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We present a strategy for self-assembly of the smallest yet reported DNA nanostructures that are 

also addressable in terms of their DNA-base code. Using linear as well as novel branched three-

way DNA oligonucleotide building-blocks we demonstrate the formation of a nano-network’s 

fundamental cell, a DNA pseudo-hexagon of side 4 nm. The network’s inherent addressability will 

allow functionalization with sub-nanometer precision yielding unprecedented richness in 

information density, important in context of Moore’s Law and nano-chip technology. 

1. Introduction 

An evolution is underway in nanotechnology from top-down (e.g. lithographic) design of nanometer 

scale structures towards a synthetic, bottom-up strategy based on molecular self-assembly [1]. Among 

molecules suitable for designing supra-molecular nanometer sized structures DNA is a powerful 

candidate molecule due to the highly selective hydrogen bonding of the nucleobases and the steric 

stiffness that their stacking provides to the double-helix structure, along with the ease with which any 

Many great endeavors have been made in the field of DNA nanotechnology in recent years, with the 

complexity of the structures ever-increasing and their size ever-decreasing [2-10]. The pioneering work 

of Seeman’s group has focused mainly upon the use of rigid crossover motifs that reliably build 

extensive repeating networks which are easily imageable by e.g. AFM, STM [11]. Such crossover 

motifs are excellent for introducing stability and rigidity to extensive networks but increase significantly 

the size of the unit-cell by abandoning the simplicity of a single helix. The tetrahedron of Tuberfield and 

octahedron of Joyce show the possibility to use DNA strands to build approximate geometric shapes 

and also demonstrate the potential to nano-construct in three dimensions with DNA [12,13]. Nucleic 

acids with an intrinsic branch-point can be exploited to assemble two and three dimensional structures 

as demonstrated by the group of von Kiedrowski that has developed branching DNA strands and 

outlined their obvious applicability to the world of DNA nanotechnology; and more recently the group 

of Sawai [14-17]. Mimics of the naturally occurring Holliday junctions have also been constructed to 

demonstrate the appropriateness of distinct branch-points [10]. Aldaye and Sleiman have recently 
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presented a structure based on rigid linker nodes and 17-mer sides to form a hexameric cyclic construct 

with a diameter of approximately 15 nm [18].  

In order to exploit the inherent advantages afforded by DNA as a bottom-up nanomaterial it is vital to 

develop non-repetitive networks that are of the smallest possible unit cell size [19]. By using unique, yet 

short, DNA building-blocks both addressability and unprecedented high information density should be 

achievable. In both respects we here report a paradigmatic step forward, by constructing DNA pseudo-

hexagons, ring-closed structures composed of six sides where each is just one turn (3.4 nm) of duplex 

DNA, and developed spectroscopic techniques to characterize these structures as well as using the more 

standard technique of gel electrophoresis to confirm their formation. Novel three-way branched DNA 

oligonucleotides, have also been developed via a simple and efficient method, based on a new 

branching monomer compatible with standard automated DNA synthesizers, that allows complete 

choice of both sequence, directionality and incorporation of modifications for each individual arm. In 

contrast to all previously reported structures each arm of each three-way node is therefore completely 

unique. Together with the small unit-size of the network, these properties will allow functionalization 

with sub-nanometer precision e.g. using triplex-forming oligonucleotides to selectively address a 

specific position in a network or by direct labeling of the structures. Presented here is a strategy by 

which oligonucleotides can be assembled into nano-constructs that are the smallest yet reported 

fundamental cells (<10 nm) of a DNA nano-network and almost half the size of the most recently 

reported structures(17). Our nanostructures are composed of 10-mer sides, bringing the length down to 

just one turn of B-DNA, and show the advantage of using semi-flexible linkers (either single-stranded 

hinges or nodes with semi-flexible side-chains). Using this approach leads to an excellent yield of 

formation without the need for purification to remove higher-order polymerized structures from the self-

assembled mixture. Since a non-integral number of turns introduces strain and the fewer base-pairs 

involved in holding the structures together would lower the stability, we therefore propose that this is 

the smallest practically achievable DNA construct that can be made by simple bottom-up self-assembly 

procedures. 
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2. Results and discussion 

Six 22-mer oligonucleotide strands were designed so as to be complementary to each other in the 

pattern outlined in Fig. 1a (strands 1-6 = C, cyclizable structure). The final ten base-pairs on each end 

are complementary to a corresponding sequence on one other strand but orthogonal to all other 

sequences and combinations of such (for more detailed information regarding orthogonal sequence 

design see Supplementary Information). Two such 10-mer sequences are bridged by two thymines that 

act as flexible hinges in the constructs. A seventh strand, 5*, was designed for the control construct 

which is almost identical to the cyclisable one except that one ten base sequence is replaced with all 

thymines so that ring-closure can not take place in this case, i.e. it is a perfect linear analog to our 

proposed structure (strands 1-4, 5*, 6 = L, linear structure). Submerged gel electrophoresis was 

performed on these constructs in MetaPhor agarose gel and the results are shown in Fig. 2. 

