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Abstract: An approach to estimate the plausible number of parameters in a nonlinear
model in an identification problem is considered. By suggesting a series of experiments using
periodic input signal, estimates of the disturbance variance and the nonlinear distortion can
be formulated. With these estimates an expression for a reasonable number of parameters is
obtained. This is useful help when a user has to choose between different types of nonlinear
model structure which differ largely in their number of parameters.
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1. INTRODUCTION

There are many possible approaches to nonlinear system
identification, each approach with its advantages and dis-
advantages. For many of the possible alternatives there is a
range of the number of parameters in the associated model
structure for them to be applicable. The typical approach
would be to test the different types of model structures
and by trail and error select the most appropriate one.

The goal in this contribution is to obtain an estimate
of how many parameters can be estimated to identify
the nonlinear part of the system prior to any testing
of nonlinear model structures. Given that estimate it is
possible to suggest type of model structures which are
applicable. This can make the choice of model structure
easier and faster for the user.

The idea requires that a series of experiments with periodic
input signal is conducted on the plant. With the recorded
outputs from these experiments, separate estimates of the
disturbance, the linear contribution, and the nonlinear
distortion can be made. With these estimates, and asymp-
totic results on the variance contribution to the misfit,
the applicable parameter number can be obtained. These
ideas build on insights of using periodic inputs covered in,
eg, Pintelon and Schoukens (2001); D’haene et al. (2005)
and linear approximations of nonlinear systems, see eg,
Schoukens et al. (2005); Enqvist (2005); Ljung (2001);
Mäkilä and Partington (2004). The general asymptotic
theory used is covered in standard textbooks like Ljung
(1999).
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With an indication of the applicable number of parameters
before the actual nonlinear system identification starts, the
user can direct their interest to the model structures which
typically are used with that number of parameters.

There are, of course no absolute truth which model struc-
ture applies given a certain number of parameters, but
a rough classification can be made. With system order
of η, a memory length of κ, which roughly corresponds
to five times the time constant for a linear system, and,
a somewhat fuzzy measure, nonlinear degree δ which for
polynomial nonlinearities corresponds to the degree, the
following model structures with estimates of the order of
the number of parameters can be formulated

Block structured models, O(κ0) +O(η),
Neural network based models, O(η δ),
Polynomial nonlinear state space models, O(ηδ),
Support vector machines (SVM), O(ηδ),
Non-parametric Volterra series, O(κδ).

Block structures are described in Billings and Fakhouri
(1982); Westwick and Kearney (IEEE Press). Theory of
Volterra series for nonlinear system identification is cov-
ered in Schetzen (2006). A general overview of identifica-
tion of nonlinear systems can be found in Sjöberg et al.
(1995), where also neural networks and similar model
structures are explained.

The rest of the paper is outlined as follows. Section 2
gives the assumption on the system to be identified and
Section 3 explains how the number of possible parameter
is estimated given measures of the nonlinear distortion and
the noise variance. Then, Section 4 outlines the necessary
experiments with a periodic input signal and Section 5
then gives the estimates of the nonlinear distortion and the



noise variance. The method is illustrated with an example
in Section 6 and the paper is concluded in Section 7.

2. PLANT ASSUMPTIONS

The process to be identified is assumed to be a discrete
time deterministic nonlinear dynamic system, described
by

y(t) = f(ut) + e(t) (1)
where f is the nonlinear dynamic function, ut consists
lagged input signals u(t) up to time t, and e(t) is the
disturbance with variance σ2. The input is assumed to be
known exactly and the noise variance is unknown. Often
it is more convenient to work with data in the frequency
domain, especially since periodic inputs are used. All
signals can as well be described in the frequency domain,
and capital letters will then be used. The system dynamic,
described by f , is however more convenient described in
the time domain since it is nonlinear.

3. ESTIMATING THE PLAUSIBLE NUMBER OF
PARAMETERS IN NONLINEAR MODELS

The contributions to the misfit of a model can be described
as a sum of a bias part B, or, equivalently, as systematic
part, and a variance part. The bias part depends on the
chosen model structure and describes the distance between
the best possible model and the true function, f given
statistical properties on the input signal. The variance
part is stochastic and depends on the disturbance in the
measurements. Hence, if the identification is repeated with
the same model structure but with new data with the
same statistical properties as the first data set, the bias
part remains the same but realization of the variance part
of the misfit will be different. However, with a quadratic
measure, in mean the variance contribution will be

λ
d

N
(2)

where d is the number of parameters in the model, λ is the
variance of the disturbance, and N is the number of data
used in the identification. See, eg, Ljung (1999).

