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Abstract—In this paper we design interleavers for bit-
interleaved coded modulation (BICM) based on popular con-
volutional codes and quadrature amplitude modulation with
Gray mapping. We analyze the so-called modular interleavers
where the outputs of the convolutional encoder are appropriately
matched with the input bits of the modulator. To quantify the
achievable improvements we develop bounds on the coded BER
using the multidimensional weight distribution spectrum of a
code together with an equivalent QAM channel model. Based
on these bounds, we show that the assignment of the encoder’s
output to the bit positions in the symbol significantly affects the
system performance. The analytical developments are contrasted
with numerical simulations. The improvements obtained through
the proposed approach do not change the receiver’s complexity
and, depending on the system’s parameters (rate, modulation,
code’s memory), they may be up to 1.7 dB!
Index Terms—BER, BICM, Convolutional Codes, Gray Map-

ping, QAM, Modular Interleaver, Random Interleaver, Union
Bound

I. INTRODUCTION

Bit-interleaved coded modulation (BICM) [1], [2] is a
flexible modulation/coding scheme where the output of the
channel encoder and the input to the modulator are separated
by a (pseudo)random bit-level interleaver. At the receiver’s
side, the reliability metrics are calculated for the coded bits in
the form of logarithmic likelihood ratios, or simply L-values.
These metrics are then deinterleaved and further used by the
soft-input channel decoder.
Following the framework set in [2], (pseudo)random (RN)

interleavers are most often applied. This simplifies the analysis
of the resulting BICM systems but leads to sub-optimality
already noted in the literature. For example, [1] postulated
the application of independent interleavers between each of
the encoder’s output and the corresponding modulator’s input
(e.g., using three interleavers for a 2/3-rate encoder, each of
them feeding bits to one of the bits’ positions in the 8-PSK
symbol). A similar scheme was proposed in [3] where the
idea of BICM with iterative demapping was introduced. In
[4] similar modular (MD) interleavers—called there “in-line”
interleavers—were proposed in the context of serially con-
catenated systems. When such MD interleavers are used, the
performance gains will strongly depend on the bit assignment
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between the encoder’s output and the (unequally protected) bit
positions in the complex symbol. Interleaver design for turbo
coded BICM has been analyzed in [5] where a greedy design
algorithm was proposed, and in [6] for BICM with low-density
parity-check (LDPC) codes.
Performance evaluation of BICM for high-order modula-

tions was usually limited by the lack of formal description of
the metrics used in the decision process. This problem was
partially solved by bounding techniques, e.g., [1] or the so-
called expurgated bounds in [2]. However, these techniques
are either very loose, or when tight, they must be algorithmic.
In this paper we use the results presented in [7], where

analytical expressions for the distribution of the L-values in
QAM were presented. Combining them with a generalized
transfer function of a code [8], [9] allows us to develop
union bounds for the coded BER and to compare the system
performance of BICM with different interleavers. In particular,
we compare the results of BICM with modular interleavers
(BICM-MD) with those obtained using the random interleaver
(BICM-RN) of [2] quantifying the achievable improvements
when an optimal bit assignment is used. Although previous
works we cited noted the influence of the interleaver design
and also the effect of mapping, to the best of our knowledge,
this paper is the first to analyze formally the interleaver design
for BICM transmissions; this is its main contribution.
In this work low complexity BICM receivers are analyzed.

Thus, we do not address design issues of BICM with iterative
detection/decoding which appear when strong codes (e.g.,
turbo or LDPC codes) are used, or when BICM itself is
treated as a serial concatenation of the channel encoder and the
modulator. For the latter case, abundant literature exists which
discusses the design of bit mappings for improving the system
performance in the waterfall or the error-floor region [10]–
[12]. Simple BICM schemes analyzed in this paper are used in
delay constrained systems, for example in control information
blocks as proposed by the WINNER project [13]. Other
application examples include the low complexity receivers
proposed by the IEEE for the multiband OFDM ultra wide-
band transceivers [14].
The paper is organized as follows. We introduce the model

of the system in Section II. The interleaver design is analyzed
in Section III. In Section IV we present the numerical results.
Finally, in Section V the conclusions are drawn.
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Fig. 1. Model of BICM with modular interleavers: a convolutional encoder followed by m interleavers (π1, . . . , πm), the M2-QAM mapper (M), an
AWGN channel, the demapper (M−1), the interleaved metrics, the deinterleavers and the Viterbi Decoder.

