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Abstract—In this paper we present a general methodology for
the interleaver and code design for QAM-based BICM transmis-
sions. We develop analytical bounds on the bit error rate and
we use them to predict the performance of BICM when unequal
error protection (UEP) is introduced by the constellation labeling.
Based on these bounds, the optimum design of interleaver and
code is presented. The improvements obtained reached 2 dB for
the analyzed cases, and are obtained without complexity increase.
Although previous works noted the influence of the interleaver
design and the UEP, to the best of our knowledge, this paper is the
first to analyze formally this problem for BICM transmissions.

I. I NTRODUCTION

Bit-interleaved coded modulation (BICM) was first intro-
duced by Zehavi in [1], and later analyzed from an information
theory point of view in the landmark paper of Caireet al. [2].
BICM owes its popularity to the fact that the channel encoder
and the modulator are separated by a bit-level interleaver,
which may be chosen independently allowing for a simple
and flexible design [2, Sec. V]. BICM is a de facto standard,
and it is used in most of the existing wireless systems, e.g.,
EDGE, HSDPA, IEEE 802.11a/g, etc.

When a systematic encoder is used, the coded bits can be
classified into two groups: systematic and parity bits. When
BICM is used with Gray-mapped quaternary phase shift keying
both systematic and parity bits are treated equally by the
modulator. If BICM is used with high-order constellations,
the bit mapping causes the so-called unequal error protection
(UEP) [2], [3], i.e., depending on the bits position within
the symbol, the bits experience different “protection”, which
may be interpreted in terms of uncoded error probability or
average mutual information. The obvious question is then
how to protect the different bits using the mapping which
inherently causes UEP, or how to select/design the code and
the interleaver to take this effect into account.

Following the framework set in [2], (pseudo)random (RN)
interleavers are most often applied in BICM. This simplifies
the analysis of the resulting system, but leads to sub-optimality
already noted in the literature [4]. For example, the original
BICM paper of Zehavi [1] postulated the application of
independent interleavers between each of the encoder’s output
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and the corresponding modulator’s input. Similar modular
(MD) interleavers have been used for example in [4]–[7] in
different contexts. MD interleavers have also been proposed
in the 3GPP/HSDPA standard [8], [9] when 16-QAM is used.
They are relevant from an implementation point of view
since for example, one of the reasons for using 2 parallel
interleavers in HSDPA with 16-QAM, is the fact that the
already implemented interleaver for 4-QAM can be “re-used”
[8, Sec. 4.5.6]. When such MD interleavers are used, the
performance gains will strongly depend on the bit assignment
between the encoder’s output and the bit positions in the
complex symbol.

In this paper we show that there is no unique answer about
the protection of systematic/parity bits, and we tackle this
problem by analyzing a general type of probabilistic inter-
leaver, of which RN and MD are two special cases. We develop
union bounds for the coded bit error rate (BER) of the system,
and using these bounds, the optimum design of interleaver and
code is presented, and an exhaustive computer search for the
optimum interleaver design and code selection is performed.
We also introduce the concept of generalized optimum distance
spectrum (GODS) convolutional codes, which are the optimum
codes for this scenario.

II. SYSTEM MODEL

We consider the BICM system shown in Fig. 1. The vector
of N information bitsb = [b1, . . . , bN ] is encoded by a rate
R = 1/n channel encoder where the superscripts have a
meaning of discrete time. The vectors of coded bitsc1, . . . , cn

are then fed to the interleaver units where thep-th output
vector of the encoder is given bycp = [c1

p, . . . , c
N
p ].

The interleavers (π1, . . . , πn) in Fig. 1 are assumed to
be ideal and independent interleavers, yielding randomly
permuted sequencesc′p = πp{cp} of the coded bits. The
multiplexing unit (MUX) assigns the coded and interleaved
bits to the different bit positions in theM2-QAM symbol.
The mapping considered here is based on the so-called binary
reflected Gray code (BRGC)1 [10], so each symbol is a
superposition of independently modulated real/imaginaryparts
[11, Sec. X]. Consequently, we focus on the equivalentM -
PAM constellation (cf. Fig. 1) whereM = 2m.

