
A System, Signals and Identification
Toolbox in Mathematica with Symbolic

Capabilities. ?

Jonas Sjöberg ∗ H̊akan Hjalmarsson ∗∗

∗ Department of Signals and Systems, Chalmers University of
Technology, SE41296 Göteborg, Sweden

∗∗ ACCESS Linnaeus Center, Electrical Engineering, KTH – Royal
Institute of Technology, SE100 44 Stockholm, Sweden

Abstract: In this contribution we describe a new signals, systems and identification toolbox
for the symbolic and numerical computation system Mathematica. The toolbox provides
functionality for computation of properties of systems and signals ranging from frequency
responses, zeros and poles to signal spectra and spectral factorizations. It also includes a wide
range of identification algorithms ranging from spectral analysis to subspace and prediction
error identification of models for non-linear systems. The symbolic capabilities of Mathematica
are used to allow the user to construct very general model structures, and for pre-processing,
such as gradient calculations, when optimizing the parameters in such structures.

1. INTRODUCTION

Mathematica as an environment for analysis and synthe-
sis in signals, systems, control and identification theory
and practice is still quite under-developed when compared
to the extensive list of functions available in MATLAB.
However, symbolic computational software systems, such
as Mathematica, offers interesting features that are useful
in these areas. In particular for signal analysis and sys-
tem identification, symbolic calculations allow to compute
statistical properties such as covariances, correlations and
spectra as explicit function of parameters. This may be
useful for researchers as well as in education where theoret-
ical calculations can parallel numerical computations of a
signal’s sample properties. Another, perhaps less obvious,
use of symbolic computations is as a pre-processing tool
in optimization of parameters. For example, for analytic
computation of gradients of predictors in general model
structures, in particular for non-linear systems. This opens
up for the user herself to define tailor made model struc-
tures.

These driving forces lie behind the signals, systems and
identification package for Mathematica that is described
in this paper. The package is still under development
and will be launched in 2009. In short, the package
supports a wide range of algorithms for identification
of linear and nonlinear models of dynamical systems,
which can be used for simulation, prediction, and for
control design. It also supports symbolic processing of
stationary stochastic processes, i.e. covariance and spectral
computations, spectral factorization etc. Thus the package
is useful as a tool also for the theoretically oriented
researcher and in education.

?

The symbolic features of Mathematica are used so that a
large variety of model structures can be handled. Before
the numerical estimation procedure, the symbolic defi-
nition of the model structure is simplified and modified
before the numerical computations of the parameters. In
this way a larger set of model structures can be supported,
at the same time as the computational speed is improved.
In respect to system identification, the package has the
following features:

• Linear models. The package supports subspace meth-
ods for MIMO linear state-space models as well
as traditional black box model structures such as
FIR, ARX, ARMAX, BJ and for time-series AR and
ARMA models. Also non-parametric methods in both
time and frequency domain are available.

• Non-linear models. The package support of estima-
tion of nonlinear model structures is unprecedented:
Nonlinear versions of common linear black box mod-
els are supported (NLFIR, NLARX, NLARMAX,
NLBJ) and for time-series NLAR and NLARMA
models. In addition, nonlinear state-space models,
Hammerstein and Wiener models are supported.

Users can define their own nonlinearities, but guid-
ance and support is available. Parametric models are
estimated by the prediction error method.

Care has been taken to minimize computation time so that
numerical computations match state-of-the art.

For control design there exists a toolbox for Mathematica,
called System Control Professional (CSP), and models
identified with the identification tool can be transformed
to the format used in CSP so that one can continue with
control design.



Fig. 1. Computed frequency response for one channel of the
International Space Station. The Mathematica and
MATLAB results are on top of each other.

Outline

The paper unfolds as follows. Section 2 describes functions
assessing system properties, and commands for handling
models, mainly for linear models. This is followed by a
description of functions for stochastic systems theory in
Section 3. Functions for spectral analysis are described in
Section 4 and the support for nonlinear system identifica-
tion is explained in Section 5. Some conclusions are then
given in Section 6.

2. SYSTEMS THEORY

The standard underlying systems representation is the
state-space form, either in continuous time

ẋ(t) = f(x(t), u(t), w(t), θ) (1)
y(t) = h(x(t), u(t), v(t), θ) (2)

where u(t) is a measured signal (the input), and where
w(t) and v(t) are disturbances, or in discrete-time

x(t+ 1) = f(x(t), u(t), w(t)θ) (3)
y(t) = h(x(t), u(t), v(t), θ) (4)

2.1 Interconnections

Complex systems and models can be constructed by inter-
connection of simpler building blocks. For example with G
and H being models with the same number of inputs and
outputs, G+H will result in a model where G and H are
connected in parallel and G · H will be G in series with
H.

