
Extraction and Representation of a Supervisor Using Guardsin
Extended Finite Automata

S. Miremadi, K. Åkesson and B. Lennartson
Department of Signals and Systems, Chalmers University of Technology

SE-412 96 Göteborg, Sweden
{miremads, knut, bengt.lennartson}@chalmers.se

Abstract— In supervisory control theory, an issue that often
arises in real industrial applications is the huge number ofstates
for the supervisor, which requires a lot of memory. Another
problem that is typically encountered for the users of supervi-
sory synthesis tools is lack of information and unreadability
of the supervisor. In this paper, we introduce a method to
characterize a controllable and non-blocking supervisor directly
on the modular automata (sub-plants and sub-specifications),
by extracting some guard conditions from the synthesized
supervisor and the synchronized automaton. Thus, the pre-
sented approach may potentially model a complex supervisor
using a compact representation whilst not infringe the original
modular structure. Furthermore, the guard conditions, which
are generated from a set of states, may give the user of the
synthesis procedure a better understanding of which statesthat
were removed during the synthesis. In order to obtain more
compact guard expressions, we include some unnecessary states
(unreachable and extended forbidden states) in the set of states
that will be used for guard generation. By exploiting this extra
information, it is possible to reduce the logical expressions to
more compact guard conditions.

I. INTRODUCTION

In the last decades, there has been a lot of effort to
design controllers for complex systems automatically. One
approach suggested by Wonham and Ramadge, is theSu-
pervisory control theoryfor discrete event systems [1]. It is
a framework for automatically synthesizing a discrete event
supervisor for a plant so that the closed-loop system fulfills
given specifications. The plant and the specifications are most
often modeled by finite state automata. Both the plant and the
supervisor are typically modeled by a number of interacting
sub-automata.

The standard way of synthesizing a supervisor is to enu-
merate all reachable states in the closed-loop system and then
remove all states that does not fulfill the given specifications.
This approach has three main problems:

1) Enumerating all reachable states in the closed-loop
system is computational expensive due to the state-
space explosion.

2) Typically the synthesized supervisor has a large num-
ber of states and representing them as a single automa-
ton will require much more memory than the memory
in the hardware used to realize the supervisor.

3) While the input models to a supervisory synthesis
problem typically consists of multiple automata, the
output from the synthesis procedure (the supervisor)
is in most cases a monolithic automaton. The rela-
tion between the original modular input models and

the monolithic output automaton is weak and it is
troublesome for the users of such a system to really
understand how the synthesis procedure restricts the
input automata models. Thus, a third problem that is
typically encountered for users of supervisory synthe-
sis tools, e.g. [2], [3], is that they cannot manually
explore the synthesis result. More specifically, the user
retrieves the final supervisor for the system without
any specific information regarding the events causing
undesirable states.

The authors in [4] propose an algorithm for manufacturing
cell controllers to extract the relations between the operations
defining the work in the cell from the synthesized supervisor.
The main advantage of these relations is to give an easy-
to-read representation of the control function and make
the method usable in an industrial setting. However, not
much attention is paid on how to reduce the final relational
expressions for more complex systems which is the case
in many industrial applications. Moreover, some restrictive
conditions have been assumed for the original models, which
should be satisfied in order to benefit the method.

In [5], [6] an implementation of decentralized supervisory
control was presented. This is performed “by embedding
the control map in the plant’s local Finite State Machines
and employing private sets of Boolean variables to encode
the control information for each component supervisor” [6].
Although this process will assist the simplicity and clearness
of the supervisors, the main focus in these papers is to solve
the problem of decentralized communicating controllers.

The authors in [7], [8], [9], [10], [11] have proposed
another class of approaches for supervisory synthesis based
on the linear algebraic representation of Petri nets model
of the plants. In these methods, the specifications are added
to the plants in the form of linear predicates which can be
considered as constraint conditions. The resulting controller
can also be formulated in a similar way as suggested in this
paper. However, each approach has some restrictions. The
non-blocking problem is not considered in [7]. In addition,
in order to employ this approach, the system should satisfy
a particular structural condition: the uncontrollable subnet
extracted from the Petri net model must be loop free. In [8]
the liveness problem is considered but only for controlled
marked graphs. The approach proposed in [9] is applicable if
the supervisory net has a convex reachability set. The focusis
mainly on efficient automatic verification. In [10] the request
for a maximally permissive supervisor is abandoned, in favor



of a more easily computed but also more restrictive control
function.

In this paper we introduce a method for characterizing
the controllable and non-blocking supervisor directly on the
modular automata by using extended finite automata (EFA)
[12]. The main idea is to generate a supervisor that could
be represented using the original modular structure that was
used to represent the sub-plants and sub-specifications. This
is performed by introducing guard conditions on the modular
automata so that the resulting reachable states become the
same states as in the supervisor.