II. SYSTEM MODEL

The model of BICM-MD is shown in Fig. 1. The infor-
mation bits b(n) are encoded by a feedforward convolutional
encoder with rate R = 1/m. The encoder is defined by the
polynomial generators (g1, . . . , gm) each of them producing
the coded bits ck(n) which are gathered in codewords c(n) =[
c1(n), . . . , cm(n)

]
(as a notational convention, boldface sym-

bols denote vectors). These bits are further independently
permutated into c′(n) by ideal (infinite depth) independent
interleavers πk, k = 1, . . . , m
The coded and interleaved bits c′(n) are mapped to M2-

QAM symbols using a memoryless mapping M : {0, 1}m →
X , where X = {a1, . . . , aM} is an M -level pulse amplitude
modulation (PAM) constellation with M = 2m. The mapping
considered here is based on the so-called binary reflected Gray
code (BRGC) [15]. Consequently, the M2-QAM constellation
is formed by the direct product of two M -PAM constellations.
The symbols from X are defined as al = (2l−1−M)Δ with
l = 1, . . . , M , where 2Δ is the minimum distance between
the constellation symbols. The constellation is normalized to
average unitary energy so Δ =

√
3

2(M2−1) .
We define also Go as the o-th enumeration order of the

polynomials generators (g1, . . . , gm) where o = 1, . . . , m!.
The need for this notation will become clear after Section III
where Go will be an element of the optimization space.
The result of the transmission is given by r(n) = s(n) +

η(n), where η ∈ R is a zero-mean, real, white Gaussian
noise with variance N0/2. The average signal-to-noise ratio
(SNR) per complex symbol is given by γ = 1

N0
. On the

receiver side, the reliability metrics of the transmitted bits
are calculated under the form of logarithmic likelihood ratios
(L-values) for each bit position. The soft information L′(n)
is deinterleaved and then passed to a Viterbi decoder which
produces an estimation of the transmitted bit b(n). We consider
here the case where the number of the encoder’s outputs is
equal to the number of bits in the real/imagainary parts of the
QAM symbols. However, the analytical framework we develop
will also allow us to study other cases.
In this paper we are interested in low complexity BICM

schemes and therefore a convolutional code is used. Analysis
of more complex implementations such as BICM with iterative
decoding or BICM with capacity approaching codes are out of
the scope of this paper. We also emphasize that the proposed
scheme is different from the so-called multi-level coding

(MLC) [16] through the fact that only one encoder is present
in the system. That is, each of the independently interleaved
coded bits carries information about the same information bits,
as opposed to MLC, where multiple encoders are related to
independent streams of information bits.

A. Equivalent Channel Models

Using the results presented in [7] it is possible to build
an equivalent model for the M2-QAM BICM Channel shown
in Fig. 1. In this model each of the bits can be seen as
bits sent using binary phase shift keying (BPSK) over a
virtual AWGN channel with different SNR. Then the L-values
Lk(n) can be modeled as random Gaussian variables with
the same variance but with means which depends on both the
transmitted symbol (i.e., not only the bit’s value but also the
value of its neighbors in the codeword) and the bit’s position.
Alternative models where both the variance and the mean
are changing were shown to be less accurate. In fact, the
approximation whose principles we shortly outline here yields
accurate approximation of the distribution of the L-values in
the vicinity of zero (for more details see [7], [17], [18]).
Due to the properties of BRGC, symbols with the k-th bit

set to b are clustered so that the closest symbol with the
opposite value of the bit at the position k, may be at a distance
that varies from 2Δ to 2Δ · M

2k . That is, when k = m,
there is always an adjacent symbol (at distance 2Δ) with the
opposite value of the bit. On the other hand, for k = 1, the
number of possible distances grows to M/2. This effect is
sometimes referred as “protection” experienced by the bits,
which depends on their position. For k = m the bits have
always the same “low” protection but for k = 1, depending
on the value of other bits in the modulating codeword, the
protection may be relatively high.
This effect is reflected in the distribution of the L-values

that changes depending on the sent symbol. It is possible to
model this phenomenon using a Gaussian distribution whose
variance σ2 depends uniquely on the SNR, but whose mean μj

depends also on the distance of the sent symbol to the closest
symbol with the opposite bit. Consequently, the L-values can
be modeled as

