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Abstract—In this paper we present a general methodology for and the corresponding modulator’'s input. Similar modular
the interleaver and code design for QAM-based BICM transmis- (MD) interleavers have been used for example in [4]-[7] in
sions. We develop analytical bounds on the bit error rate and different contexts. MD interleavers have also been propose

we use them to predict the performance of BICM when unequal . )
error protection (UEP) is introduced by the constellation labeling. in the 3GPP/HSDPA standard [8], [9] when 16-QAM is used.

Based on these bounds, the optimum design of interleaver and They are relevant from an implementation point of view
code is presented. The improvements obtained reached 2 dB for since for example, one of the reasons for using 2 parallel

thltehinalﬁlzeg C%Sis' %r;gsal;% ?ebéatiﬁgdi rmllﬂg?]%te Cg}[“g}'gﬁirt_‘st/eiﬂg;evaesre-interleavers in HSDPA with 16-QAM, is the fact that the
Althou Vious Wi ; ; u »

designgangthe UEP, to the best of our knowledge, this paper is the already implemented interleaver fo_r 4-QAM can be ‘re-used
first to analyze formally this problem for BICM transmissions. [8, Sec. 4.5.6]..Whe_n such MD interleavers a_re usfed, the
performance gains will strongly depend on the bit assignimen
. INTRODUCTION between the encoder’s output and the bit positions in the

. i . complex symbol.

Bit-interleaved coded modulation (BICM) was first intro- |, this haper we show that there is no unique answer about
duced by 'ZehaV|.|n m’ and later analyzed from an informatio, e protection of systematic/parity bits, and we tackles thi
theory point of view in the landmark paper of Cageal. [2].  yroplem by analyzing a general type of probabilistic inter-
BICM owes its popularity to the fact that the channel encodglyy ey of which RN and MD are two special cases. We develop
and the modulator are separated by a bit-level interleavgpion hounds for the coded bit error rate (BER) of the system,
which may be chosen independently allowing for a simplg, ,sing these bounds, the optimum design of interleaer an
and flexible design [2, Sec. V]. BICM is a de facto standardlyqe js presented, and an exhaustive computer search for the
and it is used in most of the existing wireless systems, €.gn(imum interleaver design and code selection is performed
EDGE, HSDPA, IEEE 802.11a/g, etc. We also introduce the concept of generalized optimum distan

When a systematic encoder is used, the coded bits candi@ rum (GODS) convolutional codes, which are the optimum
classified into two groups: systematic and parity bits. Whelyqes for this scenario.

BICM is used with Gray-mapped quaternary phase shift keying
both systematic and parity bits are treated equally by the Il. SYSTEM MODEL
modulator. If BICM is used with high-order constellations, We consider the BICM system shown in Fig. 1. The vector
the bit mapping causes the so-called unequal error protectof NV information bitsb = [b!,..., "] is encoded by a rate
(UEP) [2], [3], i.e., depending on the bits position withinR = 1/n channel encoder where the superscripts have a
the symbol, the bits experience different “protection”,ieth meaning of discrete time. The vectors of coded bjts . . , ¢,
may be interpreted in terms of uncoded error probability @re then fed to the interleaver units where thh output
average mutual information. The obvious question is themctor of the encoder is given hy, = [c},, . .,c;)v].
how to protect the different bits using the mapping which The interleavers «;,...,w,) in Fig. 1 are assumed to
inherently causes UEP, or how to select/design the code @l ideal and independent interleavers, yielding randomly
the interleaver to take this effect into account. permuted sequences, = m,{c,} of the coded bits. The
Following the framework set in [2], (pseudo)random (RNinultiplexing unit (MUX) assigns the coded and interleaved
interleavers are most often applied in BICM. This simplifiebits to the different bit positions in thé/2-QAM symbol.
the analysis of the resulting system, but leads to sub-aityn The mapping considered here is based on the so-called binary
already noted in the literature [4]. For example, the oafjinreflected Gray code (BRGE)[10], so each symbol is a
BICM paper of Zehavi [1] postulated the application ofuperposition of independently modulated real/imagirpenys
independent interleavers between each of the encodepsiibu{11, Sec. X]. Consequently, we focus on the equival&ft
PAM constellation (cf. Fig. 1) wherd/ = 2™,
Research supported by the Swedish Research Council, Sweadeler

research grant #2006-5599), and by NSERC, Canada (und=arcbsgrant 1The selection of the BRGC for our analysis is based on its/aglee in
#249704-07). practical systems and its optimality in terms of uncoded BER.[10