The synthesis procedure is divided into three steps. In step
1, the monolithic supervisor is synthesized in the traditional
way by using binary decision diagrams (BDDs) [13] in order
to do the computation symbolically. Using binary decision
diagrams make the synthesis problem tractable for many in-
dustrial problems including extremely large number of states
[14], [15]. In step 2 the guard conditions, formed as logic
expressions, are extracted from the monolithic supervisor-
represented by BDD. Finally, the guard conditions are added
to the modular automata in step 3.

A crucial step is to reduce the guard conditions to compact
expressions. If the guard conditions are minimized enough,
the suggested approach can also save a large amount of
memory for supervisors with numerous states. We suggest
some alternative state-sets, including unnecessary states (un-
reachable and certain forbidden states), that more probably
yield compact expressions.

Since the presented approach is suitable for implemen-
tations based on BDDs, it makes it tractable for larger
problems. Moreover, by using this method, the clearness
and simplicity of the supervisor is enhanced. The method
could indeed be used for any standard supervisory control
problem and is thus applicable to any applications where
the supervisory control could be used. One possible applica-
tion could be to automatically generate conditions for how
concurrently executing operations in a manufacturing should
be coordinated such that the product could be successfully
produced, see e.g. [4].

This paper is organized as follows: Section II is devoted
to some preliminaries for the theory. The process of adding
guards to modular automata is discussed in Section III. Sec-
tion IV describes how the guard extraction from a monolithic
system is performed. In Section V a BDD representation for
the state-sets is presented. Finally, Section VI provides some
conclusions and suggestions for future work.

II. PRELIMINARIES

In this section, we present some basic concepts that are
required in order to get a better understanding of the rest of
this article.

A. Finite Automaton

A finite automaton (FA) is a 5-tuple〈Q, Σ, δ, qi, Qm〉
whereQ is a set of finite states;Σ is a finite set of events (the
alphabet); andδ : Q×Σ → Q is a partial transition function
which describes the state transitions. Whenδ(q, σ) is defined,
it means that there exists a transition for the stateq ∈ Q
and the eventσ ∈ Σ. The next state is denoted byq′, i.e.

δ(q, σ) = q′. There are also somemarked states Qm ⊆ Q,
which are the set of states that are desired to be reached after
one or several transitions.

The composition of two automata A =
〈QA, ΣA, δA, qA

i , QA
m〉 and B = 〈QB, ΣB, δB, qB

i , QB
m〉

is defined by the full synchronous composition (FSC)
operator ‖ [16], which results in a total system
A ‖ B = 〈Q, ΣA ∪ ΣB, δ, qi, Qm〉 whereQ ⊆ QA × QB,
qi = 〈qA

i , qB
i 〉 andQm = {〈qA, qB〉 | qA ∈ QA

m, qB ∈ QB
m}.

The transition functionδ for A ‖ B is defined as in [16].

B. Supervisory Control Theory

Supervisory Control Theory (SCT) [1], [17] is a method
for automatically synthesizing supervisors that restrictthe
conduct of a plant (or a number of plants) in order to satisfy
some given specifications. These specifications describe the
required or allowed behaviors. In an attempt to restrict the
execution of the plant to the specifications, asupervisor
(controller) is used. In automata theory, the supervisor is
the automaton which enables or disables the events in the
plant.

Unlike model checking [18], [19], where the goal is to
verify if the model contains any incorrectness, in SCT all
incorrect situations, e.g. undesirable deadlocks, shouldbe
identified and avoided in order to guarantee that the system
never violates given specifications.

In SCT, events are divided into two disjoint subsets:
controllable events Σc, i.e. the events that can be influenced
by the supervisor, anduncontrollable events Σu, i.e. the
events that cannot be influenced by the supervisor.

For a plant modelP where

P = P1 ‖ P2 ‖ . . . ‖ Pℓ,

and a specification modelSp where

Sp = Sp1 ‖ Sp2 ‖ . . . ‖ Spm,

A = P ‖ Sp is the full synchronized automaton.
In the process of generating the final supervisor (after the

synthesis), we do not distinguish betweenP andSp and thus
from now on we expressA as:

A = A1 ‖ A2 ‖ . . . ‖ An (1)

Some states inA are explicitly defined to be avoided; which
are calledforbidden states. This includes uncontrollable
states as well as user defined forbidden states. There could
be some states that merely lead to the forbidden states and
thus they should also be prohibited. We call such states the
extended forbidden statesand denote the corresponding set
by Qex which follows the supervisory synthesis. Hence, the
supervisor is generated by excludingQex from the reachable
states inA.

Following are notations for some state-sets which will be
used later in the paper:

Q: All states inA1 × A2 × . . . × An.
Qσ : {q ∈ Q | ∃ q′ ∈ Q, σ ∈ Σ. δ(q, σ) = q′}. The

states that enableσ.
Qreach : The reachable states. The states that can be

reached from the initial state by a number of
transitions.



Qsup : All the states in the supervisor.
Qσ

sup : Qsup ∩ Qσ.
Qex : Qreach\Qsup.

