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ABSTRACT
In this tutorial paper we analyze the capacity of
bit-interleaved coded modulation (BICM) with quadrature
amplitude modulation (QAM) constellations, and we pay
special attention to different bit-to-symbol labeling strate-
gies. The relation between the BICM capacity and the ca-
pacity of other CM schemes such as trellis coded modulation
(TCM) and multilevel codes (MLC) is analyzed. Motivated
by the fact that for BICM with some particular labelings, the
same Eb/N0 maps to more than one BICM capacity value,
we study the relation between the capacity and Eb/N0. In
particular, we present some analytical results on this rela-
tion, and we also give an intuitive explanation for the some-
how contradictory behavior of these curves.

Categories and Subject Descriptors: E.4 Coding and
Information Theory,Error control codes.

General Terms: Theory.

Keywords: BICM, Binary Labeling, Channel Capacity,
Coded Modulation, Gray Code, MLC, Quadrature Ampli-
tude Modulation, TCM.

1. INTRODUCTION
The problem of reliable transmission of binary informa-

tion through a noisy channel dates back to Shannon’s work
in 1948 [1]. After he introduced the famous capacity for-
mula for the AWGN channel, the problem of designing a
system that operates close to that limit has been one of
the most important and challenging problems in informa-
tion/communication theory. Probably, one of the simplest
ways of approaching capacity is by using binary signaling
(e.g., BPSK) and a binary channel encoder of rate 0 ≤ Rc ≤
1 that corrects errors caused by the channel. In this case,
by changing the rate of the encoder, the bit rate can be
modified at expense of a higher/lower error correction ca-
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pability. In such a system the maximum number of bits
per channel symbol is bounded by one, and therefore, it is
not spectrally efficient for good channel conditions. One
straightforward answer to the question of how to efficiently
transmit more than 1 bit per symbol is a coded modulation
(CM) scheme, where the channel encoder is connected to
a modulator where several bits are associated to one chan-
nel symbol. What is not straightforward is how to construct
such a system, that operates close to the capacity limit, with
a reasonably low complexity.

In 1974 Massey proposed the idea of jointly design the
channel encoder and modulator [2], which inspired Unger-
boeck’s trellis coded modulation (TCM) [3], and Imai and
Hirakawa’s multilevel coding (MLC) [4]. Since both TCM
and MLC aim to maximize a Euclidean distance measure,
they perform very well over the AWGN channel. However,
their performance in fading channels was rather poor.

In 1992 Zehavi introduced the so-called bit-interleaved
coded modulation (BICM) [5], which is simply a serial con-
catenation of a channel encoder, a bit-level interleaver, and
a memoryless mapper. BICM aims to increase the code
diversity—the key performance measure in fading channels—
and therefore, outperforms previous CM schemes in this sce-
nario. When compared to TCM, BICM decreases the mini-
mum Euclidean distance, and consequently, it is suboptimal
for the AWGN channel. Nevertheless, since this decrease is
only marginal [6], BICM is very robust to variations of the
channel characteristics. BICM is very attractive from an
implementation point view because of its flexibility, i.e., the
channel encoder and the modulator can be selected indepen-
dently, somehow breaking Massey’s joint design paradigm.
BICM is nowadays a de facto standard, and it is used in
most of the existing wireless systems, e.g., HSDPA, IEEE
802.11a/g, IEEE 802.16, DVB-S2, etc.

In this paper we analyze the BICM capacity, its relation
with the capacity of TCM and MLC, and we pay special
attention to to different bit-to-symbol labeling strategies.
We also analyze the BICM capacity vs. Eb/N0, and we
show that for some particular labelings, this relation is not
a function, i.e., the same Eb/N0 maps to more than one
capacity value. Since at a first glance the intuition usually
fails when trying to understand these figures, we give some
analytical and intuitive explanations for their behavior.

