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A trichromophoric molecule consisting of a porphyrin linked to both a dihydropyrene 

and a dihydroindolizine-type photochrome, in combination with a third harmonic 

generating crystal, functions as a 1:2 digital demultiplexer with photonic inputs and 

outputs. Each of the two photochromes may be cycled independently between two 

metastable forms, leading to four photoisomers, three of which are used in the 

demultiplexer. These isomers interact photochemically with the porphyrin in order to 

yield the demultiplexer function. With the address input (1064 nm light) off, one output 

of the device (porphyrin fluorescence) tracks the state of the data input (532 nm light). 

When the address input is turned on, the second output (absorbance at 572 nm) tracks the 
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state of the data input, while the first output remains off. The demultiplexer does not 

require chemical or electrical inputs, and can cycle through its operational sequences 

multiple times. 

______________________________________________________ 

Introduction 

Photochromic molecules, which can be isomerized back and forth between two metastable forms 

using light, are well suited to be components of molecule-based binary devices. We have previously 

shown that by covalently coupling photochromes to other chromophores, with which they can 

communicate by intramolecular electron or energy transfer, simple molecular switches,
1-7

 Boolean logic 

gates,
8-10

 and combinations of logic gates in the form of half adders
11,12

 can be realized.
13

 This work and 

that of others in the area
1,14-33

 has shown that such molecular “devices” can function very well, and may 

eventually be useful for practical applications (although not necessarily the same ones currently filled by 

electronic digital computers.) Recently, we were able to demonstrate that molecular triad 1 (Figure 1) 

can be made to function not only as molecular AND and INHIBIT gates,
8
 but also as a 2:1 digital 

multiplexer.
34

 The function of a multiplexer is to encode the digital state of each of two or more inputs 

into a single output through the use of a control input. Thus, a multiplexer can combine several input 

signals into a single output signal for transmission to a receiver, allowing multiple data streams to be 

transmitted on a single data line. The receiver must then sort out the entangled data streams from this 

single signal, directing the data from each of the initial inputs to a separate output. This function is 

performed by a demultiplexer. Here, we demonstrate how triad 1, in combination with lasers and a 

third-harmonic-generating (THG) crystal, may be used as a 2:1 digital demultiplexer. 

The truth table of the demultiplexer is shown in Table 1. The binary input (In) can exist in either of 

two states, on (1) or off (0). Each of the two outputs, O1 and O2 may also have the value 1 or 0. A 

second input, the address (Ad) or enabler, may likewise be set either on or off. When Ad is set off, then 

output O1 reports the state of the input In and O2 remains off, whereas when Ad is switched on, O2 



 

 3

reports the state of In. Thus, if the output of the multiplexer serves as the input of the demultiplexer, and 

the control input of the multiplexer and the address input of the demultiplexer are switched on and off in 

synchrony, demultiplexer output O1 will faithfully track the state of one of the multiplexer inputs, 

whereas demultiplexer output O2 will report the state of the second multiplexer input. Multiplexed data 

transmission will be achieved. 

 

Table 1. Truth table for the 1:2 demultiplexer 

input In  

(532 nm) 

input Ad 

(1064 nm) 

output O1 

(fluorescence) 

output O2 

(absorbance) 

0 0 0 0 

1 0 1 0 

0 1 0 0 

1 1 0 1 

 

Triad 1 can serve as a demultiplexer by virtue of the fact that it can exist in various isomeric states. 

The synthesis and structure of 1 have been reported.
8
 The triad consists of a tetraarylporphyrin (P) 

linked to both a substituted dihydropyrene photochrome (DHP)
35

 and a photochrome of the 

dihydroindolizine family
36

 based on pyrrolo[1,2-b]pyridazine (DHI). Because each photochrome may 

exist in two metastable forms, the triad may assume any of four isomeric structures (ignoring chirality). 

Although the three chromophores of 1 interact photochemically (vide infra), the linkages joining them 

have been designed so that photoisomerization of the two photochromes still occurs, and it is possible to 

prepare photostationary distributions greatly enriched in any of the four isomers.
8
 For the demultiplexer, 

only the three isomers shown in Figure 1 are required. 