1The selection of the BRGC for our analysis is based on its relevance in
practical systems and its optimality in terms of uncoded BER [10].
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Figure 1. Model of BICM-QAM transmission.

For a fully general approach, we define the multiplexing
unit using a matrixKn×m ≡ K of dimensionsn×m, whose
elements,0 ≤ κp,q ≤ 1, denote the fraction of bitscp that will
be assigned to theq-th outputuq. As all the vectorsuq for q =
1, . . . ,m have the same length, the constraint

∑n
p=1 κp,q = n

m
must be satisfied, and since all the bits in the vectorc

′
p must be

assigned to one of them outputs, the constraint
∑m

q=1 κp,q =
1 must also be satisfied.

The interleavers and multiplexing unit in Fig. 1 allow us to
consider any interleaver configuration. For example, forn =
m, if K = In (In being the identity matrix), the system is
transformed into the BICM with modular interleaver (BICM-
MD) where all the bits from the same encoder’s output are
assigned to the same bit position. Exchanging the rows of
this matrix allows us to consider all possible MD interleavers.
On the other hand, ifκp,q = 1

m ∀p, q, the BICM with random
interleaver (BICM-RN) of [2] is obtained. Obviously, thereare
many other combinations, specially for a non-square matrixK.
We will refer to “interleaver design” as the process of selecting
the elementsκp,q definingK.

At any time instant t, the coded and interleaved bits
[ut

1, . . . , u
t
m] are mapped to aM -PAM symbol st ∈ X using

a binary memoryless mappingM : {0, 1}m → X , where
X = {(1−M)∆, (3−M)∆, . . . , (M −1)∆} is the set ofM -
PAM symbols and where2∆ is the minimum distance between
them. The constellation is normalized to unit average energy so
∆ =

√

3
2(M2−1) . The result of the transmission ofN symbols

is given byr = s+η, wheres = [s1, . . . , sN ], η ∈ R
N are

zero-mean and independent Gaussian variables with variance
N0/2. The signal-to-noise ratio (SNR) per complex symbol is
given byγ = 1

N0
.

At the receiver’s side, the reliability metrics of the transmit-
ted bits are calculated in the form of logarithmic likelihood
ratios (L-values) for each bit position as [1], [2]

U t
q = γ

(

min
a∈Xq,0

{

(rt − a)2
}

− min
a∈Xq,1

{

(rt − a)2
}

)

, (1)

whereXq,b is the set of symbols labelled with theq-th bit
equal tob. Since the mapping is memoryless, from now on
we drop the time indext, e.g.,U t

q ≡ Uq.
The vector of soft informationUq is demultiplexed (L′

p),
deinterleaved (Lp) and then passed to a channel decoder which

Table I
UEP CAUSED BY THE BRGC: MODULATING CODEWORDS, 8-PAM

SYMBOLS, DISTANCESdq(s), AND VIRTUAL CHANNELS Θj .

[u1, . . . , um] 000 001 011 010 110 111 101 100
s −7∆ −5∆ −3∆ −∆ ∆ 3∆ 5∆ 7∆

d1(s) 8∆ 6∆ 4∆ 2∆ 2∆ 4∆ 6∆ 8∆
Θj Θ4 Θ3 Θ2 Θ1 Θ1 Θ2 Θ3 Θ4

d2(s) 4∆ 2∆ 2∆ 4∆ 4∆ 2∆ 2∆ 4∆
Θj Θ2 Θ1 Θ1 Θ2 Θ2 Θ1 Θ1 Θ2

d3(s) 2∆ 2∆ 2∆ 2∆ 2∆ 2∆ 2∆ 2∆
Θj Θ1 Θ1 Θ1 Θ1 Θ1 Θ1 Θ1 Θ1

produces an estimate of the transmitted bitsb̂.
Using the results presented in [12] it is possible to build an

equivalent model for theM2-QAM BICM channel shown in
Fig. 1. In this model each bituq after the MUX can be seen
as being sent over avirtual channel whose output L-value
Uq has a distribution that depends on the bit’s positionq and
the symbol sent, i.e., the value of the other bitsuv, v 6= q.
We explain it briefly below while more details may be found
in [12]. Let dq(s) denote the Euclidean distance between the
symbol s and the closest symbol in the constellation with
the opposite value of the bit labelings at positionq, i.e., if
s ∈ Xq,b, b ∈ {0, 1}, dq(s) = mina∈X

