
Yi
An Editor in Haskell for Haskell

Jean-Philippe Bernardy
Computer Science and Engineering, Chalmers University of Technology

bernardy@chalmers.se

Abstract
Yi is a text editor written in Haskell and extensible in Haskell. We
take advantage of Haskell’s expressive power to define embedded
DSLs that form the foundation of the editor. In turn, these DSLs
provide a flexible mechanism to create extended versions of the
editor. Yi also provides some support for editing Haskell code.

Categories and Subject Descriptors D.2.3 [Coding Tools and
Techniques]: Program editors

General Terms Design, Languages

Keywords Editor, Haskell, Functional Programming

1. Motivation
All software developers want to customize and extend their editor.
We spend so much time working with editors that we want them to
behave exactly as we wish. Using Haskell as an extension language
is promising, because it is both general purpose and high-level. This
combination of properties means that extensions and configurations
can remain concise, and still have unrestricted access to external
resources, for example by to existing Haskell libraries.

Also, users generally want to experiment with changes without
prior study of the system they tweak. The well-known safety fea-
tures of Haskell are very useful in this case: users can tinker with
the editor and rely on the type system to guide them in writing cor-
rect code.

2. Overview
Yi is a text editor implemented in Haskell and, more importantly,
extensible in Haskell. It is structured around four embedded DSLs:

BufferM A DSL for all buffer-local operations, like insertion and
deletion of text, and annotation of buffer contents. It can be
understood as a monad that encapsulates the state of one buffer.

EditorM A DSL for editor-level operations, e.g., opening and
closing windows and buffers. Operations involving more than
one buffer are handled at this level too.

YiM A DSL for IO-level operations. There, one can operate on
files, processes, etc. This is the only level where IO can be done.

Copyright is held by the author/owner(s).
Haskell’08, September 25, 2008, Victoria, BC, Canada.
ACM 978-1-60558-064-7/08/09.

import Yi
import Yi.Keymap.Emacs as Emacs
import Yi.String (modifyLines)

increaseIndent :: BufferM ()
increaseIndent = do
r <- getSelectRegionB
r’ <- unitWiseRegion Line r

-- extend the region to full lines
modifyRegionB (modifyLines (’ ’:)) r’

-- prepend each line with a space

main :: IO ()
main = yi $ defaultConfig {
defaultKm =

-- take the default Emacs keymap...
Emacs.keymap <|>
-- ... and bind the function to ’Ctrl->’
(ctrl (char ’>’) ?>>! increaseIndent)

}

Figure 1. Configuration file example.

KeymapM Key-binding descriptions. The structure of this DSL
closely follows that of classic parser-combinator libraries. The
semantics are a bit different though: the intention is to map
a stream of input events to a stream of actions, instead of
producing a single result. The actions of the output stream can
come from any of the above DSLs.

Yi also contains user-interface (UI) code for rendering the editor
state, and getting the stream of input events from the user. Finally,
there is some glue code to tie the knot between all these compo-
nents. This glue is the only part that accesses the UI code.

The structure described above is very flexible: there is very low
coupling between layers. One can easily swap out a component for
another in the same category. For example, the user can choose
between various UI components (vty, gtk, cocoa) and key-bindings
(emacs, vim).

The various DSLs have composability properties, and this
makes them convenient to extend and configure the editor. This
is illustrated in figure 1, where a simple extension is shown.
In that example, the user has defined a new BufferM action,
increaseIndent, using the library of functions available in Yi.
Then, he has created a new key-binding for it. Using the disjunc-
tion operator, this binding has been merged with the emacs emula-
tion key-map. A more typical example would involve many more
functions, and could call various Haskell packages to make their
capabilities available within the editor, but the structure would re-
main essentially the same.



Figure 2. Screenshot. The configuration file is being edited, and
Yi gives feedback on matching parenthesis by changing the back-
ground color. The braces do not match because of the layout rule:
the closing one should be indented. Yi understands that and shows
them in a different color.

We see that Yi is not so much an editor than a rich library for
building editors. Indeed, this is exactly how users create extended
versions of Yi: they create a program from the ground up by com-
bining the higher-order functions and (lazy) data structures offered
in the Yi library. This approach to configuration was pioneered by
Stewart and Sjanssen [5] for the XMonad window manager.

3. Editing Haskell code
Being implemented and extensible in Haskell, it would be natural
that Yi had extensive support for editing programs, and in partic-
ular Haskell code. At the time of writing, we have implemented
this partially. Syntax of programming languages can be described
using lexers and a parsing combinator library. When a syntax is as-
sociated with a buffer, its content is parsed, incrementally, and the
result is made available to the rest of the code.

We take advantage of this infrastructure to provide support for
Haskell: among other things, feedback on parenthesis matching is
given (as shown in figure 2), and there is simple support for auto-
indentation.

4. Limitations and Further work
The parsing mechanism is not perfect yet: we only have a coarse-
grained syntax for Haskell, and the error-correction scheme is lack-
ing generality. A further step will be to bind to Haskell compilers,
and in particular GHC, to provide full-fledged IDE capabilities, in
the fashion of Visual Haskell [2].

Yi is also lacking dynamic capabilities: while the configura-
tion mechanism is flexible, activating a new configuration requires
restarting the editor. We plan to solve this problem by saving the
editor state before restart and reloading it afterwards. This approach
is feasible because the state of the editor is a purely functional data
structure.

We point the interested reader to the Yi homepage [3] for further
information, and to Hackage [1] for downloading and installing Yi.

Acknowledgments
The Yi project was started in 2004 by Don Stewart [4]. Yi has
had more than forty contributors since then —too many to cite
individually— but they shall all be thanked for sharing the load
in pushing Yi forward. I would like to mention a few of them,
though: the early adopters Allan Clark and Corey O’Connor and
the current maintainer of the Vim key-bindings, Nicolas Pouillard.
I am also grateful to my colleagues Gustav Munkby and Krasimir
Angelov for the local support they provided, in addition to their
contributions.

Finally, the Haskell community as a whole helped enormously
in making Yi a reality: the Glasgow Haskell Compiler and the nu-
merous Haskell libraries available on Hackage [1] form an excel-
lent platform for the development of Yi.

References
[1] hackageDB: a repository for Haskell packages. URL

http://hackage.haskell.org/packages/hackage.html.

[2] K. Angelov and S. Marlow. Visual Haskell: a full-featured
Haskell development environment. In Haskell ’05: Proceed-
ings of the 2005 ACM SIGPLAN workshop on Haskell, pages
5–16, New York, NY, USA, 2005. ACM.

[3] J.-P. Bernardy et al. The Yi page on the Haskell wiki. URL
http://haskell.org/haskellwiki/Yi.

[4] D. Stewart and M. M. T. Chakravarty. Dynamic applications
from the ground up. In Haskell ’05: Proceedings of the 2005
ACM SIGPLAN workshop on Haskell, pages 27–38, New York,
NY, USA, 2005. ACM Press.

[5] D. Stewart and S. Sjanssen. Xmonad. In Haskell ’07: Proceed-
ings of the ACM SIGPLAN workshop on Haskell, page 119,
New York, NY, USA, 2007. ACM.


