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Abstract—An automated procedure for optimization of pro-
portional–integral–derivative (PID)-type controller parameters
for single-input, single-output (SISO) plants with explicit model
uncertainty is presented. Robustness to the uncertainties is guar-
anteed by the use of Horowitz–Sidi bounds, which are used as
constraints when low-frequency performance is optimized in a
nonconvex but smooth optimization problem. In the optimization
(and hence the parameter tuning), separate criteria are formulated
for low-, mid-, and high-frequency (HF) closed-loop properties.
The tradeoff between stability margins, control signals, HF ro-
bustness, and low-frequency performance is clarified, and the final
parameter choice is facilitated. We use a combination of global
and local optimization algorithms in the TOMLAB optimization
environment and obtain robust convergence without relying on
good initial estimates for the controller parameters. The method
is applied to a controller structure comparison for a plant with an
uncertain mechanical resonance and a plant with uncertain time
delay and time constants. For a given control activity, stability
margin, and HF robustness, it is shown that a PID controller with
a second-order filter and an controller based on loop-shaping
achieve approximately the same low-frequency performance.

Index Terms—Control systems, convergence of numerical
methods, control, optimal control, optimization methods,
process control, proportional control, robustness.

I. INTRODUCTION

I N MANY controller design techniques, a mixed, possibly
weighted, performance criterion is used to ensure that the

closed loop achieves desirable behavior. The criterion includes
multiple closed-loop objectives and is minimized to obtain a so-
lution optimal with respect to the weighted performance objec-
tives (as in mixed-sensitivity optimization). However, by con-
sidering separate criteria at different frequency regions, instead
of aggregating the closed-loop properties into a single criterion,
the tradeoff between performance and robustness can be evalu-
ated, especially in the case of a change of closed-loop specifi-
cations. Such a procedure has been demonstrated for the tuning
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of PI and proportional–integral–derivative (PID) controllers by
optimization when no uncertainties are considered [1], [2].

For plants with uncertainties, the mid-frequency (MF) ro-
bustness properties are crucial. Particularly within process con-
trol, where plant uncertainties can be large, integral action is
common, and then the low-frequency (LF) performance and ro-
bustness are less affected by the uncertainties [15]. For high fre-
quencies (HF), good performance and robustness are simply a
question of having a small loop gain. If explicit descriptions of
the plant uncertainties have been formulated, the quantitative
feedback theory (QFT) [3] can be used to design controllers
such that specified bounds on the magnitudes of the sensitivity
function and the control sensitivity function (for
example) are satisfied in spite of the uncertainties. The basis for
this method is a translation of the constraints on and to
so-called Horowitz–Sidi bounds on the nominal open loop. For
this purpose, a toolbox QSYN [4] running on MATLAB [5] can
be used.

The traditional QFT design method aims to minimize the HF
open-loop gain [6], [7]. It assumes no fixed structure of the con-
troller and gives, in its general form, an unlimited number of
tuning parameters. However, the QFT approach can be applied
to fixed structure controllers, such as in [8], where it was ap-
plied to an ideal PID controller. The procedure uses bounds on
the complementary sensitivity when minimizing the derivative
gain. The basis for the method is a simplification of the op-
timization using the fact that by specifying the phase of the
compensator for two frequencies, the phase is defined for all
frequencies because it only depends on two parameters (inte-
gral time and derivative time). This method is extended in [9]
to two other three-parameter compensators. Yaniv and Nagurka
[10] have also developed an optimization method restricted to
three-parameter PID controllers, but for the case when the phase
margin is specified and one sensitivity function is bounded. The
problem can then be formulated to rely on (repeated) solutions
to fouth-order polynomials, which appears to avoid the problem
of local minima. To deal with uncertainties other than gain un-
certainty, the problem must still be solved for every chosen fre-
quency and plant parameter value.

Garcia et al. [11] describe a method for PID tuning for un-
certain plants that considers multiple frequency-domain
closed-loop measures. However, the optimization is based on
a standard Gauss–Newton algorithm and suffers from problems
of local optima. The optimized criterion used is also a weighted
sum of squared frequency characteristics, and unstructured disc
uncertainties are used to modify the modulus margins to make
the design robust.