 

Results and Discussion 
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Photochemistry of the triad.  Here, we briefly summarize the photochemistry of the two 

photochromic molecules, and then present results for triad 1. In general, DHI-type photochromes do not 

absorb visible light, are thermally stable, and can be photoisomerized to an open, visible-absorbing 

betaine form (BT) using ultraviolet light (Figure 1). With 366 nm radiation, for example, the resulting 

photostationary distribution is 15:85 DHI:BT.
4
 The BT isomer thermally reverts back to essentially pure 

DHI with a time constant of 4000 s at 29 °C.
8
 At 55 °C, thermal reversion is complete after 30 min. 

 The DHP photochrome is the thermally most stable isomer, and absorbs visible light. Irradiation 

with green light (e.g. 532 nm) photoisomerizes DHP to the CPD form (Figure 1) with 100% efficiency 

(Φ = 10%).
3
 The CPD form can be isomerized back to DHP with heat (τ = 27 h at 25 °C).

3
 Irradiation of 

CPD with UV light also returns it to the DHP form (Φ = 30%), and with wavelengths <300 nm, the 

photostationary distribution is highly enriched in DHP. However, this photoisomerization was not 

employed in the demultiplexer experiments. Both photochromes undergo relatively little (<3% per 

cycle) photodecomposition when solutions are rigorously degassed. In the presence of oxygen, the DHI 

is especially sensitive to photodecomposition. 

The absorption spectra of these three isomers and a model porphyrin are shown in Figure 2. As 

revealed below, the changes in the absorption spectra upon photoisomerization comprise one output of 

the demultiplexer (O2). Isomer DHP-P-DHI is the thermally stable form of the molecule. As shown in 

Figure 2, the absorption spectrum of this isomer in 2-methyltetrahydrofuran in the visible region 

features bands similar to those of a model porphyrin, 5,15-bis(4-methoxycarbonylphenyl)-10,20-

bis(2,4,6-trimethylphenyl)porphyrin, (418 (Soret), 515, 549, 592 and 649 nm), underlain by a broad 

absorption band of the DHP moiety at ~513 nm. The DHP and DHI moieties also absorb in the 300 – 

400 nm region. Irradiation of the solution of DHP-P-DHI with green light (532 nm) converts the DHP 

component of 1 to the cyclophanediene (CPD) form, generating a photostationary state containing 

mainly CPD-P-DHI. The absorption spectrum of CPD-P-DHI is very similar to that of the model 

porphyrin in the visible region and features absorbance characteristic of the photochromes mainly in the 
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ultraviolet (Figure 2).
8
 The absorbance in the 300 – 400 nm region is significantly reduced relative to 

that of DHP-P-DHI due to the absence of the contribution from DHP. 

Irradiating DHP-P-DHI with UV light (355 nm) under the conditions described in the Experimental 

Section converts it to DHP-P-BT, where the DHI chromophore has photoisomerized to the open-chain, 

zwitterionic betaine form (BT). (Under these conditions, photoisomerization of DHP to CPD is 

relatively minor.) The absorption spectrum of DHP-P-BT resembles that of DHP-P-DHI in the 300 – 

400 nm region, but the strong, broad absorbance of the betaine in the 440 – 650 nm range (λmax ~560 

nm) now dominates the visible region (Figure 2).  