2.2 Frequency response

Different methods are used to compute the frequency re-
sponse depending on whether or not the state-space model
representation contains symbolic elements and whether or
not the frequencies are symbolic or not. When both model
and the frequency variable are numeric, the well known
method using the Heisenberg form as intermediate is used,
see Laub (1981). The accuracy is similar to freqresp in
MATLAB. In Figure 1, the computed frequency response
for one of the channels in the model of the International
Space Station in Antoulas et al. (2001) is shown both using
the Mathematica toolbox and freqresp in MATLAB.

2.3 Poles and zeros

The well known algorithm in Emami-Naeini and van
Dooren (1982) has been implemented for the computation
of zeros of a system.

2.4 Partial realization theory

There are several methods to compute a state-space rep-
resentation from a finite impulse response sequence. The
algorithm in Ho and Kalman (1966) forms the basis of the
function ImpulseResponseToStateSpace but the N4SID
subspace identification method can also be used.
Example 1. Consider the system

x(t+ 1) =
[
a −0.25
1 0

]
x(t) +

[
2 2
2 1

]
u(t)

y(t) =
[
2 1
3 1

]
x(t)

where a is a free parameter.

From the three first impulse response coefficients

h(0) =
[
0 0
0 0

]
, h(1) =

[
6 8
5 7

]
, h(2) =

[
1 + 4a 0.5 + 6a

1.5 + 4a 1.25 + 6a

]
ImpulseResponseToStateSpace gives the following state
space model

x(t+ 1) =
[
1.509 + 0.770a −0.0597− 0.0579a
4.565− 3.058a −0.151 + 0.230a

]
x(t)

+
[
−0.758 −0.652
−0.652 0.758

]
u(t)

y(t) =
[
−7.809 −0.122
−10.630 0.0898

]
x(t)

which has the same input output behavior as the original
system.

3. STOCHASTIC SYSTEMS THEORY

The perhaps most common functions in stochastic systems
theory have been implemented.

3.1 State covariances and covariance functions

The function CoVar computes the state covariance of a
state space system when the input is white noise. For a
linear time invariant system where the input is stationary
with spectrum Φu, the cross-covariance between input and
output and the output correlations are computed with
CrossCov and OutputCov, respectively.
Example 2. When the input to the system in Example 1 is
white noise, CoVar gives that the state covariance is given
by

1
(a− 1.25)(a+ 1.25)

·(
37(a− 2.06)(a+ 1.40) 45(a− 2.11)(a+ 1.50)
45(a− 2.11)(a+ 1.50) 53(a− 2.16)(a+ 1.67)

)
We see that the covariance matrix increases as 1/(|a| −
1.25) when a approaches the stability region a = ±1.25.



3.2 Positive real part

The positive real part of a spectrum can be computed
using Spectrum2PositiveRealPart.
Example 3. Consider the signal

y(t) =
1

1− 0.7q−1
e(t) + w(t)

where {e(t)} and {w(t)} are zero mean white noise se-
quences with variance 1 and λ, respectively.

The spectrum of y is simple to compute in Mathematica:

First we define G(z) and G(z−1)

G = 1/(z − 0.7);G = 1/(z − 0.7);G = 1/(z − 0.7);
Gstar = G/.z → 1/z;Gstar = G/.z → 1/z;Gstar = G/.z → 1/z;

Then the spectrum is given by

φy = GGstar + λφy = GGstar + λφy = GGstar + λ

1

(−0.7+ 1
z )(−0.7+z)

+ λ

The positive real part for this spectrum is obtained by

F = Spectrum2PositiveRealPart [{{φy}} , z, 1]F = Spectrum2PositiveRealPart [{{φy}} , z, 1]F = Spectrum2PositiveRealPart [{{φy}} , z, 1]

LinearStateSpace
[{

{{0.7}}, {{1.}}, {{1.37}},
{{

12+2πλ
4π

}}}]
The result is a linear state space model.

3.3 Spectral factorization

There is also a facility to compute the spectral factoriza-
tion of a spectrum. This is done in two steps where first the
positive real part of the spectrum is computed and then
the spectral factorization. The algorithm for the latter uses
a Riccati equation solver that at present only is able to
handle numerical data.
Example 4. (Example 3 continued). The spectral factor-
ization of ΦY in Example 3, with λ = 2, is computed as
follows:

H = SpectralFactorization[F/.λ→ 2]H = SpectralFactorization[F/.λ→ 2]H = SpectralFactorization[F/.λ→ 2]

LinearStateSpace[{{{0.7}}, {{0.39}}, {{1.37}}, {{1.85}}}]
The result is a linear state space model.