1063-6536/$25.00 © 2008 IEEE
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All of the above methods need frequency gridding to be
solved numerically, with a consequent increase in compu-
tational effort with gridding density. By use of the Kalman
Yacubovich-Popov lemma, Hara et al. [12] transform fre-
quency-domain constraints on PIDs into linear matrix in-
equalities (LMIs) and then avoid the approximations caused
by frequency gridding. However, the design is by open-loop
shaping and does not apply directly to closed-loop specifica-
tions. When applied to plants with parametric uncertainties, the
problem is still transformed into an LMI optimization problem
albeit with potential conservatism.

Neither the QFT-based methods [6]–[9] nor the other recent
methods discussed [10]–[12] consider the general tradeoff
between the LF, MF, and HF properties of the closed loop. This
tradeoff is important because the process disturbance rejection,
for example, can often be significantly improved at only a mar-
ginal reduction of the HF robustness [13], [14]. To pursue this,
Fransson et al. developed a constrained optimization procedure
where PID and PID weighted loop-shaping controllers
were designed based on an optimization of the LF performance
subject to specified bounds on the maximum sensitivity and the
maximum nominal control sensitivity [15], [16]. Robustness of
the sensitivity function to plant uncertainties was guaranteed
by Horowitz–Sidi bounds, but the procedure suffered from the
fact that local optimization methods were used to solve highly
nonlinear problems with potential discontinuities in the param-
eter space. As a result, difficulties were frequently experienced
with initial guesses, convergence, and local optima.

In [17], the design procedure in [15] and [16] was generalized
to include robustness to plant model uncertainties for the control
sensitivity function, and a global optimization algorithm was
applied to the design problem. This paper summarizes earlier
work by the authors [15]–[17] and improves the methods used
in the following ways.

• The numerical treatment for solving the design problem
is improved, which results in fast convergence towards a
globally optimal controller (of a fixed structure).

• A reliable test is given that determines if the nominal
loop transfer function is (pointwise) inside or outside the
Horowitz–Sidi bounds in the Nichols chart.

• In the evaluation procedure, closed-loop properties (in
terms of stability robustness, control activity, and high-fre-
quency (HF) robustness) are constrained identically in the
comparison of low-frequency performance.

The suggested approach applies to fixed structure controllers in
general, with multiple closed-loop sensitivity constraints, and
there is no theoretical limitation in the number of controller pa-
rameters. Basically, the same optimization problem, i.e., min-
imization of a low-frequency performance criterion subject to
bounds on additional performance and robustness measures, has
been solved for multiple-input, multiple-output (MIMO) sys-
tems by the authors, using the structured singular value [18].
The same methods may naturally be applied to single-input,
single-output (SISO) systems as well. However, for many SISO
cases, the QFT-based method presented here is superior to the
use of structured singular values [19]. For systems where the
same uncertain parameter occurs in many places of a system
model, the dimension of the nominal closed-loop system matrix

Fig. 1. Closed-loop system.

, resulting from linear fractional transformations, may be-
come very large. This can make structured singular value deter-
minations unfeasible, while the method presented here is quite
insensitive to this [19].

This paper is organized as follows. In Section II, we define
frequency-domain closed-loop performance measures and de-
scribe how they are used to pose the design problem. Section III
presents the controller structures used, and Section IV discusses
how robustness to plant model uncertainties can be ensured by
use of the Horowitz–Sidi test. Section V details the numerical
treatment of the method and we give an algorithm for solving
the design problem. The method is illustrated by two examples
in Section VI, and Section VII summarizes and concludes the
paper.