Lk(n) ∼ N (μj , σ
2), (1)

where N (a, b) is a Gaussian distribution with mean value a
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and variance b, and

μj =4γΔ2(2j − 1) (2)

σ2 =8γΔ2, (3)

with j = 1, . . . , M/2.
According to (1), (2), and (3), there are M/2 different

Gaussian distributions that can be used to model the L-values.
We define a virtual channel Ωj as an AWGN channel with
parameters (μj , σ

2).
For the general case of an MD interleaver, we define ρk,j

as the probability that a bit at position k passes through Ωj .
It is given by

ρk,j =

⎧⎪⎨
⎪⎩

1
2m−k

if j = 1, . . . , 2m−k

0 if j = 2m−k + 1, . . .
M

2

, (4)

that is, Ω1 can be used by the bit for all positions k, Ω2 only
for k ≤ m − 1, Ω3 and Ω4 only for k ≤ m − 2, Ω5, . . . , Ω8

for k ≤ m − 3, and so on.
If instead we consider the standard RN interleaver, we have

to average ρk,j over the bit’s positions. Thus, the probability
of selecting the j-th virtual channel Ωj is given by

ωj =
1
m

m∑
k=1

ρk,j =
2

m · M
m−�log2(j)�∑

k=1

2k−1

=
2(2m−�log2(j)� − 1)

m · M . (5)

Finally, we can write

Pr{Lk(n) ∼ N (μj , σ
2)} =

{
ρk,j for BICM-MD

wj for BICM-RN,
(6)

TABLE I

PROBABILITIES OF SELECTING THE DIFFERENT VIRTUAL CHANNELS FOR

DIFFERENT BIT POSITIONS FOR BICM-MD, CF. (4).

ρk,j

k\j 1 2 3 4 5 6 7 8
1 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
2 1/4 1/4 1/4 1/4 0 0 0 0
3 1/2 1/2 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0

TABLE II

PROBABILITIES OF SELECTING THE DIFFERENT VIRTUAL CHANNELS

BICM-RN, CF. (5).

j 1 2 3 4 5 6 7 8
ωj 15/32 7/32 3/32 3/32 1/32 1/32 1/32 1/32

where the probabilities ρk,j and ωj are given by (4) and
(5) respectively. The resulting equivalent channel models are
schematically shown in Fig. 2.
To clarify these briefly outlined concepts we will use an

example. Consider a rate R = 1/4 convolutional code used
in conjunction with 256-QAM (M = 16). There are 4 bit
positions per real/imaginary part, and 8 = 16

2 virtual AWGN
channels with mean values and variances given by (2) and (3)
respectively. The probabilities of sending the bit at position k
over the channel Ωj for MD and RN interleavers are shown,
respectively, in Table I and Table II.

III. PERFORMANCE ANALYSIS

A. Union Bounds for the Coded BER

Union bound techniques are a very simple method to
approximate the coded BER of a convolutional code. In this
section we develop union bounds for the BER of BICM-
MD and BICM-RN transmission using the equivalent channel
models outlined before. The bounds presented in this section
are tight for medium/low BER (less than 10−4); tighter bounds
as those presented in [19], [20] might be used to improve the
accuracy of the BER estimation.
For any convolutional code it is possible to define a gener-

alized transfer function which enumerates not only the number
of non-zero output bits over a path, but the location of those
bits, i.e., it indicates which branch the non-zero outputs are
associated with, [1], [8]. Using the notation of [21] we define
the generalized transfer function of the code as

T (D, L, I) =
∑
d,l,i

Td1,...,dn,l,iD
d1
1 . . . Ddn

n LlIi, (7)

where the generalized weight distribution d = (d1, . . . , dn)
denotes the weights of each output of the encoder, and D =
(D1, . . . , Dn), L, and I are dummy variables. Td1,...,dn,l,i

denotes the number of paths diverging from the zero state
and merging with the zero state after l steps, associated with
an input sequence of weight i and an output sequence of
generalized weight d.



