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ABSTRACT 

Curve speed warning systems (CSW) utilize 

information about the road and warn drivers if they 

are about to enter a curve too fast. Recent research 

shows that CSW is successful in warning for 

upcoming curves. However no statistically 

significant change in driver behaviour due to CSW 
has been shown. In addition, a common 

requirement cited by drivers is that the amount of 

false alarms needs to be reduced.  

This paper evaluates how the level of detail in the 

modelled vehicle dynamics influences the threat 
assessment in a situation with an oncoming curve. 

The point mass model that is commonly used by 

CSW is compared with more detailed models. 

Maximum velocity the vehicle can have while still 

following a curve is investigated and compared for 

the point mass model, the single track model and 

the double track model. It is shown that as the level 

of detail in the modelled dynamics increase, the 

maximum velocity profile is significantly reduced. 

This implies that in order to make a reliable threat 

assessment that can reduce the amount of false 

alarms and even be used as a base for an 
autonomous intervention, a more complex vehicle 

model than the point mass model is required. 

INTRODUCTION 

The number of fatalities in vehicles leaving the 

road due to loss of control has been greatly reduced 

since car manufacturers started to equip vehicles 

with electronic stability systems, [1]. Despite this, 

unintended roadway departures still account for the 

highest share of traffic related fatalities, [2][3]. 

Roadway departures are thus still a highly 

significant problem.  

Currently a new type of active safety systems that 

also addresses roadway departures is emerging. 

Curve speed warning systems (CSW) utilize sensor 

data about the road and warn drivers if they are 

about to enter a curve too fast. In [3], it is shown 

that CSW is successful in warning for upcoming 
curves. CSW might therefore give a significant 

contribution to further reduction of roadway 

departures, provided that drivers take the warnings 

seriously.  

However, in the study presented in [3], no 

statistically significant change in driver behaviour 

due to CSW could be shown. Even though the 

concept of CSW was generally thought to increase 

safety, a common requirement cited by drivers is 

that the amount of false alarms needs to be 

reduced. In fact, drivers often commented that 

when they received a CSW alert, they would make 

their own evaluation of the situation rather than 

simply slowing down in response to the alert. 

Drivers only experience the system through its 

interface and it is therefore crucial that false alerts 

are avoided so that drivers are confident with the 

system. How to define a false alert can of course be 

disputed, however alerts which common drivers 

consider as unnecessary will contribute negatively 
to their confidence in the system.  

In this paper we focus on the threat assessment part 

of CSW i.e. the part where it is evaluated whether 

an alert or intervention is required. Current CSW 

systems attempt to keep drivers within the range of 

lateral accelerations associated with normal curve 
taking [3]. In general it can be stated that the threat 

assessment related with such an approach is 

suitable for issuing early warnings or calculating 

reference velocity in curves for e.g. an adaptive 

cruise control. The starting point of this work is 

however that drivers need to see a clear connection 

between an alert from the system and an actual 

threat in order for the system to gain credibility. In 

fact, the long term aim is to have a threat 

assessment that is reliable enough to motivate an 

intervention rather than just alerting the driver.  

In particular, the purpose of this paper is to 

evaluate how the level of detail in the modelled 

vehicle dynamics influences the threat assessment 

in a situation with an oncoming curve. The point 

mass model that is used by the threat assessment of 

CSW (see e.g. [3]) is here compared with other, 
well established vehicle models that are more 

detailed. The vehicle is modelled using a point 

mass model, a single track model and a four wheel 

model. As comparison measure, the maximum 
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velocity the vehicle can have while still following a 

particular curve is investigated and compared for 

the different models. Even though the comparison 

is quite simple, it shows that the level of detail in 

the modelled dynamics has a significant impact on 

the result.  

This implies that in order to make a reliable threat 

assessment that can reduce the amount of false 

alarms and even be used as a base for an 

autonomous intervention, a more complex vehicle 

model than the point mass model is required. 