4. SPECTRAL ANALYSIS

There are functions available for computing sample cor-
relations and smoothing such estimates, and from these
estimates also non-parametric spectral and frequency func-
tion estimates (spectral analysis). We illustrate this with
an example.
Example 5. We generate 500 samples from the system
G(z) = 0.6 + 0.3z−1 + 0.1z−2:

u = {Table[RandomReal[NormalDistribution[0, 1]], {500}]};u = {Table[RandomReal[NormalDistribution[0, 1]], {500}]};u = {Table[RandomReal[NormalDistribution[0, 1]], {500}]};
y = {Flatten[{MovingAverage[Flatten[u], {0.6, 0.3, 0.1}], 0, 0}]};y = {Flatten[{MovingAverage[Flatten[u], {0.6, 0.3, 0.1}], 0, 0}]};y = {Flatten[{MovingAverage[Flatten[u], {0.6, 0.3, 0.1}], 0, 0}]};
G[z ]:={{0.6 + 0.3/z + 0.1/z∧2}};G[z ]:={{0.6 + 0.3/z + 0.1/z∧2}};G[z ]:={{0.6 + 0.3/z + 0.1/z∧2}};

Using a window of size M = 50, a frequency function
estimate of G is obtained by first computing sample
correlations and then performing spectral analysis:

Ruu=SampleCorrelationFunction[u,u,-M,M];Ruu=SampleCorrelationFunction[u,u,-M,M];Ruu=SampleCorrelationFunction[u,u,-M,M];
Ryu=SampleCorrelationFunction[u,y,-M,M];Ryu=SampleCorrelationFunction[u,y,-M,M];Ryu=SampleCorrelationFunction[u,y,-M,M];

Fig. 2. Magnitude plot of frequency function estimate
obtained using spectral analysis together with the
true frequency function in Example 5.

Fig. 3. Magnitude plot of frequency function estimate
obtained using spectral analysis on smoothed sample
correlations together with the true frequency function
in Example 5.

Ryy=SampleCorrelationFunction[y,y,-M,M];Ryy=SampleCorrelationFunction[y,y,-M,M];Ryy=SampleCorrelationFunction[y,y,-M,M];
{Ghat,Seehat}=SpectralAnalysis[Ruu,Ryu,Ryy];{Ghat,Seehat}=SpectralAnalysis[Ruu,Ryu,Ryy];{Ghat,Seehat}=SpectralAnalysis[Ruu,Ryu,Ryy];

The result is shown in Figure 2. It is simple to smooth the
estimates:

Ruus = Smooth[Ruu,Hamming];Ruus = Smooth[Ruu,Hamming];Ruus = Smooth[Ruu,Hamming];
Ryus = Smooth[Ryu,Hamming];Ryus = Smooth[Ryu,Hamming];Ryus = Smooth[Ryu,Hamming];
Ryys = Smooth[Ryy,Hamming];Ryys = Smooth[Ryy,Hamming];Ryys = Smooth[Ryy,Hamming];
{Ghats,Seehats} = SpectralAnalysis[Ruus,Ryus,Ryys];{Ghats,Seehats} = SpectralAnalysis[Ruus,Ryus,Ryys];{Ghats,Seehats} = SpectralAnalysis[Ruus,Ryus,Ryys];

which results in the estimate in Figure 3.

5. IDENTIFICATION OF NON-LINEAR SYSTEMS

5.1 Parameter estimation

The tool supports prediction error identification of the
parameters in the nonlinear models. Due to the symbolic
computational possibility in Mathematica it is easy to
handle any criterion of fit. Hence, there are some standard
alternatives like the sum of squared errors, but the user
can also specify any criterion of their choice if they prefer.

Initial parameter estimate The criterion of fit is min-
imized by a gradient based iterative algorithm, typical
Gauss-Newton or levenberg-Marquardt, but any of the
supported algorithms of Mathematica can be chosen. The
minimization starts at an initial parameter estimate and
its quality is crucial for the success of the minimization.
With a bad initialization the algorithm can be stuck in a
local minima corresponding to a model far from the best
possible one.



The tool supports algorithms to define model structures
and produce reasonable initial parameter values where the
risk of getting stuck in local minima is reduced. These
algorithms are described in Sjöberg (1997).

Stability issues One requirement for the prediction error
algorithm is that the model and its derivative with respect
to the parameters are stable for the parameter values. For
linear models this is easily tests and monitored during the
minimization. Stability of nonlinear models is however not
a system property and it depends in general also in the
input signal. The tool has algorithms which facilitates def-
initions of model structures and parameter initializations
which gives stable models. These are described in Sjöberg
and Ngia (1998).

Initial state estimation The initial state of the model is
estimated together with all parameters of the model. For
state-space models the user can influence the estimation in
various ways, for example, indicating some states as known
and other as unknowns.

5.2 Nonlinear Model Structures

The tool can handle, basically, any model structure which
can be expressed in the state-space form (4). The only
requirement is that the derivative of the output exists so
that the derivative based criterion minimization can be
applied.