The paper is organized as follows. In Sec. 2 we introduce
the notation, some definitions, and the system model. In
Sec. 3 we analyze the capacity of BICM and its relation
with TCM and MLC, and in Sec. 4 we analyze the BICM
capacity vs. Eb/N0. In Sec. 5 the conclusions are drawn.



2. PRELIMINARIES AND SYSTEM MODEL
Hereafter we use lower case letters x to denote a scalar,

and boldface letters x to denote a vector of scalars. Capital
letters X denote random variables, P(·) denotes probability,
E[·] denotes expectation, and pX(x) denotes the probability
density function (pdf) of the random vector X. Blackboard
bold letters X represent matrices or vectors.

2.1 Binary Labelings

Definition 1 (Binary labeling). A binary labeling
L of order m ∈ Z

+ is a sequence of M = 2m distinct binary
codewords, L = [c0, c1, . . . , cM−1], where each ci ∈ {0, 1}m.
A rectangular binary labeling L of order (m1, m2) ∈ Z

+ ×
Z

+ consists of all codewords in {0, 1}m1+m2 , arranged in a
matrix of dimension M1 = 2m1 by M2 = 2m2 .

Definition 2 (Labeling expansion). To generate a la-
beling Lm from a labeling Lm−1 = [c0, . . . , cM/2−1], do the
following. Repeat each codeword once to obtain a new vector
[c0, c0, . . . , cM/2−1, cM/2−1], and then obtain Lm by adding
one coordinate, from the right, taken form the length-M vec-
tor [0 1 1 0 0 1 1 0 . . . 0 1 1 0].

Definition 3 (Labeling repetition). To generate a
labeling Lm from a labeling Lm−1 = [c0, . . . , cM/2−1], do
the following. Repeat the labeling Lm−1 once to obtain a
new sequence of M vectors [c0, . . . , cM/2−1, c0, . . . , cM/2−1].
Add an extra coordinate to each codeword from the left. This
extra coordinate is zero (or one) for the first (or last) M/2
vectors.

In this paper we are particularly interested in the binary
reflected Gray code (BRGC) [7,8], and in the natural binary
code (NBC). We also introduce a new mapping denoted bi-
nary semi-Gray code (BSGC) which has some interesting
properties that will be analyzed later in the paper.

Definition 4 (Binary reflected Gray code). The
BRGC of order m, denoted by Gm, is generated by m − 1
recursive expansions of the trivial labeling L1 = [0 1], for any
m ≥ 1.

Definition 5 (Natural binary code). The NBC of
order m, denoted by Nm, is generated by m − 1 recursive
repetitions of the trivial labeling L1 = [0 1], for any m ≥ 1.

Definition 6 (Binary semi-Gray code). The BSGC
of order m, denoted by Sm, for any m ≥ 3, is generated based
on the BRGC of order m as follows. To generate Sm, take
Gm and replace the first coordinate of Sm by the modulo-2
addition of the first and last coordinates of Gm.

Definition 7 (Rectangular BRGC). The rectangu-
lar BRGC of order (m1, m2), denoted by Gm1,m2

, is gener-
ated by the direct product of two BRGC of order m1 and
m2, i.e., Gm1,m2

= Gm1
× Gm2

. This definition applies
also to rectangular NBC (Nm1,m2

) and rectangular BSGC
(Sm1,m2

).

Example 1 (Binary labelings G3, N3, and S3).

G3 =
ˆ

000 001 011 010 110 111 101 100
˜

N3 =
ˆ

000 001 010 011 100 101 110 111
˜

S3 =
ˆ

000 101 111 010 110 011 001 100
˜

b c
ENC M

x

z

y
DECODER

b̂

Figure 1: A CM scheme: A channel encoder, a
mapper, a discrete-time memoryless AWGN chan-
nel, and the decoder.