q,b
|s − a|. Due to the

properties of the BRGC, symbols with theq-th bit set to 0 or 1
are clustered so thatdq(s) may be at a distance that varies from
2∆ to 2∆·M2q . That is, whenq = m, there is always an adjacent
symbol (at distance2∆) with the opposite value of the bit. On
the other hand, forq = 1, the number of possible distances
is M/2. To clarify this, in Table I the distancesdq(s) for the
specific case ofM = 8 are shown. Sincedq(s) determines the
“protection” experienced by the bit, different values ofdq(s)
cause UEP. Forq = m the bits have always the same “low”
protection but forq = 1, depending on the value of other bits
in the modulating codeword, the protection may be relatively
high.

According to the model in [12], there areM/2 different
Gaussian distributions that can be used to model the L-values.
By definition, a bit transmitted at positionq passes through
the virtual channelΘj when it is sent using a symbols such
that dj(s) = 2∆ · j. Then, the L-valueUq has a distribution
that may be modelled as Gaussian with meanµj and variance
σ2 where

(µj , σ
2) = (4γ∆2(2j − 1), 8γ∆2), (2)

with j = 1, . . . ,M/2. In Table I the virtual channels associ-
ated with the different symbols and bit positions are shown.

The probability that an L-value at bit positionq is distributed
with parameters(µj , σ

2) is given by

ωq,j =











1

2m−q
if j = 1, . . . , 2m−q

0 if j = 2m−q + 1, . . . ,
M

2

, (3)

that is, the virtual channelΘ1 can be used by the bit for all
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Figure 2. Equivalent channel model: the virtual channelsΘj , j =
1 . . . , 2m−q are selected with equal probability, while the channelsΘj , j =
2m−q + 1, . . . , M/2 are not available for the bit at positionq.

positionsq, Θ2 only for q ≤ m − 1, Θ3 and Θ4 only for
q ≤ m−2, Θ5, . . . ,Θ8 for q ≤ m−3, and so on (cf. Table I).

To fully characterize the equivalentM2-QAM BICM chan-
nel we define the matrixOm×M

2

≡ O of dimensionsm×M/2
where each elementωq,j in O is the probability that a
transmitted bit at positionq is transmitted using the channel
Θj . The resulting equivalent channel model is schematically
shown in Fig. 2.

Using the equivalent channel model of Fig. 2, theM2-QAM
BICM Channel of Fig. 1 can be replaced by a compound
channel completely defined by the matricesK (interleaver)
and O (mapping). If we define theX , K · O, then thep-
th outputLp ∈ R of this channel is associated with thep-th
binary inputcp, whereLp is a Gaussian mixture with density
given by

pLp
(λ) =

M/2
∑

j=1

ξp,j · Φ(µj , σ
2;λ), (4)

whereΦ(µj , σ
2;λ) = 1√

2πσ2
exp

(

− (λ−µj)
2

2σ2

)

is a Gaussian

function, andξp,j is the(p, j)-th element ofX which denotes
the probability that thep-th bit passes throughΘj .

III. I NTERLEAVER AND CODE DESIGN

A. Generalized weight distribution spectrum

For any linear code it is possible to define ageneralized
transfer function(GTF) which enumerates not only the number
of non-zero output bits over a path, but thelocation of those
bits, i.e., it indicates which branch the non-zero outputs are
associated with [1]. For a rate-1/n code we define the GTF of
the code asT (W, I, L) =

∑

w

∑

i

∑

l tw,i,lI
iLl
∏n

p=1 W
wp
p ,

where thegeneralized weightw = (w1, . . . , wn) denotes
the weights of each output of the encoder, andW =
(W1, . . . ,Wn), I, andL are dummy variables. The coefficient
tw,i,l enumerates the number of paths diverging from the
zero state and merging with the zero state afterl steps,
associated with an input sequence of weighti, and an output
sequence of generalized weightw. The coefficientstw,i,l can
be calculated using standard techniques. Efficient methodsfor
this calculation include the recursive algorithm of Divsalar et
al. [13], or a breadth first search algorithm.