II. CONTROL PROBLEM

A. Robustness and Performance Measures

It is well known that improvement of a controller design in
one respect will often cause deterioration in another respect.
Different closed-loop properties, such as stability, tracking, dis-
turbance attenuation, and the magnitude of the control signals
due to reference steps or disturbances, are often related to dif-
ferent frequency ranges of the closed loop and are not inde-
pendent of each other. Therefore, a method for comparing con-
trollers with each other should have the property that important
closed-loop properties not immediately compared are identi-
cally constrained for all controllers. The method presented here
fulfills this demand. It is based on four measures [13], each of
them related to essential performance and robustness qualities
of the closed loop and also roughly related to different frequency
ranges as follows:

where denotes the plant, denotes the controller,
is the sensitivity function, and

represents the roll-off rate of the controller (see Fig. 1).
It is obvious that is a measure of the ability of the closed

loop to handle process disturbances related to the low-frequency
range. is the shortest distance from the loop transfer
function to the instability point in the Nyquist diagram, and,
hence, is a natural stability robustness measure.
is a measure of the control activity due to measurement noise,
related to the MF and HFy region around (or somewhat above)
the closed-loop bandwidth. is a measure of the robustness
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to unmodelled dynamics in the HF region. Recall the small gain
theorem and the fact that is related to the
complementary sensitivity function as . Then,
for a proper (but not strictly proper) controller, such as a PID
controller with a first-order filter, , and hence

.
Each of the presented measures relates to a different region of

the frequency range (LF, MF, and HF). Thus, simultaneous use
of these measures in a design procedure facilitates determina-
tion of controllers that give acceptable behavior of the closed-
loop system for all frequencies. However, since the plant is as-
sumed to be uncertain, all of the measures above will be func-
tions of the plant uncertainty.

B. Plant Uncertainty

An uncertain plant transfer function can be defined as a
member of a set of transfer functions [4]

where the set may contain finitely or infinitely many plant cases.
By defining a set of frequencies as , we have
that for each frequency , the set in the complex
plane is called a template, or value set, for [3]. The template
should enclose all possible frequency responses of the plant at
the frequency . This paper concerns a special class of uncer-
tainty, namely, the parametric plant uncertainty defined by

(1)

where is a vector of uncertain parameters. The nominal plant
is denoted and reflects the choice of a particular .

C. Design Problem

The design problem is posed by incorporating the uncertainty
description into the robustness and performance measures. A
controller that, despite the uncertainties in the plant, achieves ac-
ceptable behavior of the closed-loop system for all frequencies
can be obtained by solving the following optimization problem:

(2)

(3)

Thus, is the controller obtained by minimizing the LF
performance measure subject to user-defined constraints

, and on and ,
respectively.

D. Simplifications

If a general expression for controllers with integral action is
introduced as

(4)

where is bounded, it can readily be shown that
as (provided

[15], [20]. Thus, for PID controllers and SISO systems, the in-
verse of the integral gain serves as a close approximation to

(this conclusion is based on the fact that good damping—i.e.,
appropriate stability margin, is assumed). Hence, will be
relatively independent of the plant uncertainty. Also, de-
pends weakly on the uncertainties, which predominantly affect
the mid-frequency region of the closed loop. With this in mind,
(2) and (3) can be simplified to

(5)

(6)

where and are based on the nominal plant. If, for some
reason, is expected to depend significantly on the uncertain-
ties, an approximation of the expected value taking the covari-
ance of the parameters into consideration can be used (see [19]).

III. CONTROLLER STRUCTURES

In this study, both PID controllers and synthesis by loop-
shaping [21] are considered when solving (5) and (6). The loop-
shaping procedure has the great advantage of not including the

-iteration in standard synthesis. Instead, suboptimality is
introduced in terms of a scaling factor , which must be
properly chosen.

A. PID Controllers

Traditionally, the well-known PID controller, with a
first-order filter on the derivative part, used to be formu-
lated with the parameters controller gain , integral time ,
derivative time , and filter constant as

As shown in several papers (e.g., [13]), a PID controller that
gives good closed-loop performance and robustness, at least for
stable nonoscillating plants, has a complex pair of zeros. This
makes it natural to formulate the transfer function of the con-
troller as

(7)

where is the integral gain, is the damping ratio, is the
inverse of the natural frequency, and is the ratio of the breaking
point of the denominator to that of the numerator.