(Experimental details for all results are contained in Supplementary Information) The lanes marked C 

contain the constructs that can cyclize, those marked L the linear analogue and those marked C/L a 

mixture of both structures. It is clear that the proposed ring structures migrate in a band that is slower 

than and distinct to that of the uncyclized form. Since the ring-closed form is bulky in two dimensions 

its rate of migration ought to be slower than that of the linear form to which more pores are accessible 

and which can wind its way easier through the gel due to a lower friction coefficient. The results 

indicate that the cyclizable construct is indeed cyclized. The lanes containing both constructs clearly 

display two bands, corresponding to the individual bands in the other lanes, to verify that they are 

indeed two unique constructs. More interestingly the lanes carrying the cyclized product contain no 

significant traces of longer polymerized constructs, nor do they show the presence of any other possible 

DNA constructs (either shorter or longer). Longer structures would be expected to appear further back 

in the gel and/or as a streaked band or even trapped at the well. This shows that the structures are 

formed efficiently (the strands are directly mixed with each other and annealed over 4 hours) and in 

very high yield, without the need for electrophoretic purification, in stark contrast to the stiffer 

structures previously reported [18]. This is consistent with intramolecular ring-closure being much more 
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favourable than intermolecular polymerization confirming that our strategy of using semi-flexible 

linkers ensures excellent probability of formation. By employing TT hinges we ensure enough 

flexibility in the system to allow the two ends of a chain to meet without imposing strict geometries via 

stiff nodes. For this reason the trigonal nodes described later also possess semi-flexible arms to favour 

nanostructure formation. 

UV-melting experiments were then carried out to further characterize the cyclizable system and its 

linear control (Fig. 3). The derivatives of these plots distinctly show a characteristic difference. The 

pseudo-hexagonal construct shows a very steep and sharp peak upon initial melting at 31°C that is 

absent for its non-cyclized counterpart. This represents the thermodynamic strain inherent to the ring-

closed system due to a significant “immobilization entropy”. It also implies that ring-opening is a very 

co-operative and instantaneous process which is what one would expect from such an event. Once this 

strain is released the two curves are essentially identical suggesting that the processes that are then 

occurring are, as expected, very similar in nature.  

Since we are now working at a scale below what is typically probed via AFM for DNA studies it was 

deemed necessary to complement the electrophoretic evidence with the development of spectroscopic 

techniques which are more appropriate at this scale. Fluorescence resonance energy transfer (FRET) 

measurements were therefore carried out on these systems which were strategically labeled with the 

donor chromophore, fluorescein - attached to strand 1 at the 5’-terminus and the acceptor chromophore, 

Cy3 - labeled on the 5’-terminus of one of the other strands (2-6, 5*) for all possible combinations (See 

Fig. 1). The energy transfer efficiencies for each differently labeled construct are shown in Fig. 3. For 

the cyclized structure C6, where the acceptor chromophore is attached to oligonucleotide 6, the 

formation of a ring will position the acceptor chromophore a distance of only one DNA turn (3.4 nm) 

and two hinges away from the donor chromophore which should lead to high energy transfer efficiency. 

By contrast, for the linear structure L6, as a consequence of a large separation of acceptor and donor 

chromophores, there should be negligible or no detectable energy transfer. Indeed, this is what we find 

when comparing the energy transfer measured for the C6 (66 %) and L6 assembly (5 %). High 
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efficiency of energy transfer in the C assembly would also be expected if the six oligonucleotides were 

to form a longer linear polymer but as seen in the electrophoretic measurements this possibility has 

already been ruled out. The energy transfer when modifying the acceptor position in the C assembly 

decreases in the order: C2>C6>C3>C5>C4. Despite the dynamics of the construct, including the 

flexibility of the fluorophore linkers and the rotational freedom of each of the DNA duplexes, this trend 

is in exact qualitative agreement with that expected from the schematic in Fig. 1a. As for the linear 

assemblies, the energy transfer efficiencies for L4, L3 and L2 are 13, 28 and 76 %, respectively (the 

donor and acceptor of L6 and L5* are too far apart for significant energy transfer). The distances in the 

linear assemblies should increase in the order: L2<L3<L4<L5*<L6 which is in perfect agreement with 

the FRET results, thus, further justifying the application of FRET to deduce the closed structure and to 

confirm that it is of the size expected by ring-closure of this six-sided object to form a pseudo-hexagon. 