Using the GTF, it is possible to enumerate the sum of
bit errors for error events of generalized weightw using a
generalized weight distribution spectrum (GWDS) of the code.
This n-dimensional GWDS takes into account not only the
number of errors (conventional approach), but also the output
of the encoder they are associated to. It can be calculated as

β(w) =
1

∏n
p=1 wp!

· ∂w

∂Ww

∂

∂I
T (W, I, L)

∣

∣

∣

∣

W=0,I=L=1

, (5)

where ∂w

∂Ww
= ∂w1

∂W
w1

1

. . . ∂wn

∂W wn
n

andw = w1 + . . . + wn.

To calculate the weight distribution spectrum of a turbo
code (TC), the concept ofuniform interleaverintroduced by
Benedettoet al. [14] can be used to calculate the spectrum of
the code. The extension to a GWDS is straightforward; more
details can be found in [13], [14].

B. Union bounds for BICM-QAM

In order to use the GWDS of the code to calculate union
bounds for the coded BER, we define the setZi(l) as all
the combinations ofi nonnegative integers such that the sum
of the elements isl, i.e., Zi(l) , {(z1, . . . , zi) ∈ (Z+)i :
z1 + . . . + zi = l}. Using the GWDS of the code, the union
bound (UB) on the BER BICM is given by

BER ≤ UB =

∞
∑

l=wf

∑

w∈Zn(l)

β(w) · PEP(w), (6)

wherewf is the free distance of the code, andPEP(w) is the
pairwise error probability which represents the probability of
detecting a codeword with generalized weightw instead of
the transmitted all-one codeword.

To calculate the PEP we need to calculate the probability
that the decoder selects a codeword with generalized weight
w instead of the transmitted all-one codeword. To this end,
we note that the decision is made based on the sum ofw1 +
. . .+wn L-values in the divergent path. LetZ be the decision
variable where

Z =

w1
∑

i=1

L
(i)
1 + . . . +

wn
∑

i=1

L(i)
n =

n
∑

p=1

wp
∑

i=1

L(i)
p , (7)

i.e., a sum ofl independent random variables, where the
random variable associated with thei-th output is a sum of
i.i.d Gaussian mixtures given by (4). Consequently, for a given
value ofw, the PEP can be calculated as the tail integral of
the PDF ofZ, i.e.,

PEP(w) = Prob{Z < 0} =

∫ 0

−∞
pZ(λ) dλ. (8)

To calculatepZ(λ) we first define thej-fold self convolution
operator as follows. LetL be a random variable with density
pL(λ), its j-fold self convolution is denoted by[pL(λ)]∗(j) ,

pL(λ) ∗ . . . ∗ pL(λ), which corresponds to the PDF of the sum
of j i.i.d. random variablesL.

Using the above notation and (4), we can calculate the PDF



of the decision variableZ in (7) as

pZ(λ) = [pL1
(λ)]

∗(w1) ∗ . . . ∗ [pLn
(λ)]

∗(wn)
, (9)

where thep-th term in (9) can be approximated2 by

[

pLp
(λ)
]∗(wp)

=





M
2
∑

j=1

ξp,jΦ(µj , σ
2;λ)





∗(wp)

(10)

=

M
2
∑

j1=1

. . .

M
2
∑

jwp=1

Φ

(

wp
∑

i=1

µji
, wpσ

2;λ

)

wp
∏

i=1

ξp,ji
(11)

=
∑

r∈ZM
2

(wp)

(

wp

r

)

Φ

(

M
2
∑

j=1

rjµj , wpσ
2;λ

)

M
2
∏

j=1

ξ
rj

p,j . (12)

To pass from (10) to (11) we have expanded the convo-
lution of sums as sums of convolutions and then applied
Φ(µi, σ

2
i ;λ) ∗ Φ(µj , σ

2
j ;λ) = Φ(µi + µj , σ

2
i + σ2

j ;λ). To
pass from (11) to (12) we note that one Gaussian with
parameters(r1µ1 + . . . + rM

2

µM
2

, wpσ
2) can be generated

by different combinations of(j1, . . . , jwp
). Furthermore, the

number of combinations (multiplicities) for a given value of
r = (r1, . . . , rM

2

) are the multinomial coefficients given by
(

wp

r

)

,
wp!

r1!·...·r M
2

! .