M?-QAM BICM Channel Table |
UEP CAUSED BY THEBRGC:MODULATING CODEWORDS 8-PAM

l_“ - 5 SYMBOLS, DISTANCESd(s), AND VIRTUAL CHANNELS ©);.
b = : M-PAM '
—| Encoder S w, Mapper s
m \ TTuy,...,wn] 000 001 011 010 110 111 101 100
U, 5 s —7TA  —5A  —3A —A A 3A 5A T7A
X o [ , r di(s) 8A  6A  4A 28  2A  4A 68 S8A
<b— Decoder g : PAN i 0, O4 O3 O2 O, O ©2 O3 64
S | U | Demappe da(s) 4A  2A  2A  4A  4A  2A  2A  4A
' 1 0, O2 S]] 01 O ©2 0O ©0; O
'''''''''''''''''''''''''''''''''''' ds(s) 2A 2A 2A 2A 2A 2A 2A 2A

Figure 1. Model of BICM-QAM transmission. 9; 1 1 o1 ©1 61 61 61 6

For a fully general approach, we define the multiplexingroduces an estimate of the transmitted bits
unit using a matrixk,, ., = K of dimensionsn x m, whose Using the results presented in [12] it is possible to build an
elements) < ,, < 1, denote the fraction of bits, that will equivalent model for the//>-QAM BICM channel shown in

be assigned to theth outputu,. As all the vectorsy, for ¢ =  Fig. 1. In this model each bit, after the MUX can be seen
1,...,m have the same length, the constrainf_, x, , = & as being sent over wirtual channelwhose output L-value
must be satisfied, and since all the bits in the veefamust be U, has a distribution that depends on the bit's positjoand
assigned to one of the: outputs, the constraif”, x, , = the symbol sent, i.e., the value of the other hiijgv # q.

1 must also be satisfied. We explain it briefly below while more details may be found

The interleavers and multiplexing unit in Fig. 1 allow us té" [12]. Let d,(s) denote the Euclidean distance between the
consider any interleaver configuration. For example,ifor  Symbol s and the closest symbol in the constellation with
m, if K = I, (I, being the identity matrix), the system isthe opposite value of the bit labelingat positiong, i.e., if
transformed into the BICM with modular interleaver (BICM-s € Xy, b € {0,1}, dy(s) = minsex ; [s —al. Due to the
MD) where all the bits from the same encoder’s output afgoperties of the BRGC, symbols with theth bit set to 0 or 1
assigned to the same bit position. Exchanging the rows @ clustered so that,(s) may be at a distance that varies from
this matrix allows us to consider all possible MD interlemve 2A to 2A-3%. Thatis, wheny = m, there is always an adjacent
On the other hand, i, , = L Vp, ¢, the BICM with random symbol (at distanc@A) with the opposite value of the bit. On
interleaver (BICM-RN) of [2] is obtained. Obviously, theage the other hand, foy = 1, the number of possible distances
many other combinations, specially for a non-square mirix is M /2. To clarify this, in Table | the distances,(s) for the
We will refer to “interleaver design” as the process of stiter  Specific case o/ = 8 are shown. Sincé,(s) determines the

the elementss,, , defining K. “protection” experienced by the bit, different valuesdf(s)
At any time instantt, the coded and interleaved bitscause UEP. Foy = m the bits have always the same “low”
[ut,...,ut ] are mapped to a/-PAM symbols' € X' using Protection but forg = 1, depending on the value of other bits

a binary memoryless mapping! : {0,1}" — X, where in the modulating codeword, the protection may be relagivel
X ={(1-M)A,(3=M)A,...,(M—1)A} is the setofpi- Nigh. _ .

