve its own treatment. Here we
will compare our approach to some of the closest alternatives.

7.1 Development environments

The idea of incremental analysis of programs is not new. Wilcox
et al. (1976) already implemented such a system. Their program
works very similarly to ours: parsing states to the left of the cursor
are saved so that changes to the program would not force a com-
plete re-parse. A big difference is that it does not rely on built-in
lazy evaluation. If they had produced an AST, its online produc-
tion would have had to be managed entirely by hand. The system
also did not provide error correction nor analysis to the right of the
cursor.
Ghezzi and Mandrioli (1979) improved the concept by reusing
parsing results to the right of the cursor: after parsing every symbol
they check if the new state of the LR automaton matches that of
the previous run. If it does they know that they can reuse the results
from that point on.
This improvement offers some advantages over Wilcox et al. (1976)
which still apply when compared to our solution.

1. In our system, if the user jumps back and forth between the
beginning and the end of the file, every forward jump will
force re-parsing the whole file. Note that we can mitigate this
drawback by caching the (lazily constructed) whole parse tree:
a full re-parse is required only when the user makes a change
while viewing the beginning of the file.

2. Another advantage is that the AST is fully constructed at all
times. In our case only the part to the left of the window is
available. This means that the functions that traverse the AST
should do so in pre-order. If this is not the case, the online
property becomes useless. For example, if one wishes to apply a
sorting algorithm before displaying an output, this will force the
whole input to be parsed before displaying the first element of
the input. In particular, the arguments to the Pure constructor
must not perform such operations on its arguments. Ideally, they
should be simple constructors. This leaves much risk for the
user of the library to destroy its incremental properties.

While our approach is much more modest, it can be considered
better in some respects.

1. One benefit of not analyzing the part of the input to the right of
the cursor is that there is no start-up cost: only a screenful of
text needs to be parsed to start displaying it.

2. Another important point is that a small change in the input
might completely invalidate the result from the previous parsing

run. A simple example is the opening of a comment: while
editing an Haskell source file, typing {- implies that the rest
of the file becomes a comment up to the next matching -}.
It is therefore questionable that reusing right-bound parts of the
parse tree offers any reasonable benefit in practice: it seems to
be optimizing for a special case. This is not very suitable in
an interactive system where users expect consistent response
times.

3. Finally, our approach accommodate better to a combinator im-
plementation. Indeed, comparing parser states is very tricky to
accomplish in the context of a combinator library: since parsing
states normally contain lambda abstractions, it is not clear how
they can be compared to one another.

Wagner and Graham (1998) improved on the state-matching tech-
nique. They contributed the first incremental parser that took in ac-
count the inefficiency of linear repetition. We compared our ap-
proach to theirs in section 6.
Despite extensive research dating as far back as 30 years ago, these
solutions have barely caught up in the mainstream. Editors typically
work using regular expressions for syntax highlighting at the lexical
level (Emacs, Vim, Textmate, . . .).
It is possible that the implementation cost of earlier solutions out-
weighed their benefits. We hope that the simplicity of our approach
will permit more widespread application.

7.2 Incremental computation

An alternative to our approach to would be to build the library as
a plain parser on top of a generic incremental computation system.
The main drawback is that there currently exists no such off-the-
shelf system for Haskell. The closest matching solution is provided
by Carlsson (2002), and relies heavily on explicit threading of
computation through monads and explicit reference for storage
of inputs and intermediate results. This imposes an imperative
description of the incremental algorithm, which does not match our
goals. Furthermore, in the case of parsing, the inputs would be the
individual symbols. This means that, not only their contents will
change from one run to another, but their numbers will as well. One
then might want to rely on laziness, as we do, to avoid depending
unnecessarily on the tail of the input, but then we hit the problem
that the algorithm must be described imperatively. Therefore, we
think that such an approach would be awkward, if at all applicable.

7.3 Parser combinators

Our approach is firmly anchored in the tradition of parser combi-
nator libraries (Hutton and Meijer, 1998), and particularly close to
the Polish parsers of Hughes and Swierstra (2003), which were re-
cently refined by Swierstra (2009).
The introduction of the Susp operator is directly inspired by the
parallel parsing processes of Claessen (2004), which features a very
similar construct to access the first symbol of the input and make
it accessible to the rest of the computation. This paper presents
our implementation as a version of Polish parsers extended with
an evaluation procedure “by-value”, but we could equally have
started with parallel parsing processes and extended them with “by-
name” evaluation. The combination of both evaluation techniques
is unique to our library.
Our error correction mechanism bears many similarities with that
presented by Swierstra and Alcocer (1999): they also associate
some variant of progress information to parsers and rely on thinning
and laziness to explore the tree of all possible parses. An important
difference is that we embed the error reports in the tree instead of

