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Abstract— In this paper we present a novel approach to
the design of reference tracking controllers for constrained,
discrete-time piecewise affine systems and apply it to a vehicle
yaw control problem. The paper is divided in two parts. In the
first part, we present a methodology for designing reference
tracking controllers for constrained, discrete-time piecewise
affine systems. The approach follows the idea of reference
governor techniques where the desired set-point is filtered
by a system called the “reference governor”. Based on the
system current state, set-point, and prescribed constraints, the
reference governor computes a new set-point for a low-level
controller so that the state and input constraints are satisfied
and convergence to the original set-point is guaranteed.

In the second part of the paper, we apply the proposed
approach to a vehicle dynamics control problem where the
vehicle yaw rate have to be controlled through an Active Front
Steering (AFS) system.

I. INTRODUCTION

Different methods for the analysis and design of con-
trollers for hybrid systems have emerged over the last few
years [33], [24], [3]. Among them, the class of optimal
controllers is one of the most studied. The existing ap-
proaches differ greatly in the hybrid models adopted, in the
formulation of the optimal control problem and in the method
used to solve it. In this work we will focus on discrete-
time piecewise affine (PWA) models. Discrete-time PWA
models can describe a large number of processes, such as:
discrete-time linear systems with static piecewise-linearities;
discrete-time linear systems with discrete states and inputs;
switching systems where the dynamic behavior is described
by a finite number of discrete-time linear models together
with a set of logic rules for switching among these models;
approximation of nonlinear discrete-time dynamics, e.g., via
multiple linearizations at different operating points.

This work deals with the design of reference tracking
state-feedback controllers for constrained PWA systems. Our
interest stems from industrial practice where, for control
synthesis purposes, nonlinear plants are often approximated
by partitioning the space spanned by the inputs, state, and
exogenous signals into a finite number of regions (also called
“modes”). Each region is then assigned an affine model and
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the nonlinear system is thus approximated by a PWA system.
A standard gain scheduling strategy consists of designing a
linear controller for each region along with an appropriate
strategy for switching between them. It should be noted that
the resulting closed-loop system contains reference signals
for the controller which are exogenous to the closed-loop.
In order to satisfy the state and input constraints, the control
designer has to explicitly considered the case where a change
in the reference signal results in a system transition between
two or more regions.

In principle one could solve an optimal tacking problem
for the constrained PWA systems by using the approach
presented in [14]. There the authors have characterized
the state-feedback solution to optimal control problems for
PWA systems with performance criteria based on quadratic
and linear norms. They have shown that the solution is a
time-varying piecewise affine feedback control law, possibly
defined over non-convex regions and proposed an algorithm
that solves the Hamilton-Jacobi-Bellman equation by using a
simple multiparametric solver. However, the implementation
of the explicit controller might require significant computa-
tion infrastructure which might not be available on processes
with fast sampling time and limited computational resources.
For example, controllers designed for use in production
automotive applications must be implemented on electronic
control units (ECUs) that typically have a processor speed
less than 60MHz and less than 3MB of flash memory. The
sample time of a controller function depends on its purpose.
For instance, the sample time of powertrain air handling
controllers is typically faster than 100ms, while the one for a
traction control or an ABS (AntiLock Braking) system is in
the order of 20ms. One must also consider that a single ECU
usually runs several functions in addition to any function
under development. This means that the implementation
footprint of any controller must be kept as small as possible.
As an example, in this paper we consider a vehicle dynamics
control problem, where the vehicle yaw rate has to be
controlled through an AFS system. In particular, we consider
a scenario where the yaw dynamic of a vehicle has to
be controlled in a constant radius curve on a low friction
surface through the use of the front steering angle. A typical
sampling time for such vehicle dynamics application is 20
ms.

In the first part of this paper, we present an approach to
the design of reference tracking controllers for constrained,
discrete-time piecewise affine systems based on the concept
of “reference governor” [5], [6], [7], [2], [1], [34], [23], [17],
[18]. The idea underlying reference governor is to add a



nonlinear device to a controlled system. Such device is called
reference governor (RG) and its operation is based on the
current state, set-point, and prescribed constraints. Typically
the RG selects at any time a virtual reference sequence
among a family of linearly parameterized sequences, by
solving a convex constrained quadratic optimization problem,
and feeds the controlled system according to a receding hori-
zon control philosophy [5]. The overall system is proved to
fulfill the constraints, be asymptotically stable, and exhibit an
offset-free tracking behavior, provided that an admissibility
condition on the initial state is satisfied [5].