C. Extended Finite Automaton

An Extended Finite Automaton (EFA) presented in [20],
[12], is an extension of the ordinary FA with guard (con-
ditional) formulas and action functions including different
variables. In this kind of automaton, a transition is enabled
if the associated guard istrue, and when the transition is
taken, updating actions of a set of variables may follow. An
EFA is a 6-tuple〈Q × V, Σ,G, A,→, (q0, v0)〉 whereQ is
a set of states;V is the domain of definition of variables;
Q× V is the extended finite set of states;Σ is the alphabet;
G is the set of guard predicates overV ; A is a set of action
functions, i.e.{a | a : V → V }; →⊆ Q×Σ×G ×A×Q is
the state transition relation; and(q0, v0) is the initial state.

Fig. 1 shows a sample EFA whereσ, G, andA stand for
event, guard, andaction respectively.

f b

σ : bookResource
G : resources > 0

A : resources = resources − 1

σ : freeResource
A : resources = resources + 1

Fig. 1. A sample EFA.

III. ADDING GUARDS TO MODULAR SYSTEMS

As stated earlier, in order to synthesize the supervisor, the
extended forbidden states (Qex) should be excluded from the
reachable states (Qreach) in synchronized automaton,A (1).

Another approach to generate the final supervisor is to
add some restrictive guard conditions to the transitions of
modular automata, i.e. sub-plants and sub-specifications,and
avoid them to reach the extended forbidden states. Hence,
by assuming that the systems are modeled by FAs, after
adding the guards, they will form EFAs. This enables us to
characterize the supervisor directly on the modular automata.
The guards can be extracted from themonolithic system(the
full synchronized composition of the modular automata) by
using the information from the supervisor. Recall that we
wish to determine the events in the modular automata that
should be enabled or disabled. Thus, we will study the case
for each event separately.

In order to generate the guard conditions, we will first
determine the state-sets where an eventσ can occur and
extract the guard expressions from these state-sets. There
are two different points of views one can consider for
constructing the state-sets:

CaseA. States whereσ is allowed, denoted byQσ
a .

CaseF . States whereσ is forbidden, denoted byQσ
f .

Hence, we can either choose to restrict a transition by forcing
it to be or not to be in a state-set while executing the
event. As a result, there would be two types of guard condi-
tions: allowing guard conditions (Gσ

a ) and forbidding guard

conditions (Gσ
f ). Consequently, there are two approaches to

construct a guard condition for an eventσ:
1) Gσ

a : The guard expression istrue when CaseA is
satisfied.

2) Gσ
f : The guard expression isfalse when CaseF is

satisfied.
From section II-B, recall that,A (1) is the full synchronous

composition ofn automataA1, A2, . . . , An. Thus each state
in the monolithic automaton has the following form:

qj = 〈qA1

j1
, qA2

j2
, . . . , qAn

jn
〉

For caseA, we just take into account the states that can
be allowed:{〈qA1

k1
, qA2

k2
, . . . , qAn

kn
〉, . . . , 〈qA1

ℓ1
, qA2

ℓ2
, . . . , qAn

ℓn
〉}

and thus the expression will have the following form:

Gσ
a = ((qA1 = qA1

k1
) ∧ (qA2 = qA2

k2
) ∧ . . . ∧ (qAn = qAn

kn
))∨

. . . ∨ ((qA1 = qA1

ℓ1
) ∧ (qA2 = qA2

ℓ2
) ∧ . . . ∧ (qAn = qAn

ℓn
))

On the other hand, for caseF , where we
consider the states that must be forbidden
{〈qA1

k′

1

, qA2

k′

2

, . . . , qAn

k′

n
〉, . . . , 〈qA1

ℓ′
1

, qA2

ℓ′
2

, . . . , qAn

ℓ′n
〉}, the guard

expression that represents the state-set for forbidden states
is:

Gσ
f = ¬((qA1 = qA1

k′

1

) ∧ (qA2 = qA2

k′

2

) ∧ . . . ∧ (qAn = qAn

k′

n
))∧

. . . ∧ ¬((qA1 = qA1

ℓ′
1

) ∧ (qA2 = qA2

ℓ′
2

) ∧ . . . ∧ (qAn = qAn

ℓ′n
))

= ((qA1 6= qA1

k′

1

) ∨ (qA2 6= qA2

k′

2

) ∨ . . . ∨ (qAn 6= qAn

k′

n
))∧

. . . ∧ ((qA1 6= qA1

ℓ′
1

) ∨ (qA2 6= qA2

ℓ′
2

) ∨ . . . ∨ (qAn 6= qAn

ℓ′n
)),

The final guard expression that will be added to transition
δ(q

Aj
rj , σ) is computed by removing the terms that include

q
Aj
rj from the expression. In order to get a more simplified

expression, standard algorithms for minimization of logic
expressions, e.g. [21], [22], will be performed on the final
guard condition. The guards expressions can either be rep-
resented in disjunctive normal form (DNF) or conjunctive
normal form (CNF). For each specific example, the form that
has a simpler comprehension for theuser, will be selected.
We clarify the above process by the following example.