Using (12) in (9) we get the final and exact expression for
the density ofZ shown in (14) (next page), where

W(r1, . . . , rn) =
n
∏

p=1





(

wp

rp

)

M
2
∏

j=1

ξ
rpj

p,j



 . (15)

Based on the previous discussion, we present one theorem
and two corollaries which are the main results of this section.

Theorem 1:The union bound on the coded BER for BICM-
QAM can be approximated as

UB ≈
∞
∑

l=wf

∑

w∈Zn(l)

β(w)
∑

r1,...,rn

W(r1, . . . , rn)·

Q
(

A(r1, . . . , rn)
)

, (16)

where

A(r1, . . . , rn) =

∑n
p=1

∑
M
2

j=1rpjµj√
lσ2

, (17)

W(r1, . . . , rn) is given by (15), and Q(x) =
1√
2π

∫∞
x

exp(−t2/2) dt is the error function.
Proof: From (6), (8), and (14).

Analyzing the expression in (16) we note that the channel
properties defined byO are fixed for a given value ofM , and
that the optimum performance of the system will be achieved
by a joint design of the interleaverand the code. We also
note that all combinations in (13) are in general tedious to
evaluate (especially for large values ofn and/orm), thus we
seek further approximations.

2The approximation refers to the fact that the Gaussian model for the L-
values is used instead of the exact densities.

The simplification presented in the following corollary is
based on considering, for eachl, only the Gaussian density
with the smallest mean-to-standard deviation ratio. The intu-
ition behind this approximation is that the error coefficients
generated by other Gaussian densities are less important.

Corollary 1: The UB in (16) can be approximated by

UB′ =
∞
∑

l=wf

Q
(

√

2lγ∆2
)

∑

w∈Zn(l)

β(w)
n
∏

p=1

ξ
wp

p,1. (18)

Proof: Approximate ZM
2

(wp) in the third sum of
(16) by its leading elementrp = (wp, 0, . . . , 0). Then
W(r1, . . . , rn) =

∏n
p=1 ξ

wp

p,1 from (15) andA(r1, . . . , rn) =√
lµ1/σ =

√
2lγ∆ from (17) and (2). Now (18) follows from

(16).

We emphasize here that (18) is quite simple to evaluate
compared with the original bound (16), and it still takes
into account the parameters to optimize the transmission
(interleaver and code).

The following corollary presents an even simpler asymptotic
bound, i.e., when the SNR goes to infinity. It confirms our
initial intuition about the sub-optimality of the codes that were
designed for binary transmissions. This result will provide
us with the new criteria to select the optimum code and
interleaver design (cf. Sec. IV-B).

Corollary 2: The asymptotic performance of BICM-QAM
is given by

UB′′ ≈ Q
(
√

2γ∆2wf

)

∑

w∈Zn(wf )

β(w)

n
∏

p=1

ξ
wp

p,1. (19)

Proof: The bound (16) is a sum of weightedQ-functions,
whose argumentA(r1, . . . , rn) depends on the number of
bits that were transmitted using the different virtual channels.
If γ → ∞, only one of thoseQ-functions will dominate
the bound, i.e., theQ-function with the smallest argument.
For a given value ofw we need to choose the combi-
nation of (r1, . . . , rn) that minimizesA(r1, . . . , rn), i.e.,

minr1,...,rn

{

∑
M
2

j=1 r1jµj + . . . +
∑

M
2

j=1 rnjµj

}

. Sinceµj >

0, j = 1, . . . , M
2 and µj > µ1, j = 2, . . . , M

2 , it is clear that
rp = (wp, 0, . . . , 0) ∀p minimizes the previous expression.

