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Abstract

There is an increasing interest in modeling and applications of bio�lm reactors� Com�

monly� bio�lm reactors are modeled as a single continuously stirred bio�lm reactor �CSBR��

or as a series of such� The models can be used to extract information about the reactor�

for design and to predict reactor e�uent characteristics as a function of in	uent charac�

teristics� A CSBR consists of a stirred tank� which the bulk water 	ows through� and

from which substrates di
use into a bio�lm where they may be transformed into new sub�

stances by bacteria living in the bio�lm� Here� standard assumptions are used to derive a

general and 	exible dynamic model of CSBR�systems� where the reaction kinetics are of

zero or �rst order� An exact� and an approximate transfer function� which enables easy

simulations� analysis� and implementation in real�time softwares� is derived� Particular

focus is on pulse responses� which is an important experimental procedure in control and

reactor design� Explicit equations for the pulse responses are presented� and parameter

dependancy is discussed� Experimental data from a pilot plant nitrifying trickling �lter

are used to illustrate the use of transfer functions for identi�cation of reactor and bio�lm

parameters�

Keywords� Bio�lm� di
usion� dynamics� identi�cation� modeling� pulse response� reac�

tor� residence time� transfer function� trickling �lter� wastewater�



Contents

� Introduction �

� Notation �

� Modeling �

Zero order kinetics � � � � � � � � � � � � � � � � � � � � � � � � � �

First order kinetics � � � � � � � � � � � � � � � � � � � � � � � � � �

� Exact transfer function �

� Singularities of the transfer function 	

� Approximate transfer function �


�� Determination of pulse response � � � � � � � � � � � � � � � � � � � � � � � � �

��� Determination by use of the approximate transfer function � � � � � �

���� Truncation of exact response � � � � � � � � � � � � � � � � � � � � � � �

���� Calculation by �nite di
erences � � � � � � � � � � � � � � � � � � � � �

	 Simulations ��

�� Pulse responses � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Comparison between the methods � � � � � � � � � � � � � � � � � �

Dependency on parameters � � � � � � � � � � � � � � � � � � � � � �

Parameter identi�cation � � � � � � � � � � � � � � � � � � � � � � ��

��� Step responses � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Conclusion and discussion ��

i



Appendix ��

Simulation of an arbitrary in	uent concentration � � � � � � � � � � � � � � � ��

Order of the singularities of G�s� � � � � � � � � � � � � � � � � � � � � � � � ��

Taylor coe�cients � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Partial Fraction Decomposition � � � � � � � � � � � � � � � � � � � � � � � � �

ii



� Introduction

Fixed bio�lms can be characterized as an organic matrix attached to a substratum� In

bio�lm reactors the bacterial populations inside such organic matrices are used for carrying

out transformations of some speci�c substances into other substances�

One �eld� where bio�lm reactors have attained increased attention� is potable and wastew�

ater treatment� They are particularly popular for nitrogen reduction since� due to the

low growth rates of nitri�ers� the nitrifying population may be washed from reactors with

suspended bacteria�

A nitrifying trickling �lter is an example of such bio�lm reactors� Others are� rotating

biological contactors� bio�lters and KMT�processes� Those can be modeled as a single

continuously stirred bio�lm reactor �CSBR�� or a series of CSBRs� Each CSBR is modeled

as a continuously stirred tank �CST� communicating with a bio�lm compartment �BFC�

by di
usion into and out of the bio�lm� This approach has been widely used in modeling

of bio�lm reactors during the last decades ��� �� �� ��� The described modeling approach is

illustrated in Figure � where cb is the substrate bulk concentrations in the CSTs� J is the

	ux into �positive� and out of �negative� the bio�lm� Q is the 	ow through the reactor�

and V is the total bulk water volume in the reactor�
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Figure � Illustration of the modeling approach�





� Notation

A total area of bio�lm in the reactor �m��

C� c substrate concentration inside the bio�lm �gm�� or no dim��

Cb� cb substrate concentration in the bulk liquid �gm�� or no dim��

c� concentration pulse coe�cient �gm�� or no dim��

D substrate di
usivity within the bio�lm �m�d���

d Taylor expansion coe�cients for F �s�

F denumerator of transfer function

f Taylor expansion coe�cients for F �s�n

G transfer function

J substrate 	ux into bio�lm �gm��d���

ks Monod saturation coe�cient �gm���

L bio�lm thickness �m�

m number of singularities considered

m� mass of trace substance added to the reactor �g�

M number of discretization points

n number of CSBRs in series

Q 	ow through the reactor �m�d���

R� r speci�c reaction rate �no dim��� �d���

s Laplace variable

t� �t time �no dim��� �d�

V total bulk liquid volume in the reactor �m��

X bacterial concentration in the bio�lm �gCODm���

x� �x distance in the bio�lm from the substratum �no dim��� �m�

Y biomass yield coe�cient �gCODg���

Greek letters

� singularities of the transfer function

� volume fraction of water in bio�lm �m�m���

� dimensionless �rst order rate coe�cient

�m maximum speci�c growth rate �d���

� dimensionless time constant

� dimensionless bio�lm 	ux coe�cient

�



� Modeling

It should be stressed that in the modeling and analysis that follow� if not otherwise

pointed out� the bio�lm reactor is divided into n equal CSBRs� This is an abundant

assumption� made only for easier notation and clearer analysis� Every CSBR can be

modeled independently of each other� i�e� bio�lm thickness� di
usion coe�cients� bio�lm

porosity� volume of bulk water� bio�lm area� reaction rate� kinetics and stoichiometry can

be modelled independently for each CSBR� The methods and analysis will remain the

same� but since they cannot be carried out in dimensionless time in a straight forward

manner� indexing and expressions become rather cumbersome�

With the modeling approach illustrated in Figure � a mass�balance over each CST gives

�V�n�
d

d�t
cbj � Q�cbj�� � cbj�� Jj	 j � 	 � 
 
 
 n
 ��

Note that time is denoted by �t instead of t� which will be used to denote dimensionless

time�

Each bio�lm compartment �BFC� is modeled as a bio�lm with a surface area A�n� where

