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Abstract: This paper presents the use of models for predicting influent flow to the Rya wastewater 
treatment plant. Momentaneous influent flow is calculated using physical modelling and is then used 
to identify prediction models using ARX filters. Dry weather and stormwater runoff flows are 
modelled separately with the dry weather model predicting the flow as the average of past dry 
weather days and the stormwater model also using past flow data but with rainfall predictions as an 
extra input signal. The results indicate that accurate 24 hour predictions can be made during dry 
weather. With the addition of a stormwater runoff model with a shorter prediction horizon the 
combined models is believed to be useful for improving pump control performance for all weather 
conditions. 

 
 
INTRODUCTION 
In continuously operated wastewater treatment plants (WWTP) it is often desirable that the flow 
through the plant should vary as little as possible for optimal performance. Available buffer capacity 
in wastewater transport systems can be used to achieve minimum variance. Influent flow predictions 
would therefore be helpful in making maximum use of the buffer capacity with no or little changes in 
pumping rate during the predicted time horizon. 
 
Several studies have been made concerning modelling and prediction of wastewater flow using 
mechanistic and black-box type models. It has been shown useful to combine model types in a hybrid 
model with both deterministic and stochastic components (Vojinovic et al, 2003). In another work 
with an approach similar to this study (Tan et al, 1991) dry and wet weather are described separately, 
with the dry weather flow modelled as an average of previous dry weather days and wet weather 
modelled as a recursively adaptive parametric system. 
 
In this case study a separation of the influent flow into a dry weather flow and an additional 
stormwater runoff is applied. Both types of flow depend dynamically on ground conditions. Dry 
weather flow has an obvious daily variation, but also a slow seasonal bias change as ground water 
levels and industrial loads vary. Stormwater runoff depends on precipitation as well as saturation in 
the upper ground layers. Two different models are used to describe the two kinds of influent flows. 
The dry weather flow is formed as an average of previous dry weather days, while the stormwater 
runoff is modelled as a recursive ARX (autoregressive, with exogenous input) system. The combined 
models will be used to predict the influent flow to the Rya WWTP in Göteborg, Sweden. This is a 
different approach than earlier attempts with deterministic conceptual modelling (MOUSE) of the 
Rya WWTP system (Gustafsson et al, 1993, Lumley et al, 1995). 
 



METHODS 
The Rya WWTP treats wastewater from the Göteborg region with a connected area of approximately 
200 km2 and a dry weather load of about 210 000 m3/d and peaks up to 1 425 000 m3/d (Äijälä and 
Lumley, 2005). Wastewater is transported to the Rya WWTP through a large tunnel system 
comprised of two main branches of about the same size, separated by the Göta River (Figure 1). The 
input flow to the north and south tunnel system is calculated with a physical model describing the 
relation between the output and input flow and the rate of change of water levels. Based on these input 
flows the dry weather and rainfall models used for prediction are identified. 

 

Figure 1 Overview of the tunnel system. The north and south tunnel systems are connected 
through inverted siphons under the Göta River, with valves controlling the QSN 
flow. The tunnel sections can be used as buffers and have a total storage capacity of 
approximately 250 000 m3. 

 
Flow model 
A model is used to calculate the momentaneous flows to the two tunnel sections that give the most 
flow attenuation in the tunnel system. Measurable flows are QSN, connecting the south tunnel system 
through an inverted siphon under the Göta River, and QIN, influent pumping rate to the Rya WWTP. If 
the rate of volume change (dV/dt) is known for the two sections, input flows can be calculated as  

SN
S

S

SNIN
N

N

Q
dt

dV
Q

QQ
dt

dV
Q

+=

−+=
 

with QN and QS being the flow in the north and south tunnel systems respectively. The rate of change 
of the volume in the tunnel sections is estimated from measurements of the water level h using a 
mathematical function A(h) to translate the rate of level change to rate of volume change. The value 
A(h) can be interpreted as the effective water area in the tunnel system at the current level and 
depends on the geometrical properties of the non-prismatic tunnels. 
 
During dry weather the influent flow to the attenuation sections can be considered as almost constant 
for short time periods. If during that period of time a large change is made in the outgoing flow Q, for 
example a step in the input pump rate, a clear difference will be seen in the rate of change of the water 
level as illustrated in Figure 2. This gives information about the relationship between rates of change 
of water level (dh/dt) and rate of change of volume (dV/dt) which can be expressed mathematically as 
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by which an estimate of the value of the function A(h) at the present level h can be made. By repeating 
this for a large number of different levels, as seen in Figure 3, a complete function describing the 
tunnel’s volume properties can be approximated using curve fitting methods. The rate of volume 
change in the tunnel sections can then be calculated as 

dt
dh

hA
dt
dV

)(=  

and thereby making it possible to determine the tunnel system influent flows QN and QS. 