2.2 System Model
In this paper we analyze coded modulation schemes as

the one shown in Fig. 1. At a given time n, kc informa-
tion bits are passed to the rate Rc = kc/m binary chan-
nel encoder (ENC), which generates a length-m codeword1

cn = [cn,0, . . . , cn,m−1]. This codeword is mapped to a
random symbol X = xn in an N-dimensional Euclidean
space using a memoryless mapping rule M : {0, 1}m → X ,
where xn = [xn,1, . . . , xn,N ] ∈ X and the input alphabet
X is subject to a constraint on the average symbol en-
ergy Es = E[||X||2].

We consider transmissions over the equivalent discrete-
time memoryless additive white Gaussian noise (AWGN)
channel, with output alphabet Y = R

N , i.e., Y = X +
Z, where Z is a circularly symmetric Gaussian noise with
zero mean and variance N0/2 in each dimension. At the
receiver’s side, and based on the channel observation, the
decoder generates an estimate of the information bits b̂.

Each constellation symbol conveys kc = Rcm information
bits, thus, the relation between Es and the average informa-
tion bit energy Eb is given by Es = kcEb. Using this, we
can write

Es

N0
= kc

Eb

N0
, (1)

which will be important for the analysis in Sec. 4.

2.3 AMI and Channel Capacity
In this subsection, we assume that X can be selected con-

tinuously, i.e., X = R
N , which upperbounds the perfor-

mance of finite input alphabets. The input symbols are se-
lected with pdf pX(x) and the conditional channel transition
pdf is pY|X(y|x).

Definition 8 (Average mutual information). The
average mutual information (AMI) between the random vari-
ables X and Y is defined as

I(X;Y) , E

»

log2

pY|X(Y|X)

pY(Y)

–

(2)

=

Z

X

pX(x)

Z

Y

pY|X(y|x) log2

pY|X(y|x)

pY(y)
dy dx.

Definition 9 (Channel capacity). The channel ca-
pacity of a memoryless channel is defined as the maximum
AMI between its input and output

C
„

Es

N0

«

, max
pX(x)

˘

I(X;Y)
¯

, (3)

1The encoder has in general a memory. It is implemented as
a convolutional code or an (n, k) block code, for any (possi-
bly large) parameters k and n such that k/n = Rc. In this
case, kc = km/n does not have to be an integer.



where the maximization is over all possible input distribu-
tions.

The capacity in (3) has units of [bit/symbol], and it is an
upper bound on the number of bits per symbol that can be
reliably transmitted through the channel. Shannon theory
states that it is simply not possible to transmit information
reliably above this fundamental limit, i.e.,

kc ≤ C
„

Es

N0

«

= C
„

kc
Eb

N0

«

. (4)

Since the noise is circularly symmetric, the transmission
of X can be considered as a transmission through N par-
allel Gaussian channels, i.e., Yi = Xi + Zi, where Zi ∼
N (0, N0/2), for i = 1, . . . , N .

Definition 10 (AWGN capacity). The channel capac-
ity of the AWGN channel is given by [9, Sec. 9.4]

CAW

„

Es

N0

«

,
N

2
log2

„

1 +
Es/N

N0/2

«

, (5)

which is obtained when Xi ∼ N (0, Es/N) in each dimension.

3. CAPACITY OF CODED MODULATION
SYSTEMS

In this section we analyze three different ways of con-
structing a CM scheme: TCM, MLC, and BICM. We pay
special attention to their capacities, and how they are re-
lated.

3.1 TCM and MLC-MSD
For practical reasons, here we restrict our attention to dis-

crete alphabets with cardinality |X | = M = 2m, where X ⊂
R

2 (N = 2) formed by the direct product of two equidis-

tant PAM constellations XPAM = {±(
√

M − 1),±(
√

M −
3), . . . ,±1}, i.e., XQAM = XPAM × XPAM. Moreover, we re-
strict the input distribution of the symbols to be uniform,
i.e., P(x) = 1/M . Under the previous assumptions, we de-
fine the so-called uniform capacity as follows.

Definition 11 (Uniform capacity).