This works shows how to design a reference governor
for constrained piecewise-affine systems by using polyhedral
invariant sets, reachable sets, multiparametric programming
and dynamic programming. Compared to the infinite time
optimal solution [14], [13] the approach presented in this
paper will be less computational demanding at the price
of suboptimality and smaller region of attraction. The main
steps of the method are briefly summarized next. First, local
tracking controllers are designed for each mode i of the PWA
system and the invariant sets Oi, in the state and reference
space, are computed for the corresponding closed loop
systems. Secondly, for any pair of modes (i, j), transition
controllers [32] are designed for steering the current state in
mode i to the invariant set Oj in mode j. Lastly, for any
pair of modes (i, j), an optimal sequence of transitions is
computed from the mode i to the mode j as the shortest
path on a weighted graph. The graph weights are functions
of the “transition cost” between any two modes. The online
reference governor algorithm solves a simple constrained
Quadratic Programming (QP) problem in order to modify
the reference and move to the next mode according to the
determined shortest path.

In the second part of the paper we apply the proposed
approach to a yaw rate control problem in a passenger
vehicle. We consider a scenario where the yaw motion of
a vehicle has to be stabilized in a constant radius curve
on a slippery surface where instability might occur due
to the lateral tire force saturation at the rear axle. We
start from a bicycle model [28] where the tire forces are
computed through nonlinear static characteristics and piece-
wise linearize them as in [10]. We present simulation results
showing that a vehicle operating in an unstable region of the
state and input space can be stabilized through the proposed
approach.

Before presenting the reference governor technique we
will give a short overview on multiparametric programming
and on invariant sets.

II. DEFINITIONS AND BASIC RESULTS

In this section we introduce a few definitions and then recall
some basic results on multi-parametric programming and
invariant set theory.

Definition 1: A polyhedron is a set that equals the inter-
section of a finite number of closed halfspaces. An open set
R whose closure R̄ is a polyhedron is called open polyhe-
dron. A “neither open nor closed polyhedron” is a neither

open nor closed set R whose closure R̄ is a polyhedron. A
non-Euclidean polyhedron is a set whose closure equals the
union of a finite number of polyhedra.

Definition 2: A collection of sets R1, . . ., RN is a par-
tition of a set Θ if (i)

⋃N
i=1Ri = Θ, (ii) Ri ∩ Rj = ∅,

∀i 6= j. Moreover R1, . . ., RN is a polyhedral partition of
a polyhedral set Θ if R1, . . ., RN is a partition of Θ and
the R̄i’s are polyhedral sets, where R̄i denotes the closure
of the set Ri.

Definition 3: A function h : Θ → Rk, where Θ ⊆ Rs, is
piecewise affine (PWA) if there exists a partition R1,. . . ,RN

of Θ and h(θ) = Hiθ + ki, ∀θ ∈ Ri, i = 1, . . . , N .
Definition 4: A function h : Θ → Rk, where Θ ⊆ Rs,

is PWA on polyhedra (PPWA) if there exists a polyhedral
partition R1,. . . ,RN of Θ and h(θ) = Hiθ + ki, ∀θ ∈ Ri,
i = 1, . . . , N .
Piecewise quadratic functions (PWQ) and piecewise
quadratic functions on polyhedra (PPWQ) are defined anal-
ogously.

A. Background on Multiparametric programming

Consider the nonlinear mathematical program dependent
on a parameter vector x appearing in the cost function and
in the constraints

J∗(x) = inf
z

f(z, x)

subj. to g(z, x) ≤ 0
z ∈ M,

(1)

where z ∈ Rs is the optimization vector, x ∈ Rn is the
parameter vector, f : Rs × Rn → R is the cost function,
g : Rs × Rn → Rng are the constraints and M ⊆ Rs. A
small perturbation of the parameter x in (1) can cause a
variety of outcomes, i.e., depending on the properties of the
functions f and g the solution z∗(x) may vary smoothly or
change abruptly as a function of x. We denote by K∗ the
set of feasible parameters, i.e.,

K∗ = {x ∈ Rn | ∃z ∈ M, g(z, x) ≤ 0}, (2)

by R : Rn → 2R
s

, where 2R
s

denotes the set of all subsets
of Rs, the point-to-set map that assigns the set of feasible z

R(x) = {z ∈ M | g(z, x) ≤ 0} (3)

to a parameter x, by J∗ : K∗ → R ∪ {−∞} the real-
valued function which expresses the dependence on x of the
minimum value of the objective function over K∗, i.e.