SIMULATION STRATEGY 

In this section, the chosen approach for calculating 

the maximum velocity profile is explained using 

the point mass vehicle model as an example. In 

order to compare the different vehicle models, a 

scenario where a vehicle approaches a specific 

curve is considered. The curve is represented as a 

clothoid which means that the curvature increases 

linearly along the travelled path and can be 

expressed 

sccsc
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)(   (1) 

where c0 is the curvature at the starting point, c1 the 

increase rate of the curvature along the curve and s 

is the travelled distance along the curve. The 

construction of real roads corresponds well with 

equation (1), [4][5]. Clothoids are often used as 

transitions between straight road segments and 

segments with constant curvature. In particular, the 

curve used in all simulations in this paper is a 

120m long clothoid that has a radius of 50m at the 

apex i.e. the end of the clothoid. This curve is quite 

short and typically suitable as a transition curve 

followed by a segment with constant curvature on a 

road with 50 km/h as posted velocity [5]. 

For a point mass model, the maximum velocity 
profile through the curve is easily obtained using 

the principles described in [6]. The equations of 

motion for a point mass can be stated 

x
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with m as the vehicles mass, Fx the force in the 

tangential direction of the path and Fy as the force 

normal to the direction of travel.  

A common assumption regarding available friction 

force is that it is limited by a friction ellipse [7]. In 

its simplest form the friction ellipse can be 

expressed as a circle according to 
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where μ is the friction coefficient and Fz is the 

normal load. Since this is a comparative study, the 

friction coefficient will be given the same value 

μ=1 in all simulations which corresponds to 

assuming that the vehicle travels on dry asphalt. 

With Fx and Fy as control inputs, assuming 
controllability conditions to be fulfilled and the 

dynamics to be well defined, it is stated in [6] that 

for the vehicle to exactly follow the path in 

minimum time, it has been formally proven that the 

following control law holds  

2
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The control law has been reformulated to fit the 

notation of this paper. An interpretation of the 

control law is that as much lateral force as needed 

to follow the reference curvature should be utilized 

and the rest of the available force should be used 

for either full acceleration or full deceleration.  

By combining (3) and (2), it can be derived that 

there exists a critical velocity for which a vehicle 

can no longer follow the specified curvature 

m
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which is the maximum allowable velocity at each 

point of the path [6]. For the considered curve, the 

curvature has only one minimum at the end of the 

clothoid. As a consequence of (5), the optimal 

velocity profile then also has a minimum at the 

same point. By setting the critical velocity at the 

apex as boundary condition and applying the 

control law (4), the optimal velocity profile can be 

obtained by starting a simulation at the end of the 

clothoid where the vehicle travels in the reversed 

direction.  

 

Figure 1. Maximum velocity profile computed 

using a point mass model. 
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The result of such a simulation can be seen in 

Figure 1. The computed velocity profile implies 

that an optimal driver can enter the curve with a 

velocity of about 150 km/h and pass the end of the 

clothoid in about 80 km/h.  

Principle of optimality 

When the level of detail in the modelled vehicle 

dynamics is increased it is not straightforward to 

reverse the direction of motion without first taking 

care of the inverted dynamics. The vehicle's 

behaviour during acceleration will be different 

from the behaviour during deceleration. 

Consequently the method used above for the point 

mass is not used here to obtain the optimal velocity 

profile when more detailed models are considered. 

Instead the principle of optimality is used which 

can be stated:  

"An optimal policy has the property that whatever 
the previous state and decision (i.e. control), the 

remaining decision must constitute an optimal 

policy with regard to the state resulting from the 

previous decision." [8] 

In other words, the optimal velocity profile can be 
divided into smaller segments which are 

themselves optimal. If one can find the optimal 

solution for the small segments, one can put them 

together to get the optimal solution for the whole 

path [8].  

 

Figure 2. The principle of optimality is used to 

obtain the optimal velocity profile. The black 

solid line represents the optimal profile while 

the red dashed lines represent simulations 

conducted in order to find the maximum 

velocity for each segment. 

The following bullets together with Figure 2 

explain how the principle of optimality is utilized 

in this study:  

 The curve is uniformly divided into several 

small segments. In Figure 2 this is illustrated 

by the dividing points A, B and C.  