CUN

„

Es

N0

«

, I(X;Y) (6)

= I(C0, . . . , Cm−1;Y), (7)

where C = (C0, . . . , Cm−1) are the binary random variables
representing the bits in the codewords in Fig. 1.

To pass from (6) to (7), we used the fact that the mapping
rule between X and C is one-to-one. Since X is discrete,
to compute the AMI in (2), the outer integral should be
replaced by a summation.

Using the chain rule of mutual information [9, Sec. 2.5],
the UN capacity in (7) can be rewritten as

CUN

„

Es

N0

«

=

m−1
X

k=0

I(Ck;Y|C0, . . . , Ck−1) (8)

=

m−1
X

k=0

Ck

„

Es

N0

«

, (9)

where Ck(Es/N0) , I(Ck;Y|C0, . . . , Ck−1) is a bit level ca-
pacity which represents the maximum rate that can be used

at the (k + 1)-th bit position, given a perfect knowledge
of the other k bits. It is important to note that the UN
capacity does not depend on the labeling used. Different
labelings will produce different values of Ck(Es/N0) in (9),
but the overall sum will remain constant.

The UN capacity can be achieved by a joint design of the
encoder and mapper, for example by TCM [3], or by MLC
[4, 10] with multistage decoding (MSD). MLC-MSD is in
fact a direct application of (8), i.e., m parallel encoders are
used, each of them having a rate Rck

= Ck(Es/N0). At the
receiver’s side, the first bit level is decoded and the decisions
are passed to the second decoder, which then passes the
decisions to the third decoder, and so on.

3.2 BICM and MLC-PDL
In a BICM system [5,6] shown in Fig. 2, a bit level inter-

leaver is placed between the encoder and the mapper. At
the receiver’s side, the demapper computes soft information
on the coded bits, which are then deinterleaved and passed
to the channel decoder. The demapper computes the a pos-
teriori L-values for the k-th bit in the symbol as

l′k(y) , log
P(y|c′k = 1)

P(y|c′k = 0)
+ log

P(c′k = 1)

P(c′k = 0)
, (10)

where the second term in (10) represents the a priori infor-
mation. When a non-iterative BICM receiver is used, the
demapper has no a priori information on the coded bits, and
consequently, the L-values are calculated as

l′k(y) =
1

X

u=0

(−1)u+1 log
X

x∈Xk
u

exp

„

−||y − x||2
N0

«

, (11)

where X k
u are all x ∈ X labeled with u ∈ {0, 1} at position k.

Using the equivalent channel model of [6], m parallel binary-
input soft-ouput channels can be defined. If we define
C′

k(Es/N0) , I(Ck;Y) as the unconditional bit level capac-
ity, and assuming ideal interleaving, each equivalent channel
is randomly selected, and therefore, the BICM capacity is
equal to the sum of C′

k(Es/N0) [6].

Definition 12 (BICM capacity).

CBI
L

„

Es

N0

«

,
m−1
X

k=0

C′
k

„

Es

N0

«

. (12)

Unlike the UN capacity, the labeling strongly affects the
BICM capacity in (12). Note also that the BICM capac-
ity is equivalent to the capacity achieved by MLC with
(suboptimal) parallel decoding of the individual bit levels
(PDL), i.e., when no information is passed between the m
decoders [10]. In BICM the bits are treated as independent,
therefore, BICM is somehow analogous to MLC-PDL. The
differences are that BICM uses only one encoder, and that
in BICM the equivalent channels are not used in parallel,
but time multiplexed.