Using the previous result and the definitions ofµj andσ2

in (2), it can be seen that the functionA(r1, . . . , rn) has
a minimum value of

√

2γ∆2l. Moreover, if l is increased,
the argument of the dominantQ-function will increase and
consequently, the minimum is obtained whenl = wf , i.e.,
when all thewf bits were transmitted using the least protected
channelΘ1. The weighting coefficient in (19) can be obtained
using the definition ofX. By combining the results presented
above, (19) can be obtained.



pZ(λ) =
∑

r1∈ZM
2

(w1)

(

w1

r1

)

Φ





M
2
∑

j=1

r1jµj , w1σ
2;λ





M
2
∏

j=1

ξ
r1j

1,j ∗ . . . ∗
∑

rn∈ZM
2

(wn)

(

wn

rn

)

Φ





M
2
∑

j=1

rnjµj , wnσ2;λ





M
2
∏

j=1

ξ
rnj

n,j (13)

=
∑

r1∈ZM
2

(w1)

. . .
∑

rn∈ZM
2

(wn)

W(r1, . . . , rn) · Φ





n
∑

p=1

M
2
∑

j=1

rpjµj , σ
2

n
∑

p=1

wp;λ



 , (14)

IV. N UMERICAL RESULTS

A. UB for BICM-QAM

We analyze two different configurations that give a spectral
efficiency of 1 [bit/s/Hz]: a rate-1/2 TC3 used with 16QAM
(n = 2 and m = 2), and a rate-1/3 TC used with 64-QAM
(n = 3 and m = 3). In general the optimization space is
formed by the variablesκp,q, with p = 1, . . . , n − 1 and
q = 1, . . . ,m − 1 constrained to0 ≤ κpq ≤ 1, ∀p, q. These
are in general continuous, however, we only analyze the cases
that produce MD interleavers (κp,q ∈ {0, 1}) and the RN
interleaver (κp,q = 1/m).

For n = m = 2 there is only one degree of freedom (κ1,1).
In Fig. 3 the bound (16) is compared with the simulation
results4 where the perfect match in the error floor region can be
clearly appreciated. The best interleaver—denoted byKB—is
achieved settingκ1,1 = 0, i.e., when the parity bits are more
protected than the systematic bits (and the worst interleaver—
denoted byKW—if κ1,1 = 1). This result directly contradicts
[9, Sec. 9.3.2] and [3], where it is claimed that systematic bits
should always be sent to the more reliable positions. Based
on the developed bound we see that this is a property of
the code, which is completely captured by its GWDS, and
consequently, it is not possible to draw general conclusions
about the protection of the systematic/parity bits. In thiscase,
and for a target BER of10−6, the difference betweenKB

and KW is 1 dB, which is obtained without complexity
increase but only by properly assigning the coded bits to the
bit positions in the QAM symbol.

In Fig. 4 we present the results forn = 3 andm = 3, where
we have four degrees of freedom (κ1,1, κ1,2, κ2,1, andκ2,2).
The results presented in Fig. 4 are for the best and worst
MD interleaver found, and also for the RN case. The best
(worst) MD interleaver was found by selecting the matrixK

that minimizes (maximizes) the UB at a target BER of10−6,
yielding a difference betweenKB andKW of about 2 dB.

In order to calculate the bound (16) forn = m = 3 (cf.
Fig. 4), only weights up to 50 were counted. As mentioned
before, whenm and/orn increase, counting all the combina-
tions in (16) becomes tedious, and consequently, the maximum
value ofl considered must be relatively small. In Fig. 4 we also

3Two identical rate-1/2 RSCs(1, 5/7) are concatenated in parallel sepa-
rated by a random interleaver of lengthN yielding an overall rate of 1/3. To
obtain the rate-1/2 TC alternate puncturing of the parity bits is performed.
All the polynomials are given in octal notation.

4To calculate the bound in (16) numerically, only weights up to100 were
counted (wf ≤ l ≤ 100).

5 6 7 8 9 10 11
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

SNR γ [dB]

B
E

R

KW (Worst MD) Analytical

KR (RN) Analytical

KB (Best MD) Analytical

KW (Worst MD) Simulation

KR (RN) Simulation

KB (Best MD) Simulation

Figure 3. UB (16) and simulated BER for BICM-QAM forR = 1/2 and 16-
QAM and different interleaver configurations.N = 1000 and 10 iterations.

present results for the (asymptotic) simplifications presented in
Sec. III-B. We calculate theUB′ using (18) counting weights
up to 100. This simplification is very simple to evaluate
compared with the exact bound (16), and yet it predicts the
asymptotic performance of the system as shown in Fig. 4. It
is worth mentioning that the bounds forKW and KR cross
at BER ≈ 10−9, however,KB still offers a performance gain
of more than 1 dB.