PAM symbols and wher2A is the minimum distance between According to the model in [12], there ark//2 different
them. The constellation is normalized to unit average gngog Gaussian distributions that can be used to model the L-salue

A — /Q(M:f;_l)_ The result of the transmission &f symbols By d_efinition, a bit transmit_te_d at posit_ioql passes through
L by — h i N RN the virtual channeb; when it is sent using a symbelsuch
is given byr = s+n, wheres = [s',...,s"], n € are that d;(s) = 2A - j. Then, the L-valug/, has a distribution

zero-mean and independent Gaussian variables with variaﬂ?at may be modelled as Gaussian with mparand variance
Ny/2. The signal-to-noise ratio (SNR) per complex symbol igg
given by~ = -

At the receiver’s side, the reliability metrics of the tramis (s, %) = (4yA%(25 — 1),8yA?), (2)
ted bits are calculated in the form of logarithmic likelittbo

: . . ith j =1,...,M/2. In Table | the virtual ch [ i-
ratios (L-values) for each bit position as [1], [2] wren J -+, M/2. In Table I the virtual channels associ

ated with the different symbols and bit positions are shown.
t_ . t N2y t N2 1 The probability that an L-value at bit positigris distributed
Y V(are%?o{(r @)’} agl/'\l,’?J{(r @) })’ @) with parameterg;, o?) is given by

where &, ;, is the set of symbols labelled with theth bit

if j=1,...,2ma

equal tob. Since the mapping is memoryless, from now on I T 3)
we drop the time index, e.g.,U! = U,. - 0 if j=2m941,... A
The vector of soft informatiorlJ, is demultiplexed L;,), 2

deinterleavedl,) and then passed to a channel decoder whithat is, the virtual channeB, can be used by the bit for all
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Using the GTF, it is possible to enumerate the sum of
bit errors for error events of generalized weight using a
generalized weight distribution spectrum (GWDS) of the code

: 1
ug am-a This n-dimensional GWDS takes into account not only the
number of errors (conventional approach), but also theututp
i of the encoder they are associated to. It can be calculated as

1

Biw) = oo D rewr 1 ©)
W) = n ) ar R )
[[=y wp! OW™OI W=0,I=L=1

‘ _ _ A h v gw Hun duw —

Figure 2. Equivalent channel model: the virtual chann€ls,j = WNEIesgw = WP BWEn andw = wy + ...+ Wy.

1...,2™m~9 are selected with equal probability, while the chanrls j

9m-4 1, MJ2 are not available for the bit at position To calculate the weight distribution spectrum of a turbo

code (TC), the concept afniform interleaverintroduced by
Benedettcet al. [14] can be used to calculate the spectrum of
the code. The extension to a GWDS is straightforward; more
positionsg, ©2 only for ¢ < m — 1, ©3 and ©, only for details can be found in [13], [14].
qg<m-—2,0s5,...,05 for ¢ < m—3, and so on (cf. Table I).

To fully characterize the equivalet’>-QAM BICM chan- .
nel we define the matri©,, . = O of dimensionsn x A/2 B- Union bounds for BICM-QAM

T2 . -
where _each _elemem_;q_J n O is t_he prok_Jab|I|ty that a In order to use the GWDS of the code to calculate union
transmitted bit at positiorg is transmitted using the channel ounds for the coded BER, we define the s&ti) as all
eﬁ" Th? rli;ultlzng equivalent channel model is schematical He combinations of nonnegative integers such that the sum
shown n =1g. . . g of the elements id, i.e., Z,(1) £ {(z1,...,2) € (Z*)" :
Using the equivalent channel model of Fig. 2, i#€-QAM + ...+ 2z =1}. Using the GWDS of the code, the union

BICM Channel of Fig. 1 can be replaced by a compou und (UB) on the BER BICM is given by
channel completely defined by the matricKs (interleaver)

and O (mapping). If we define th& £ K - O, then thep-
th outputL, € R of this channel is associated with theth
binary inputc,, whereL, is a Gaussian mixture with density
given by wherewy is the free distance of the code, aRlP(w) is the
pairwise error probability which represents the probabitif
detecting a codeword with generalized weightinstead of

the transmitted all-one codeword.