A is the total area of bio�lm in the reactor� The following assumptions are made in the

modeling of the BFCs�

A� All substrate concentrations in the bio�lm are continuous�

A�� The fraction of water in the bio�lm ���� the substrate di
usion coe�cient �D�� and

the bio�lm thickness �L� are assumed constant�

A�� The transport of substrates inside the bio�lm obeys Fick�s law of di
usion in one

dimension�

A�� There is no di
usion resistance between the bulk and the bio�lm�

A�� The bacterial concentrations in the BFCs are constant in time� but may vary with

depth in the bio�lm�

As mentioned� assumption A� can be relaxed such that V � A� �� D� and L are constant

in each CSBR� but not equal in all CSBRs�

We begin by modeling a reactor where no reaction takes place in the bio�lm� and then

show that this is equivalent to when a reaction of zero order kinetics takes place in the

bio�lm�

�



Assumption A to A� can be used to describe the substrate concentrations inside a non�

reacting bio�lm by a mass�balance�

�
�cj
��t

� D
��cj
��x�

	 � � �x � L	 j � 	 � 
 
 
 n	 ���

where D is the di
usion coe�cient for the substrate considered in the bio�lm� Note that

the distance from the bio�lm substratum is denoted �x� since x will denote the correspond�

ing dimensionless variable�

Two boundary conditions are needed for eqn� ���� The �rst is a consequence of the

fact that no substrate is di
using through the substratum� and the second is a result of

assumption A��

�

��x
cj��	 �t� � �	 cj�L	 �t� � cbj��t�	 j � 	 � 
 
 
 n
 ���

The substrate 	ux linking eqn� �� for the bulk� and eqn� ��� for the bio�lm can be

expressed as�

Jj��t� � �A�n�D
�

��x
cj�L	 �t�	 j � 	 � 
 
 
 n	 ���

due to assumptions A to A��

In the analysis to follow� it facilitates to use the equations in a dimensionless form� There�

fore� we introduce the following scaling of the time �t and the distance �x from the substra�

tum�

t �
D

L��
�t and x �

�x

L
���

Eqn� ��� combined with ���� then takes the form

V D

nL��

d

dt
cbj�t� � Q�cbj���t�� cbj�t���

AD

nL

�

�x
cj�	 t�
 ���

If we let

� �
V D

nL��Q
and � �

AD

nQL
	

eqn� ��� cah be rewritten as

�
d

dt
cbj�t� � cbj���t�� cbj�t�� �

�

�x
cj�	 t�
 ���

In the dimensionless form eqn� ��� becomes

�

�t
cj�x	 t� �

��

�x�
cj�x	 t�	 � � x � 
 ���

Eqns� ��� and ��� can be shown to also model a bio�lm where reaction of the substrate

takes place in the bio�lm� A reaction term is then added to the mass�balance ����

�
�cj
��t

� D
��cj
��x�

� rj��x	 cj�	 � � �x � L	 j � 	 � 
 
 
 n	 ���

�



where rj is the volumetric speci�c rate of reaction�

The dimensionless equivalence of eqn� ��� then becomes

�cj
�t

�
��cj
�x�

�Rj�x	 cj�	 � � x � 	 j � 	 � 
 
 
 n	 ���

where Rj � �L��D�rj�

The rate of reaction is commonly modeled by zero or �rst order kinetics� or by a Monod�

expression

rj�x	 cj� � Xj�x�
�m
Y

cj
ks � cj

	 ��

where X is the bacterial concentration� which may vary with distance x from the sub�

stratum� Y is the yield coe�cient of the bacteria� �m is the maximum growth rate of the

bacteria� and ks is the Monod saturation coe�cient� The Monod�expression can be seen as

a transition from �rst order to zero order kinetics with increasing substrate concentration�

Zero order kinetics

At high substrate concentrations the rate expression �� can be assumed of zero order�

Rj�x� � Xj�x�
�mL

�

Y D
	 � � x � 


By di
erentiation� it can be veri�ed that the stationary solutions to eqns� ��� and ���

are

�cbj � �cb� � �
jX

k��

Z �

�
Rk�z�dz	 j � 	 �	 
 
 
 n	 ���

�cj�x� � �cb� � �
jX

k��

�Z
�

Rk�z�dz �
�Z

x

yZ
�

Rj�z�dzdy	 j � 	 �	 
 
 
 n	 ���

where �cb� is the in	uent concentration� It is easy to verify by insertion that eqns� ��� and

��� with boundary conditions ���� and zero initial conditions describe the deviations

�cbj�t� � cbj�t�� �cbj and �cj�x	 t� � cj�x	 t�� �cj�x� ���

from the stationary solutions� Hence� the problem with no reaction and the problem with

zero order reaction are equivalent from a dynamic point of view� Note that eqn� ���

implies that the spatial distribution of the reaction rate in the bio�lm does not a
ect the

in	uent�e�uent behavior� Further� only the sum of reaction rates integrated over the

bio�lm in each CSBR� i�e� the mean reaction rate� will a
ect the level of the e�uent�

However� it does not a
ect the dynamics�

�



First order kinetics

At low substrate concentrations the rate expression �� can be assumed of �rst order�

rj�cj� �
X�m
Y ks

cj


Denoting �X�mL
����Y ksD� by �� eqn� ��� becomes

�

�t
cj�x	 t� �

��

�x�
cj�x	 t�� �cj�x	 t�
 ���

The stationary solutions to eqns� ��� and ��� now become

�cbj � �cb�


� � �
p
� tanh�

p
���j

	 j � 	 �	 
 
 
 n

�cj�x� � �cb�
cosh�

p
�x�

cosh�
p
��� � �

p
� tanh�

p
���j

	 j � 	 �	 
 
 
 n


� Exact transfer function

The exact transfer function from in	uent to e�uent concentration will be derived for �rst

order kinetics� However� by letting � in eqn� ��� be zero we get the case of no reaction�

which has been shown to be equivalent to zero order reaction� Hence� the transfer function

will hold for all these cases�

Assuming initial stationary conditions� Laplace transformation of eqn� ��� gives

�sCb
j �s� � Cb

j���s�� Cb
j �s�� �

d

dx
Cj�	 s�	 ���

where all transformed variables now represent the deviations ��� from initial equilibrium

values� i�e�� Cb
j �s� � Lf�cbj�t�g and Cj�x	 s� � Lf�cj�x	 t�g�

Laplace transformation of eqn� ��� gives

sCj�x	 s� �
d�

dx�
Cj�x	 s�� �Cj�x	 s�	 � � x � 	

which has the solution

Cj�x	 s� � A�s� cosh�x
p
s� �� �B�s� sinh�x

p
s� ��


Since

d

dx
Cj�x	 s� � A�s�

p
s� � sinh�x

p
s� �� �B�s�

p
s� � cosh�x

p
s� �� ���

�



and the Laplace transforms of the boundary conditions ��� are

d

dx
Cj��	 s� � � and Cj�	 s� � Cb

j �s�	

it follow that

A�s� �
Cb
j �s�

cosh�
p
s� ��

and B�s� � �


Inserting these� �rst into eqn� ���� and then the result into eqn� ���� gives

�sCb
j �s� � Cb

j���s�� Cb
j �s�� �

Cb
j �s�

cosh�
p
s� ��

p
s � � sinh�

p
s� ��


Hence� the transfer function for each CSBR satis�es

Gj�s� �
Cb
j �s�

Cb
j���s�

�


 � �s� �
p
s� � tanh�

p
s� ��

�
K

 � ���s� �� � ��
p
s� � tanh�

p
s � ��

	 ���

where K � ��� ���� and �� � K� and �� � K�� Note that independantly of the kinetics