When there is a demand on more HF roll-off in the loop than
can be offered by the plant, the PID controller can be augmented
by a low-pass filter of arbitrary order. If the first-order filter
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Fig. 2. Closed-loop system with anH loop-shaping controllerK and a plant
G.

is exchanged by a filter of second order, the controller can be
formulated as

(8)

In Section VI, this controller structure is compared with a
PID weighted controller. Note that the roll-off rate of (8) is

, and the parameters subject to optimization with (8) are
, and .

B. Loop-Shaping

The first step in the method by Glover and McFarlane [21]
is to shape the nominal plant with a weight to give
an open loop that meets some nominal performance specifica-
tions. For the shaped system , a controller

is obtained by solving two Riccati equations. The final
feedback controller for is then (see
Fig. 2). For a given weight , the controller derived in this
way will, in some sense, have optimal robustness. The degree of
optimality is determined by , where is called
the maximum stability margin and is a scaling factor.

In this paper, is parameterized as the PID controller
(7) whose parameters ( and ) are subject to tuning by
optimization so that a desired closed-loop behavior is obtained.
Because of this choice of weight, the final controller will
have a roll-off rate , thus explaining the need for using
the PID controller with a second-order filter (8) when
comparing the PID and controller structures.

IV. HOROWITZ–SIDI BOUNDS

If the plant uncertainty is represented by a set of templates
for a number of frequencies, QFT can be used to design a
controller such that the closed loop satisfies specifications on
the magnitudes of some frequency response functions (such
as the sensitivity functions) for all plant variations within a
given uncertainty set. The frequency response specifications, in
turn, result in constraints on the nominal loop transfer function

. These constraints are called
Horowitz–Sidi bounds and reflect the interaction between the
plant uncertainty and the closed-loop specifications.

We define

where is the uncertain plant and impose an upper bound
on the maximum frequency response of this sensitivity function

Fig. 3. Nichols chart with Horowitz–Sidi bounds and a nominal open loop for
! = 0:5; 1, and 2.

for all plants in , i.e., the following must hold:

(9)
Thus, the controller must be chosen such that (9) is fulfilled

for the complex numbers . Clearly, for each , there is
a set for in the complex plane where (9) does not hold.
The union of all such sets give one, or possibly several, sets
containing the unacceptable values of . The boundary
of this set is called the Horowitz–Sidi bound for with respect
to and and is denoted . Multiplying by the
nominal plant yields .

ThecomputationofHorowitz–Sidiboundsisdoneintwosteps.
The first step demands the computation of the value sets of the
plant transfer function. The simplest method is indeed the grid
method, where the parameter space is gridded, e.g., equidistantly
or randomly, see [22]. More advanced recursive grid or adaptive
grid methods exist, see, e.g., [23], where the desired resolution
of the computed value set determines the number of grid points,
and hence the accuracy of the final result. For special types of
transfer functionsgridding in theparameter spacecanbeavoided;
see [24]and the references therein.Recently, interval analysis has
been suggested for value set computation for transfer functions
thatcanbedecomposedintoelementaryfunctionswhosemaxima
and minima can be analytically calculated [25]. The second step
of the computation of Horowitz–Sidi bounds does not require the
gridding of the parameter space, but, depending on the desired
resolution of the resulting Horowitz–Sidi bound, the gridding of
a set in the complex plane.

Horowitz–Sidi bounds can be computed with QSYN [4] and
placed in a Nichols chart together with . To ensure that (9)
is satisfied for all plants within the uncertainty set, must be
shaped so that, at each frequency , it is outside the bound for
that frequency (see Fig. 3). Analogously to (9), we also define

(10)

with a corresponding Horowitz–Sidi bound . In an auto-
mated procedure, one has to test whether or not is
outside and .
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Fig. 4. Nominal open loop and the corresponding Horowitz–Sidi bound for !
transformed to polar coordinates.