Once the transfer function of the code is determined, the bit
weight enumerating function (WEF) can be calculated as

B(D) =
∂T (D, L, I)

∂I

∣∣∣∣
I=L=1

. (8)

Based on the generalized bit WEF B(D), it is possible
to compute the weight distribution spectrum of the code
taking into account not only the number of errors (classic
approach) but the location of those errors. The values of this
m-dimensional weight distribution spectrum can be extracted
directly from from (8) as

β(d) =
1∏m

k=1 dk!
· ∂B(D)
∂Dd1

1 . . . ∂Ddm
m

∣∣∣∣
D=0

. (9)

Using this weight distribution spectrum, the union bound
(UB) on the BER is given by

Pb ≤ UB =
∑
d

β(d) · PEP(d), (10)

where PEP(d) is the pairwise error probability which repre-
sents the probability of detecting a codeword with Hamming
weight d instead of the transmitted all-zero codeword.
Equation (10) is the generalization of the conventional union

bound [21, Ch. 5] which can be obtained by setting Di = D
∀i and d1 + d2 + . . . + dn = d.

B. Interleaver Structure

We introduce the variable uk,j which denotes the number
of bits among d that used Ωj in the bit position k. We
also introduce vj which denotes the number of bits that used
Ωj added up over all the bit positions. Consequently, the
constraints for the different variables are:

M/2∑
j=1

uk,j = dk,

m∑
k=1

uk,j = vj . (11)

Due to the channel and the infinite depth interleaver, the
L-values are assumed to be independent Gaussian random
variables with different mean values and variances. Thus, the
sum of these d Gaussians will be a new Gaussian random
variable. Its mean and variance will be determined based on
the number of bits that randomly were transmitted through
the different Ωj channels. Thus, the conditional pairwise error
probability of selecting a wrong path of length d is given by

PEP(d|v) = Q

⎛
⎝M/2∑

j=1

vjμj

/√√√√σ2

M/2∑
j=1

vj

⎞
⎠ ,

where Q(x) = 1√
2π

∫ ∞
x

exp(−t2/2) dt and v =
(v1, . . . , vM/2).
Conditioning on the number of bits going through the

different channels, we have that

PEP(d) =
∑
v

PEP(d|v) · Prob
{
v
}

=
∑
v

PEP(d|v) ·
∑
U

Prob{v|U} · Prob{U},
(12)

where
∑

u Prob{v|u} · Prob{u} has to be computed for
the different interleaver configurations and U is a matrix
containing the elements uk,j .
1) Modular Interleaver: In this case,

∑
U

Prob{v|U} · Prob{U} =
∑
U

m∏
k=1

dk!
M/2∏
j=1

ρ
uk,j

k,j

uk,j !
, (13)

and thus

PMD
b (Go) ≤

∑
d

β(d)
∑
v

Q

⎛
⎝M/2∑

j=1

vjμj

/√√√√σ2

M/2∑
j=1

vj

⎞
⎠ ·

∑
U

m∏
k=1

dk!
M/2∏
j=1

ρ
uk,j

k,j

uk,j !
. (14)

Note that in (14) we emphasize the fact that the BER
depends on the enumerating order Go.
2) Random Interleaver: In this case,

∑
U

Prob{v|U} · Prob{U} = d!
M/2∏
j=1

ω
vj

j

vj !
, (15)

and consequently

PRN
b ≤

∑
d

β(d)
∑
v

Q

⎛
⎝M/2∑

j=1

vjμj

/√√√√σ2

M/2∑
j=1

vj

⎞
⎠ ·

d!
M/2∏
j=1

ω
vj

j

vj !
. (16)

Note that in this case, the bound does not depend on the
polynomial order (although it obviously depends on the set of
polynomial generators).

C. Simplifications

Equation (14) contains three summations which may be
tedious to evaluate, specially when the size of the constellation
is large. In order to efficiently compute the bound, in this
section we propose to use only a reduced part of the whole
weight distribution spectrum β(d).
First note that the summations in (14) were presented in

the following order: d, v and U. This order was selected to
clarify the developments, however, we note that it is possible
to suitably invert the order of the summations, i.e., instead
of implementing the three group of summations in (14), it is
possible carry out the summations starting fromU. For a given
U, d and v can be calculated from (11).
Using this approach, the bound for BICM-MD case can be

rewritten as

PMD
b (Go) ≤

∑
U

β(d) · Q
⎛
⎝M/2∑

j=1

vjμj

/√√√√σ2

M/2∑
j=1

vj

⎞
⎠ ·

m∏
k=1

dk!
M/2∏
j=1

ρ
uk,j

k,j

uk,j !
, (17)



where dk and vj are given by (11).
Additionally, it is necessary to restrict the values of d to

be considered. For all the numerical examples presented in
Section IV we carry out the summation in (17) for all the
values of U such that

df ≤
m∑

k=1

dk ≤ df + 4. (18)

where df is the free distance of the code.
We selected df + 4 since no notable improvement in the

accuracy of approximation of the true value of the UB was
observed beyond this limit.