�� and �� always have the same sign� and that if ��   then they are negative� Further�

if � � � �no reaction or zero order kinetics� we have K � � �� � � and �� � ��

The transfer function describing the in	uent�e�uent behavior becomes�

G�s� �
Cout�s�

Cin�s�

�
Kn

� � ���s� �� � ��
p
s� � tanh�

p
s� ���n


 ���

If the reactor is not divided into equal CSBRs each Gj�s� is di
erent and G�s� is the

product of all Gj�s��

� Singularities of the transfer function

The singularities of the derived transfer function must be determined in order to use the

transfer function to calculate dynamic responses to changes in in	uent conditions in the

time domain� First� we will show that all singularities to Gj�s�� and� hence� also G�s��

are on the negative real axis� Then� the singularities of G�s�� and their multiplicity� may

easily be found�

�



Let

z �
p
s� � � s � z� � �

The denominator of Gj�s� then becomes

 � ��z� � ��z tanh z	

The singular points of Gj are given by the characteristic equation

 � ��z� � ��z tanh z � �
 ����

Writing the complex variable z as x � iy� and using the fact that

tanh z �
sinh �x

cosh �x� cos �y
� i

sin �y

cosh �x� cos �y
	

the imaginary part of eqn� ���� divided by �� becomes

�xy �
��

��
� x sin �y � y sinh �x

cosh �x � cos �y
� �


This eqn� is the sum of two terms having the same sign as xy� Hence� all solutions to eqn�

���� must be either on the imaginary axis or on the real axis� Since the origin impossibly

can be a solution� the solutions on the real axis are given by

�� tanhx � ����x� �x� ���

For zero order kinetics� or no reaction at all� this equation has no solution since positive

�� and �� imply opposite signs of the left and right hand side� However� for �rst order

kinetics� when �� and �� are negative� there will always be two solutions centered around

x � �� In Figure � the locations of the solutions are illustrated for �� � � and �� � ��

For negative �� and ��� the right hand side of eqn� ��� equals zero for x � �
p��� and�

hence� the solution to eqn� ��� obey x � �
p��� � Further� since��

� ��  

�� � ���� ���
� ��� 



�
	

we have x �
p
�� Thus� the singularity s � x� � � is located on the negative real axis�

Using tanh iy � �i tan y� the solutions yk to eqn� ���� on the imaginary axis are given

by�

�� tan y �


y
� ��y
 ����

Also the solutions to this equation are centered around the origin� When �� and �� are

poisitive the positive solutions to eqn� ���� satisfy

� � y� �
�

�
� y� �

��

�
� y� �

��

�
� y� � 
 
 


�
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In Figure � are the locations of these solutions illustrated for �� �  and �� � �

Note that for large y  �� the solutions approximately satisfy

tan yk � �� � yk � ��
�
� k�


When �� and �� are negative the positive solutions satisfy �leaving index  for the solution

on the real axis�
�

�
� y� �

��

�
� y� �

��

�
� y� � 
 
 


In Figure � the solutions to eqn� ���� are shown when �� � � and �� � ��

The solutions yk on the imaginary axis can readily be found numerically by� e�g�� a Newton�

Raphson method restricted to the intervals where solutions are of interest�
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To summarize� when we have no reaction� zero order kinetics� or �rst order kinetics and

�� � � we have one singularity �� � �y�� � �� where y� is a solution to eqn� ����� such

that
��

�
� � � �� � ��


When we have �rst order kinetics and ��   there is one negative real singularity

�� � x���� where x is a solution to eqn� ���� For all kinetics considered� the remaining

singularities �k � �y�k � � are given by eqn� ����� and satisfy

����k � ������ � � � �k � ����k � ������� � �	 k � �	 �	 
 
 
 


Since all singularities are located in the left half�plane the transfer function is� not sur�

prisingly� stable for all kinds of kinetics considered�

� Approximate transfer function

The derived transfer functions ��� and ��� are not suitable for simulation� Instead�

approximate transfer functions  Gj�s� and  G�s� that are rational functions of polynomials

in s are desired� Such transfer functions are suitable for simulations in the time domain�

and simple routines are available in many softwares� e�g� MATLAB �control toolbox� and

MATRIX�x� Furthermore� such transfer functions can easily be implemented for real time

control and simulation�

The key idea is to determine the exact unit impulse response� which equals the inverse

Laplace transform� for one CSBR and then �nd a rational  Gj�s� that arbitrary well

�



approximates the exact response� The approximate in	uent�e�uent transfer function
 G�s� then becomes the product of all  Gj�s�� The analysis that follows is based on basic

mathematics in complex variables� see e�g� ����

Denote the denominator ofGj�s� in eqn� ��� by F �s�� Then the inverse Laplace transform

of Gj�s� is given by

g�t� � lim
���



��i

��i�Z
��i�

Kest

F �s�
ds


Since the singularities are located left of s � � for both kinds of kinetics� we may use the