The capacities defined above can be found in the litera-
ture under different names. The UN capacity is called joint
capacity in [11], (constellation) constrained capacity in [12],
or coded modulation capacity in [6]. The BICM capacity is
referred as parallel decoding capacity in [11], or receiver con-
strained capacity in [12]. Furthermore, we recognize that we
use the term “capacity” in a broad sense, i.e., without opti-
mizing the input distribution. Also note that the UN capac-
ity and the BICM capacity can be increased if the uniform
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Figure 2: A BICM scheme: A channel encoder, an
interleaver, a mapper, an AWGN channel, and the
inverse processes at the receiver’s side.

input distribution constraint is relaxed, i.e., if the symbols
are transmitted with different probabilities (or using equally
likely but non-equally spaced constellations), which is usu-
ally referred in the literature as constellation shaping.

It was demonstrated in [6] that the BICM capacity is
less than or equal to the CM capacity, i.e., from a capac-
ity point of view, BICM is suboptimal. This can be in-
tuitively understood based on the definitions of Ck(Es/N0)
and C′

k(Es/N0), i.e., in BICM the L-values of the coded bits
within a received symbol are calculated independently of the
other m − 1 bits, and consequently, some performance loss
should be expected.

In Fig. 3 we show the BICM capacity and the UN capac-
ity for 64-QAM and different labelings. We use 64-QAM as
a representative case of high order modulations. From these
curves we can see that the difference between the UN capac-
ity and the BICM capacity is small when the BRGC is used
(above 1 bit/symbol). On the other hand, the gap between
the UN capacity and the BICM capacity for other mappings
(NBC or BSGC) can be quite large. A very important ques-
tion here is what is the optimum labeling from a capacity
maximization point of view. Once this question is answered,
approaching the fundamental limit will depend only on a
good design of the channel encoder/decoder. Caire et al.
conjectured the optimality of the BRGC, however, from this
figure it is clear that for low rates (below 1 bit/symbol) the
BRGC is not optimum anymore. This problem has been
partially analyzed in [13], where an exhaustive search for
M -PAM constellations was performed. However, the search
was carried out only up to M = 8, as for M > 8 the exhaus-
tive search has a prohibitive complexity.

4. THE BICM CAPACITY IS NOT A FUNC-
TION OF Eb/N0

In this section we analyze a transformation of the capacity
presented in [14], where the BICM capacity was plotted vs.
Eb/N0. The motivation for analyzing this transformation is
that when BICM is considered, it is possible that a given
Eb/N0 maps to more than one capacity value, and thus,
the capacity curves are not in general a function of Eb/N0.
Similar capacity curves have appeared in different contexts
such as analysis of linear precoding for BICM with itera-
tive demapping and decoding [15], or capacity of incoherent
MPSK [16] or FSK [17] channels. Moreover, we note that
the analysis presented in this section can be also applied to
cutoff rate curves.

To avoid confusions, we start by giving a formal defini-
tion of a function. We adopt this name following its most
common definition in the context of differential and inte-
gral calculus. This kind of functions are sometimes called
single-valued functions, for more details see [18, Sec. 4.2]. A
function is a rule of correspondence that associates a real
number y = f(x) with each given real number x (the ar-
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Figure 3: UN capacity and BICM capacity for 64-
QAM using different labelings defined in Sec. 2.1.
The shadowed region represents the achievable rates
for CBI

S3,3
, cf. (4).

gument), under the restriction that only one value of the
function corresponds to the value of the argument. Using
this definition, f1(x) = x2 is a function of x ∈ R, however,
f2(x) = ±√

x with x ∈ R
+ is not.

Both Verdú [19, Sec. III] and Martinez et al. [14, Sec. I]
refer to the relation between the capacity and Eb/N0 as
a function, however, we avoid using that term since it is in
general not true. We recognize however that [19] did not an-
alyze BICM, and therefore, this effect did not appear, and
that most of the labelings analyzed in [14] did not produce
this effect either. Moreover, Martinez et al. clearly noted
this effect since they mentioned that there exist communi-
cation schemes for which the minimum value of Eb/N0 is
achieved at nonzero rates.

Since the capacity is a strictly increasing function of Es/N0,
it has an inverse denoted by C−1(kc). From the inequality
in (4), we have that

Eb

N0
≥ C−1(kc)

kc
, f(kc), (13)

which gives a lower bound on Eb/N0 for reliable transmis-
sion of information at rate kc.