Importantly, these measurements also show that it is possible to achieve relatively high energy transfer 

efficiencies in such a system, something that is impossible with larger unit-cell sizes since FRET 

efficiency decreases with the sixth power of distance and is not usually detectable beyond 10 nm. Thus, 

not only have we established that FRET is an excellent technique for characterization of ultra-small 

nano-networks but also that the transmission of energy is possible within such networks.  

With the aim of building extended non-repetitive networks in mind we developed unique three-way 

DNA nodes based on both symmetric and asymmetric monomers branching phosphoramidite monomers 

(See Supplementary Information and Brown, T. et al, manuscript in preparation). These nodes each 

have three unique arms which means they are the essential element of a non-repeating addressable 

network. Because of the desire to keep the node small and to have a symmetric geometry about the 

nodal point, a monomer based on a 1,3,5-tri-substituted benzene ring was chosen, as shown in Fig. 4. 

The use of orthogonal protecting groups ensures that, unlike previously reported branching monomers, 

three entirely different oligonucleotide sequences can be situated on the same trigonal node by solid-

phase synthesis and that there is full freedom of choice in directionality (i.e. 5’-3’ or 3’-5’) and 

functionalization for each arm. In the examples given here the direction of one arm is 3’-5’ and the 
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other two are 5’-3’. Other nodes have been synthesized in which all arms are 5’-3’ or all 3’-5’. This is 

achieved by the appropriate use of reverse phosphoramidite monomers (Link Technologies Ltd). Using 

the symmetrical node monomer it is possible to ensure geometric symmetry whilst having full sequence 

asymmetry at the branch points, this being an integral part of the strategy to develop addressable 

nanostructures. Furthermore this novel monomer is, importantly, perfectly compatible with the 

automated solid-phase synthesis process. In order to directly compare structures formed by these new 

oligonucleotides with those already characterized and self-assembled from standard DNA strands, six 

three-way oligonucleotides (1T-6T) were synthesized where two of the arms on each node are the same 

sequences as the orthogonal ones used in the structures outlined above and the third arm on each is a 

unique orthogonal sequence to those already used and all other new arms (See Supplementary 

Information for full design). Again a seventh oligonucleotide was synthesized (5*T) that would act as a 

reference non-cyclizable construct. The structures are indicated in Fig.4, where the same color-coding 

as in Fig. 1 is employed. The complementary strands to the six protruding arms were synthesized as 

standard 10-mers oligos so that each structure is constructed from a total of 12 strands to form an 

entirely double-stranded nanostructure. In order to confirm ring-closure the structures were directly 

compared in a gel electrophoresis experiment similar to the one performed on the standard oligo 

analogs. One of the three-way oligonucleotides, 6T, was labeled with Cy3 which was used to image the 

structures in the gel.  Again we see a distinct difference in mobility for the two constructs, the cyclized 

form migrating more slowly than the non-cyclizable form. The same reasoning can be used here to 

explain the difference in mobilities as for the standard DNA constructs although the resolution between 

the two structures is even better here. The protruding arms of the trigonal node constructs must have an 

“anchoring effect” in the pores where they increase friction which then further reduces the mobility of 

the cyclized form. Furthermore, there is obviously also a very high yield of formation for the cyclized 

construct proving that this linker node is still flexible enough to allow ring-closure and thus 

nanostructure formation whilst still imposing the correct geometry. Further details on yield of formation 

can be found in the Supplementary Material. As a non-trivial proof of principle for addressability an 
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electrophoresis experiment was devised where three of these pseudo-hexagonal constructs were formed 

and a different side-arm of each construct selectively addressed using an oligonucleotide labeled at the 

5’ terminus with Cy3. The gel shows that in each case the bands have the same mobility as detected by 

the fluorescence from Cy3. Any difference in fluorescence intensity can be attributable to the change in 

quantum yield for Cy3 which is sequence dependent or small differences in sample volume when 

loading the wells. One must therefore conclude that we have constructed the same pseudo-hexagonal 

construct in each case but that the Cy3 label occupies a different position in what are otherwise identical 

nanostructures 

3. Conclusions 

The efficient self-assembly and verification of formation of a hexagonal DNA nano-network unit cell, 

which is the smallest yet reported, are important steps forward in nano-network research. The complete 

freedom of sequences and functionalization of normal as well as trigonal DNA, provides a basis for 

selectively addressing a specific position of a network using, as demonstrated here, a Cy3 fluorophore 