Example 1:Consider the classical resource booking prob-
lem where there are users that will use two resources but
in opposite order. Thus it can be directly implied that there
would be a deadlock in the system when the users use a
common resource at the same time. Fig. 2 shows the resource
automata models plus the monolithic automaton for this
system. Note that state〈qA

2 , qB
2 , qC

2 , qD
2 〉 in Fig. 2(b) is a

deadlock state. Now consider the guard expression for event
a1. We study this case for each of the approaches mentioned
earlier:

1) The states that must be allowed for eventa1 are
{〈qA

1 , qB
1 , qC

1 , qD
1 〉, 〈qA

1 , qB
3 , qC

1 , qD
1 〉}. Hence the guard

expression will be:

G
a1
a = ((q

A
= q

A
1

) ∧ (q
B

= q
B
1

) ∧ (q
C

= q
C
1

) ∧ (q
D

= q
D
1

))

∨((qA = qA
1

) ∧ (qB = qB
3

) ∧ (qC = qC
1

) ∧ (qD = qD
1

))

which can be simplified to

G
a1
a = ((q

A
= q

A
1

) ∧ (q
C

= q
C
1

) ∧ (q
D

= q
D
1

))∧

((qB = qB
1

) ∨ (qB = qB
3

))



Thus for transitionδ(qA
1 , a1), the guard will be

Ga1
a = ((qC = qC

1
) ∧ (qD = qD

1
))∧

((qB = qB
1

) ∨ (qB = qB
3

))

2) The state-set wherea1 should be forbidden is
〈qA

1 , qB
2 , qC

1 , qD
2 〉. Thus we will have

G
a1

f
= (q

A
6= q

A
1

) ∨ (q
B

6= q
B
2

) ∨ (q
C

6= q
C
1

) ∨ (q
D

6= q
D
2

)

which will be

G
a1

f
= (qB 6= qB

2
) ∨ (qC 6= qC

1
) ∨ (qD 6= qD

2
)

for transitionδ(qA
1 , a1).

Fig. 2(c) shows the automataA and B after addingGa1

f

and Gb2
f respectively. Note that all of the four modular

automata operate in a synchronized manner to obtain the
desired supervisor.

IV. EXTRACTING GUARDS FROM A
MONOLITHIC SYSTEM

In the previous section we mentioned how we can charac-
terize the supervisor by adding restricting guard conditions
to the modular automata. Now the question is how we can
extract the guard expressions from the synchronized model
A and the supervisorS.

As stated earlier, there are two cases we could consider
in an attempt to construct the guards. For each case we
study two levels ofcertainty by introducing the following
definitions.

Definition 1 (Upper bound ofQσ
a : U(Qσ

a)):
The states whereσ can be allowed. Hence, if the setU(Qσ

a)
is extended to include a state inC(U(Qσ

a)), then the guard
expressions generated from the extended set ofU(Qσ

a) will
make it possible for the closed loop system to enter a state
that was removed in the synthesis procedure, i.e.Qex.

Definition 2 (Lower bound ofQσ
a : L(Qσ

a)):
The states whereσ must be allowed. Hence, if the setL(Qσ

a)
is restricted to not include a state inL(Qσ

a), then the guard
expressions generated from the restricted set ofL(Qσ

a) will
not make it possible for the closed loop system to enter
a state that was retained after the synthesis procedure, i.e.
Qσ

sup.
Definition 3 (Upper bound ofQσ

f : U(Qσ
f )):

The states whereσ can be forbidden. Hence, if the set
U(Qσ

f ) is extended to include a state inU(Qσ
f ), then the

guard expressions generated from the extended set ofU(Qσ
f )

will not make it possible for the closed loop system to enter
a state that was retained after the synthesis procedure, i.e.
Qσ

sup.
Definition 4 (Lower bound ofQσ

f : L(Qσ
f )):

The states whereσ must be forbidden. Hence, if the set
L(Qσ

f ) is restricted to not include a state inL(Qσ
f ), then the

guard expressions generated from the restricted set ofL(Qσ
f )

will make it possible for the closed loop system to enter a
state that was removed in the synthesis procedure, i.e.Qex.