Residue Theorem to determine the inverse Laplace transform�

g�t� �


��i

I
�

Kest

F �s�
ds ����

� K
�X
k��

Res

�
est

F �s�

�
s��k

	 ����

where �k are the locations of the singularities of Gj�s�� and ! is the region left of s � �

in the complex plane�

The denominator F �s� is analytic in a surrounding to each singularity �k to Gj�s�� Hence�

there exist a convergent Taylor expansion around each singularity�

F �s� � F ��k� � F ���k��s� �k� �
�X
p��

F 	p
��k�

p"
�s� �k�

p	

where

F ���k� � � �
�

�
p
�k

n
tanh

p
�k �

p
�k �p�k tanh

�p�k

o



Since F ���k� �� � the integrand in eqn� ���� has poles of order one at �k� The residues

can then be determined from

Res

�
est

F �s�

�
s��k

�
e�kt

F ���k�



Hence� the pulse response becomes

g�t� � K
�X
k��

e�kt

F ���k�
	 ����

which is exactly the pulse response of a rational polynomial transfer function

�G�s� �
�X
k��

K

F ���k��s� �k�

 ����





Since the singularities rapidly becom largely negative with increasing k� only the �rst

terms in eqn� ���� will be signi�cant� since the others will rapidly approach zero� Hence�

an arbitrary well approximation of Gj�s� can be achieved by truncation of the sum in

eqn� ����� Truncating the sum after m terms� the approximate transfer function of Gj�s�

becomes

 Gj�s� �

K
mP
l��

Q
k ��l

F ���k��s� �k�

mQ
k��

F ���k��s� �k�
	 ����

and the approximate transfer function describing the in	uent�e�uent dynamics becomes�

 G�s� � f  Gj�s�gn
 ����

If the reactor is not divided into equal CSBRs�  G�s� becomes the product of all  Gj�s��

The approximate transfer function  G�s� can be compared to the exact transfer function in

the frequency domain� e�g� in Bode diagrams� which shows how much a sinusoidal input

of frequency � is gained� i�e� jG�i��j� and how many degrees the output sinusoidal is

shifted from the input� i�e� argG�i��� In Figure � are  Gj and Gj compared when � � ��

�� �  and �� � � Note that the gain is shown in dB ��� log�� jG�i��j�� The number

of singularities considered in eqn� ���� is m��� and the approximate transfer function�

evaluated with eqn� ����� is

 Gj�s� �
 � �
���s


��� � �
���s� �
����s�

As can be seen from the �gure� the curves of the approximate transfer function and the

curves of the exact transfer function almost coincide in the frequency region considered�

The disagreement is in the high frequency region� which corresponds to the fastest dynamic

modes� This is natural since it is those modes that have been ignored in the truncation

of the exact pulse response� However� the disagreement is hardly of any importance since

there is almost no e
ect of the input on the output due to the low values of the gain at

high frequencies� If one additional singularity is included the curves become inseparable

in the diagrams� and if only one singularity is considered the curves do not agree at all� In

Figure � is the Bode diagrams for  G� according to eqn� ����� compared to G when n � �

and m � �� The same observations as for Figure � can be made also for this comparison�

��� Determination of pulse response

A useful way to acquire information about the fast dynamics in bio�lm reactors is to

carry out pulse response experiments� Usually� a non�reacting trace substance is added

�
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Figure �� Bode diagram of G�i�� �solid� and  G�i�� �dashed� when �� � � �� � � � � ��

n � � and m � ��

to the in	uent and samples are taken from the e�uent� Sometimes� however� it may also

be possible to achieve pulses in a reacting substrate�

By using the CSBR�model in the analysis of pulse response experiments� important reactor

parameters may be possible to determine� Three di
erent methods to calculate pulse

responses are presented in this section� The �rst method is based on the approximate

transfer function ����� the second is based on truncation of the exact pulse response of

�



���� and the last method is a simple �nite di
erence scheme� All methods are applied to

the case of zero order kinetics�

The size of the ideal pulse in the in	uent has to be determined in terms of the non�

dimensional form of the model equations� Let the pulse added to the in	uent at time

t � � �dimensionless time� be

c��t� � c���t�	 ����

where ��t� is the unit Dirac pulse function� By using the scaling of time� i�e� eqn� ���� we

have

�Z
��

Qc����t�d�t � Qc�

�Z
��

��t�
L��

D
dt

� m�	

where m� is the additional mass introduced by the pulse in the in	uent� Hence�

c� �
Dm�

QL��



��� Determination by use of the approximate transfer function

The major uses for the approximate transfer function ���� are in connection with existing

software� In many softwares there are ready�to�use routines that simulates the response of

an arbitrary input �in	uent concentration� to any rational polynomial transfer function�

However� explicit expressions can found by partial fraction decomposition �PFD� of the

approximate transfer function� By carrying out PFD on the products in eqn� ���� we get

 G�s� � Kn
mX
k��

nX
j��

bkj
�s� �k�j


 ����

The constants bkj can be determined by� e�g�� a recursive algorithm presented in Appendix�

From eqns� ���� and ���� the pulse response follows from any table of inverse Laplace

transforms�

cn�t� � c�K
n

mX
k��

nX
j��

bkjt
j��

�j � �"
e�kt

An explicit form of the pulse response may actually be easier to derive if the reactor is

not divided into equal CSBRs� If the values of �� and �� are not the same in each CSBR�

then the locations �k of the singularities will also di
er� Let �kj be the k �th singularity

in the j �th CSBR� Then the approximate transfer function becomes

 G�s� �
nY

j��

 Gj�s�

�



�
nY

j��

mX
k��

K

F ���kj��s� �kj�
���

� Kn
nX

j��

mX
k��

bkj
s� �kj

	 ����

where

bkj �


F ���kj�

nY
i��
i��j

mX
l��



F ���li���kj � �li�
����

are the constants that result from PFD on the products in ���� The pulse response

follows from the inverse Laplace transform of �����

cn�t� � c�K
n

nX
j��

mX
k��

bkje
�kj t


As an illustration� consider the case when m � �� n � �� � � �� and � � � �  for one

CSBR� and ��� � � �  for the other CSBR� The approximate transfer function is the

product of the two  Gj�s�� evaluated by eqn� ����
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Partial fraction decomposition according to the #hands on principle$� i�e� eqn� ����� gives�
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and� hence� the pulse response is

cn�t� � c���
��e
�����t � �
��e�����t � �
��e����t � �
���e����t�


�



��� Truncation of exact response

In the same manner as the Residue theorem was applied to one CSBR� it may be applied

to the series of equal CSBRs� to get the impulse response

cn�t� � c�
mX
k��

Res

�
Knest

F �s�n

�
s��k




It can easily be shown that the order of the singularities �k equals the number of CSBRs

in this case� see Appendix�

Then� the following formula for determining the residues may be used�

Res

�
est

F �s�n

�
s��k

� lim
s��k



�n� �"

