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DNA-binding small molecules have since long attracted 

interest because of their interference with important mechanisms 

in the cell, some inducing mutations and cancer while others have 

found use as cancer therapeutics. To learn more about the 

molecular mechanisms of DNA binding in general and the 

prerequisites for specificity in particular, various bulky and 

sterically constrained molecules have been studied, including 

chiral substitution-inert transition metal compounds,1 such as the 

complex [Ru(phen)2dppz]2+ (phen=1,10-phenanthroline; 

dppz=dipyrido- [3,2-a:2’,3’-c]phenazine)2 which binds to DNA 

by intercalating the dppz moiety between the base pairs of the 

DNA.2a,3 In order to increase specificity, including chiral 

discrimination, and to decrease the dissociation rate, which is 

considered important for antitumor activity,4 one approach has 

been to make dimeric compounds. For a bis-intercalating dimer 

with a flexible linker ([µ-c4(cpdppz)2(phen)4Ru2]
4+), it was indeed 

shown that the dissociation rate was reduced by several orders of 

magnitude,5 as an effect of the complex being threaded through 

DNA in a way that requires a huge, transient conformational 

change to occur in the DNA structure.1c One class of  

[Ru(phen)2dppz]2+ dimers reported on earlier, and to which the 

present [-(11,11’-bidppz)(phen)4Ru2]
4+ (Figure 1) belongs, has 

been found to display very high binding affinity for DNA and to 

show marked variations in their binding geometry to DNA 

depending on enantiomeric form (, or ,).6  

We here report the observation of an extremely slow 

rearrangement of the initial DNA binding mode of the complex 

,-[-(11,11’-bidppz)(phen)4Ru2]
4+ (11,11’-bidppz=11,11’-

bi(dipyrido[3,2-a:2’,3’-c]phenazinyl)) (1), earlier assigned as a 

groove-bound mode on the evidence of the positive linear 

dichroism, lack of fluorescence and modest hypochromism upon 

DNA-binding.6 A serendipitous observation that a sample of calf 

thymus (ct) DNA and 1 that had been left for two weeks at room 

temperature, surprisingly showed a change of LD from positive to 

negative indicating a change of binding geometry. Further studies 

by CD indicated that the integrity of the complex was intact. In 

order to be able to examine the binding process more efficiently it 

was accelerated by adding salt and raising the temperature.5 

Figure 2 showing the flow linear dichroism7 (LD) spectra of 1 

in presence of ct-DNA, recorded at different times after mixing,8 

unambiguously reveals that a major change in binding geometry 

occurs. Despite elevated temperature (45C) and high salt 

concentration (100 mM Na+), equilibrium takes almost one day to 

reach. For comparison the DNA-binding of the bis-intercalating 

,-[Ru(phen)2dppz]2+-dimer ([µ-c4(cpdppz)2(phen)4Ru2]
4+), is 

complete after half an hour at room temperature and in 100 mM 

Na+.5 We propose the complex is rearranged from a groove-

binding to an intercalative geometry which final binding mode is 

reached by threading one of the Ru(phen)2 moieties through the 

DNA duplex, thereby intercalating one of the bridging dppz  

 

 

 

Figure 1. (1) ,-[-(11,11’-bidppz)(phen)4Ru2]
4+; phen=1,10-phen-

anthroline, 11,11’-bidppz=11,11’-bi(dipyrido[3,2-a:2’,3’-c]phenazinyl). 

 

 

 

 

 

 

 

 

Figure 2. Flow linear dichroism spectra of 10 µM 1 and 160 µM calf 
thymus DNA (P/Ru-ratio9 of 8) at different times after mixing (100 mM 
Na+, 1 mM sodium cacodylate, pH 7). The two distinct spectra are the start 
and final ones and the arrows specify spectral change with time (0, 1, 2, 4 
and 16 h of storage at 45C). The arrow at 320 nm indicates the change at 
the wavelength where the transition moment originating from the bidppz-
ligand is dominating and the arrow at approximately 270 nm illustrate the 
change where the transition of the phenanthroline-ligands makes the 
largest contribution. Experiments performed at room temperature. 

ligands between the DNA base pairs and thus placing one metal 

center in each groove. 

An absorption peak at 320 nm which originates from a * 

transition polarized parallel to the long-axis of the bidppz ligand 

has been used to estimate the angle between this direction in 1 and 

the DNA helix axis to be about 70,10 an angle though deviating 

from 90 still consistent with intercalation when regarding the fact 

that not both dppz moieties have to be aligned parallel with the 

bases. The isosbestic point at 287 nm (Figure 2) and the result of a 

singular-value-decomposition analysis of the LD-spectra (not 

shown) indicate that two binding geometries are enough to 

accurately describe the spectral variations: an initial groove-bound 

and a final intercalated geometry. This hypothesis is consistent 

with the observation that the complex dissociates almost 

instantaneously from DNA from the initial binding mode upon 

addition of SDS, while it needs several days at 45C to dissociate 

from its final binding mode (see Supporting Information S1). 

Both the rearrangement between the two DNA binding modes 

of 1 and the subsequent SDS-induced dissociation11 from its final 

DNA binding mode were followed by observing the change in 

fluorescence of the complex. The processes are extremely slow 

even at elevated temperatures (Figure 3). The kinetic data for the  
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Figure 3. Rearrangement (emission build up curve) of 1 bound to calf 
thymus DNA and also dissociation (emission decay curve) of the complex 
from its final DNA binding mode. A solution of 10 µM 1 and 160 µM 
([bases]) calf thymus DNA was used. For the dissociation, SDS was added 
to a final concentration of 0.6 %. The experiments performed at 50C in a 
1 mM sodium cacodylate buffer (100 mM Na+, pH 7). 