J∗(x) = inf
z
{f(z, x) | x ∈ K∗, z ∈ R(x)}, (4)

and by Z∗ : K∗ → 2R
s

the point-to-set map which expresses
the dependence on x of the set of optimizers, i.e, Z∗(x̄) =
{z ∈ R(x̄) |f(z, x̄) = J∗(x̄)} with x̄ ∈ K∗.

J∗(x) will be referred to as the optimal value function
or simply value function, Z∗(x) will be referred to as the
optimal set. We will denote by z∗ : Rn → Rs one of the
possible single valued functions that can be extracted from
Z∗, z∗ will be called the optimizer function. If Z∗(x) is a
singleton for all x, then z∗(x) is the only element of Z∗(x).



Optimal control problems for nonlinear systems can be
reformulated as the mathematical program (1) where z is
the input sequence to be optimized and x the initial state
of the system. Therefore, the study of the properties of
J∗ and Z∗ is fundamental for the study of properties of
state-feedback optimal controllers. Fiacco ([15, Chapter 2])
provides conditions under which the solution of nonlinear
multiparametric programs (1) is locally well behaved and
establishes properties of the solution as a function of the
parameters. In this note we restrict our attention to the
following special class of multiparametric programming:

J∗(x) = 1
2x′Y x + min

z

1
2z′Hz + z′Fx

subj. to Cz ≤ c + Sx
(5)

where z ∈ Rnz is the optimization vector, x ∈ Rn is the
vector of parameters, and C ∈ Rq×nz , c ∈ Rq , S ∈ Rq×n

are constant matrices. We refer to the problem of computing
z∗(x) and J∗(x) in (5) as (right-hand-side) multi-parametric
quadratic program (mp-QP).

Theorem 1 ([4]): Consider the mp-QP (5). Assume H Â
0 and

[
Y F ′
F H

] º 0. The set K∗ is a polyhedral set, the value
function J∗ : K∗ → R is PPWQ, convex and continuous
and the optimizer z∗ : K∗ → Rnz is PPWA and continuous.

B. Background on Invariant Sets

This section adopts the notation used in [19], [31], [21]
and provides the basic definitions for invariant sets for
constrained systems. A comprehensive survey of papers on
set invariance theory can be found in [12].

Denote by fa the state update function of an autonomous
systems

x(k + 1) = fa(x(k)) (6)

subject to the constraints

x ∈ X (7)

Let φ(k;x(0); fa) denote the solution of x(k + 1) =
fa(x(k), w(k)) at time k if the initial state is x(0). For
the autonomous system (6)-(7), we will denote the k-step
reachable set for initial states x contained in the set S as

Reach(k; fa;S) , {φ(k; x(0); fa) ∈ X | x(0) ∈ S} (8)

while
Prefa(S) , {x ∈ X | fa(x) ∈ S} (9)

denotes the set of states that evolves to S in one step.
Equivalently, for the system with inputs

x(k + 1) = f(x(k), u(k)), (10)

subject to the constraints

x ∈ X , u ∈ U , (11)

the k-step reachable set for initial states x contained in the
set S is defined as

Reach(k; f ;S) , {φf (k; x(0);Uk) ∈ X | x(0) ∈ S, Uk ∈ Uk}
(12)

while

Pref (S) , {x ∈ X | ∃u ∈ U s.t. f(x, u) ∈ S} (13)

is the set of states which can be driven into the target set S
in one time step.

Two different types of sets are considered in this note:
invariant sets and control invariant sets. We will first dis-
cuss invariant sets. The invariant sets are computed for
autonomous systems and can be used to “find, for a given
feedback controller u = k(x), the set of states whose
trajectory will never violate the system constraints”. The
following definitions are derived from [12], [9], [8], [22],
[16].

Definition 5 (Positive Invariant Set): A set O is said to be
a positive invariant set for the autonomous system in (6) if
Reach(1;O) ⊆ O.