) To calculate the PEP we need to calculate the probability
where ®(uj, 0% ) = \/2;7 exp (—(A;:J) is a Gaussian that the decoder selects a codeword with generalized weight
function, and¢, ; is the(p, j)-th element ofX which denotes W instead of the transmitted all-one codeword. To this end,

BER < UB = i > B(w)-PEP(w),  (6)

l=ws weZ, (1)

M/2

pL,(N) =D &y ®uj, 0% ), (4)
j=1

the probability that the-th bit passes through;. we note that the decision is made based on the sum,of
...+w, L-values in the divergent path. L&t be the decision
I1l. | NTERLEAVER AND CODE DESIGN variable where

Wn, n Wp

A. Generalized weight distribution spectrum ) ; ;

For any linear code it is possible to defineganeralized Z= ;Ll et Z;L’(i) N EZL’(’)’ (7)
transfer function(GTF) which enumerates not only the number - - Pt
of non-zero output bits over a path, but teation of those i.e., a sum of/ independent random variables, where the
bits, i.e., it indicates which branch the non-zero outputs afandom variable associated with theh output is a sum of

associated with [1]. For a ratetn code we define the GTF of I-.d Gaussian mixtures given by (4). Consequently, fonegi
the code ag' (W, I,L) = S, 3, 5, tw.ia LU T, Wi, value of w, the PEP can be calculated as the tail integral of

where thegeneralized weightw — (w:....,w,) denotes the PDF ofZ, ie.,
the weights of each output of the encoder, aWd = 0
(W1,...,Wy,), I, and L are dummy variables. The coefficient PEP(w) = Prob{Z < 0} = [ pz(A) dA. ®)

tw,i; enumerates the number of paths diverging from the

zero state and merging with the zero state aftesteps,  To calculatepz () we first define thg-fold self convolution
associated with an input sequence of weighand an output operator as follows. LeL be a random variable with density
sequence of generalized weight The coefficientd., ;; can DpL(}), its j-fold self convolution is denoted by, (A)]*7) £

be calculated using standard techniques. Efficient metfads pz () * ... * p(A), which corresponds to the PDF of the sum
this calculation include the recursive algorithm of Diasatt Of j i.i.d. random variabled..

al. [13], or a breadth first search algorithm. Using the above notation and (4), we can calculate the PDF



of the decision variableZ in (7) as The simplification presented in the following corollary is
based on considering, for ea¢honly the Gaussian density

_ #(wy) #(wn)
pz(A) =[pL, (V)] %% [pr, (M) ) With the smallest mean-to-standard deviation ratio. The-in
where thep-th term in (9) can be approximatedy ition behind this approximation is that the error coeffitgen
y +(wy) generated by other Gaussian densities are less important.
[pr()\)]*(wp) = Zgﬂj@(uj,az;)\) (10) Corollary 1: The UB in (16) can be approximated by
j=1 [e%s} n
¥ ¥ 0, UB' =Y Q(vana?) Y sw [[gn as)
= Z - Z [ (Z uji,wpag; )\) ng,ji (11) l=w¢ weZzZ, (1) p=1
Jji=1 jwpzl i=1 i=1
u 1 Proof: Approximate 2 (wp) in the third sum of
= Z (w?’>q>(z Tjuj,prZ;A> Hg”j, (12) (16) by its leading element, = (w,,0,...,0). Then
€2 (wp) N j=1 j=1 Wiry,...,rn) = [[), &, 4 from (15) and A(ry, ..., r,) =
’ Vi = +/2lyA from (17) and (2). Now (18) follows from
To pass from (10) to (11) we have expanded the conv, é“/a 7 (17) @ (18) -

lution of sums as sums of convolutions and then applied ~

(i, 075 A) * Bpj, 05:0) = (ui + pj07 + 05:0). TO We emphasize here that (18) is quite simple to evaluate
pass from (11) to (12) we note th;"t one Gaussian Wilbmpared with the original bound (16), and it still takes
parameters(riuy + ... + 7w, wyo”) can be generatedintg account the parameters to optimize the transmission

by different combinations ofji, ..., j.,). Furthermore, the (interleaver and code).

number of combinations (multiplicities) for a given valué o

r = (r,.. .,r%) are the multinomial coefficients given by The following corollary presents an even simpler asymgptoti
(u;p) Y NWip;M' bound, i.e., when the SNR goes to infinity. It confirms our

(i)nitial intuition about the sub-optimality of the codes thaere
Jesigned for binary transmissions. This result will previd
us with the new criteria to select the optimum code and
interleaver design (cf. Sec. IV-B).