 The optimal velocity at the point C in Figure 2 

is assumed to be known and denoted vc.  

 A simulation of the vehicle's motion between 

the points B and C is conducted where the 

lateral force needed in order to follow the 

curve is applied and the rest of the available 
force is utilized to brake in accordance with 

the control law (4).  

 The vehicle's initial velocity at point B is 

gradually increased with a predefined 

resolution as the simulation is iteratively 

repeated.  

 When available brake force is no longer 

sufficient to reduce the vehicle's velocity 

below vc, at point C, the iterations stop.  

 The highest velocity the vehicle can have at 

point B while still reaching point C without 
exceeding vc, is then considered to be vb.  

 Once vb has been acquired, the procedure can 

be repeated between the points A and B to 

obtain va and analogously for the remaining 

segments until solutions has been acquired for 

the whole curve.  

 The points A, B and C was here used to give 

an illustration of the procedure, in reality the 

procedure is initiated at the end of the clothoid 

and the maximum velocity at that point is 

calculated using (5).  

The optimal velocity obtained using the principle 

of optimality is of course an approximation, since 

the set of possible solutions as well as the curve is 

discretized. As the resolution is increased, the 

accuracy of the obtained solution will however 

improve and if infinite resolution could be 

achieved, the difference from the true optimum 

would tend to zero.  

 

Figure 3. Time optimal velocity profile obtained 

through reversing the vehicles motion is 

compared with the solution acquired with the 

principle of optimality.  
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In Figure 3, a validation of the chosen resolution is 

made by comparing the optimal path of a point 

mass computed by reversing the vehicle's motion 

and the one computed using the principle of 

optimality. Even though the solutions are not 

identical, the difference is satisfactorily small. The 
principle of optimality will therefore be used in the 

following sections to obtain optimal velocity 

profiles for more detailed vehicle models. 

SINGLE TRACK VEHICLE MODEL 

In a point mass representation of the vehicle, the 

wheelbase and track width are collapsed to zero, 

hence all forces are applied on the centre of mass. 

In this section, a single track model is considered, 

which means that the car's length and orientation is 

also taken into account. Applied forces are 

distributed between the front and rear axle and 

might therefore also cause the vehicle to rotate 
around its own axis rather than just moving the 

mass centre. Without loss of generality each axle is 

here considered as a tire and with notation defined 

in Figure 4 the equations of motion can then be 

expressed, [9] 
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Note however that the forces in (6), are denoted F 

and expressed in the vehicle frame which is 

different from the forces denoted f in Figure 4 

which are expressed in the tire's coordinate system. 

The forces can easily be expressed in the vehicle 

frame by feeding the forces in Figure 4 through the 
following coordinate transformation  
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The acceleration limits are in this case given by 
two friction ellipses, one at each tire. An 

illustration is given in Figure 5, it can be seen that 

combinations of the forces at each tire can achieve 

a total force anywhere in the dashed ellipse which 

represents the total friction limit.  

 

 

Figure 4. Notation for the single track model. 

In conventional vehicles, lateral force is however in 

general generated by turning the front wheel and 

brake force by applying braking torque on the 

wheels. By turning the front wheel, the lateral force 

at the front can thus be directly controlled while the 
lateral force at the rear is completely determined by 

the state of the vehicle and only indirectly 

influenced by the front wheel angle. In addition, a 

driver can only control brake torque through a 

brake pedal which distributes brake torque between 

the front and rear axle with a fix ratio. Under the 

assumption that no active systems like e.g. the 

antilock brake system intervenes, one can therefore 

say that the torque distribution and hence 

longitudinal force distribution between the front 

and back wheel is fixed. These limitations imply 

that arbitrary combinations of the forces at the front 
and the rear wheel may not be achieved by a driver 

and it is not certain that the force applied on the 

vehicle can always be anywhere in the friction 

ellipse.

 

Figure 5. Tire forces with constraints. The lines 

represent forces while the ellipses surrounding 

them are bounding constraints. 