It can directly be observed that there is aduality relation
between the upper and lower bounds for each case. Hence,

U(Qσ
a) = C(L(Qσ

f )) or L(Qσ
f ) = C(U(Qσ

a))

L(Qσ
a) = C(U(Qσ

f )) or U(Qσ
f ) = C(L(Qσ

a))

qA
1

qA
2

qA
3

a1 a2

qB
1

qB
2

qB
3

b2 b1

qC
1

qC
2

a1

a2

b1

qD
1

qD
2

b2

b1

a2

(a)

〈qA
1

, qB
1

, qC
1

, qD
1
〉

〈qA
2

, qB
1

, qC
2

, qD
1
〉 〈qA

1
, qB

2
, qC

1
, qD

2
〉

〈qA
3

, qB
1

, qC
1

, qD
1
〉 〈qA

1
, qB

3
, qC

1
, qD

1
〉〈qA

2
, qB

2
, qC

2
, qD

2
〉

〈qA
3

, qB
2

, qC
1

, qD
2
〉 〈qA

2
, qB

3
, qC

2
, qD

1
〉

〈qA
3

, qB
3

, qC
1

, qD
1
〉

a1 b2

a2

b2
b1

a1

b2 a1

b1 a2

(b)

qA
1

qA
2

qA
3

σ : a1

G : (qB 6= qB
2

) ∨ (qC 6= qC
1

)
∨(qD 6= qD

2
) a2

qB
1

qB
2

qB
3

σ : b2
G : (qA 6= qA

2
) ∨ (qC 6= qC

2
)

∨(qD 6= qD
1

) b1

(c)

Fig. 2. Example 1. a) Product descriptions and resource models. b) Full
synchronized composition of the automata (A ‖ B ‖ C ‖ D). c) Automata
A andB after addingGa1

f
andGb2

f
respectively.

whereC(X) denotes the complement of setX by havingQ
as the universal set.

By definition ofQσ
sup stated in section II-B, it is straight-

forward that
L(Qσ

a) = Qσ
sup;

and thus
U(Qσ

f ) = C(Qσ
sup)

The lower bound ofQσ
f will be shown in the following

lemma and theorem.
Lemma 1:For every state that belongs toL(Qσ

f ), there
exists an eventσ which leads to a state inQex. More



formally, let q be an arbitrary state inL(Qσ
f ), then it holds

that δ(q, σ) ∈ Qex.

Proof: The proof will be shown by contradiction. Let
q ∈ L(Qσ

f ). Assume that there is exists a stateq′ = δ(q, σ) /∈
Qex. Thus:

q′ ∈ C(Qex)

⇒ q′ ∈ C(Qreach\Qsup)

⇒ q′ ∈ C(Qreach ∩ C(Qsup))

⇒ q′ ∈ C(Qreach) ∪ Qsup

This implies thatq′ belongs either toC(Qreach) or Qsup.
If q′ ∈ C(Qreach), it means that an unreachable state that
will never be reached is forbidden which violates the lower
bound specifications. Ifq′ ∈ Qsup, it means thatq should
not be forbidden, but we had assumed thatq ∈ L(Qσ

f ) which
leads to a contradiction. Hence, for both of the cases we will
face contradictions and thus it implies thatδ(q, σ) ∈ Qex.

Theorem 1:The lower bound ofQσ
f is

Qσ ∩ Qreach ∩ C(Qσ
sup) ∩ C(Qex).

Proof: The proof will be shown by contradiction.
Assume there is a state-setQℓ ⊂ L(Qσ

f ), where a state
q ∈ L(Qσ

f )\Qℓ. According to Lemma 1,q′ = δ(q, σ) ∈ Qex.
Thus, if we generate the guard conditions fromQℓ, then we
can reach a stateq′ ∈ Qex after the supervisory synthesis
which leads to a contradiction.

Based on the duality property, a direct deduction from this
theorem is

U(Qσ
a) = C(Qσ) ∪ C(Qreach) ∪ Qσ

sup ∪ Qex

This means that the states whereσ can be allowed are the
states that do not enableσ; or the unreachable states; or
the states in the supervisor; or the extended forbidden states
which will not be reached anyway.

A challenging issue is which approach betweenA andF
is more convenient for extracting the guard conditions. To
deal with this question, we first introduce two factors that
can impact our decision:

• Memory: In most of the cases, the automata will be
saved on a limited amount of memory, e.g. PLCs;
therefore it is crucial to have guard expressions that
are reduced as much as possible.

• User: From a user perspective, areduced logic ex-
pression would be more readable and understandable.
Nevertheless, sometimes if an expression is reduced too
much, it can decrease the comprehension.

Definition 5 (Minimal Guard Expression (MGE)):
Among a set of equivalent guard expressions (expressions
with equal truth tables), MGE is the DNF (CNF) expression
with the least number of conjunctive (disjunctive) clauses.
This definition is based on this assumption that from a user
perspective, a logic expression with fewer clauses is more
comprehensible.

The goal is to find the MGE for a set of guard expressions.
Depending on the system, one of the approaches can yield
the MGE, and thus basically either of them can be desirable.