The other output of the demultiplexer (O1) is fluorescence from the porphyrin. Because the porphyrin 

and the two photochromes can communicate with one another due to intramolecular energy and electron 

transfer phenomena, the amplitude of this fluorescence is a function of the structures of the two attached 

photochromes (Figure 3). The shapes of the emission spectra of all of the isomers of 1 are similar to that 

of the model porphyrin, with maxima at 651 nm and 720 nm. The quantum yield of emission for CPD-

P-DHI is essentially the same as that for the porphyrin model compound, as the CPD and DHI moieties 

do not affect the porphyrin. The lifetime of the porphyrin first excited singlet state of this isomer is 11 

ns,
8
 which is similar to that of the first excited singlet state of the model porphyrin. Conversion to DHP-

P-DHI results in significant quenching of the porphyrin fluorescence (Figure 3). The lifetime of DHP-

1
P-DHI is 1.55 ns. This quenching has been ascribed to photoinduced electron transfer to form a short-

lived DHP
•+

-P
•−

-DHI charge-separated state.
8
 Even stronger quenching is observed in DHP-P-BT. In 

this isomer, the porphyrin first excited singlet state is also quenched by very rapid photoinduced 

electron transfer to the betaine to form a charge-separated state DHP-P
•+

-BT
•−

. The rate constant for this 

quenching, based on a model dyad, is 2.0 × 10
10

 s
-1

.
8
 

Demultiplexer function. Triad 1 can function as a 1:2 demultiplexer in combination with pulsed laser 

inputs and a third harmonic generating (THG) crystal. The design concept is shown in Figure 4. Triad 1 

in 2-methyltetrahydrofuran solution resides in a temperature-controlled cuvette. Input In, light at 532 
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nm, is provided by a laser. A convenient source is a Nd:YAG laser at 1064 nm and a second harmonic 

generating crystal (SHG). The address input, Ad, comes from the first harmonic of a second Nd:YAG 

laser at 1064 nm. Both laser beams pass through a THG crystal placed in front of the sample cuvette. 

Output O1 is porphyrin fluorescence monitored at a convenient wavelength (e.g. 720 nm) and output O2 

is the sample absorbance at 572 nm. In the experimental realization of this device detailed below, only a 

single laser was used for reasons of convenience, and the SHG and THG crystals were tuned on or off 

resonance to achieve the proper input wavelengths, as discussed in the Experimental Section. 

The operation of the demultiplexer begins with a reset operation, consisting of heating the sample for 

3 h at 55 °C. This converts triad 1 into its thermally stable DHP-P-DHI form. Under these conditions, 

with neither input on, porphyrin fluorescence at 720 nm is weak (O1 = 0) , because the DHP 

chromophore quenches porphyrin emission, as discussed above. The absorbance at 572 nm is also low 

(O2 = 0) because the concentration of the betaine, which has the largest extinction coefficient at this 

wavelength, is zero, or very low. Experimental results for this situation (corresponding to the first line in 

Table 1) are shown in Figure 5. Output O1 is shown in the first column of Figure 5a, and output O2 

appears in the first column of Figure 5b. The dashed lines represent a threshold level; a signal above the 

threshold represents an on response. Any real digital device (including transistors) must employ a 

threshold to allow a distinction between signal and noise. 

When input In is switched on, the 532-nm radiation causes the DHP photochrome to rapidly isomerize 

to the CPD form. Isomerization of DHI to BT under these conditions is much slower. Thus, the sample 

is converted mainly to CPD-P-DHI. In this isomer, porphyrin fluorescence is strong, as no quenching 

occurs (O1 = 1), but absorbance at 572 nm is still weak (O2 = 0). The conditions of the second row of 

the truth table are fulfilled (Figure 5). 

Alternatively, if the address input Ad is turned on by exposing the sample to 1064 nm light, the triad 

will remain in the DHP-P-DHI form, and both O1 = 0 and O2 = 0, corresponding to row three of Table 

1. The response under these conditions is also shown in Figure 5. 
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The final row of the truth table corresponds to turning on both the 532 nm input (In) and the 1064 nm 

address input (Ad). Under these conditions, 355 nm light is generated in the THG crystal. These 

conditions isomerize DHI to BT, but have relatively little effect on DHP, so the sample is converted 

mainly to DHP-P-BT. The sample now has only weak porphyrin emission at 720 nm (Figure 5) due to 

quenching by both DHP and BT. However, the absorbance at 572 nm is now quite large, due to the BT 

moiety. Output O1 is off, but O2 is on. 