Since analytical expressions for the inverse function of the
capacity are not available, expressions for f(kc) in (13) are
rare in the literature. One well-known exception is the ca-
pacity of the Gaussian channel given by (5), where

fAW(kc) =
N

2kc
(22kc/N − 1), (14)

which results in Shannon’s well-known fundamental limit

lim
kc→0

fAW(kc) =
Eb

N0

˛

˛

˛

˛

AW

kc=0

= −1.59 dB. (15)

In Fig. 4 we present the numerical evaluation of f(kc) in
(13) for the same scenarios presented in Fig. 3. From this
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Figure 4: The function f(kc) for the UC and BICM
capacities for 64-QAM. The shadowed region rep-
resents the achievable rates given by (13), and the
vertical line represents a constant Eb/N0 = 7 dB.

figure we can see that the UN capacity and the BICM ca-
pacity using the NBC achieve Eb/N0|AW

kc=0. The intersection
between the curves for G3,3 and N3,3 can be appreciated at
approximately kc = 1 bit/symbol. From this figure is also
clear that—asymptotically speaking—Gaussian inputs are
not needed to achieve Eb/N0|AW

kc=0 [19]. In this figure we
also present the region given by (13) where reliable commu-
nication is possible for 64-QAM using the BSGC. Based on
these results, it is very clear that the capacity curves are
not, in general, a function of Eb/N0.

If we analyze the curve for S3,3 in Fig. 4, at a first glance
it looks somehow contradictory that for a given Eb/N0 (e.g.,
Eb/N0 = 7 dB), there exists an achievable region (between
0.3 and 1.9 bit/symbol), however, there are two regions that
are not achievable (lower than 0.3 bit/symbol and higher
1.9 bit/symbol). The intuition usually fails at this point
since it is not clear how, by decreasing the information rate,
a non-achievable region is reached. One simple argument
is that, for a given code operating at an achievable rate
for Eb/N0 = 7 dB, kc can be decreased by simply adding
dummy bits that will be discarded at the receiver. In that
case, and since the error correcting capabilities of the code
have not been modified, it is very counterintuitive to under-
stand how this new scheme could result in a non-achievable
region. To understand this, we first present an intuitive
explanation, and then we analyze the problem from an an-
alytical point of view.

Starting with the fundamental relation in (1), we note
that for a fixed Eb/N0 (vertical lines in Fig. 4), the relation
between kc and Es/N0 is linear

kc =
1

Eb/N0

Es

N0
. (16)

In Fig. 5 we present the relation in (16) for different values
of Eb/N0 (note the linear scale for Es/N0) together with the
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Figure 5: UN capacity and BICM capacity for 64-
QAM as a function of Es/N0 (linear). The shadowed
region is the same as in Fig. 3. The dashed lines are
the evaluation of (16) for different values of Eb/N0.

capacity curves of Fig. 3. From this figure we can see that
(16) results in lines with different slopes, all of them starting
at the origin. Independently of the considered scheme, any
capacity is zero for Es/N0 = 0, and therefore, all the capac-
ity curves and the curves from (16) intersect at the origin.
From this figure it is also clear how the capacity curve for
S3,3—which is not a concave function—intersects the con-
stant Eb/N0 curves twice for non-zero rates and for suffi-
ciently high Eb/N0 (above ≈ 6 dB). On the other hand, all
the other curves in Fig. 5 are concave functions, and there-
fore, they intersect the constant Eb/N0 curves only once for
non-zero rates. A concave capacity curve translates into a
function f(kc) in Fig. 4 that has a minimum at kc = 0.
However, the converse is not necessarily true; a nonconcave
capacity curve may still have a unique minimum at kc = 0.