In order to adopt a control strategy corresponding 

to (4), a cascade control with an inner control loop 

that delivers the required force is introduced. The 
inner control loop is required since the mapping 

from applied wheel angle and brake torque to 

acquired force is dynamic. The adopted control 

strategy is illustrated by the block diagram in 

Figure 6 where  
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 The block C1, compares the vehicle's state with 

the desired path and decides which lateral and 

longitudinal forces that needs to be applied on 

the vehicle in the same fashion as in (4). In 

Figure 5, the output of C1 i.e. the required 

force is represented by the square that is 
located at the limit of the dashed ellipse.  

 The block C2, which is much faster than C1, 

compares the generated force i.e. the dashed 

line in Figure 5, with the required force and 

decides which wheel angle and brake torque 

that is required in order to achieve the force 

demanded by C1.  

 The wheel torque, which is one of the outputs 

of C2 is a "total" torque, Ttot. The torque, Ttot is 

distributed between the front and back wheel 

according to  

totf
TT 7.0  

totr
TT 3.0  (8) 

The larger portion of the torque is applied at 

the front since the normal load is greater there 
for the vehicle considered in this study.  

 

Figure 6. Block diagram describing the control 

strategy. 

In addition to introducing the cascade control we 

also need to model the mapping from wheel angle 
and wheel torque to the forces acting on the 

vehicle. Two different approaches is tested here, 

one linear tire model (with saturation) and one 

nonlinear tire model. The tire models are explained 

in the following subsections.  

Linear Tires 

The longitudinal force at each tire is calculated as a 

function of the longitudinal slip. In order to keep 

track of the longitudinal slip, the rotational velocity 

is introduced as an additional state for each tire. 

The state model is therefore extended with  




J

fT
xiii

1
)(   i=f,r (9) 

where Jω denotes wheel inertia, Ti denotes wheel 

torque, ωi denotes rotational velocity of the wheel 

and fxi denotes longitudinal force expressed in the 

tires coordinate system. Given the rotational 

velocity at each wheel, one can calculate the 

longitudinal slip κ as  

)1(

x
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i
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where r denotes the effective wheel radius [10].  

A simple way of representing the relation between 
the longitudinal slip and longitudinal force at a 

wheel is by the linear relation 

ixixi
Kf   i=f,r (11) 

with Kxi as longitudinal stiffness.  

Also the lateral force can be approximated using a 

linear relation. The mapping from lateral slip to 

lateral force is then 

iyiyi
Kf   i=f,r (12) 

with Kyi as cornering stiffness and αi as the tire slip 

angle as defined in Figure 4, this linear 

representation is commonly used in electronic 

stability systems, see e.g. [11] and [12].  

For the front wheel the slip angle is easily derived 

by considering Figure 4 as 


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and for the rear wheel it is calculated as  

x
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The stiffness parameters Kxi and Kyi are acquired by 
linearizing the tire characteristics around κi=0 and 

αi=0, [7].  

 

Figure 7. Time optimal velocity profile. 

Figure 7 shows a comparison between the result 

obtained with the point mass model and the result 
obtained using the single track model with linear 

tires. Since the same boundary value is used for 

both models and most of the available force is 

utilized laterally to follow the path, the velocity 
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profiles are quite similar to each other at the end of 

the clothoid. However, earlier in the curve when 

more of the available force can be used 

longitudinally the difference is higher. 

Nonlinear Tires 

The primary external influence on the vehicle's 
behaviour is provided by the tire forces and it is 

therefore important to have a realistic nonlinear tire 

model when investigating vehicle motion near the 

limits of manoeuvring capability, [10].  

In Figure 8, lateral force characteristics are 

illustrated for different values of the friction 

coefficient. It can be seen that for small slip angles, 

a linear approximation of the tire works well. In 

normal driving conditions this is where the tire 

operates and the linear approximation is therefore 

useful. As the operating point gets closer to the 

limit of adhesion, the nonlinearity however 
becomes more evident and eventually, the tire force 

saturates and then starts to decrease. 