�
d

ds

�n�� �
�s� �k�

n est

F �s�n

�

Unfortunately� the terms in eqn� ������ become quite many and cumbersome as n becomes

large� However� if we rewrite eqn� ���� in Appendix as

F �s�n �
�X
p��

fp�s� �k�
n�p

the residues become reasonably simple for n � ��

Res

�
est

F �s�

�
s��k

�
e�kt

f�

Res

�
est

F �s��

�
s��k

�
e�kt

f ��
�f�t� f��

Res

�
est

F �s��

�
s��k

�
e�kt

f ��

	


�
f �� t

� � f�f�t� f �� � f�f�




Res

�
est

F �s��

�
s��k

�
e�kt

f ��

	


�
f �� t

� � 

�
f �� f�t

� � �f�f
�
� � f �� f��t� ��f�f�f� � f �� f� � f �� �




Note that the coe�cients fk depend on n and �k� They may either be calculated by the

multinomial theorem applied to the Taylor expansion of F �s�� by direct Taylor expansion

of F �s�n� or from eqn� ����� For the residues above� the coe�cients are given in Appendix�

��� Calculation by �nite di�erences

A completely di
erent approach to determine pulse responses is to attack the original

set of di
erential equations ��� and ���� Since they are linear they may quite easily be

solved by� e�g�� the method of �nite di
erences� A scheme wil be shown for � � �� but

the extension to � �� � is straightforward� Discretizing time as t � k%t	 k � �	 	 
 
 


�



and space as x � l%x	 l � �	 	 
 
 
M � a Crank�Nicholson scheme for eqn� ���� where

the subscript j is dropped� is

��tc
k��
l � �x ��x

ckl � ck��l

�
l � 	 �	 
 
 
M � 
 ����

Here� �t and ��t denote the forward and backward di
erence quotient operator with respect

to t�

�tc
k �

ck�� � ck

%t
	 ��tc

k �
ck � ck��

%t



The operators �x and ��x are equivalently de�ned�

If we let

� �
%t

%x�
	

eqn� ���� can be written as

� � ��ck��l � �

�
�ck��l�� � ck��l�� � � �� ��ckl �

�

�
�ckl�� � ckl���
 ����

The boundary conditions ��� can be introduced as

ck� � ck� and ckM � cb�kj 	

where cb�kj is the bulk concentration in the j�th CSBR at time k%t� These boundary

conditions imply

� � ��ck��� � �

�
ck��� � �� ��ck� �

�

�
ck�

� � ��ck��M�� �
�

�
ck��M�� �

�

�
cb�k��j � �� ��ckM�� �

�

�
ckM�� �

�

�
cb�kj 


The mass�balance ��� for the bulk concentrations can be discretized as

��tc
b�k
j � cb�kj�� � cb�kj � � ��xc

k
M 
 ����

By introducing

�� �
%t

�
and �� �

�%t

�%x
	

and using the boundary condition ckM � cb�kj � eqn� ���� can be written as

cb�k��j � ��c
k
M�� � �� �� � ���c

b�k
j � ��c

b�k
j��
 ����

The eqns� ���� and ���� for each CST can be written in matrix form as�

�
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ckM��
cb�kj

�
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�
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�
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�
�������������
cb�kj��

which more compactly is written as

&�C
k��
j � &�C

k
j � &�c

b�k
j��	 j � 	 �	 
 
 
 n


Thus� a recursive form for the e�uent concentration from each CSBR is

Ck��
j � &��� &�C

k
j � &��� &�c

b�k
j��	 j � 	 �	 
 
 
 n

ck��j � Ck��
j �M � �

Stability of the method is ensured if the eigenvalues of &��� &� are within the unit circle�

and a discretization with approximatelyM � �� is required for reasonable accuracy� The

method can be used to simulate arbitrary in	uent concentrations cb�k� � For the simulation

of pulse responses� the in	uent concentration is

cb�k� �

��
� c��%t � k � �

� � k � 	 �	 
 
 


and the remaining initial values are zero�

A general problem with schemes of this kind is associated with the inversion of &�� As

the discretization is made �ner �large M� for better accuracy� the condition number for

&� becomes vary large� The large condition number means that the matrix is close to

singular� which gives deteriorating numerical accuracy in the inversion� To avoid such

problems� a numerically sound method for the inversion is required� In this study� the

inversions are carried out using the singular value decomposition of &��

�



� Simulations

��� Pulse responses

Comparison between the methods

In this section the methods presented for determining pulse responses are compared� The

largest number of CSBRs that an explicit expression has been derived for the exact re�

sponse �see Appendix� is n � �� This number of CSBRs� � � � �zero order dynamics or

no reaction�� � �  and � �  are used in the comparisons� Simulations using the ap�

proximate transfer function are carried out both with the ready�to�use MATLAB�routines

impulse and lsim� which only requires the numerator and denominator polynomials of
 G�s�� and by using the PFD�algorithm in Appendix�

In Figure �� the response is shown as determined by truncation of the exact response when

m � �� and n � �� Considering this response as the exact response� we can determine

the errors of di
erent approximations� In Table  are the comparisons summarized� The

maximum error� the dimensionless time when it occurs� the normed error� and the number

of arithmetic operations �flops� are given� The normed error� corresponding to a mean

standard deviation� is de�ned as

jjejj �
�
� 

��

��Z
�

e��t�dt

�
A
���

	

where the error e�t� is the di
erence to the truncated exact response �m � ���� The time

di
erence between each evaluation of the responses was %t � �
� for all methods�

As can be seen from Table  the method of exact truncation is the most accurate and

most e�cient method� Already a truncation after two singularities gives ignorable errors�

The method of �nite di
erences requires a �ne discretization to give acceptable results�

which results in a large number of operations� It should be noted� however� that the

number of operations may most likely be reduced for all methods if the routines used are

numerically optimized�

Dependency on parameters

Often� reactors� such as trickling �lters� does not have a natural division into an exact

number of CSBRs� A model with cascaded CSBRs is rather a tool for describing the

hydraulics and dynamics� Considering the volume V and the area of bio�lm A as �xed�

�
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Figure �� Unit impulse response for n � �� � � �� � �  and � � �

Table � Comparison of unit pulse responses

Method maxje�t�j tmax jjejj ' operations

Exact truncation m � � 
� � ��� � �
� � �� �
� � ��
Exact truncation m � � �
� � �� � �
� � ��� �
�� � ��
Approx� �MATLAB� m � � �
 � ��� ���� �
� � ��� �
�� � ��
Approx� �MATLAB� m � � �
� � ��� ���� 
� � ��� �
�� � ��
Approx� �MATLAB� m � � 
 � ��� ���� �
� � ��� 
� � ��
Approx� �PFD � m � � �
 � ��� ���� �
� � ��� �
� � ��
Approx� �PFD � m � � �
� � ��� ���� 
� � ��� �
� � ��
Approx� �PFD � m � � 
� � ��� ���� �
 � ��� �
� � ��
Approx� �PFD � m � � �
� � ��� ���� �
� � ��� �
�� � ��
Finite di
erences M � � �
� � ��� ���� �
� � ��� �
�� � ��
Finite di
erences M � �� �
� � ��� ��� �
� � ��� ��
� � ��
Finite di
erences M � �� 
� � ��� ���� �
� � ��� ��� � ��

how does the division a
ect the pulse response( In Figure �� unit impulse responses are

shown for increasing numbers of CSBRs in the case of zero order reaction �or no reaction��

For som bio�lm reactors� e�g� rotating biological contactors� each CSBR may actually

re	ect a physical reactor compartment� When designing an extension of such a reactor it

may be of interest to know how the dynamics is a
ected� Mathematically� the values of

� and � will then remain constant� while n increases� This is illustrated in Figure ��

In the following simulations are n � � and the remaining parameters are chosen to give

��
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Figure �� Unit impulse responses when � � �� � � �n and � � �n� n � 	 �	 �	 �	 � and

�� �counted from the left��
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Figure �� Unit impulse responses when � � �� � � � � �  and n � 	 �	 � and � �counted

from the left��

� � �� and � � �� as standard setting� The dependency on the studied parameters

are studied by setting them to a multiple of their standard value� which is denoted by �

For instance� � denotes twice the standard value and ��� denotes a ��) reduction of the

standard value�

The e
ects of changes in � and D are shown in Figure � for the case of zero order kinetics

�or no reaction�� Obviously� a change in bio�lm water content a
ects the response far

more than a change in the di
usion coe�cient� As can also be seen� a larger fraction of

water content ��� in the bio�lm gives a 	atter and slower response� and a larger di
usion

coe�cient �D� gives a slower response� Both these observations can be attributed to an

�



increased withhold of substance in the bio�lm�

The e
ects of changes in bio�lm thickness �L� and bulk water 	ow �Q� are shown in Figure

 for the case of zero order kinetics �or no reaction�� A thicker bio�lm gives 	atter and

slower response� which also can be attributed to an increased withhold of substance in the

bio�lm� Further� a higher 	ow gives� naturally� a faster response� Note the di
erences in

shape of the responses compared with those in Figure �� Mainly the tails of the responses

are a
ected by an increase in bio�lm thickness� while also the peaks of the responses are

changed by an increase in the fraction of bio�lm water content�
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Figure �� Pulse responses when � � � and� D � � � �  �a�� D � �� � �  �b�� D � �

� � � �c�� and D � �� � � � �d��
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Figure � Pulse responses when � � � and� L � � Q � � �a�� L � � Q �  �b�� L � ��

Q � � �c�� and L � �� Q �  �d��
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The e
ects of the bio�lm di
usion is obviously dependent on the bio�lm �water� volume

compared to that of the bulk �V �� The bio�lm water volume equals AL�� Hence� the

remaining parameter that a
ects this relation is the bio�lm area �A�� No area of bio�lm

gives a model with only cascaded continuously stirred tanks �CSTs�� In Figure � are

the responses shown for zero order kinetics and increasing bio�lm area� As expected� an

increase in bio�lm area gives 	atter and slower response�
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Figure �� Pulse responses when � � � and� A � � �a�� A � �
� �b�� A � �
� �c�� A � �
�

�d�� A � �
� �e�� and A � 
� �f��

Finally� the e
ects of the kinetic constants should be studied for the case of �rst order

kinetics� Typical values of � ranges from zero to about ��� In Figure � pulse responses

are shown for values of � in this interval� As can be seen from the �gure� the height of

the pulses are very dependent on �� particularly when � is small�

Parameter identi�cation

Trace substance pulse response experiments can be valuable for parameter identi�cation�

For example� standard procedures are used for determining bulk water volume and number

of tanks in models of cascaded CSTs� using theory and pulse response experiments ����

These parameters can naturally also be determined for cascaded CSBRs� using the CSBR�

model and the derived transfer functions�

The approximate transfer function enables fast simulations for arbitrary n� and hence

least square algorithms may easily be used for identi�cation of reactor parameters� As an

illustration are used experimental data from �ve trace substance pulse response experi�

ments� carried out on a pilot plant at Rya WWTP in G*oteborg ���� The experiments

��
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Figure �� Pulse responses when n � �� � � ��� � � ��� and � � �� ��� ��� ��� �� and

�� �ordered from top to bottom��

were carried out at two di
erent 	ows� ��� l�s �two experiments� and ��� l�s �three ex�

periments�� A description of the pilot plant and the experimental setup can be found in

��� ���

The parameters that are identi�ed are the total volume V and an appropriate number

n of CSBRs� The remaining parameters are� DLi � �
� � ��� m�d��� L � �
� mm�

� � �
�� and A � ���� m�� The values used for the bio�lm thickness and fraction of water

content in the bio�lm are values that have been roughly estimated visually and used in

earlier simulations ��� �� ��� A least square �tting of data to responses simulated with

the approximate transfer function resulted in n � � and V � �
�� m� at Q � �
� l�s�

respectively n � � and V � �
�� m� at Q � �
� l�s� The corresponding simulated and

measured responses are shown in Figures � and ��

As can be seen from the �gures� the agreement between simulated and measured data is

very good� However� the simulated tail in Figure �� which declines too fast� indicates

that a larger value for the bio�lm thickness may improve the agreement� A least square

identi�cation of n� V and also L at Q � �
� l�s gives n � �� V � �
�� m� and L � �
��

mm� and� hence� a thicker bio�lm as expected� Due to too noisy data when Q � �
� l�s

a similar least square identi�cation fails� but using the same thickness as for Q � �
� in

an identi�cation of n and V gives n � �� V � �
�� and reduces the sum of squares by

)� These simulations are included in Figures � and ��

From Figures � and  it is evident that the di
usion coe�cient and the 	ow changes the

pulse responses di
erently at di
erent values of the bio�lm thickness and fraction of water

content� Thus� the use of di
erent trace substances in pulse response experiments carried