Now we go back to the counterintuitive example given be-
fore. Assume that we operate in the achievable region for a
constant Eb/N0 = 7 dB using a rate Rc = 1/6 and BICM
with S3,3 (consequently kc = 1 bit/symbol). A decrease (or
increase) in the rate should be understood as moving to the
left (or to the right) along the line of Eb/N0 = 7 dB in Fig. 5.
From this curve, we can clearly see that, when moving to
the left, there will be a point where reliable communication
is indeed not possible (Es/N0 . 1.5). Moreover, the argu-
ment of transmitting dummy bits can be proved wrong as
follows. If Eb/N0 is constant, and the code rate Rc decreases
because the use of dummy bits, kc also decreases. In this
situation, (1) dictates that Es/N0 will decrease (energy is
wasted in transmitting the dummy bits), and therefore, it is
not surprising that an unachievable region can be reached.

In the following we present analytical results that explain
the results previously discussed.

Theorem 1 (Minimum Eb/N0 for non-zero rates).
The minimum Eb/N0 for a non-zero rate 0 < kc < m is
given by f(ǩc), where ǩc is one of the solutions of g(kc) = 0,
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and

g(kc) ,
1

kc

dC−1(kc)

dkc
− C−1(kc)

k2
c

. (17)

Proof. By solving the derivative of (13) equal to zero.

Since f(kc) is in general not known analytically, the func-
tion g(kc) must be numerically evaluated using C(Es/N0).
An exception to this is the capacity of the AWGN chan-
nel, where g(kc) can be calculated analytically. Moreover it
can be proved that in this case that a minimum Eb/N0 for
non-zero rates does not exist.

Corollary 1. The minimum Eb/N0 for the AWGN chan-
nel is unique, and it is obtained only for zero-rate transmis-
sions.

Proof. The derivative of fAW(kc) in (14) is given by

gAW(kc) =
N + (2kc log 2 − N)22kc/N

2k2
c

=
gn(kc)

gd(kc)
, (18)

which results in limkc→0 gAW(kc) = (log 2)2/N . To prove
that a minimum for a non-zero rate does not exit, and since
gd(kc) > 0 for kc > 0, we only need to prove that gn(kc) > 0.
Since limkc→0 gn(kc) = 0, we simply need to prove that the
first derivative of gn(kc) is strictly positive. This is trivial

since dgn(kc)
dkc

= 4
N

kc(log 2)222kc/N > 0.

In Fig. 6 we present the function g(kc) in (17). If g(kc) = 0
has at least one solution, the capacity curve will have a min-
imum for a non-zero rate (shown with a filled circle in Fig. 6
for S3,3). Note also that the BSGC introduced in Sec. 2.1 has
an interesting property. Namely, limkc→0 gS3,3(kc) = −∞,
and consequently, limkc→0 fS3,3(kc) = +∞ (cf. Fig. 6 and
Fig. 4 for S3,3 with kc = 0). In this sense, the BSGC is an
extremely bad labeling for asymptotically low rates.

It is interesting to note that, in general, g(kc) = 0 could
have multiple non-zero rate solutions, and therefore, the

curve of capacity vs. Eb/N0 could have an even more strange
behavior than S3,3 in Fig. 4. In other words, the same Eb/N0

could map to three or more capacity values, and therefore,
the function f(kc) will have multiple local minima/maxima.

5. CONCLUSIONS
In this paper we presented an overview of BICM and

we analyzed its relationship with other CM schemes such
as TCM and MLC. Curves of the BICM capacity vs. the
Eb/N0 were presented and analyzed for QAM schemes and
some selected binary labelings. We have showed that when
plotting the BICM capacity curves vs. Eb/N0, counterin-
tuitive results can be obtained, and therefore, we believe
that it is more convenient to plot the capacity curves as a
function of Es/N0.

It is worth mentioning that one of the most interesting
open research problems in this field is to determine the op-
timum capacity maximizing labeling for BICM, for any con-
stellation size, and any Es/N0.
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