As will be described in the next section, if linear models
are considered to model the unknown system f , the
nonlinear distortion will act as an additional stochastic
disturbance with variance σ2

NL. Hence, if linear models
are considered, λ = σ2 + σ2

NL in (2). For a linear model
structure, which can describe the Best possible Linear
Approximation (BLA), one obtain the following expression
for the expected misfit

E[(y(t)− ŷ(t))2] = B + d
σ2 + σ2

NL

N
. (3)

where σ2
NL is the bias which is equivalent to the nonlinear

distortion.

Consider now the case that a nonlinear model which is
able to describe f for some parameter values, ie, if there is
no bias error. Then the expected variance of an estimated
nonlinear model becomes contribution becomes

E[(y(t)− ŷNL(t))2] = dNL
σ2

N
(4)

where dNL are the number of parameters in the nonlinear
model.

Now, the prediction with the nonlinear model will be
better than with the linear model if (4) is smaller than
(3), ie, if

dNL < N
B

σ2
+ d+ d

σ2
NL

σ2
. (5)

Typically, the number of parameters in a linear model is
much smaller than in a nonlinear model so in many cases,
for reasonable values on N , the second term in (5) can
be neglected. So, to use (5) to obtain an estimate of the
number of parameters one needs estimates of, B, σ2

NL and
σ2. This is described in the following.

4. EXPERIMENT OUTLINE

A series of experiments with periodic excitation need to
be performed following the setup described in, eg, Pintelon
and Schoukens (2001). The description is included here for
consistency.

The input signal is chosen as a multi-sine signal where the
phase is chosen randomly uniformly distributed at each of
the experiments. Let P periods of data recorded in each
experiments, assuming measurements starting after that
transients have settled, and let M indicate the number
of experiments. Let u(t)[m,p] indicate the input signal at
experiment m and period p and let each period have Np
data sample. Let y(t)[m,p] be the corresponding notation
for the output signal.

Now, according to Pintelon and Schoukens (2001), the
output can be described as

y(t)[m,p] = yBLA(t)[m,p] + yNL(t)[m,p] + e(t)[m,p] (6)
where yBLA(t)[m,p] is the output of the best linear approx-
imation of the unknown plant, yNL(t)[m,p] is the nonlinear
distortion of the plant, and e(t)[m,p] is the disturbance at
experiment m and period p. Notice that the first to terms
in (6) equals the nonlinear plant, ie,

f(ut) = yBLA(t) + yNL(t) (7)

In Pintelon and Schoukens (2001) it is, further explained
that yBLA(t) is described by the transfer function of the
best linear approximation GBLA,

yBLA(t)[m,p] = GBLAu(t)[m,p] (8)
and since the input is periodic, u(t)[m,p1] = u(t)[m,p2],
the output will be p-independent (with exception for
the disturbance e(t)) and we can write yBLA(t)[m] and
yNL(t)[m]. Due to the random phase of the input signal,
the nonlinear distortion will act as an additional stochastic
disturbance term. Hence

E[YNL(ω)[m1]YNL(ω)[m2]] =
{
σ2
NL(ω) if m1 = m2

0 else. (9)

So, if a linear model is used to model the data, the
disturbance will be yNL(t)[m,p] + e(t)[m,p] in (6), with the
variance σ2 + σ2

NL.

We can then formulate an expression for the bias as

B = E[(f(ut)− yBLA(t))2] =
E[(yBLA(t) + yNL(t)− yBLA(t))2]

= E[y2
NL(t)] = σ2

NL. (10)
The expectation is under the condition that the stochastic
properties of the input signal are the same as that defining



yBLA(t). If the stochastic properties are allowed to change,
then the bias will in general be larger.

5. ESTIMATION OF NOISE AND NONLINEAR
DISTORTION

With the experimental setting and the notations from
previous section, it easy to formulate estimates of σ2 and
σ2
NL, they also follow the insights given in Pintelon and

Schoukens (2001).

An estimate of σ2 is obtained in the following way. First,
yBLA(t)[m,p] and yNL(t)[m,p] can be removed from the
output by using one period in each experiment. That is,

y(t)[m,p] − y(t)[m,P ]

= e(t)[m,p] − e(t)[m,P ] p 6= P. (11)
Taking the square and expectation gives

E[(y(t)[m,p] − y(t)[m,P ])2]

= E[(e(t)[m,p] − e(t)[m,P ])2] = 2σ2(t). (12)
An estimate can then be formulated as

σ̂2(t) =
1

M (P − 1)

M∑
m=1

P−1∑
p=1

(y(t)[m,p] − y(t)[m,P ])2. (13)

A common assumption would be that the disturbance is
time-invariant and then one can include a mean value over
the length of one period in the experiment, Np, in (13).
The estimate (13) can also be expressed in the frequency
domain and it then becomes

σ̂2(ω) =
1

M (P − 1)

M∑
m=1

P−1∑
p=1

(Y (ω)[m,p] − Y (ω)[m,P ])2.