or for example triplex-forming oligonucleotides [20,21]. The small cell size (<10 nm) of this pseudo-

hexagon, an order of magnitude smaller than previous repeating DNA networks, demands a different 

approach to structural characterization. With decreasing cell size conventional techniques, such as 

microscopy, for studying DNA nano-networks become increasingly difficult and spectroscopic methods 

are instead required. In particular, FRET works excellently in the 1–10 nm range. Here the combined 

results from FRET, UV-melting and gel electrophoresis establish the exclusive formation of a pseudo-

hexagonal nano-network unit cell with only one B-DNA duplex turn (3.4 nm) per side. A shorter duplex 

would have too low a melting temperature and would also be likely to introduce excess tension to the 

hexagon due to incomplete helix-turns. Thus, we claim our orthogonal DNA nano-network cell to be the 

smallest achievable. Potential applications of this type of high-density nano-network include 

information storage and transfer. The FRET results demonstrate that this cell size allows controlled 

transfer of energy through predetermined paths in such a DNA network. 
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Figure 1. Design of nano-sized DNA pseudo-hexagons and evidence of formation by gel 

electrophoresis 

(a) A color-coded schematic showing the orthogonal design of the oligonucleotides for the cyclizable 

construct, C, and the non-cyclizable linear analog, L. Sequences are numbered at their 5’-termini with 

arrowheads representing the 3’-terminus. TT hinges are indicated in black. The C assembly consists of 

six 22-mer oligonucleotide sequences (1–6) designed to hybridize to each other to form a pseudo-

hexagon. The 22-mers are designed to have two different 10-mer outer regions complementary to a 

corresponding region on two other 22-mers and orthogonal (≤ 4 consecutive matching bases) to any 

other part of all the sequences (see Supplementary Information). The L assembly consists of five of the 

six oligonucleotide sequences of the C assembly (1–4 and 6) and an additional 22-mer sequence, 5*, 

designed to also be orthogonal to 2, thus, preventing ring closure of the oligonucleotides. Three-

dimensional schematic representations are also shown. 

(b) Gel electrophoresis experiments performed in 4.5% MetaPhor agarose. Lanes containing only 

cyclisable nanostructures are marked by C, only non-cyclizable by L or a mixture of the two by C/L. 

Gels were run at 4.5 V cm-1, 4° C and post-stained with ethidium bromide. Total concentration of 

hexagon or linear form is 0.33 µM. Measurements performed at 7 °C using a phosphate buffer (pH 7.5, 

total Na+ concentration is 200 mM). 

 

 

Figure 2. UV-melting experiments 

UV melting temperature experiments were performed on the C (black line) and L assemblies (red line) 

shown in Fig. 1. Inset shows first derivative of unnormalized melting curves of the C (black line) and L 

assemblies (red line). Ring-opening occurs at 31°C 
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Figure 3. Fluorescence resonance energy transfer: evidence of ring-closure of DNA nano-

constructs 

Comparison of energy transfer efficiency in cyclized (black bars) and corresponding linear (red bars) 

nano-sized DNA constructs. The cyclized, C, and the linear form, L, have a fluorescein donor label 

attached to the 5’-terminus of oligonucleotide 1. In the comparisons C/L6, C5/L5*, C/L4, C/L3 and 

C/L2, sequence 6, 5 or 5*, 4, 3, and 2, respectively, have a Cy3 acceptor label attached to the 5’-

terminus.  

Figure 4.  Trigonal DNA monomer and its use in building addressable DNA nano-constructs  

(a) Schematic showing the three-way oligonucleotides used to build the structures, the color-coding 

shows their complementarity as well as how they compare to the structures made from standard 

oligonucleotides (See Fig.1). Standard 10-mer oligos were used as complements to the protruding arms. 

 (b) Symmetric three-way node, based a 1,3,5-trisubstituted benzene with three orthogonal protecting 

groups. This monomer is perfectly compatible with automated oligonucleotide synthesis. 

 (c) Gel electrophoresis of the cyclized CT and linear LT assemblies built from these three-way nodes. 

The lane marked CT contains only the cyclisable structures, LT only the linear structure. Electrophoretic 

conditions are as described in Fig. 1.  

 (d) The same construct, CT selectively addressed at three individual sites with a Cy3 fluorophore. The 

superscript indicates the node which was addressably targeted by the Cy3 labeled 10-mer. LT4 was the 

corresponding linear reference construct and N4 a single node with one Cy3 labeled complementary 

strand. Since all constructs have the same mobility the pseudo-hexagonal construct must be successfully 

addressed in these three different positions. 
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