Definition 6 (Maximal Positive Invariant Set O∞): The
set O∞ is the maximal invariant set of the autonomous
system (6) if 0 ∈ O∞, O∞ is invariant and O∞ contains
all invariant sets that contain the origin.
Control invariant sets are defined for systems subject to
external inputs and can be used to “find the set of states
for which there exists a controller such that the system
constraints are never violated”. The following definitions are
derived from [12], [9], [8], [22].

Definition 7 (Control Invariant Set): A set C ⊆ X is said
to be a control invariant set for the system in (10) if for every
x(k) ∈ C there exists a u(k) ∈ U such that f(x(k), u(k)) ⊆
C.

Definition 8 (Maximal Control Invariant Set C∞): The
set C∞ is said to be the maximal control invariant set for the
PWA system in (10) if it is control invariant and contains
all control invariant sets contained in X.

For all states contained in the maximal control invariant
set C∞ there exists a control law, such that the system
constraints are never violated. This does not imply that there
exists a control law which can drive the state into a user-
specified target set. This issue is addressed in the following
by introducing the concept of stabilizable sets.

Definition 9 (N -Step Stabilizable Set KN (fa;O)): For a
given invariant target set O ⊆ X , the N -step stabilizable set
KN (fa;O) of the system (6) subject to the constraints (7) is
defined as:

KN (fa;O) , Prefa(KN−1(fa;O)), N ∈ N+

K0(fa;O) = O.
From Definition 9, all states x0 belonging to the N -Step
Stabilizable Set KN (fa;O) can be driven, through a time-
varying control law, to the target set O in N steps and
stay in in O for all t ≥ N while satisfying input and state
constraints.

III. PROBLEM FORMULATION

Consider the PWA system

x(t + 1) = Aix(t) + Biu(t) + f i

if
[

x(t)
u(t)

]
∈ Pi, i = {1, . . . , s}, (14)



where x ∈ Rn, u ∈ Rm, {Pi}s
i=1 is a polyhedral partition

of the set of the state and input space P ⊂ Rn+m. The
current index i will be called the system mode, i.e., the PWA
system (14) is in mode i at time t if

[
x(t)
u(t)

]
∈ Pi.

System (14) is subject to hard input and state constraints

Ex(t) + Lu(t) ≤ Mc (15)

for t ≥ 0, and we denote by Constrained PWA system
(CPWA) the restriction of the PWA system (14) over the
set of states and inputs defined by (15),

x(t + 1) = Aix(t) + Biu(t) + f i if
[

x(t)
u(t)

]
∈ P̃i, (16)

where {P̃i}s
i=1 is the new polyhedral partition of the sets

of state and input space Rn+m obtained by intersecting the
sets Pi in (14) with the polyhedron described by (15). We
assume the following.

Assumption 1: For a given reference state xref there is a
unique input uref = uref (xref ) such that xref = Aixref +
Biuref + f i if

[ xref
uref

] ∈ P̃i.
The function uref (xref ) is unique either from the proper-

ties of system (16) (there is one mode and one uref for each
xref ) or by construction (i.e., for the given xref the user
specifies the desired mode and the corresponding uref ).

Assumption 2: In system (16), the constrained set P̃i is
the cross product of a set in the input space and a set in the
state space, i.e., P̃i = P̃i

u ⊗ P̃i
x.

Assumptions 1 and 2 are introduced for the sake of
simplicity and are not restrictive. They could be easily
removed at the cost of a more complex notation.

Our objective is to design a state feedback control law
u(x, xref ) such that the closed loop system

x(t + 1) = Aix(t) + Biu(x(t), xref ) + f i

if
[

x(t)
u(x(t),xref )

]
∈ P̃i,

(17)

converges to xref and satisfies state and input constraints.
A systematic approach to design constrained reference

tracking controllers is to use a receding horizon control
policy. We define the following cost function

JN (UN , x(0), xref ) , ‖xN − xref‖2P
+

∑N−1
k=0

[‖xk − xref‖2Q + ‖uk − uref (xref )‖2R
]

(18)
with Q = Q′ º 0, R = R′ Â 0, P º 0 and consider the
constrained finite-time optimal control (CFTOC) problem

J∗0 (x(0), xref ) , minUN
J(UN , x(0), xref ) (19)

subj. to





xk+1 = Aixk + Biuk + f i

if [ xk
uk

] ∈ P̃i, i = 1, . . . , s
xref,k+1 = xref,k

[xN , xref ] ∈ X̃f

x0 = x(0), xref,0 = xref

(20)

where the column vector UN , [u′0, . . . , u
′
N−1]

′ ∈ RmN , is
the optimization vector, N is the optimal control horizon. Xf

is a polyhedral terminal region in the (x, xref )-space. In (18)
‖x‖2Q denotes x′Qx. Note that we distinguish between the

input u(t) and the state x(t) of plant (16) at time t and the
variables uk and xk of the optimization problem (20).