Table 1. Arrhenius parameters for rearrangement of DNA binding 
geometry and DNA dissociation from the final binding mode of 1. 

 ln A1 Ea1 (kJ/mol) ln A2 Ea2 (kJ/mol)  

Rearrangement 
Dissociation 

28.3 
17.9 

94.0 
65.1 

22.3 
17.5 

83.0 
66.4 

Table 2. Luminescence properties of 1 in the presence of various 
types of DNA (P/Ru-ratio of 8). Included are also the luminescence 
properties of -[Ru(phen)2dppz]

2+  
in poly(dA-dT)2. 

 calf thymus poly(dA-dT)2  -[Ru(phen)2dppz]2+ 

a 
1/nsb 
2/ns 
3/ns 

0.02 
406 (0.19) 
156 (0.44) 
36 (0.37) 

0.09 
707 (0.79) 
131 (0.21) 
 

 0.07 
756 (0.56) 2e 
129 (0.44) 2e 

a Luminescence quantum yield. b Excited state lifetimes () and in 
parenthesis normalized pre-exponential factors reflecting mole fractions of 
the different luminescing species at t=0 (directly after illumination). 

two processes obtained at four different temperatures had to be 

fitted by a double exponential function  (C1exp(-k1t)+C2exp(-k2t))  

in order to get a good fit. It is not yet clear whether this biphasic 

intercalation kinetics is due to sequence or ligand-distribution 

heterogeneity.  The rate constants (see Supporting Information 

S2) were used to estimate the Arrhenius parameters for the 

processes (Table 1). The high activation energies agree well with 

the proposed intercalative final binding mode. In order to 

rearrange or dissociate, 1 obviously has to thread one of the 

Ru(phen)2 moieties through the DNA duplex, which requires the 

unstacking and base pair opening of at least one base pair. Indeed, 

our activation energies (Table 1) are in reasonable agreement with 

those experimentally determined for base pair openings (AT: 71-

80 kJ/mol12, GC: 69-88 kJ/mol12). However, it should be noted 

that according to these data, the SDS-induced dissociation rate is 

faster than the rearrangement rate, which is inconsistent with the 

final species being thermodynamically more stable. A plausible 

explanation is that, contrary to what has been found previously for 

small DNA binding dyes,13 but supported by preliminary 

experiments in our laboratory, SDS monomers can catalyze the 

DNA dissociation process of hydrophobic cations. 

That the final binding mode in DNA is of intercalative nature is 

further supported by luminescence measurements (Table 2).14 The 

luminescence quantum yield of 1 in its final binding mode in ct-

DNA is approximately 1500 times higher than that found for the 

complex free in water solution. This quantum yield increase is of 

the same order of magnitude as that established for the 

intercalated ruthenium monomer under the same conditions. A 

higher quantum yield when the complex is bound to poly(dA-dT)2 

suggests that the aza-nitrogens of the bidppz ligand are more 

protected from water quenching in this case than in the mixed 

sequence DNA. The similar lifetimes observed for 1 in this case 

and those found for the ruthenium monomer (Table 2) under the 

same conditions2e are striking, indeed supporting our conclusions 

that 1 is intercalated in its final binding state.  

Remarkable properties of 1 are its extremely slow 

reorganization from an initial to a final binding mode upon 

interaction with DNA and the very slow dissociation of the 

complex whether with ct-DNA or poly(dA-dT)2. That 

intercalation is being reached much faster for the closely related 

[µ-c4(cpdppz)2(phen)4Ru2]
4+ complex compared to 1 is most 

likely due to the more flexible linker between the ruthenium 

centra. The slowness of both processes is probably due to that the 

final binding mode is intercalative and that the threading of the 

complex through DNA, which is required to reach intercalation, is 

sterically hindered. The unique slow dissociation of 1 in its final 

DNA-binding mode suggests that this class of threading, partially 

intercalated, binuclear complexes may be interesting in the 

context of cancer therapy. Also, their unique optical and 

photophysical properties could make such complexes, either alone 

or scaffolded by DNA structures, of interest for the development 

of nanometer-sized molecular opto-electronic devices.15 

Supporting Information Available: Dissociation from the two 

different DNA binding modes of 1 studied by linear dichroism; 

temperature dependence of rates of DNA binding mode 

rearrangement and DNA dissociation for 1. 
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Abstract: We here report a remarkably slow rearrangement of binding modes for a binuclear ruthenium(II) complex upon 

interaction with DNA. It has been previously shown that ,-[-(11,11’-bidppz)(phen)4Ru2]
4+

 binds to DNA in one of the 

grooves. However, we find that this is only an initial, meta-stable, binding mode, which is extremely slowly reorganized into an 

intercalative binding geometry. The slow rearrangement and dissociation, revealed by flow linear dichroism and fluorescence 

spectroscopy, are concluded to be a result from the complex being threaded through the DNA, with one of the bridging 

aromatic dppz ligands intercalated between the base pairs of the DNA placing one metal center in the minor groove and one 

in the major groove. A negative LD, a high luminescence quantum yield and long luminescence lifetimes, similar to the 

intercalating complex –[Ru(phen)2dppz]
2+

, indicate intercalation of the bidppz moiety. The unique slow dissociation of the 

complex in its final DNA-binding mode suggests that this class of threading, partially intercalated binuclear complexes may be 

interesting in the context of cancer therapy. Also, their unique optical and photophysical properties could make such 

complexes, either alone or scaffolded by DNA structures, of interest for the development of nanometer-sized molecular opto-

electronic devices. 
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