Now, consider a single and transform the origin in the
Nichols chart to the interior of the Horowitz–Sidi bound
associated with (where the superscript , the subscripts

, and the argument have been dropped for clarity). If
is transformed to polar coordinates , we can write

, and, if is transformed to the same coordi-
nates, it can be represented by . As Fig. 4 illustrates,
the test for being outside is then simply

(11)

and the distance in the figure is a measure of how close
is to at the frequency . We refer to this as the

Horowitz–Sidi test. Note that the choice of origin is trivial,
provided that the nominal case is a member of the template
itself. In such a case, the instability point in the Nichols chart
is “inside” the Horowitz–Sidi bound. We also note that, for
example, the Horowitz–Sidi sensitivity bound will be a single
closed curve in the Nichols diagram (the curve may touch itself)
if the plant template is simply connected [4]. When the plant
template is not simply connected, the Horowitz–Sidi bound can
consist of a set of closed curves, and, to handle a situation like
this, a different origin for each of the closed curves will have
to be chosen.

If the choice of origin is bad or is nonconvex, there could
be several solutions to , which means that (11) must be
modified in order to serve its purpose. Define a crossing between

and as a pair of consecutive points and on
such that . is then inside if there is an

even number of crossings and outside if there is an odd number
of crossings, as shown in Fig. 5.

V. NONLINEAR OPTIMIZATION

Based on the discussion in Section IV, the design problem (5)
and (6) can be approximated using (9) and (10) to obtain

(12)

Fig. 5. Illustration of (a) unacceptable and (b) acceptable scenarios when per-
forming the Horowitz–Sidi test (11).

where is the controller parameterization. In the comparison
in the next section, the HF-constraint is only used in the op-
timization for the controller. is then chosen to be
equal to the roll-off of the optimal controller to ensure equal
HF robustness of the two controller structures. By use of the
Horowitz–Sidi test, (12) is equivalent to

(13)

where the quantities in braces denote the closest distances be-
tween the nominal open loop and the Horowitz–Sidi sensitivity
bounds and control sensitivity bounds at each frequency.

The optimization problem (13) is smooth but nonconvex. For
some initial specifications and , we use a constrained
global optimization algorithm, DIRECT [26], to find a set of
controller parameters reasonably close to a global optimum

.
Thereafter, we use a gradient-based local optimizer, SNOPT

[27], to obtain more rapid convergence to and to solve a se-
quence of nearby problems (13) as and change slowly
in a specified pattern.

We summarize the main features of DIRECT and SNOPT
before describing the optimization strategy in detail.

A. Global Optimization

The original DIRECT algorithm of Jones et al. [28] finds
the global minimum of a multivariate function subject to
simple bounds , using no derivative informa-
tion. The algorithm modifies the standard Lipschitzian approach
[29]–[31] such that the need to specify a Lipschitz constant
is eliminated. Normally, must be large because it should con-
strain the maximum rate of change of the objective function:

The result is an emphasis on global rather than local search,
leading to slow convergence. In contrast, DIRECT carries out
simultaneous searches using different values of (among all
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Fig. 6. (a)–(f) Two iterations of a 2-D example of the DIRECT algorithm, il-
lustrating the partitioning of the search space. (g) Midpoint function values of
sampled rectangles (dots) versus corresponding rectangle “size.” The solid line
indicates the rectangles chosen by DIRECT for trisection.

possible ones) and therefore operates on both the global and
local level.

The search strategy is based on three steps: start, rectangle se-
lection, and trisection. Fig. 6 shows the first two iterations of DI-
RECT for a 2-D example. In the first step, the center point of the
initial rectangle is sampled [Fig. 6(a)]. Since there is only one
rectangle in the first iteration, the entire search space is included
in the rectangle that is selected in the second step [Fig. 6(b)]. In
the third step, the search space selected in the second step is par-
titioned into three regions of equal size around the center point,
and the center points of the outer thirds are then sampled. This
step is called trisection and is illustrated in Fig. 6(c). The infor-
mation from this step is then transferred to iteration 2 [Fig. 6(d)].
In the rectangle selection step, DIRECT determines that one,
or more, of the existing rectangles has a better chance of in-
cluding the global optimum. This rectangle is therefore selected
[Fig. 6(e)] and trisected [Fig. 6(f)], and the algorithm proceeds
to the third iteration. Fig. 6(g) illustrates the rectangle selection
step, i.e., how DIRECT determines which rectangles to select
for further investigation. In the figure, the function values for a
number of sampled center points are plotted versus the corre-
sponding rectangle “size” (measured by the distance from the
rectangle center point to one of its corners). We first note that
a pure global strategy would select the rectangle with “largest”
size, while a pure local algorithm would choose the rectangle
with the least function value. DIRECT forms the lower convex
hull of the sampled points and proceeds to the trisection step
with all points on this curve simultaneously. Hence, it selects
both the global and the local extremes but also some spaces with
intermediate Lipschitz constants.