We will also denote by X̃k ⊆ R2n the set of states xk and
references xref that are feasible for (18)-(20):

X̃k =





x ∈ Rn,
xref ∈ Rn

∣∣∣∣∣∣∣∣

∃u ∈ Rm,
∃i ∈ {1, . . . , s}
[ x
u ] ∈ P̃i and[
Aix + Biu + f i, xref

] ∈ X̃k+1





,

k = 0, . . . , N − 1,

X̃N = X̃f .
(21)

Note that the optimizer function U∗
N may not be uniquely

defined if the optimal set of problem (18)-(20) is not a sin-
gleton for some x(0). The next theorem shows the properties
of the optimal control solution.

Theorem 2: Consider the optimal control problem (18)-
(20). Then, there exists a solution in the form of a PWA
state-feedback control law

u∗k(x(k), xref ) = F x,i
k x(k) + Fu,i

k uref + F r,i
k xref + Gi

k

if [x(k), xref ] ∈ Ri
k,

(22)
where Ri

k, i = 1, . . . , Nk is a partition of the set X̃k of
feasible states x(k) and reference xref . The boundaries of
the sets Ri

k are linear and quadratic inequalities in x(k) and
xref .
Proof. Contained in [14] 2

An infinite horizon controller can be obtained by imple-
menting in a receding horizon fashion a finite-time optimal
control law. In this case the control law is simply obtained by
repeatedly evaluating at each time t the PWA controller (22)
for k = 0:

u(t) = u∗0(x(t), xref ) for
[

x(t)
xref

]
∈ X̃0. (23)

If X̃f is a control invariant set and the terminal cost P
is a control lyapunov function, then for all [x(0), xref ] ∈
X̃0 the systems state x(k) will converge to the a desired
constant reference xref while satisfying input and state
constraints [26]. Note that the sets X̃k are defined in the
state and reference space.

The number of regions in the solution to (23) might pro-
hibit the real-time implementation for systems with limited
computational and storage resources. In the next section
we propose an alternative approach based on the results
presented in [5], [6], [7], [2], [1] and show how to design a
low-complexity controller which guarantees constraint satis-
faction by using the idea of reference governor.

IV. REFERENCE GOVERNOR

Consider the constrained PWA system (16). The proposed
control design approach is based on the three main steps
described next.

A. Local Control design

For each region P̃i, the following reference tracking
controller is considered

u = ki(x, xref ) (24)



where ki(x, xref ) is a linear control law or a PWA control
law. For each region P̃i we compute a positive invariant set
Oi for the closed loop system:

xk+1 = Aixk + Biki(xk, xref,k) + f i, (25a)
xref,k+1 = xref,k, (25b)

subject to the constraints
[

xk

ki(xk,xref,k)

]
∈ P̃i,

[
xref,k

uref (xref,k)

]
∈ P̃i. (26)

We remark that Oi is a set in the (x, xref ) space. We assume
that ki guarantees the convergence of x(k) to a constant
reference xref for system (25).

In addition to standard linear control design techniques,
the controller ki(x, xref ) can be designed as a receding
horizon controller. Consider the following optimal control
problem in mode i (denoted as “Problem i”).

J∗,i0 (x(0), xref ) , min
UN

J(UNi
, x(0), xref )

subj. to





xk+1 = Aixk + Biuk + f i

[ xk
uk

] ∈ P̃i,
[ xref

uref

] ∈ P̃i

[xNi
, xref ] ∈ X i

f

x0 = x(0).

(27)

Denote by X i
0 is the feasible set of initial condition for

Problem i (27) and the associated PWA RHC control law

ki(x, xref ) = u∗0(x, xref ) for x ∈ X i
0. (28)

If persistent feasibility and convergence are ensured, then
X i

0 is a positive invariant set for system (25)-(26) and x(k) →
xref . We set Oi = X i

0 .
Remark 1: Note that in problem (18)-(20) the terminal

set X̃f is an invariant set for the PWA system (11). In
problem (27) X i

f is a “local” invariant set, i.e., an invariant

in mode i. X i
f is empty if

[
xref

uref (xref )

]
/∈ P̃i.