returning them as a separate tree. This is important, because we
need to highlight errors in a lazy way. If the errors we reported sep-
arately, merely checking if an error is present could force parsing
the whole file.
Wallace (2008) presents another, simpler approach to online pars-
ing, based on the notion of commitment. His library features two
sequencing combinators: the classic monadic bind, and a special
application with commitment. The former supports backtracking in
the classic way, but the latter decouples errors occurring on its left-
hand side from errors occurring on its right-hand side: if there are
two possible ways to parse the left-hand side, the parser chooses
the first match. This scheme therefore relies on user annotations
at determined points in the production of the result to prune the
search tree, while we prune after the same amount of lookahead in
all branches. This difference explains why we need to linearize the
applications, while it can be avoided in Wallace’s design. Addition-
ally, we take advantage of the linear shape of the parsing process to
to feed it with partial inputs, so we cannot spare the linearization
phase. A commitment combinator would be a useful addition to our
library though: pruning the search tree at specific point can speed
up the parsing and improve error-reporting.

8. Discussion
Due to our choice to commit to a purely functional, lazy approach,
our incremental parsing library occupies a unique point in the
design space.
It is also the first time that incremental and online parsing are both
available in a combinator library.
What are the advantages of using the laziness properties of the
online parser? Our system could be modified to avoid relying on
laziness at all. In section 4.1 we propose to apply the reverse Polish
automaton (on the left) to the stack produced — lazily — by the
Polish expression (on the right). Instead of that stack, we could feed
the automaton with a stack of dummy values, or ⊥s. Everything
would work as before, except that we would get exceptions when
trying to access unevaluated parts of the tree. If we know in advance
how much of the AST is consumed, we could make the system
work as such.
One could take the stance that this guesswork (knowing where
to stop the parsing) is practically possible only for mostly linear
syntaxes, where production of output is highly coupled with the
consumption of input. Since laziness essentially liberates us from
any such guesswork, the parser can be fully decoupled from the
functions using the syntax tree.
The above reflexion offers another explanation why most main-
stream syntax highlighters are based on regular-expressions or
other lexical analysis mechanism: they lack a mechanism to de-
couple processing of input from production of output.
The flip side to our approach is that the efficiency of the system
crucially depends on the lazy behavior of consumers of the AST.
One has to take lots of care in writing them.

9. Future work
Our treatment of repetition is still lacking: we would like to retrieve
any node by its position in the input while preserving all properties
of laziness intact. While this might be very difficult to do in the
general case, we expect that our zipper structure can be used to
guide the retrieval of the element at the current point of focus, so
that it can be done efficiently.
Although it is trivial to add a failure combinator to the library
presented here, we refrained from doing so because it can lead

to failing parsers. Of course, one can use our Yuck combinator
in place of failure, but one has to take in account that the parser
continues running after the Yuck occurrence. In particular, many
Yucks following each other can lead to some performance loss,
as the “very disliked” branch would require more analysis to be
discarded than an immediate failure. Indeed, if one takes this idea
to the extreme and tries to use the fix-point (fix Yuck) to represent
failure, it will lead to non-termination. This is due to our use of
strict integers in the progress information. We have chosen this
representation to emphasize the dynamic programming aspect of
our solution, but in general it might be more efficient to represent
progress by a mere interleaving of Shift and Dislike constructors.
Our library suffers from the usual drawbacks of parser combina-
tor approaches. In particular, it is impossible to write left-recursive
parsers, because they cause a non-terminating loop in the parsing
algorithm. We could proceed as Baars et al. (2009) and transform
the grammar to remove left-recursion. It is interesting to note how-
ever that we could represent traditional left-recursive parsers as
long as they either consume or produce data, provided the progress
information is indexed by the number of Pushes in addition to
Shifts.
Finally, we might want to re-use the right hand side of previ-
ous parses. This could be done by keeping the parsing results for
all possible prefixes. Proceeding in this fashion would avoid the
chaotic situation where a small modification might invalidate all
the parsing work that follows it, since we take in account all possi-
ble prefixes ahead of time.

10. Results
We carried out development of a parser combinator library for
incremental parsing with support for error correction. We argued
that, using suitable data structures for the output, the complexity of
parsing (without error correction) is O(log m+ n) where m is the
number of tokens in the state we resume from and n is the number
of tokens to parse. Parsing an increment of constant size has an
amortized complexity ofO(1). These complexity results ignore the
time to search for the nodes corresponding to the display window.
The parsing library presented in this paper is used in the Yi editor
to help matching parenthesis and layout the Haskell functions,
and environment delimiters as well as parenthetical symbols were
matched in the LATEX source. This paper and the accompanying
source code have been edited in Yi.

11. Conclusion
We have shown that the combination of a few simple techniques
achieve the goal of incremental parsing.

1. In a lazy setting, the combination of online production of results
and saving intermediate results provide incrementality;

2. The efficient computation of intermediate results requires some
care: a zipper-like structure is necessary to improve perfor-
mance.