The bounds on and the maximum number of function eval-
uations are the only tuning parameters in the procedure. An-
other appealing feature is that a global optimum can be found
to any specified accuracy as long as the number of iterations
is sufficient. The drawbacks are that rather tight bounds on

must be specified, and that a large number of iterations may be
needed. DIRECT is also limited to low-dimensional problems
(say, today less than 20 unknowns) because of its space-parti-
tioning approach.

DIRECT is guaranteed to converge to the global optimal
function value if the objective function is continuous in the
neighborhood of a global optimum. (As the number of iterations
goes to infinity, the set of points sampled by DIRECT forms a
dense subset of an -dimensional hypercube.)

While the original algorithm handles bound constraints only,
the most recently developed DIRECT algorithm [26] handles
nonlinear and integer constraints as well. The constrained
problem is reformulated so that the constraints can be treated
in a similar manner to the objective function. Both algorithms
have been implemented in TOMLAB as the routines glbFast
and glcFast [32], and they have been successfully used in
train design optimization [33] and for the design of trading
algorithms in computational finance [34].

B. Local Optimization

TOMLAB provides access from MATLAB to many other
optimization algorithms, including the large-scale constrained
solver SNOPT. For problems with smooth objective and con-
straint functions, SNOPT is a reliable local optimizer. It imple-
ments a sequential quadratic programming (SQP) algorithm and
requires relatively few evaluations of the functions and their gra-
dients.

Each major iteration of SNOPT linearizes the constraints and
solves a QP subproblem to generate a search direction, along
which an augmented Lagrangian merit function is reduced.
SNOPT deals methodically with infeasible problems and in-
feasible QP subproblems, and it also takes advantage of a good
starting point. These features are important for large and small
problems alike. Given suitable starting points, SNOPT has
proved effective for solving problems of the same type as (13).
(Since analytic gradients are not available for the constraints
in (13), SNOPT uses numerical differences.) The TOMLAB
interface to SNOPT is denoted by snopt.

C. The Optimization Algorithm

Since glcFast can handle nonlinear constraints, it is
suitable for locating a global optimum for (13) within speci-
fied upper and lower bounds on the independent variables. A
maximum number of function evaluations maxfun must also be
specified.

Our strategy is to choose an initial set of variables and
, and apply glcFast with reasonably wide bounds on

but a moderate value of maxfun. When the global solver finds a
feasible point or reaches the maxfun limit, its best estimate
is used as a starting point for snopt. If the local solver fails
to converge, or analysis suggests that the result is not a global
optimum, we call glcFast again with an increased maxfun,
and then restart snopt with the new initial point. With this ap-
proach, the probability of finding the global minimizer in-
creases significantly compared to using local methods alone.

In the next step, is slightly increased andsnopt is called
directly with as starting point, returning a new local solution
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Fig. 7. Bode plots of G (s) at the ends of the parameter intervals.

that is likely to be a new global minimizer (and so on). The
complete design procedure is summarized as follows.

Algorithm 1:
Step 1) Define the plant model and its uncertainty set and

specify and .
Step 2) Generate and with QSYN.
Step 3) Specify lower bounds and upper bounds for

the PID parameters.
Step 4) Run glcFast until a feasible point has been

found. Typically maxfun – is required.
Step 5) Run snopt with (or the previous ) as starting

point, and record the new .
Step 6) Evaluate with respect to the proposed LF, MF,

and HF measures as well as other system properties,
especially in the time domain.