Using (12) in (9) we get the final and exact expression f
the density ofZ shown in (14) (next page), where

n

W(ry,...or) =[] (f;f) 1I&71- (15)
j=1

p=1 Corollary 2: The asymptotic performance of BICM-QAM

Based on the previous discussion, we present one theordnd" <" by

and two corollaries which are the main results of this sectio n w,
Theorem 1:The union bound on the coded BER for BICM-  UB” = Q(v/2vA2w) Z B(w) H &aiooo (19)
p=1

QAM can be approximated as WEZn (wr)
UB ~ Z Z B(w) Z W(ry,... 1) Proof: The bound (16) is a sum of weight€g-functions,
I=wt we Z, (1) riotn whose argumentA(ry,...,r,) depends on the number of

Q(A(rl, . ,rn))7 (16) bits that were transmitted using the dlff_erent \/_lrtual cﬂnaia.
If v+ — oo, only one of thoseQ-functions will dominate

where the bound, i.e., th&)-function with the smallest argument.
s Z%f _— For_ a given value ofw we _n(_ae(_j to choose the gombi—
Alry,. .. 1) = Zp=led=l PJ'“J’ (17) nation of (rl,.M.,rn) that m|n|m5es,4(r1,...,rn), ie.,
_ _ lo2 ming, ., {Zle BV S S D rnjuj}. Since u; >
Wiry,....xn) IS given by (15), and Q(z) = ;=1 Yandy; >p,j=2...,% itis clear that
\/%fw exp(—t?/2) dt is the error function. r, = (wp,0,...,0) Vp minimizes the previous expression.
Proof: From (6), (8), and (14). ]
Analyzing the expression in (16) we note that the channelysing the previous result and the definitions;gf and o2
properties defined by are fixed for a given value af/, and (2), it can be seen that the functiod(rs,...,r,) has

that the optimum performance of the system will be achieved minimum value of\/2vA2l. Moreover, if is increased,
by a joint design of the interleaveand the code. We also the argument of the dominar@-function will increase and
note that all combinations in (13) are in general tedious {nsequently, the minimum is obtained when= wy, i.e.,
evaluate (especially for large values:ofand/orm), thus we \yhen all thew; bits were transmitted using the least protected
seek further approximations. channel®;. The weighting coefficient in (19) can be obtained
2The approximation refers to the fact that the Gaussian modethto L- using the definition oiX. _By combining the results presented
values is used instead of the exact densities. above, (19) can be obtained. [ ]
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IV. NUMERICAL RESULTS 10 £¥ T , ; 1 s
\ : A : == Ky (Worst MD) Analytical
A. UB for B'CM'QAM \\ ‘ PR : Kr (RN) Analytical
N | I »:| = — — Kg (Best MD) Analytical &

00 *:

We analyze two different configurations that give a spectr
efficiency of 1 [bit/s/Hz]: a rate-1/2 T€ used with 16QAM 2
(n = 2 andm = 2), and a rate-1/3 TC used with 64-QAM !
(n = 3 and m = 3). In general the optimization space is 107
formed by the variables:, ,, with p = 1,....,n — 1 and o
g=1,...,m—1 constrained t® < k,, < 1, Vp,q. These =
are in general continuous, however, we only analyze thescas
that produce MD interleaverssf, < {0,1}) and the RN
interleaver g, , = 1/m).

Forn =m = 2 there is only one degree of freedom ().

In Fig. 3 the bound (16) is compared with the simulatiot

result$ where the perfect match in the error floor region can b

clearly appreciated. The best interleaver—denotedby—is 107
achieved setting:; ; = 0, i.e., when the parity bits are more SNRy [dB]

protected than the systematic bits (and the worst integieav Figure 3. UB (16) and simulated BER for BICM-QAM fdk — 1/2 and 16-
denoted byKw—if 1,1 = 1). This result directly contradicts gam and different interleaver configurationsl = 1000 and 10 iterations.
[9, Sec. 9.3.2] and [3], where it is claimed that systemaitie b

should always be sent to the more reliable positions. Based

on the developed bound we see that this is a property of

the code, which is completely captured by its GWDS, arg esent results for the (asymp'fotic_) simplificatioespneaein
consequently, it is not possible to draw general conclissio ec. lll-B. We calculate th&/B" using (18) counting weights

about the protection of the systematic/parity bits. In tase, Up to 100. _This simplification is very simple_to ev_aluate
and for aaarget BER Oﬂo_g/ the diffe)rené/e betweelK g compared with the exact bound (16), and yet it predicts the

asymptotic performance of the system as shown in Fig. 4. It

and Kw is 1 dB, which is obtained without complexity. e
. | | - h . s worth mentioning that the beunds fé€w and Kr cross
increase but only by properly assigning the coded bits to ta?BER ~ 107, however Kp still offers a performance gain

bit positions in the QAM symbol. of more than 1 dB.