Assume
[ xref

uref

] ∈ P̃i. If [ x0
xref ] ∈ Oi then the controller

ki(x, xref ) will (i) guarantee constraint satisfaction at all
time instants, (ii) keep the system in mode i and (iii) guaran-
tee convergence to

[ xref
uref

]
(step 3 of the Online Algorithm).

If [ x0
xref ] /∈ Oi then the local controller ki will not guarantee

feasibility and will not drive x0 towards xref . However, a
x̄ref might exist such that

[ x0
x̄ref

] ∈ Ol (with l 6= i) or a ū

such that [ x0
ū ] ∈ P̃ l and a “transition controller” kl,i(x, x̄ref )

that steers the system from mode l to mode i through a
modified x̄ref,k. The design of such transition controller is
described next.

B. Transition Control Design

For each (i, j), i 6= j, select an horizon N i,j . For
a given linear or PWA transition controller ki,j(x, xref ),
denote by f i,j

a the closed loop PWA system in region i, i.e.,[ xk+1
xref,k+1

]
= f i,j

a (xk, xref,k) ,
[

Aixk+Biki,j(xk,xref,k)+fi

xref,k

]

and by X i,j the set of states which are steered from mode
i to the set Oj in mode j in at most N i,j steps, i.e.,
X i,j , KNi,j (f i,j

a ,Oj). Note that in general x̄ref is not
necessary equal to the original reference xref . In fact if

[ x0
xref ] /∈ X i,j , then the reference xref can be modified to

x̄ref in order to have
[ x0

x̄ref

] ∈ X i,j and steer the system to
mode j by using the controller ki,j . Clearly X i,j might be
empty.

In addition to standard linear control design techniques,
ki,j can be designed as a constrained minimum time con-
troller as in [19], [20], [11], [25]. Consider the minimum
time control problem

J∗,i,j0,T (x(0), xref ) , min
UT

J(UT , x(0), xref ) (29)

subj. to





xk+1 = Aixk + Biuk + f i

[ xk
uk

] ∈ P̃i, k = 0, . . . , T − 1
[xT , xref ] ∈ Oj

x0 = x(0)

(30)

and solve it for T = 0, . . . , N i,j − 1. This can be done by
using a sequence of multi-parametric programs of prediction
horizon 1 as proposed in [19]:

J∗,i,jp (x(p), xref ) , min
u(p)

J(u(p), x(p), xref )

+ J∗,i,jp+1 (x(p + 1), xref )

subj. to





xp+1 = Aixp + Biup + f i[ xp
up

] ∈ P̃i, k = 0, . . . , p− 1
[xp, xref ] ∈ X i,j

p+1

(31)

for p = N i,j − 1, N i,j − 2 . . . , 0 with

X i,j
Ni,j = Oj

and X i,j
p being the set of feasible states x(p) and references

xref for which (31) is feasible at time p. Therefore N i,j

multi-parametric programs are solved yielding u∗,i,jp and
X i,j

p for p = N i,j − 1, N i,j − 2 . . . , 0. Therefore

X i,j =
Ni,j⋃
p=1

X i,j
p (32)

Note that since N i,j multi-parametric programs are solved,
several controller regions in X i,j

p may overlap. In order
to guarantee minimum-time convergence and feasibility, the
feedback law u∗,i,jc associated with the region computed at
the smallest horizon c is selected for any given state x. More
details can be found in [19].

Next we denote by X i,j
x the projection of X i,j on the x

space, i.e. X i,j
x = Projx(X i,j). If x belongs to X i,j

x then
there exist a reference which will bring the PWA system
from mode i to the invariant set Oj in mode j.

C. The Weighted Graph

For each mode we have designed a local controller ki

and computed a corresponding invariant Oi. For each pair
of modes we have designed a transition controller ki,j and
computed a set X i,j of states and references in mode i which
reach Oj in mode j in at most N i,j steps.