Step 7) If needed, repeat from step 4) with an increased
maxfun.

Step 8) If needed, repeat from step 3) with different bounds
and .

Step 9) If needed, specify new or , generate
and with QSYN, and repeat from step 5).

VI. EXAMPLES

Consider the following plant transfer functions:

where , and . is a
driveline model for heavy duty trucks with variable load inertia

and damping . (A method to tune PI controllers for systems
of type can be found in [20].) describes the influent
dose rate to effluent concentration of a system with two liquid
tanks in series and a variable flow . To reflect the magnitude of
the uncertainties and their different characters, some Bode plots
of the systems are shown in Figs. 7 and 8. The nominal plants
are described by and , and the time
delay is modeled by a fourth-order Padé approximation.

The value sets for and are computed with the
grid method. If an exact solution is required, the set
would have to include an infinite number of plant cases (since
the uncertain parameters are defined in terms of intervals).
Clearly, that would not lead to a practical method, and instead

Fig. 8. Bode plots of G (s) at the ends of the parameter intervals.

we discretize each uncertain parameter in 32 equidistant points.
As in all numerical methods, an accurate final result can only be
guaranteed if the gridding has been sufficiently dense. For both
plants, the design parameters were first chosen as and

, for which Horowitz-Sidi bounds for 25 frequencies
were computed. Algorithm 1 was then performed for both an

controller (choosing the scaling factor ) and a
PID controller with a second-order filter. was gradually
increased up to 15 to reflect less strict constraints on the control
signal, and the entire procedure was repeated for . All
calculations were done with MATLAB on a 1-GHz Pentium
III. Note that the number of constraints in the optimization
problem is for the design and
for the controller (one extra because of the constraint on
the HF roll-off).

A. Discussion

For illustration, we present some details on the de-
sign case with and . The bounds on
the PID parameters were chosen to be

and . glcFast
required 250 iterations (250 function evaluations, 60 s) to find
a feasible solution to (13). With this solution as an initial point,
snopt converged after 12 SQP iterations (150 function evalu-
ations, 40 s). Fig. 9(a) shows the reduction in the merit function
of snopt, and Fig. 9(b) shows how the logarithm of the feasi-
bility measure (the norm-sum of the constraint violations) and
optimality measure (the norm sum of the reduced gradients)
[27] vary with iteration number. Note that the output from the
global solver (input to the local solver) is feasible (satisfies
all the constraints), and that the output from the local solver

is feasible and optimal to within the specified tolerances
of . was then increased to 2 and the optimal from
the previous design was used as a starting point for snopt,
without another global search. Convergence was achieved in
four iterations (15 s).

This can be compared to 10–20 min of computation in [15]
and [16] to solve a smaller problem than here. Fig. 10 shows the
results of the optimization in terms of obtained versus speci-
fied and , and we note the general tradeoff between per-
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Fig. 9. Example (H ; G ; c = 1:5, and c = 1:5) of convergence of
snopt. (a) Merit function versus iteration number. (b) Feasibility measure
(dashed line) and optimality measure (solid line) versus iteration number.

(a) (b)

Fig. 10. LF performance (J ) versus control activity (c ) as obtained by Al-
gorithm 1 for (a) G and (b) G with PIDf control (solid line) and PID weighted
H control (dashed line).

Fig. 11. Nyquist diagram for G with controllers optimized for c = 1:7
and c = 10. The five curves correspond to the cases [J d] =
[10 7:5]; [15 10]; [15 5]; [5 5] and [5 10].

formance and control activity for all controllers. Thus, increased
performance (reduced ) can be achieved without reducing the
stability margin, but at a cost of higher control signals (increased

). Importantly for both plants, Algorithm 1 resulted in two
sets of controllers ( and KPIDf) with equal values. This
makes it easy to compare the two controller structures, because
all closed loop properties that are not immediately compared are

Fig. 12. Step responses from reference r to output y for G with controllers
optimized for c = 1:7 and c = 10. The five curves correspond to the cases
[J d] = [10 7:5]; [15 10]; [15 5]; [5 5], and [5 10].