Thus, the response of the system is that of a 1:2 digital demultiplexer. When 1064 nm address input 

Ad is off, output O2 is also off, and O1 tracks the state of input In. When Ad is turned on, output O1 

remains off, and O2 reports the state of In. 

Cycling and signal-to-noise ratio. The intent of this work was to demonstrate the basic principles 

involved, and not to prepare a technologically useful device. No attempt was made to optimize 

performance or stability. However, we did monitor the system through several cycles, as illustrated in 

Figure 6. Figure 6a shows the emission intensity at 720 nm (O1) following combinations of the various 

operations: reset (R), In = 1 (In), Ad = 1 (Ad). The corresponding results for O2 (absorbance at 572 nm) 

appear in Figure 6b. These data also demonstrate the high signal-to-noise levels of the two outputs. The 

noise levels are very low relative to the changes in emission intensity and absorbance resulting from the 

switching operations. 

 

Conclusions 

The results above demonstrate that triad 1 can function as a 1:2 digital demultiplexer when coupled to 

a THG crystal. In this device, the two photochromes serve to respond to the laser inputs and record the 

state of each input applied for later readout. The porphyrin moiety “interrogates” the photochromes via 

electron transfer phenomena, correlates their states, and provides an output consistent with the 

demultiplexer function. The THG crystal is an integral part of the demultiplexer because it allows the 

molecule to respond in the correct way to the simultaneous application of both inputs. The use of this 

approach in an actual technologically useful device would in principle be possible if the photo- and 
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thermal stability of the triad and other inherent features of the system were compatible with the intended 

use. Obvious refinements could include containment of the triad within a polymer film located behind 

the THG crystal and use of spatially sensitive output detectors so that multiple demultiplexers could be 

housed in a single unit. In this connection, it should be noted that any applications need not be limited to 

replacement of functions currently carried out by conventional electronics. Molecule-based logic 

elements can in principle be employed in configurations (e.g. nanoscale particles or “containers”) and 

environments (e.g., aqueous and biological) where conventional devices might be less well suited. 

Triad 1 is an excellent illustration of the fact that a single photonically operated, molecule-based logic 

system can be reconfigured for a variety of tasks simply by changing the initial state and the nature of 

the inputs. It is not necessary to physically alter the medium containing the molecules, or to access it 

with anything other than light. Thus, 1 can be converted from a 1:2 demultiplexer to a 2:1 multiplexer, 

and AND gate, or an INHIBIT gate, depending on the optical setup. This flexibility of molecule-based 

photonic systems may make them valuable for future applications where a device must be rapidly 

reconfigured for multiple functions. 

Switching speeds are not practically limited by the rates of the photoisomerization reactions, as these 

occur on the ps – ns time scales. Rather, the switching times are controlled by the light flux from the 

input lasers, and by the temperature for the thermal reset operation (which is rather slow at 55 °C). 

Higher light levels and temperatures would obviously speed up operation (until stability limits were 

reached).  

In order to make our previously-reported multiplexer
34

 function in concert with the 1:2 demultiplexer, 

additional circuitry would be needed. The output of the multiplexer (porphyrin fluorescence) would 

have to be converted to drive the demultiplexer In input (532 nm light), and the control elements (532 

nm light for the multiplexer and 1064 nm light for the demultiplexer) would have to be driven in phase 

with one another. 

 

Experimental Section 
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The synthesis and characterization of triad 1 and its basic photochemistry have been reported 

previously.
8
 Distilled 2-methyltetrahydrofuran was used as the solvent for spectroscopic measurements, 

and the sample concentration was 5×10
-6

 M. The samples were degassed by six freeze-pump-thaw 

cycles to a final pressure of approximately 10
-5

 Torr. The absorption measurements were performed 

using a CARY 4B UV/vis spectrometer. A SPEX Fluorolog τ2 was used for the emission 

measurements. After exposure to the different input combinations, the absorbance and the emission 

were monitored separately using the instruments described above. Inputs were provided by a Nd:YAG 

laser (Continuum Surelight II-10, 6 ns fwhm). The samples were stirred continuously during all 

irradiation processes. Only a single laser was available to generate both inputs. As a result, the state with 

the Ad input only on was generated by passing the first harmonic of the laser (1064 nm, 10 Hz, 340 mW 

average power, 35 s) through the two non-linear crystals with the SHG crystal tuned off-resonance and 

the THG crystal tuned in-resonance. The state with the In input only on was generated by tuning the 