��



out at di
erent 	ows can become useful when identifying the e�cient bio�lm thickness

and water content� as well as bulk water volume and an appropriate number of CSBRs�
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��� Step responses

Step responses may either be determined by integration of pulse responses or numerically

by using the approximate transfer function� Here� we will only show numerically simulated

step responses when the number of CSBRs are increased while V and A remain the same

�Figure �� at zero order kinetics� and when n � � and � is increased for the case of �rst

��



order kinetics �Figure ��� Note that the e�uent concentrations in the �gures denotes

changes in e�uent concentration from initial stationary values� An interesting feature for

the case of �rst order kinetics is that the dynamics become faster as � increases�
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	 Conclusion and discussion

A fairly simple model describing the fast dynamics of cascaded continuously stirred bio�lm

reactors �CSBRs� has been formulated� The model includes 	exibilities� such as indepen�

dent bio�lm thickness� bulk water volume� bio�lm water content� di
usion characteristics�

��



kinetics� bacterial concentration �which may depend on depth in the bio�lm� and bio�lm

area� in each CSBR� If zero or �rst order kinetics is used for the reaction in the bio�lm�

the model is linear� and an analytical transfer function can be determined� From the

exact transfer function� which is unsuitable for simulations� can an approximate transfer

function be determined� With the approximate transfer function� simulations of arbitrary

in	uent concentrations can be carried out at a low cost of computation�

The model equations may also be solved by simple �nite di
erence schemes� Such schemes

are easy to make and use� but have several disadvantages compared to the transfer function

approach� The transfer function approach is numerically much more e�cient and accurate�

and it may also be used for studies in the frequency domain� which is important for

controller design� Due to the numerical e�ciency� the exact and approximate transfer

function are suitable for the determination of pulse responses� and parameter identi�cation

using� e�g�� least squares�

Trace substance pulse response data from a pilot scale trickling �lter show very good

agreement with model simulations� and it was possible to estimate the bulk water volume�

an appropriate number of CSBRs� and bio�lm thickness from experimental data�
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Appendix

Simulation of an arbitrary in�uent concentration

The response to any changes in in	uent concentration can be determined by �rst convert�

ing the approximate transfer function to a state�space form� and then use an integration

method� The method presented applies to the case when the division of the reactor is

made into equal CSBRs� as well as when they are not equal� Denoting the k�th singularity

of the j�th CSBR by �kj� the e�uent concentration from the j�th CSBR is related to the

in	uent by

Cb
j �s� �

�
mX
k��



F ���kj��s� �kj�

�
Cb
j���s�

By Laplace transforming the following equation� it is easy to verify that the corresponding

relation in the time�domain is

d

dt
wj�t� �


�������

��j � � � � �

� ��j � � � �
���

� � �
���

� � � � � �mj

�
�������
wj�t� �


�������




���



�
�������
cbj���t�

cbj�t� �

�


F ����j�



F ����j�
� � � 

F ���mj�

�
wj�t�	

where wj�t� is a column vector with m state variables� We may write this more compactly

as

d

dt
wj�t� � Ajwj�t� �Bcj���t�

y�t� � Djwj�t�	

where Aj is them by m matrix with the singularities of the j�th CSBR as diagonal entries�

B is the m by  vector with unit entries� and Dj is the  by m vector with the inverses

of the numerator derivatives at the singularities� Using this notation we may write a

state�space representation for the entire reactor as�

d

dt


����������

w��t�

w��t�
���
���

wn�t�

�
����������

�


����������

A� � � � � � �

BD� A� � � � � �

� BD� A� �
���

� � � �

� � � � � BDn An

�
����������


����������

w��t�

w��t�
���
���

wn�t�

�
����������
�


����������

B

�
���
���

�

�
����������
cb��t�

��




�������

cb��t�

cb��t�
���

cbn�t�

�
�������

�


�������

D� � � � � �

� D� �
���

� � �
���

� � � � � Dn

�
�������


�������

w��t�

w��t�
���

wn�t�

�
�������

This equation may numerically be solved with almost any integration method� Note that

the original n partial di
erential equations describing the concentrations in the bio�lm�

and the n ordinary di
erential equations describing the concentrations in the bulk water�

have been approximated by a linear set of nm ordinary di
erential equations� Since

m � � in many cases gives a good approximation with the same number of equations� it

is unlikely that there exists a reasonable approximation with less equations� Speci�cally�

note that this method requires n�M � � � nm equations less than� e�g� the presented

method of �nite di
erences� Furthermore� arbitrary well approximations can be achieved

by increasing the number m of singularities� independently of the integration method

used� Thus� it does not su
er from the re�nement problem discussed for the method of

�nite di
erences�

Order of the singularities of G�s�

Since F ��k� � � we have

F �s�n � �F ���k��s� �k� �
�X
p��

F 	n
��k�

p"
�s� �k�

p�n

� F ���k�
n�s� �k�

n �

nX
k��

�
n

k

�
fF ���k��s� �k�gn�k

��
�
�X
j��

F 	n
��k�

j"
�s� �k�

j

��
�

k

����

� �s� �k�
n�F ���k�

n �O��s� �k���
 ����

Further� since F �s� is analytic in a surrounding to �k and the product of analytic functions

always are analytic� O��s� �k�� denotes a convergent sum of powers of �s� �k�� Hence�

�k is a pole of order n to est�F �s�n since F ���k� �� � and

est

F �s�n
� �s� �k�

�n est

F ���k�n �O��s� �k��

� �s� �k�
�nh�s�	

where h�s� is a non�zero analytic function in the neighborhood of �k�

��



Taylor coe�cients

In Table � below are the Taylor coe�cients dj � F 	j
��k��j" for an expansion around the

singularities �k given�

Table �� Taylor coe�cients for F �s�n

n f� f� f� f�

 d� � � �
� d�� �d�d� � �
� d�� �d��d� ��d��d� � d�d

�
�� �

� d�� �d��d� �d��d� � �d��d
�
� ��d�d

�
� � �d��d�d� � d��d��

In the case of negative �� and �� it is easy to show� by straightforward di
erentiation and

insertion of
p
�� � x� that the coe�cients are

d� � �� �
��

�x

n
tanh x� x� x tanh� x

o

d� �
��

�x�

n
�x� tanh� x� x tanh� x� � � �x�� tanh x� x

o

d� �
��

��x�

n
�� x� tanh� x � ��x� �x�� tanh� x � � tanhx� �x� �x�

o

d� �
��

���x

n
��x� tanh� x� �x� tanh� x� ���x� � �x�� tanh� x� ��x� �x�� tanh� x�

��x� � � � �x�� tanhx � �x� � �x
o

By insertion of
p
�k � iyk� the remaining coe�cients� or all coe�cients when �� and �� are