identically constrained. We see that the two controller structures
perform similarly for both plants. This may be considered some-
what surprising, since the controller is of order six for
and ten for , compared to three for the KPIDf controller. Al-
though the weighting function in the design is of PID type,
the resulting sixth order controller is obviously more restricted
than a lowpass filtered PID controller of third order. The reason
is that the parameters in the third order controller may take any
value in the optimization of (13), while the design means
that the stability robustness for a specific uncertainty model, re-
lated to a normalized coprime factorization of the plant model,
is optimized, cf. [21]. The benefit of SISO design is mainly
for plants where an ordinary PID controller can be insufficient,
for example, plants that are unstable, highly resonant, and non-
minimum phase.

The algorithm resulted in nonconservative solutions for all
specifications and in the sense that both
and for at least one frequency (i.e., at least
two constraints are always active). This is, in fact, a necessity
for a global optimum, as pointed out by Gera and Horowitz [7].
The curves in Fig. 10 are smooth, further indicating that each
point of the curves corresponds to a global optimum. This was
also verified by running glcFast for several thousand itera-
tions for each set of specifications. To investigate the impact of
the parameter on the design, was changed from 1.005 to
1.0005 and 1.05, respectively. It was concluded that the smaller
value improved by 1% and the larger value resulted in a 3%
increase of . A smaller value of , however, implies a larger

, which in turn results in deteriorating HF robustness prop-
erties.

We also choose to study Nyquist plots and step responses for
both plants from reference signal to output signal , and
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Fig. 13. Step responses from reference r to control signal u for G with con-
trollers optimized for c = 1:7 and c = 10. The five curves correspond to
the cases [J d] = [10 7:5]; [15 10]; [15 5]; [5 5], and [5 10].

Fig. 14. Nyquist diagram for G with controllers optimized for c = 1:7 and
c = 10. The five curves correspond to the cases Q = 0:7;0:85;1:0;1:15;
and 1:3.

from reference signal to control signal , using the con-
trollers that result in and . Figs. 11–13
show these plots for with both the PID controller and
the controller for the following values of the uncertain pa-
rameters: and .
Figs. 14–16 show the corresponding results for for the
flow rates: , and .

The Nyquist plots verify that for both plants,
indicating that the approximations made when defining the
Horowitz-Sidi bounds were acceptable. The step responses
indicate that the closed loop performance for the two controller
structures is practically identical for , and almost the
same for , as indicated by the trade-off curves in Fig. 10.

VII. CONCLUSION

An optimization method for the design of robust PID and
loop-shaping controllers has been described. The new method
includes a combination of global and local optimization algo-
rithms and results in a fast algorithm with robust convergence

Fig. 15. Step responses from reference r to output y for G with controllers
optimized for c = 1:7 and c = 10. The five curves correspond to the cases
Q = 0:7;0:85;1:0;1:15; and 1:3.

Fig. 16. Step responses from reference r to control signal u for G with con-
trollers optimized for c = 1:7 and c = 10. The five curves correspond to
the cases Q = 0:7;0:85;1:0;1:15; and 1:3.

towards a global optimum. A reliable test has also been given
to determine if the nominal open loop is (point wise) inside or
outside the Horowitz–Sidi bounds in the Nichols chart.

The criteria used in the optimization procedure take into
account important aspects for achieving robust control per-
formance, including a guaranteed robustness to explicit plant
uncertainties by use of Horowitz–Sidi bounds. Having separate
criteria for the closed-loop properties in the different frequency
regions facilitates the tradeoff between robustness and per-
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formance to be studied easily and clarifies the consequences
of a change of specifications. The method also simplifies the
task of comparing closed-loop performance between different
controller structures, since closed loop properties in terms of
stability robustness, control activity, and HF robustness are
constrained identically.

The design method has been applied to two examples and
it has been shown that a PID controller with a second-order
filter on the derivative part achieves, more or less, the same
low-frequency performance as an controller based on
loop-shaping. Computationally, a substantial efficiency factor
has been gained compared to an earlier, less general version of
the design procedure.
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