SHG crystal in-resonance (532 nm, 10 Hz, 20 mW average power, 35 s) and the THG crystal off-

resonance. When both crystals were in-resonance, (state Ad on and In on) 355 nm UV light (10 Hz, 12 

mW average power, 35 s) was generated by the THG crystal. In this configuration, the crystals could not 

be set completely to 0% harmonic generation. In order to maximize the degree of discrimination among 

the isomer populations, a 532 nm dichroic mirror was used to better eliminate the UV light from the 

532-nm light (input In on), and to eliminate the 532-nm light from the IR light (input Ad on). No filter 

was used when both inputs were on, i.e., when both the SHG and the THG were tuned in-resonance to 

generate UV light. Had two lasers been available, the use of this mirror and crystal tuning could have 

been avoided. Various alternative setups, such as using a single laser and controlling the wavelength 

reaching the THG and sample with bandpass filters, or using a single laser with a split beam and high-

speed electronically switched shutters, can be envisioned. 
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Figure Captions 

Figure 1. Three photoisomers of triad 1 and relevant interconversion pathways. A fourth isomer is not 

relevant for use of 1 in the demultiplexer, and the structure is not shown. The experimental conditions 

for the isomerizations are given in the text. 

Figure 2. Absorption spectra in 2-methyltetrahydrofuran of pure or highly enriched solutions of 5,15-

bis(4-methoxycarbonylphenyl)-10,20-bis(2,4,6-trimethylphenyl)porphyrin (───), the DHP-P-DHI 

isomer of 1 (–  –  –  –), CPD-P-DHI (─ • ─ • ─ •) and DHP-P-BT (•  •  •  •  •). 

Figure 3. Emission spectra with 590 nm excitation in 2-methyltetrahydrofuran:  5,15-bis(4-

methoxycarbonylphenyl)-10,20-bis(2,4,6-trimethylphenyl)porphyrin (───) (arbitrary amplitude), the 

DHP-P-DHI isomer of 1 (–  –  –  –), and photostationary states of the same sample highly enriched in 

CPD-P-DHI (─ • ─ • ─ •) and DHP-P-BT (•  •  •  •  •).  

Figure 4. Conceptual diagram of the 1:2 demultiplexer system. Triad 1 is dissolved in 2-

methyltetrahydrofuran and placed in a cuvette. Input Ad is 1064 nm light from a pulsed Nd:YAG laser. 

Input In is 532 nm light provided by light from a similar laser passing through a SHG crystal. The third 

harmonic generating (THG) crystal does not affect the 1064 or 532 nm beams, but when both are 

present, generates 355 nm light. The readout sources provide light for measurement of the porphyrin 

fluorescence emission at 720 nm (O1) and the betaine absorbance at 572 nm (O2). In practice, both laser 

beams were generated by the same laser (see Experimental Section). 

Figure 5. Experimental response levels for the outputs. The dashed horizontal lines represent threshold 

levels for distinguishing between on and off responses. (a) Porphyrin fluorescence emission intensity 

(arbitrary scale) at 720 nm. (b) Absorbance (due mainly to betaine) at 572 nm. The horizontal scales 

indicate the states (1 = on, 0 = off) of data input In and address input Ad. 

Figure 6. Cycling of the triad 1 after sequential exposure to the various input combinations. Symbol R 

indicates the reset operation, In indicates exposure to 532 nm irradiation, and Ad signifies 1064 nm 
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exposure. (a) Emission intensity at 720 nm (arbitrary units) (b) Absorbance at 572 nm. The traces are 

the actual measured signals, and therefore demonstrate the signal-to-noise levels present during the 

measurements. 
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