positive� become

d� � �� �
��

�yk

n
yk � tan yk � yk tan

� yk
o

d� �
��

�y�k

n
�yk � �� �y�k� tan yk � yk tan

� yk � �y�k tan
� yk

o

d� �
��

��y�k

n
�y�k � �yk � � tan yk � ��y�k � �yk� tan

� yk � �y�k tan
� yk

o

d� �
��

���y

n
�y�k � �yk � �� � �y�k � �y�k� tan yk � ��y�k � �yk� tan

� yk�

��y�k � ��y�k� tan
� yk � �y�k tan

� yk � ��y�k tan
� yk

o

�



Partial Fraction Decomposition

The coe�cients bkj in eqn� ����� which result from partial fraction decomposition of the

in	uent�e�uent approximate transfer function� are to be determined� There are several

possibilities to calculate those� Two such methods are presented� A recursive formula in

the number n of CSBRs� and a set of linear equations to solve� However� for the recursive

formula we �rst need a useful identity�

Lemma � If �k �� �p the following identity holds for all s� and integers r�



�s� �k�r�s� �p�
�

rX
q��

���r�q
��k � �p�r�q���s� �k�q

�


��p � �k�r�s� �p�
����

Proof From the law of partial fraction decomposition there exist unique constants Aq

and B such that


�s� �k�r�s� �p�
�

rX
q��

Aq

�s� �k�q
�

B

s� �p

���

If we multiply eqn� ��� by �s� �p� and let s � �p we get

B �


��p � �k�r



Multiplication of eqn� ��� by �s� �k�
r gives



s� �p

�
rX

q��

Aq�s� �k�
r�q �B

�s� �k�
r

s� �p




Repeated di
erentiation p � �	 	 
 
 
 times gives

dp

dsp

�


s� �p

�
�

p"���p
�s� �p�p��

�
r�pX
q��

Aq

�r � q�"

�r � q � p�"
�s� �k�

r�q�p � B
dp

dsp

�
�s� �k�

r

s� �p

�

 ����

By successive di
erentiation it is readily veri�ed that

dp

dsp

�
�s� �k�

r

s� �p

�
�

r"

�r � p�"

�s� �k�
r�p

s� �p

�O��s� �k�
r�p���	

where O��s��k�
r�p��� denotes a function were all terms are powers of at least �s��k�

r�p���

Thus� the last term in eqn� ���� goes to zero as s � �k for all p � r� This implies that

by letting s � �k in eqn� ���� we get

p"���p
��k � �p�p��

� Ar�pp"	 p � �	 	 
 
 
 r � 

��



and� hence� by a change of variable q � r � p

Aq �
���r�q

��k � �p�r�q��
	 q � 	 �	 
 
 
 r


Insertion of the coe�cients Aq and B into eqn� ��� gives the proposed expression �����

The following lemma gives recursive equations for the determination of the coe�cients

resulting from PFD of the approximate transfer function�

Lemma � If the coe�cients in eqn� �	
� for n cascaded CSBRs are denoted bkj�n they

may be determined recursively �l � �	 � 
 
 
 n� by

bk��� � �F ���k� ����

bkj�l �

������������
�����������

l��X
r��

mX
p��k
p��

bpr�	l��
bk��� � ���rbkr�	l��
bp���
��k � �p�r

� j � 

bk	j��
�	l��
bk��� �
l��X
r�j

mX
p��k
p��

���r�jbkr�	l��
bp���
��k � �p�r�j��

� j � �	 � 
 
 
 l � 

bk	l��
�	l��
bk��� � j � l

����

where the middle term in eqn� ���� should only be used for l  ��

Proof According to the laws of partial fraction decomposition� there exist unique con�

stants bkj�n in eqn� ���� for all n� The coe�cients bk��� follows directly from the de�nition

of the approximate transfer function for one single CSBR� Using eqn� ���� for the transfer

function for l �  cascaded CSBRs� the transfer function for l cascaded CSBRs can be

written as the product of that transfer function with the one for a single CSBR�
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Using Lemma  we have

 G�s� �
l��X
r��

mX
k��

bkr�	l��
bk���
�s� �k�r��

�

l��X
r��

mX
k��
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Sorting this expression in increasing orders of the poles� we get the �rst term by setting

q �  in the last sum�

l��X
r��

�
� mX

k��

mX
p��k

���r��bkr�	l��
bp���
��k � �p�r�s� �k�

�
mX
k��

mX
p��k

bkr�	l��
bp���
��p � �k�r�s� �p�

�
A

Since the last sum above contains all elements except the diagonal elements k � p� the

indices k and p in that sum can be interchanged� Thus� by extracting the k�th element

we get

bk��l �
l��X
r��

mX
p��k

���r��bkr�	l��
bp��� � bpr�	l��
bk���
��k � �p�r

	

which is equivalent to eqn� �����

The terms in eqn� ����� having the highest order �l� of the poles� are only contained in

the �rst sum� Thus� setting r � l�  in that sum gives the coe�cients bkl�l as de�ned by

eqn� �����

The remaining coe�cients� corresponding to poles of order j� follows from setting r � j�

in the �rst sum and q � j in the second sum of eqn� ����� noting that only terms for

r � j contributes� and then extract the k�th element�

bkj�l � bk	j��
�	l��
bk��� �
l��X
r�j

mX
p��k

���r�jbkr�	l��
bp���
��k � �p�r�j��

When PFD is carried out on small systems� such as when n and m are small� the coef�

�cients are often found by polynomial identi�cation� The polynomial identi�cation gives

a set of linear equations in the nm coe�cients� A probably simpler method is to use nm

di
erent values �� which do not equal any �k� and calculate the values of  G�s� with eqn�

����� Eqn� ���� then gives a linear set of nm equations�
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To get numerically accurate solutions bad condition numbers of the nm by nm matrix

above must be avoided by a clever choice of the values of ��

��



Both these methods require a solution of nm linear equations� which� in practice� requires

n�m� arithmetic operations ���� By calculating the operations in the recursive algorithm�

it is easily veri�ed that the required number of operations is in the order nm�� Hence�

the recursive algorithm requires far less operations�
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