Analyzing the results presented in Fig. 3 and Fig. 4, we
can draw some interesting conclusions. For a given target
BER of 10−6, the SNR gains between the best and the worst
interleaver configuration can be up to 2 dB. For the analyzed
cases, RN interleavers were never optimum. Structured but im-
properly designed interleavers (KW) can degrade the system
performance compared withKR. Thus, when using structured
interleavers, the optimization ofK becomes a mandatory step.

B. GODS Codes

It is well known that ODS codes—tabulated for example in
[15]—are the optimum convolutional codes for binary trans-
missions. However, according to (19), when UEP is introduced
by the channel, the optimization criterion is different to [15,
Sec. II], namely, the interleaver and the GWDS of the code
must be taken into account. In this section we define the
generalized optimum distance spectrum (GODS) codes.
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Figure 4. UB (16) and simulated BER for BICM-QAM forR = 1/3 and 64-
QAM and different interleaver configurations.N = 1500 and 10 iterations.
The asymptotic bounds based on (18) are also shown.

For a given constraint lengthK, code rateR, constellation
size m, and assuming that the optimum free distancewf is
known (cf. for example [15, Table I, II or III]), any combina-
tion of code and interleaver will produce an asymptotic BER
given by (19).

Definition 1: A GODS convolutional code (CGODS) is
a code that—using an optimized interleaver configuration
KGODS—produces an asymptotic BER which is a minimum
compared with the values that any other encoder and inter-
leaver combination can generate, i.e.,

[CGODS,KGODS] = arg min
C,K

{

∑

w∈Zn(wf )

β(w)

n
∏

p=1

ξ
wp

p,1

}

, (20)

whereC belongs to the set of all codes with optimumwf .
Using the previous definition, an exhaustive search for pairs

[CGODS,KGODS] with constraint length up toK = 10 was
performed. Two different configurations were tested: code
rate R = 1/2 (n = 2) with 64-QAM (m = 3), or
with 256-QAM (m = 4). The optimization space forK
in these cases wasκ1,1, κ1,2 ∈ {0, 1/3, 2/3} for m = 3,
and κ1,1, κ1,2, κ1,3 ∈ {0, 1/2, 1} for m = 4. The results
are presented in Table II, where the asterisks denote codes
found that are different from the ODS codes listed in [15].
Among the 16 combinations studied, 6 resulted in new optimal
codes. Extension to any other combination of code rate and
modulation order is straightforward.

V. CONCLUSIONS

In this paper we developed analytical bounds to predict
the performance of BICM with QAM schemes when UEP
is introduced by the constellation labeling. Together withthe
original union bound, two asymptotic expressions which are
simple to evaluate were developed. The analytical develop-
ments were supported by simulation results yielding accurate

Table II
OPTIMUM INTERLEAVERS AND CODES FORn = 2 AND m = 3 OR m = 4.

64-QAM (m = 3) 256-QAM (m = 4)
K CGODS κ11 κ12 CGODS κ11 κ12 κ13

3 (5, 7) 0 1/3 (5, 7) 1/2 1/2 0
4 (15, 17) 2/3 1/3 (15, 17) 1/2 1/2 0
5 (27, 31)∗ 0 1/3 (23, 35) 1/2 1/2 0
6 (53, 75) 0 1/3 (53, 75) 1/2 1/2 0
7 (135, 147)∗ 0 1/3 (135, 147)∗ 0 0 1/2
8 (225, 373)∗ 0 1/3 (247, 371) 1/2 1/2 0
9 (557, 751)∗ 0 1/3 (457, 755)∗ 1/2 1/2 0
10 (1151, 1753) 0 1/3 (1151, 1753)1/2 1/2 0

results. We quantified the attainable gains when using opti-
mized MD interleavers over unstructured random interleavers.
These improvements can be up to 2 dB for the analyzed cases,
and they can be obtained without complexity increase but only
if the assignment of the coded bits to the bit positions in the
complex symbol is optimized. We also introduced the concept
of GODS codes, which are the optimum codes for the analyzed
scenario.
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