Tailored model structures A tailored model means that
the user specifies the model equations on the form (4). The
functions f and h are specified based on prior knowledge
from, for example, physics. The user must also supply the
initial parameter estimate.

Black box model structures Nonlinear counterparts of
the linear black-box models are supported. Any type of
nonlinear basis function can be used for the nonlinear
mapping which gives models of the following types NL-
FIR, NLARX, NLARMAX, NLBJ, NLAR and NLARMA.
These are defined and motivated as in Sjöberg et al. (1995).

Special model structures Well known special nonlinear
model structures, such as Wiener models and Hammer-
stein models are supported. Also, nonlinear model struc-
tures with, for example, affine input signal can be ob-
tained. These model can be either state space models or
input-output models.

5.3 Stepwise modeling approach

One possible way to work with the tool for nonlinear
system identification is to use a stepwise approach where
nonlinear parts are, stepwise, added. Starting from a
simple model, normally a linear one, the tool has special
commands for adding nonlinear parts to different places
of the original model. The stepwise process, described
in Sjöberg and Ngia (1998) and close to that in Bohlin
(1991), resembles the general system, identification work
process where validation and examination takes place after
each model increment. Often a modification is rejected and
the user can try to add a nonlinearity to the model in an
different way. An illustration of one step of this procedure

Fig. 4. Graphical illustration of a linear ARX model. This
is one of the possible starting points for nonlinear
system identification where the the linear mapping
is changed to a nonlinear one.

Fig. 5. A NLARX model obtained by adding a block
consisting of a feed-forward neural network in parallel
to the linear mapping of an ARX model.

can be seen in Figures 4 and 5. Figure 4 illustrates a linear
black box model and in 5 a nonlinearity has been added
in parallel to the linear model.

The user can choose where to put the added nonlinearity,
in parallel, after or before the original block. The user can
also choose what kind of nonlinearity to add, and which
signals should feed into the new nonlinear part.

The stepwise procedure can be used in combination with
all supported nonlinear model structures.

This stepwise approach makes it possible to initialize the
parameters in the added nonlinear part so that stability is
preserved which increases the possibility to obtain a good
model.

The stepwise approach is further illustrated in the pa-
pers Sjöberg (2000); Sjöberg and Gutman (1999).

5.4 Model validation

Standard tools for model validation are supported such as
simulation, prediction, correlation tests where the model
output is compared to the measured output.

5.5 Linearization

Nonlinear models can be linearized at any given state and
value of the input signal.

6. CONCLUSIONS

While exploring the symbolic opens up new avenues, it is
important to keep in mind that the capabilities of handling



several of the operations that commonly appear in signals
and systems theory at present is restricted to very simple
problems. One example of such an operation is singular
value decomposition.

An interesting research topic is how to balance symbolic
and numerical computations. It is usually more computa-
tionally expensive to make a symbolic solution but once
this is available, it is easy to compute the solution for any
parameter.

REFERENCES

Antoulas, A., Sorenson, D., and Guercin, S. (2001). A sur-
vey of model reduction methods for large-scale systems.
Contemporary Mathematics, 280, 193–219.

Bohlin, T. (1991). Interactive System Identification:
Prospects and Pitfalls. Springer Verlag.

Emami-Naeini, A. and van Dooren, P. (1982). Computa-
tion of zeros of linear multivariable systems. Automat-
ica, 18(4), 415–430.

Ho, B. and Kalman, R. (1966). Effective construction of
linear state-variable models from input/output functios.
Regelungstechnik, 14(12), 545–592.

Laub, A. (1981). Efficient multivariable frequency re-
sponse computations. IEEE Transactions on Automatic
Control, 26(2), 407–408.

Sjöberg, J. (1997). On estimation of nonlinear black-box
models: How to obtain a good initialization. In IEEE
Workshop in Neural Networks for Signal Processing,
Amelia Island Plantation, Florida, Sep. 24-26, 72–81.

Sjöberg, J. (2000). A nonlinear grey-box example using a
stepwise system identification approach. In Proceedings
of the 11th IFAC Symposium on Identification, Santa
Barbara, USA.

Sjöberg, J. and Gutman, P. (1999). Nonlinear identifi-
cation of the position sled dynamics of a cd player.
In Proceedings of the 7th Mediterranean Conference on
Control and Automation (MED99), Haifa, Israel, 738–
751.

Sjöberg, J. and Ngia, L. (1998). Neural nets and related
model structures for nonlinear system identification. In
J. Suykens and J. Vanderwalle (eds.), Nonlinear Mod-
elling, Advanced Black-Box Techniques, 1–28. Kluwer
Academic Publisher.

Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Deylon,
B., Glorennec, P.Y., Hjalmarsson, H., and Juditsky,
A. (1995). Non-linear black-box modeling in system
identification: a unified overview. Automatica, 31(12),
1691–1724.