However, based on the following hypotheses, a proper
choice can be the second case where the state-set isQσ

f and
the guardGσ

f .
Hypothesis 1.It is of more importance for the user to

realize what cannot occur in a system.
Hypothesis 2.Practically, there are very few situations

where the synthesis restricts the events that can occur.
It is hard to say if there exists a state-setQin represented

by set operations that always yield MGEs. Nonetheless,
according to the lower and upper bounds ofQσ

f , Qin has
the following restriction:

L(Qσ
f ) ⊆ Qin ⊆ U(Qσ

f )

Qσ ∩ Qreach ∩ C(Qσ
sup) ∩ C(Qex) ⊆ Qin ⊆ C(Qσ

sup)

We can rewriteL(Qσ
f ) as follows:

L(Qσ
f ) = Qσ ∩ Qreach ∩ C(Qσ

sup) ∩ C(Qex)

= (Qσ\Qσ
sup) ∩ Qreach ∩ C(Qreach ∩ C(Qsup))

= ((Qσ\Qσ
sup) ∩ Qreach ∩ C(Qreach))∪

((Qσ\Qσ
sup) ∩ Qreach ∩ Qsup)

= (Qσ\Qσ
sup) ∩ Qreach ∩ Qsup

In a first glance, it seems thatL(Qσ
f ) produces MGE,

however, this does not always hold. By including some un-
necessary states (unreachable and extended forbidden states),
it is possible to perform an additional reduction in the final
minimization. Thus, there is a trade-off between retaining
the expression as reduced as possible, and adding some
unnecessary states for assisting the final minimization.

As a conclusion, four reasonable alternatives forQσ
f can

be suggested:
a) Qσ

f1
= Qσ\Qσ

sup.
b) Qσ

f2
= Qσ\Qσ

sup\C(Qreach).
c) Qσ

f3
= Qσ\Qσ

sup\Qex.
d) Qσ

f4
= Qσ\Qσ

sup\C(Qreach)\Qex.
By computing the above state-sets for a number of examples,
one can get a view of the alternative that likely yields the
MGEs in most of the cases.

As a final remark, note that all the state-sets represented,
i.e. Qσ, Qσ

sup, Qreach, Qex, and their complements, can be
effectively computed by BDDs and this is where we can take
advantage of such data structures.

The theory extended in this section is illustrated by the
following example.

Example 2:Consider the two sub-plant modelsP1 andP2

and two sub-specificationsSp1 andSp2 shown in Fig. 3(a).
Moreover, their full synchronous composition (S0) is illus-
trated in Fig. 3(b). The states in the monolithic automaton
have the following form:

qrspt = 〈qP1

r , qP2

s , qSP1

p , qSP2

t 〉

We also use the following notations in the guard expressions:

\qA
i ≡ (qA 6= qA

i )

whereqA
i means statei in automatonA.

Assume that the forbidden states are
{q2121, q2222, q1112, q2112, q1122, q2122}. Moreover, the



q
P1

1
q

P1

2

a

b

q
P2

1
q

P2

2

c

d

e

q
Sp1

1
q

Sp1

2

b

c

q
Sp2

1
q

Sp2

2

c

d

(a)

q1111 q2111 q1121

q1212 q2212 q1222

q2121

q2222

q1112 q2112 q1122 q2122

a b a

d d d d

a b a

e e e e

a b a

c c

(b)

Fig. 3. Example 2. a) Sub-plant modelsP1 andP2 and sub-specifications
SP1

and SP2
. b) Full synchronized composition of the automata (P1 ‖

P2 ‖ SP1
‖ SP2

).

unreachable states are{q1211, q2211, q2221, q1221}. We
compute the alternative state-sets introduced earlier for
eventsa ande plus their respective guard expressions:

a) Qa
f1

= {q1121, q1222, q1112, q1122, q1211, q2211, q2221, q1221} =⇒

G
a
f1

= (\q
P1

1
∨ \q

P2

1
∨ \q

SP1

2
∨ \q

SP2

1
)

∧(\q
P1

1
∨ \q

P2

2
∨ \q

SP1

2
∨ \q

SP2

2
)

∧(\q
P1

1
∨ \q

P2

1
∨ \q

SP1

1
∨ \q

SP2

2
)

∧(\q
P1

1
∨ \q

P2

1
∨ \q

SP1

2
∨ \q

SP2

2
)

∧(\q
P1

1
∨ \q

P2

2
∨ \q

SP1

1
∨ \q

SP2

1
)

∧(\q
P1

2
∨ \q

P2

2
∨ \q

SP1

1
∨ \q

SP2

1
)

∧(\q
P1

2
∨ \q

P2

2
∨ \q

SP1

2
∨ \q

SP2

1
)

∧(\q
P1

1
∨ \q

P2

2
∨ \q

SP1

2
∨ \q

SP2

1
)

By performing a minimization algorithm on this logic
expression and applying it on stateqP1

1 , the only state
that enables eventa, it can be reduced to

Ga

f1
= (\q

P2

2
∧ \q

SP1

2
∧ \q

SP2

2
) ∨ (\q

P2

1
∧ \q

SP1

2
∧ \q

SP2

1
)

For the rest of the expressions, we merely show the
reduced representations for eventsa and e, on states
qP1

1 andqP2

2 respectively.