IV. NUMERICAL EXAMPLES

As mentioned before the performance of BICM-MD de-
pends on the enumeration of the polynomial generators Go.
Thus, the optimal bit assignment problem can be seen as the
problem of finding the optimum enumeration order among the
m! candidates.
For a given γ it is possible to find the optimal enumeration

order. However, it is more practical to compare the perfor-
mance for a common target BER (BER0). Setting γ such that
BER is close to BER0 is sufficient in practice, i.e., the optimal
enumeration order stays constant in a very large band of γ.
We define Ĝ as the enumerating order that minimizes the

SNR needed to reach BER0, and γĜ
0 as the value of SNR that

produces BER0. Analogously, Ǧ is defined as the enumeration
order that maximizes the SNR for a given BER0, i.e., the
“worst” bit assignment. We also introduce the variables γǦ

0 ,
and γRN

0 which represent the value of SNR that the last two
different configuration need to reach BER0.
For all the simulations presented in this section, the opti-

mum distance spectrum (ODS) codes [22] were used. How-
ever, we note that the optimality of these codes for BICM-MD
has not been yet proven. This issue is out of the scope of this
paper and remains as a problem to be further investigated
For all the results presented below, the optimization of

the enumerating orders was carried out for BER0 = 10−6.
Additionally, in order to efficiently compute the values of the
bit WEFs, the recursive algorithm proposed in [23] was used.

A. BICM 16-QAM and R = 1/2
For 16-QAM there are only two channels Ω1 and Ω2, and

the probabilities associated are [cf. (4) and (5)]

ρ1,1 = ρ1,2 = 0.5, ρ2,1 = 1, ρ2,2 = 0
ω1 = 0.75, ω2 = 0.25

Since R = 1/2, two enumeration orders Go are possible:
either G1 = (g1, g2) or G2 = (g2, g1).
The UB for BICM-MD in this case is given by

UB ≈
∞∑

u1,1=0

∞∑
u2,1=0

∞∑
u1,2=0

∞∑
u2,2=0

β(d1, d2)I[df≤d≤df+4]·

Q

(
v1μ1 + v2μ2

σ
√

v1 + v2

)
·

2∏
k=1

dk!
2∏

j=1

ρ
uk,j

k,j

uk,j !
, (19)
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Fig. 3. BER for the convolutional codes for BICM-RN (circles), BICM-MD
(asterisks and squares for Ĝ and Ǧ respectively), and the bounds for RN (solid
lines) and MD (dashed and dotted lines) for 16-QAM and R = 1/2.

TABLE III

OPTIMUM BIT ASSIGNMENTS FOR BICM-MD WITH R = 1/2 AND

16-QAM FOR BER0 = 10−6 .

K Ĝ Ǧ γǦ
0 –γ

Ĝ
0 γRN

0 –γĜ
0

3 (7,5) (5,7) 0.16 dB 0.16 dB
4 (15,17) (17,15) 0.23 dB 0.20 dB
5 (23,35) (35,23) 0.26 dB 0.22 dB
6 (75,53) (53,75) 0.11 dB 0.21 dB

where dk and vj are given by (11). Here we added an indicator
function I[S] which is one if S is true, and zero if S is false.
Note also that the sign ≈ is used to emphasize the fact that due
to (18), (19) is an approximation rather than an upper bound.
For BICM-RN the UB on the BER is given by

UB ≈
df+4∑
d=df

β(d)
d∑

v1=0

Q

(
v1μ1 + v2μ2

σ
√

v1 + v2

)
d!

2∏
j=1

ω
vj

j

vj !
, (20)

where v2 = d − v1.
In Fig. 3 we present the numerical results obtained for

different constraint lengths, contrasting them with the results
obtained through numerical simulations. We used ODS codes
with generating polynomials (5, 7), (15, 17), (23, 35), and
(53, 75) forK = 3, 4, 5 and 6 respectively (all the polynomials
are given in octal notation) . The summary with the optimum
bit assignments in this case is shown in Table III.