Clearly, if the current state is in mode i1 and the reference
in mode in, the system could still be controlled to the
reference even if X i1,in is empty. Therefore, the last step
is to compute the optimal transition sequence i1, i2, . . . , in



between any two modes i1 and in. We propose to use the
properties of the sets Oi and X i,j in order to avoid the
inherent exponential complexity of the problem at the price
of smaller regions of attraction.

In particular we can move from i1 to i2 through the set
X i1,i2 by using ki1,i2 . Then, when the system is in mode
i2, we can move through the set Oi2 by using ki2 and reach
X i2,i3 and so on. In this way input and state constraints are
always satisfied. The feasibility property of this approach is
described in following proposition.

Proposition 1: Let x(k) be the current system state and
xref,k the current reference. Assume the current reference
xref,k is in mode j. Assume there exists x̄ref,k such that
[x(k), x̄ref,k] ∈ Oi, i.e., x(k) ∈ ProjxOi. Define the set
X̄ i,j as

X̄ i,j , ProjxOi
⋂

Projx

{
[x, xref ] ∈ X i,j | x = xref

}
(33)

If X̄ i,j is not empty, then there exists a time varying
reference and a feasible state feedback control law such that
the system (16) with initial state x(k) in mode i can be
steered to the set Oj in mode j.
Proof.

Consider X̄ i,j in (33). If x(k) ∈ Projx(Oi) and x(k) ∈
Projx(X i,j) then compute x̄ref,k such that [x(k), x̄ref,k] ∈
X i,j and apply ki,j(x(k), x̄ref,k). By construction of X i,j ,
there exists a sequence of references such that the state will
reach Oj in at most N i,j steps.

If x(k) ∈ Projx(Oi) and x(k) /∈ Projx(X i,j), then pick[
x̂ref

x̂ref

]
∈ X i,j and solve the following problem

x̃ref , arg minx̄ref
(‖x̄ref − x̂ref‖) (34a)

subj. to
[

x(k)
x̄ref

]
∈ Oi (34b)

Problem (34) is feasible by assumptions. Apply ki(x, x̃ref ).
Since (x(k), x̃ref ) ∈ Oi then x(k) → x̃ref and since Oi is
a connected set x̃ref → x̂ref with

[
x̂ref

x̂ref

]
∈ X i,j . 2

Proposition 1 shows that we can transition from mode i to
mode j from X i,j or from Oi if X̄ i,j is not empty. Therefore
one can steer the state from mode i1 to mode in by applying
the sequence of controllers ki1,i2 , ki2 ,ki2,i3 , ki3 ,. . .,kin .

The concept of weighted graph will be used to compute
the “best” transition sequence from Oi to Oj for any two
modes i, j. A weighted graph G is defined as

G = (V,A) (35)

where V is the set of nodes (or vertices) V = {1, . . . , N}
and A ⊆ V × V the set of edges (i, j) with i ∈ V, j ∈ V .
Let Ai,j ∈ R be the i, j element of the weighted adjacency
matrix A of the graph G. Then, Ai,j = 0 if there is no edge
connecting the vertex i with the vertex j, i.e., (i, j) /∈ A.
The elements of A are computed as follows:

ai,j = α
1

vol(X̄ i,j)
+ βN i,j

where vol(P) is the volume of the polyhedron P . The
positive real numbers α and β are tuning parameters. Given
the weighted graph G, u = SPath(G, i1, in) is the vector
which describes the shortest path u = {i1, i2, . . . , in}
between node i1 and node in and SPathCost(G, i1, in) is
the corresponding optimal cost.

Remark 2: Note that for the existence of a feasible path
v = {i, i1, i2, . . . , in}, between mode i and mode in, the set
X i,i1 must be non empty and the sets X̄ i1,i2 , . . . , X̄ in−1,in

must be full dimensional.

D. On-line Reference Governor Algorithm

Once all the elements have been computed off-line, the
following algorithm is implemented on-line.

Algorithm 4.1:

Input: Current state x(t) and reference xref = xref (t)
Output: Modified reference x̄∗ref (t) and controller

selection
1 let [xref , xref ] ∈ Of

2 if x(t) ∈ Projx(Of ) then select local controller
kf and compute the modified reference as follows

x̄∗ref = arg minx̄ref
‖x̄ref − xref‖ (36a)

subj. to
[

x(t)
x̄ref

]
∈ Of (36b)

3 else
4 let v = {v1, . . . , vn} the set of modes such

that x(t) ∈ Projx(X l,vi) and let u = {u1, . . . , um}
the set of modes such that x(t) ∈ Projx(Oui). (note
that x(t) can be in multiple modes because the system
partition depends on the input as well).