Qe
f1

= {q1212, q2212, q1222, q2222, q1211, q2221, q1221} =⇒

Ge

f1
= (\q

P2

2
)

which becomesfalse for stateqP2

2 .

b) Qa
f2

= {q1121, q1222, q1112, q1122} =⇒

Ga

f2
= (\q

SP1

2
∧ \q

SP2

2
) ∨ (\q

P2

1
∧ \q

SP2

2
) ∨ (\q

P2

1
∧ \q

SP1

2
)

Qe
f2

= {q1212, q2212, q1222, q2222} =⇒ false

c) Qa
f3

= {q1121, q1222, q1211, q2211, q2221, q1221} =⇒

G
a

f3
= (\q

SP1

2
∧ \q

SP2

1
) ∨ (\q

P2

2
∧ \q

SP2

1
) ∨ (\q

SP1

2
∧ \q

P2

2
)

Qe
f3

= {q1212, q2212, q1222, q1211, q2221, q1221} =⇒

Ge

f3
= (\q

P1

1
∧ \q

SP1

1
∧ \q

SP2

1
)

d) Qa
f4

= {q1121, q1222} =⇒

G
a

f4
= (\q

P2

1
∧ \q

SP2

2
) ∨ (\q

P2

2
∧ \q

SP2

1
) ∨ (\q

SP1

2
)

Qe
f4

= {q1212, q2212, q1222} =⇒

Ge

f4
= (\q

P1

1
∧ \q

SP1

1
) ∨ (\q

SP2

2
)

We observe that for this specific example, alternative (a),
i.e. Qσ

f1
, yields MGEs. The resulted guard expressions for

Qσ
f1

is shown in Fig. 4. Note that since the eventsa and e
appear onP1 andP2, the guard conditions will just be added
on those automata. In general, after these eliminations, one
could perform a further reduction on the final expression.
Since the reduction is performed on a new expression, it is
possible to obtain a more reduced one.

q
P1

1
q

P1

2

σ : a

G : (qP2 6= q
P2

2
∧ qSP1 6= q

SP1

2
∧ qSP2 6= q

SP2

2
)

∨ (qP2 6= q
P2

1
∧ qSP1 6= q

SP1

2
∧ qSP2 6= q

SP2

1
)

σ : b

q
P2

1
q

P2

2

σ : c

σ : d

σ : e
G : false

Fig. 4. The resulted modular automata in Example 2 with guardconditions.

V. BDD REPRESENTATION FOR STATE-SETS

As discussed, the extraction and addition of guards
deal with various state-sets of the automata such asQσ,
C(Qreach), etc., and a number of set-operations are per-
formed on these sets. Thus, in order to have an efficient
implementation of the system, one should take advantage
of a good data structure to represent the automata and
the state-sets. A powerful symbolic representation for an
automaton is Binary Decision Diagram (BDD) [13]. Given a
set of Boolean variablesV , a BDD is a Boolean function



f : 2V → {0, 1} represented as a directed acyclic graph
(DAG) which consists of two types of nodes:decision nodes
andterminal nodes. A terminal node can either be 0-terminal
or 1-terminal. If the variables in the BDD follow a total
order, it is calledOrdered BDD (OBDD). The main idea
behind OBDD is that it can be reduced to a compact and
canonical data representation of a Boolean function which
is often calledReduced OBDD [23]. In order to represent
complex structures such as automata with BDDs, a construct
called characteristic function is often used. Having a finite
setS, for every subsetA of S, the characteristic function is
defined as follows:

χA(α) =
{1 α∈A

0 α/∈A

Hence, the basic set-operations such asunion, complement
and comparisoncan be applied to characteristic functions
using Boolean operators. For instance, ifA1, A2 ⊆ S, then
A1 ∪ A2 can be expressed asχA1

∨ χA2
, sinceA1 ∪ A2 =

{a ∈ S | a ∈ χA1
∨ a ∈ χA2

} Consequently, the
state-sets mentioned above can easily be represented by
BDDs. For instance, consider the reachable states for an
automaton(Qreach). By starting from the initial state and
performing iterativefixpoint computations, in each step of
the computation, a new set of reachable states, i.e. the states
that are one transition away from the states inQreach, will be
added to the new state-set. This procedure will be repeated
until no more new states are found; or in other words until
the globalfixpoint is reached. Afterwards, one can easily
compute theC(Qreach). It is just sufficient to replace the
0-terminals with 1-terminals and vice versa for the BDD of
Qreach. Similarly, other state-sets can also be represented by
BDDs.

To conclude, the representation of state-sets and set-
operations are preferably computed by BDDs. Using binary
decision diagrams make the synthesis problem tractable for
many industrial problems [14], [15]. We can also benefit of
these data structures in the minimization process of logic
expressions.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced a method for characterizing
a supervisor directly on the modular automata by extracting
guard conditions from the monolithic system. The extraction
process is performed by first determine some state-sets in
the synchronized automaton where a given event should
be prohibited in order to prevent the system to reach the
forbidden states, and second to convert the state-sets to
guard expressions. We presented some suggestions for state-
sets including unnecessary states (unreachable and certain
forbidden states) in order to reduce the logical expressions
to more compact guard conditions. Furthermore, we showed
how BDDs can be used to represent the state-sets used in
the guard extraction and why they are counted as powerful
data structures for large systems.