B. BICM 64-QAM and R = 1/3
We again use ODS codes, i.e., (5,7,7), (13,15,17) and

(25,33,37) for K = 3, 4 and 5 respectively. Now, there are
8 virtual channels, 3 bit positions, and for each value of K ,
there are 3! = 6 different possible enumeration orders. We
refrain from showing the explicit form of (14) and (16) not to
overcrowd the paper with equations.



TABLE IV

OPTIMUM BIT ASSIGNMENTS FOR BICM-MD WITH R = 1/3 AND

64-QAM FOR BER0 = 10−6 .

K Ĝ Ǧ γǦ
0 –γ

Ĝ
0 γRN

0 –γĜ
0

3 (5,7,7) (7,7,5) 0.75 dB 0.75 dB
4 (15,17,13) (17,15,13) 0.23 dB 0.72 dB
5 (25,33,37) (37,33,25) 0.32 dB 0.63 dB

Searching for the bit assignment, the optimum polynomial
order was found for each constraint length. In Table IV the
optimal enumeration orders found are presented together with
the improvements compared with both BICM-RN, and BICM-
MD with the worst enumeration order. In Fig. 4 the BER
curves are shown.
Analyzing the results presented in Fig. 3, Fig. 4, and

Tables III and IV, we can draw the following conclusions

• BICM-MD using the optimum enumeration order always
outperforms BICM-RN. For the analyzed cases, these
improvements can be up to 0.75 dB for BER0 = 10−6.
Moreover, we note that the achievable improvements
strongly depend on the target BER. For example, for
R = 1/3, 64-QAM, K = 3 and for a BER0 = 10−3,
the improvements are up to 1.7 dB!

• BICM-MD with the worst enumeration can degrade the
system performance compared with BICM-RN (cf. Fig. 3
for K = 5). Thus, deciding to use the modular inter-
leavers optimization of the enumeration order Go is a
must.

• On the other hand, BICM-MD with the worst enumera-
tion order can outperform the RN interleaver (cf. K = 6
Fig. 3 and K = 4, 5 in Fig. 4). Consequently, BICM-RN
cannot be, in general, considered as a “conservative” so-
lution in between the “best” and the “worst” enumeration
order of BICM-MD.

We emphasize that the developed bounds are asymptotically
tight and match the simulated performance for BER less than
10−4 (cf. Fig. 3 and Fig. 4). For all the studied cases, only a
relatively small number of enumeration orders had to be tested,
yet to obtain the BER points heavy numerical simulations were
needed. On the other hand, the bounds developed are ready-
to-use formulas and their run-time is negligible comparing to
the simulations.
Finally we recall the fact that in order to improve the system

performance using BICM-MD, the optimization of the bit’s
assignments (i.e., the enumeration order) is a mandatory step;
skipping it can degrade the performance when comparing to
BICM-RN.
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Fig. 4. Simulated BER for the convolutional codes for BICM-RN (circles),
BICM-MD (asterisks and squares for Ĝ and Ǧ respectively) and the bounds for
BICM-RN (solid lines) and BICM-MD (dashed and dotted lines) for 64-QAM
and R = 1/3.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed and designed the so-called
modular interleavers for BICM transmissions. We developed
analytical bounds for the coded BER and we showed that
using a proper bit assignment of the output bits of the
encoder to the M2-QAM symbol, it is possible to improve the
performance of the system when comparing to the “conven-
tional” (unstructured) interleaver design. Moreover, we showed
that a suboptimal bit assignment could in fact degrade the
performance of the system.
The analytical framework we established and the results

we presented point to some sources of sub-optimality of the
unstructured design of the BICM transmitters. First of all,
the convolutional codes that are commonly used are those
whose performance is optimized for BPSK transmission over
AWGN channels. It might then be possible to design codes that
are optimized to operate with high-order modulation schemes
(such as M2-QAM). Secondly, the assignment between the
encoder’s output and the modulator input we explored, has
more dimensions, in general related to the case when the
number of coded output bits and the modulator input bits do
not match. The relationship between such cases and the search
for optimal codes is another open question. These issues are
left for further investigation.
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