W;nhglvge' ?O\Glf C? égf:g; tgfef:gzggfmf:z /jjng;nl aid\::jge Analyzing the r_esults presented ir_1 Fig. 3 and I_:ig. 4, we
The results presented in Fig. 4 are for the best and wof&" drawisﬁome mterestlr_lg conclusions. For a given target
MD interleaver found, and also for the RN case. The be R 0f 1077, th.e SNR gains between the best and the worst
(worst) MD interleaver was found by selecting the mafiix interleaver .conf|gurat|on can be up to_2 dB. For the analyzed
that minimizes (maximizes) the UB at a target BERIOFS, cases, RN mFerIeavers were never optimum. Structuredrbut i
yielding a difference betweeKy and Ky of about 2 dB. properly designed mterleeverK(N) can degrac_ie the system
performance compared willKg. Thus, when using structured

In order to calculate the bound (16) far= m = 3 (cf. terleavers. the optimization & becomes a mandatory ste
Fig. 4), only weights up to 50 were counted. As mentioneld Vers, plimization ¢ s y step.

before, whenn and/orn increase, counting all the combina-g. cODS Codes
tions in (16) becomes tedious, and consequently, the mawimu
value ofl considered must be relatively small. In Fig. 4 we als[Jl

O Ky (Worst MD) Simulation
3 O Kg (RN) Simulation
\ *  Kp (Best MD) Simulation q

It is well known that ODS codes—tabulated for example in
5]—are the optimum convolutional codes for binary trans-
3Two identical rate-1/2 RSC61,5/7) are concatenated in parallel sepa/Nissions. However, according to (19), when UEP is introduce
rated by a random interleaver of lengt yielding an overall rate of 1/3. To by the channel, the optimization criterion is different 5]
obtain the rate-1/2 TC alternate puncturing of the parityg 6 performed. Sec ”] name|y the interleaver and the GWDS of the code
All the polynomials are given in octal notation. o ! . . .
4To calculate the bound in (16) numerically, only weights uplé® were MUSt be taken into account. In this section we define the

counted {vy < I < 100). generalized optimum distance spectrum (GODS) codes.
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Figure 4. UB (16) and simulated BER for BICM-QAM fd? = 1/3 and 64-
QAM and different interleaver configurationd/ = 1500 and 10 iterations.
The asymptotic bounds based on (18) are also shown.

For a given constraint length’, code rateR, constellation
size m, and assuming that the optimum free distangeis
known (cf. for example [15, Table I, Il or 1ll]), any combina-
tion of code and interleaver will produce an asymptotic BE
given by (19).

Definition 1: A GODS convolutional code Czops) IS

Table I
OPTIMUM INTERLEAVERS AND CODES FORn = 2 AND m = 3 ORm = 4.

64-OAM (m = 3) 256-QAM (1 = 4)
K Ccops k11 Ki2 Ccops K11 Kiz2 Ki3
3 G,7) 0 1/3 5,7 1/2 1/2 0
4 (15,17) 2/3 1/3 | (1517) 1/2 1/2 0
5| (27,31)° 0 1/3| (23,35) 1/2 1/2 0O
6 (53,75) 0 1/3| (53,75) 1/2 1/2 0
7 | (135,147 0 1/3 | (135,147)° 0 0  1/2
8 | (225,373)* 0 1/3 | (247,371) 1/2 1/2 0
9 | (557,751)* 0  1/3 | (457,755)*1/2 1/2 0
10 | (1151,1753) 0 1/3 | (1151,1753)1/2 1/2 0

results. We quantified the attainable gains when using opti-
mized MD interleavers over unstructured random interlesaive
These improvements can be up to 2 dB for the analyzed cases,
and they can be obtained without complexity increase byt onl

if the assignment of the coded bits to the bit positions in the
complex symbol is optimized. We also introduced the concept
of GODS codes, which are the optimum codes for the analyzed
scenario.
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