Also for the longitudinal force, the nonlinearity 

becomes more evident as the slip value is 

increased. This can be seen in Figure 9 which 

shows longitudinal force characteristics. 

 

Figure 8. Lateral tire force. 

 

Figure 9. Longitudinal tire force. 

There is a strong coupling between the longitudinal 
and lateral tire force. The illustrations in Figure 8 

and Figure 9 are only valid in either pure cornering 

or pure braking. If both lateral and longitudinal 

force is produced at the same time, they will 

influence each other. Figure 10 shows lateral force 

as a function of lateral slip for different values of 

the longitudinal slip. It can be seen that if 
longitudinal force is utilized, the acquired lateral 

force is reduced. Figure 11 also shows that the 

analogue relation holds for longitudinal force. 

 

Figure 10. Lateral tire force during combined 

slip for μ=0.9.  

 

Figure 11. Longitudinal tire force during 

combined slip for μ=0.9. 

 

Figure 12. Time optimal velocity profile 
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One common way to model tire characteristics is 

by the empirical magic tire formula. The formula is 

a curve fitting which takes into account the 

nonlinear nature of a tire in a good way. The 

coupling between longitudinal and lateral force can 

be taken into consideration using the combined slip 
form of the formula 

),,(),(
0 zxzxx

FGFff 


  

(15) 
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where fx and fy are lateral and longitudinal forces, 
fx0 and fy0 are the forces calculated for pure braking 

or cornering and Gxκ and Gxα are weight factors that 

take care of the combined slip effect. A 

comprehensive treatment of the magic tire formula 

is given in [13]. 

Figure 12 shows the obtained profile when the 

magic tire formula is used to model the tires. The 

same boundary condition is used in this case as for 

the previous models. It can be seen that there is a 

noticeable difference in slope between the profiles 

for the linear and the nonlinear tire model in the 

end of the clothoid. The difference is however less 
evident earlier in the curve. This is due to that in 

the case with the nonlinear tire model, a higher 

share of the available force is used in the lateral 

direction. As a consequence of the coupling 

between longitudinal and lateral force, the braking 

has to "stop" earlier along the path so that enough 

lateral force to follow the curve can be produced. 

Longitudinal Load Transfer 

In Figure 5, the friction ellipse constraining the tire 

force at the front wheel is larger than the ellipse at 

the rear. This is due to that the modelled vehicle, as 
mentioned earlier, has a larger portion of its weight 

in the front. Available and acquired tire force is 

thus dependant on the normal load on the tire.  

If the height of the vehicle is taken into 

consideration, the normal load at each tire is no 

longer considered to be constant. When 

longitudinal force is applied, a moment around the 

vehicle's y-axis is generated. Depending on 

whether the vehicle is accelerating or decelerating, 

this moment is balanced by an increase in normal 

load at either the front or the rear tire. The 
longitudinal load transfer can be calculated  
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hFF
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with h as the height of the vehicle's mass centre. A 

derivation of equation (16) is provided in [14]. 

Obviously since the normal load has a direct 

influence on acquired force, it affects the 

manoeuvrability of the vehicle. It is therefore 
interesting to evaluate what effect the longitudinal 

load transfer has on the optimal velocity profile. In 

Figure 13, the velocity profile for a single track 

model with nonlinear tires and longitudinal load 

transfer has been added. Figure 13 reveals that the 

load transfer has a slightly positive influence on the 

time optimal velocity profile. When brake force is 
applied, the normal load at the front tire is 

increased. Since applied brake torque is in our case 

higher at the front, this results in a higher total 

longitudinal force. However as the vehicle moves 

further along the curve and the curvature increases, 

the difference disappears since the limiting factor 

becomes available lateral force. 

 

Figure 13. Time optimal velocity profile. 

DOUBLE TRACK VEHICLE MODEL 

In this section, we also take into account that the 

vehicle has a width. The equations of motion are 

then  
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where Jω is the wheel inertia and the rest of the 

notation is defined in Figure 14. As above, forces 

are denoted f when expressed in the tires coordinate 

system and F in the vehicle frame.  