(14)

An estimate of σ2
NL is obtained by proceeding similar

as above. To remove the BLA part between different
experiments one must first compensate for the phase in
the different experiments. This is most easily done by
multiplying the correspondence of (6) in the frequency
domain with the phase opposite to the one of the input
signal, ie,

Y (ω)[m,p]
Ū(ω)[m]

|U(ω)|
= GBLA|U(ω)[m]|

+ YNL(ω)[m,p]
Ū(ω)[m]

|U(ω)|
+ E(ω)[m,p]

Ū(ω)[m]

|U(ω)|
. (15)

Now the BLA part can be removed by subtracting (15)
with a particular choice of m from the other. That is,

(Y (ω)[m,p] − Y (ω)[M,p])
Ū(ω)[m]

|U(ω)|
=

(YNL(ω)[m,p] − YNL(ω)[M,p])
Ū(ω)[m]

|U(ω)|

+ (E(ω)[m,p] − E(ω)[M,p])
Ū(ω)[m]

|U(ω)|
m 6= M. (16)

Taking the square and expectation gives

E[(Y (ω)[m,p] − Y (ω)[M,p])2]

= E[(YNL(ω)[m,p]−YNL(ω)[M,p]+E(ω)[m,p]−E(ω)[M,p])2]
= 2σ2

NL(ω) + 2σ2(ω). (17)

The estimate of the nonlinear distortion can now be
formulated as

σ̂2
NL(ω)

=
1

2 (M − 1)P

M−1∑
m=1

P∑
p=1

(Y (ω)[m,p]−Y (ω)[M,p])2− σ̂2(ω)

(18)
in the frequency domain.

The estimates (14) and (18) are given in the frequency
domain. These expressions can, for example, reveal if
the disturbances and the nonlinearities are dominating
different frequency regions, which indicates that filtering
might be interesting to apply.

The estimates of σ2 and σ2
NL, to be used in (5), are

obtained by taking the mean value over all frequencies
in (18) and (14). These estimates can also be obtained by
using time domain data and assuming time-invariance as

σ̂2 =
1

NpM (P − 1)

Np∑
t=1

M,P−1∑
p=1
m=1

(y(t)[m,p] − y(t)[m,P ])2

(19)
and

σ̂2
NL =

1
2Np(M − 1)P

·

Np∑
t=1

M−1,P∑
p=1
m=1

(y(t)[m,p] − y(t)[M,p])2 − σ̂2. (20)

In the next section the proposed method will be used on
some small examples.

6. EXAMPLES

Consider a simple example where the nonlinear system is
of Wiener type

y(t) = f(Gu(t)) + e(t) (21)
where f is a static nonlinear function, e(t) is white noise
with variance 1 and G is transfer function

G(z) =
z2

z2 − 1.2z + 0.52
.

Two different choices of f will be illustrated, namely

f1(x) = x+
( x

150

)3

f2(x) = x+
( x

90

)3

The experiment parameters were chosen as follows:M = 5,
P = 2, N = 128. The input signal was chosen to contain
20 frequencies. An example of the input signal in the time
domain from one experiment is shown in Figure 1 a). In
Figure 1 b) the Bode plot of the linear plant is shown
together with the frequency excitation of the input signal.

f1: The nonlinearity has very little influence since the
output from the linear part is divided by 150 before the
cubic nonlinearity get into action. In Figure 2 a) and



Fig. 1. a) The input signal from one of the 5 experiments.
b) Bode plot of the linear part of the plant together
with the excited frequencies.

b) the output from the linear part of the system and
the plant output from one of the experiments are shown,
respectively. No trace of any nonlinear distortion of the
signal can be seen. No nonlinearity can be detected in this

Fig. 2. From one of the experiments with f1: a) Output
from the linear part of the system. b) System output.

case and the estimate of the nonlinear distortion becomes
negative, σ̂2

NL = −0.32. The noise estimate is however
reasonable, σ̂2 = 0.93.

f(x) = x+
( x

90

)3

f1: In the second case the nonlinearity is slightly stronger.
However, any nonlinear distortion is hardly visible if one
compare the output from the linear part and the system
output, see Figure 3 a) and b). However, the estimate of

Fig. 3. From one of the experiments with f2: a) Output
from the linear part of the system. b) System output.

the nonlinear distortion becomes σ̂2
NL = 0.36 and the

estimate of the noise σ̂2 = 0.97. Then an estimate of
a plausible number of parameters can be calculated as
dNL = 478.

7. CONCLUSIONS

An algorithm to estimate the plausible number of param-
eters in a nonlinear model has been presented. It requires
data from a series of experiments so that estimates of the
noise level and the nonlinear distortion can be made, on
which the estimate relies.
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Ljung, L. (1999). System Identification: Theory for the
User. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition.

Ljung, L. (2001). Estimating linear time-invariant models
of nonlinear time-varying systems. European Journal of
Control, 7(2-3), 203–219.
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