3. Online parsers can be extended with an error correction scheme
for modularity.

4. Provided that they are carefully constructed to preserve lazi-
ness, tree structures can replace lists in functional programs.
Doing so can improve the complexity class of algorithms.

While these techniques work together here, we believe that they
are valuable independently of each other. In particular, our error

correction scheme can be replaced by another one without invali-
dating the approach.

Acknowledgments
We thank Koen Claessen for persuading us to write this paper, and
for his unfading support throughout the writing process. This paper
was greatly improved by his comments on early and late drafts.
Discussions with Krasimir Angelov helped sorting out the notions
of incremental parsing. Patrik Jansson, Wouter Swierstra, Gustav
Munkby, Marcin Zalewski and Michał Pałka and the anonymous
reviewers of ICFP gave helpful comments on the presentation of
the paper. Finally, special thanks go to the reviewers of the Haskell
Symposium for their extremely helpful comments.

References
L. Allison. Lazy Dynamic-Programming can be eager. Information

Processing Letters, 43(4):207–212, 1992.

A. Baars, D. Swierstra, and M. Viera. Typed transformations of
typed abstract syntax. In TLDI ’09: fourth ACM SIGPLAN
Workshop on Types in Language Design and Implementation,
New York, NY, USA, 2009.

J. Bernardy. Yi: an editor in Haskell for Haskell. In Proceedings
of the first ACM SIGPLAN symposium on Haskell, pages 61–62,
Victoria, BC, Canada, 2008. ACM.

R. Bird and O. de Moor. Algebra of programming. Prentice-Hall,
Inc., 1997.

M. Carlsson. Monads for incremental computing. In Proceedings
of the seventh ACM SIGPLAN international conference on Func-
tional programming, pages 26–35, Pittsburgh, PA, USA, 2002.
ACM.

K. Claessen. Parallel parsing processes. Journal of Functional
Programming, 14(6):741–757, 2004.

C. Ghezzi and D. Mandrioli. Incremental parsing. ACM Trans.
Program. Lang. Syst., 1(1):58–70, 1979.

G. Huet. The zipper. J. Funct. Program., 7(5):549–554, 1997.

R. J. M. Hughes and S. D. Swierstra. Polish parsers, step by step.
In Proceedings of the eighth ACM SIGPLAN international con-
ference on Functional programming, pages 239–248, Uppsala,
Sweden, 2003. ACM.

G. Hutton and E. Meijer. Monadic parsing in haskell. Journal of
Functional Programming, 8(04):437–444, 1998.

C. McBride and R. Paterson. Applicative programming with ef-
fects. Journal of Functional Programming, 18(01):1–13, 2007.

C. Okasaki. Purely Functional Data Structures. Cambridge Uni-
versity Press, July 1999.

D. Stewart and M. Chakravarty. Dynamic applications from the
ground up. In Haskell ’05: Proceedings of the 2005 ACM SIG-
PLAN workshop on Haskell, pages 27–38. ACM Press, 2005.

S. D. Swierstra. Combinator parsers: From toys to tools. Electronic
Notes in Theoretical Computer Science, 41(1), 2000.

S. D. Swierstra. Combinator parsing: A short tutorial. In Language
Engineering and Rigorous Software Development, volume 5520
of LNCS, pages 252–300, Piriapolis, 2009. Springer.

S. D. Swierstra and P. R. A. Alcocer. Fast, error correcting parser
combinators: A short tutorial. In Proceedings of the 26th Confer-
ence on Current Trends in Theory and Practice of Informatics on

Theory and Practice of Informatics, pages 112–131. Springer-
Verlag, 1999.

T. A. Wagner and S. L. Graham. Efficient and flexible incremental
parsing. ACM Transactions on Programming Languages and
Systems, 20(5):980–1013, 1998.

M. Wallace. Partial Parsing: Combining Choice with Commitment,
volume 5083/2008 of LNCS, pages 93–110. Springer Berlin /
Heidelberg, 2008.

T. R. Wilcox, A. M. Davis, and M. H. Tindall. The design and im-
plementation of a table driven, interactive diagnostic program-
ming system. Commun. ACM, 19(11):609–616, 1976.

H. Xi, C. Chen, and G. Chen. Guarded recursive datatype construc-
tors. SIGPLAN Not., 38(1):224–235, 2003.

Appendix: The complete code
The complete code of the library described in this paper can
be found at: http://github.com/jyp/topics/tree/master/
FunctionalIncrementalParsing/Code.lhs The Yi source
code is constantly evolving, but at the time of this writing it
uses a version of the parsing library which is very close to
the descriptions given in the paper. It can be found at: http:
//code.haskell.org/yi/Parser/Incremental.hs