When the vehicle's height was taken into 
consideration for the single track model, we saw 

that the vehicle's vertical load varies when 

longitudinal force is applied. Similarly, taking the 
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vehicle's width into account reveals a lateral load 

transfer. The lateral load transfer can be calculated  
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where Rsf and Rsr is the roll stiffness distribution at 

the front and rear axles and the rest of the notation 

is defined in Figure 14.  

 

 

Figure 14. Notation for the double track model. 

The equations presented earlier to calculate e.g. the 

slip quantities for the single track model can easily 

be extended to fit the double track model. An 
extensive treatment of the double track model is 

however omitted here and the reader is referred to 

[14] where a complete derivation is provided 

together with the assumptions it is based on. 

With different vertical load at each tire, the forces 

generated at the contact patch of the tires will also 

be different even if they have the same slip values. 

The longitudinal forces will then contribute to the 

yaw moment imposed on the vehicle, especially in 

cornering when the lateral load transfer is large. 

The additional yaw moment might cause instability 
in the vehicle's behaviour if it is too large and it is 

therefore worth examining the impact of this 

phenomenon on the maximum velocity profile.  

In Figure 15, the optimal velocity profile for the 

double track model has been added. The nonlinear 

tire model with both longitudinal and lateral load 

transfer has been used. It is clear that the velocity 

profile is lower for the double track model. In 

addition to the yaw moment caused by the 
difference in longitudinal forces, uneven 

distribution of the vertical load between the right 

and the left side also reduces the total amount of 

lateral force available. A lower velocity is therefore 

required at each point of the path in order for the 

lateral force to be sufficient to keep the vehicle 

following the curve.  

 

Figure 15. Time optimal velocity profile. 

DISCUSSION & FUTURE WORK 

In this paper, maximum velocity profiles for a 

vehicle travelling through a specific curve were 

computed using a set of well known vehicle 

models. It was found that the resulting velocity 

profile differs significantly between the simplest 

and the most detailed model. This is especially 

remarkable since the curve considered in this study 

is only 120m long and suited for 50km/h as posted 
velocity. The curve is thus relatively short and 

greater differences can be expected for longer 

curves.  

Information about the maximum velocity a vehicle 

can have while still following the road can be used 

in an active safety system to either warn drivers or 

assist them by issuing autonomous interventions. If 

the car travels faster than the maximum velocity at 

any point along the curve, it is impossible for the 

vehicle to stay on the road and an autonomous 

intervention can then be motivated. This approach 

is conservative and guarantees that false alerts or 
interventions are never issued. As can be seen by 

the result, the acquired thresholds however 

becomes very high and in practice such a 

conservative system will seldom intervene. 

Drivers are however never completely optimal, 

hence a vehicle travelling slower than the 

computed maximum velocity is not necessarily 
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safe. In CSW the issue of high thresholds is worked 

around by introducing a safety factor which 

basically shifts the velocity profile downwards. The 

problem with that approach is that, the mapping 

between the velocity profile and an actual threat is 

then lost. This is acceptable for a system that warns 
for upcoming curves but cannot be used as a base 

for autonomous interventions.  

The velocity profiles computed in this paper only 

considers how fast it is possible for a vehicle to 

travel through the curve and does not say anything 

about how difficult it is. A common assumption is 

that it is difficult for normal drivers to manoeuvre a 

vehicle operating in the nonlinear region of the 

tires [11]. This assumption is the base of current 

state of the art in electronic stability systems and 

might also be beneficial to incorporate in a threat 

assessment for upcoming curves. We are therefore 
currently investigating a threat assessment 

algorithm based on this assumption.  

CONCLUSIONS 

It has been shown that the level of detail in the 

modelled vehicle dynamics has a significant impact 

on the maximum velocity profile for a vehicle 

negotiating a curve. The theoretically achievable 

velocity is however still very high and additional 

limitations of a driver's ability therefore need to be 

taken into consideration in order to achieve 

thresholds that have a higher practical benefit.  
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