There are some directions in which we could extend and
optimize our method. In this paper, we have assumed that the
modular automata are always ordinary finite automata and
then after adding the guard conditions they become EFAs.

Thus we start the whole process from FAs. An extension to
this could be to have EFAs as the modular automata from the
beginning and perform the guard extraction and minimization
based on these models. This would require another structure
with some analogous parts to the method presented here.

As discussed, we cannot make a certain and general
conclusion which state-set that gives the minimal guard
expression among the four suggested alternatives. A possible
future work is to investigate for which state-set it is more
probable to retrieve a more reduced expression, especially
for large systems based on BDD computations.

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,”IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[2] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—an
integrated environment for verification, synthesis and simulation of
discrete event systems,” in8th Discrete Event Systems, WODES, Ann
Arbor, MI, USA, Jul. 2006, pp. 384–385.

[3] L. Feng and W. Wonham, “Tct: A computation tool for supervisory
control synthesis,”Discrete Event Systems, 2006 8th International
Workshop on, pp. 388–389, 2006.

[4] K. Andersson, J. Richardsson, B. Lennartson, and M. Fabian, “Co-
ordinated operations by relation extraction for manufacturing cell
controllers,” Signals and Systems, Chalmers, Göteborg, Sweden, Tech.
Rep. R017/2006, 2006.

[5] Y. Yang and P. Gohari, “Embedded supervisory control of discrete-
event systems,” in2005, Edmonton, Canada, August 2005, pp. 410–
415.

[6] A. Mannani, Y. Yang, and P. Gohari, “Distributed extended finite-state
machines: communication and control,”Discrete Event Systems, 2006
8th International Workshop on, pp. 161–167, 10-12 July 2006.

[7] Y. Li and W. M. Wonham, “Control of vector discrete-eventsystems
II—Controller synthesis,”IEEE, vol. 39, no. 3, pp. 512–531, 1994.

[8] L. Holloway and B. Krogh, “On closed-loop liveness of discrete event
systems under maximally permissive control,”IEEE Transactions on
Automatic Control, vol. 37, no. 5, pp. 692–697, 1992.

[9] A. Giua and F. DiCesare, “Blocking and controllability of Petri nets
in supervisory control,”IEEE, vol. 39, no. 4, pp. 818–823, 1994.

[10] K. Yamalidou, J. O. Moody, M. D. Lemmon, and P. J. Antsaklis,
“Feedback control of Petri nets based on place invariats,”Automatica,
vol. 32, no. 1, pp. 15–28, 1996.

[11] L. E. Holloway, B. H. Krogh, and A. Giua, “A survey of Petri
net methods for controlled discrete event systems,”Discrete Event
Dynamic Systems, no. 7, pp. 151–190, 1997.

[12] M. Sköldstam, K. Åkesson, and M. Fabian, “Supervisory control
applied to automata extended with variables,” Signals and Systems,
Chalmers, Göteborg, Sweden, Tech. Rep. R003/2007, 2007.

[13] S. B. Akers, “Binary decision diagrams,”IEEE, vol. 27, pp. 509–516,
Jun. 1978.

[14] A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supervisory
synthesis of large systems,”Control Practice, vol. 14, no. 10, pp.
1157–1167, Oct. 2006.

[15] A. Vahidi, “Efficient analysis of discrete event systems,” Ph.D. disser-
tation, Signals and Systems, Chalmers, Göteborg, Sweden, 2004.

[16] C. A. R. Hoare,Communicating sequential processes, ser. Series in
Computer Science. Prentice-Hall, 1985.

[17] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems. Kluwer, Sep. 1999.

[18] J.-P. Queille and J. Sifakis, “Specification and verification of con-
current systems in cesar,” inProceedings of the 5th Colloquium on
International Symposium on Programming. London, UK: Springer-
Verlag, 1982, pp. 337–351.

[19] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automaticverification
of finite-state concurrent systems using temporal logic specifications.”
ACM Transactions on Programming Languages and Systems, vol. 8,
no. 2, pp. 244–263, 1986.

[20] Y.-L. Chen and F. Lin, “Modeling of discrete event systems using
finite state machines with parameters,” inCCA00, Anchorage, Alaska,
Sep. 2000.

[21] J. P. Tremblay and R. Manohar,Discrete Mathematical Structures with
Applications to Computer Science. McGraw-Hill, 1987.



[22] B. Reusch, “Generation of prime implicants from subfunctions and
a unifying approach to the covering problem,”IEEE Trans. Comput.,
vol. 24, no. 9, pp. 924–930, 1975.

[23] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,”ACM Comput. Surv., vol. 24, no. 3, pp. 293–318,
1992.