5 Compute v∗ ∈ v ∪ u with the associated
shortest path {v∗, i1, . . . , in, f} and cost s∗ =
SPathCost(G, v∗, f).

6 if s∗ = ∞ then “Infeasible Reference”, EXIT
7 if v∗ ∈ v then select transition controller kl,v∗

and compute the modified reference as follows

x̄∗ref = arg minx̄ref
‖x̄ref − xref‖ (37)

subj. to
[

x(t)
x̄ref

]
∈ X l,v∗ (38)

8 else select local controller kv∗ and compute
the modified reference as follows

x̄∗ref , arg minx̄ref ,x̂ref
(‖x̄ref − x̂ref‖)(39)

subj. to
[

x(t)
x̄ref

]
∈ Ov∗ (40)

[
x̂ref

x̂ref

]
∈ X v∗,i1 (41)

9 Goto Step 1
Remark 3: Note that the sets X i,j might be described as

the union of polyhedra X i,j
k , for k = 1, . . . , N i,j where X i,j

k

represents the k− steps reachable set. In this case Step 7 in
Algorithm 4.1 can be modified as follows:

x̄∗ref = arg minx̄ref ,k ‖x̄ref − xref‖ (42a)

subj. to
[

x(t)
x̄ref

]
∈ X l,v∗

k (42b)



Fig. 1. The bicycle model.

The same modification can be applied to Step 8 in Algo-
rithm 4.1.

Remark 4: Note that the QP problem defined in Step 2 in
Algorithm 4.1 can be solved explicitly as has been shown in
[30], [27].

V. EXAMPLE

Next we present a vehicle dynamics example for the
algorithm presented in Section IV. We start from the bicycle
model sketched in Figure 1 and refer to the nomenclature
therein.

The lateral and yaw dynamics are described by the fol-
lowing system of nonlinear differential equations:

mÿ = −mẋψ̇ + 2
[
Fyf

+ Fyr

]
, (43a)

Iψ̈ = 2
[
aFyf

− bFyr

]
. (43b)

We assume (i) small steering angle [29] and (ii) constant
longitudinal speed, i.e., ẋ = const. Note that, according to
the assumption (ii), pure cornering maneuvers are consid-
ered where the lateral forces can be modeled as nonlinear
functions of the tire slip angles α, as shown in Figure 2. By
the assumption (i), the front and rear tire slip angles can be
approximated as follows [29]:

αf = δf − ẏ + aψ̇

ẋ
, (44a)

αr =
bψ̇ − ẏ

ẋ
. (44b)

In order to derive a piece-wise approximation of the
model (43), the front and rear lateral forces Fyf

and Fyr

are approximated as piece-wise linear functions of the tire
slip angles as shown in Figure 2. In particular the nonlinear
tire characteristic (solid line) has been approximated with the
following piece-wise linear function (dashed line):

??Fy(α) =





− Clin
c α∗ + Csat

c (α + α∗), for α < −α∗,

Clin
c α, for − α∗ ≤ α ≤ α∗,

Clin
c α∗ + Csat

c (α− α∗), for α > α∗,
(45)
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Fig. 2. Piece-wise linear approximation of the lateral tire force on a snow
surface. The solid line is the nonlinear lateral tire force characteristic and
the dashed line is its piece-wise linear approximation.

where Clin
c and Csat

c are the slopes of the lat-
eral tire force characteristic in the intervals [−α∗, α∗]
and [−∞,−α∗]

⋃
[α∗,∞], respectively.

For the sake of simplicity we consider only two operating
modes of the system. In particular we consider the mode,
next referred to as mode 1, where at both front and rear
axles α ∈ [−α∗, α∗] and the mode, next referred to as mode
2, where αf ∈ [−α∗, α∗] and αr > α∗.

We focus only on the following transition: steer the state
of the system (43) from mode 2 to mode 1.

In the final version of the paper we will show the sim-
ulation results of the considered vehicle dynamics control
problem, if accepted. In Figure 3, for illustrative purposes,
we report the simulation results of a numerical example
similar to the vehicle dynamics control problem considered
here, i.e., second order system with one input, two modes
and initial and final states belonging to modes 2 and 1,
respectively.
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