 

Figure 2 Illustration of how a step change in outgoing flow affects the rate of change of water 
level in the tunnel section. 
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Figure 3 Calculations of the relationship between rate of level change and rate of volume 
change at different water levels in the tunnel systems. The assumption that 
incoming flows are constant during the measurement period is not always valid, 
which probably is the cause of outliers since they were recorded at times with high 
flows in the tunnel system. The level - volume relationship is in agreement with 
results from an earlier study using MOUSE. 
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Prediction 
The purpose of prediction is to be able to make a good estimation of future values of the flow input in 
the tunnel system. The flow during dry weather is very different from rainfall runoff flow, as seen in 
Figure 4, and therefore has to be modelled separately. 
 
Dry weather model. The dry weather flow depends mainly on the time of day as the activities of 
industries and households vary. The flow pattern is more or less similar from day to day, although it is 
different in appearance between the north and south tunnel systems. The dry weather flow is 
described by two components, a mean flow value and a flow pattern, similar to Tan et al, 1991. The 
flow pattern is a vector whose elements are weighted mean values of the flow shape, sampled with 
certain time intervals, e.g. every half hour. The mean value of the flow pattern is zero, i.e. it is centred 
around the x-axis. To describe the complete dry weather flow the mean value parameter is added to 
the flow pattern. 
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Figure 4 Influent flow to the north tunnel section.  The different nature of dry weather flow 
and stormwater runoff necessitates separate models. 

When a new flow value is sampled it adapts the flow pattern using an ARX filter, with a filter 
parameter deciding the weight placed on new and old values respectively. The mean flow value 
which is based on the average flow over 24 h is filtered in the same way but optionally using a 
different weight parameter. The ARX filter uses the previous output yd(t – 1) and current input value 
ud(t) to calculate the new output value according to 

)()1()1()( tuwtwyty ddd −+−=  

where the coefficient w is the weight factor with 0 � w � 1. A higher value of w gives a stronger 
weight to old values and thereby a slower adaptation to changes. To avoid disturbances in the flow 
pattern and mean flow caused by rainfall runoff, a limit is set and if exceeded no change is made to the 
output values. Since the variation of the flow is small, the current values for flow pattern and mean 
value can be used to predict future dry weather flow (Figure 5). 
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Figure 5 A dry weather model is adapted to measured flow in the south tunnel system using 
an ARX filter. The daily flow pattern and the mean value are filtered separately and 
can have different rates of adaptation by setting appropriate values for w. After the 
first learning stage a slower adaptation rate can be set. 

 
Stormwater runoff model. The dry weather model is used to remove the periodic base from the 
incoming flow, giving a clearer view of the correlation between rainfall and runoff and also helping 
the identification of a correct model (Figure 6). 
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Figure 6 Using the dry weather model the daily periodic component is subtracted from the 
influent flow to calculate of the runoff flow. Then a model is identified to describe 
the correlation between rainfall and runoff flow. 

An adaptive ARX model was found sufficient to describe how the two flows (y) from the tunnel 
systems dynamically depend on the measured rainfall (u). The reason for using adaptation of the 
model parameters is to better describe the changing time constants of the runoff, which vary 
depending on season and past weather. The ARX model consists of a regression vector �, in which 
previous input and output values are stored, and a parameter vector � with the corresponding model 
coefficients. With the model order parameters na and nb setting the number of past data samples of 
input and output, the model can be written as 
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where the dead time nk sets the response delay from input to output. The prediction of future output 
values can now be written as: 

θϕ )()1(ˆ tty T=+  

Using a recursive algorithm the constant parameter vector can be replaced with a time varying 
variant )(ˆ tθ which is continuously updated to fit the present system conditions by minimizing the 
prediction error: 
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The parameter vector estimation algorithm (Åström and Wittenmark, 1989) is 
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where � is a parameter that determines the rate of adaptation of the model parameters )(ˆ tθ . The initial 
value of P sets the early rate of adaptation. The P matrix will then be updated in every iteration of the 
algorithm and is together with � used to calculate the vector K, which determines how the prediction 
error �(t) is used to update the model parameters )(ˆ tθ . (I is the identity matrix). 
 
 
RESULTS AND DISCUSSION 
In Figure 7a a prediction is used which says that future values will be the same as current. This very 
simple method results in a prediction time lag which is very noticeable, compared to the ARX model 
prediction in Figure 7b, when flow changes are significant. Since the model uses a prognosis of future 
rainfall as an extra input it is possible to get a more accurate prediction at the start of the stormwater 
runoff. The autoregressive part of the model describes the dynamics of the flow, i.e. the time constant 
that determines how quickly the runoff flow will diminish after a storm, thus making it possible to 
also predict decreasing flow. 
 
With the recursive algorithm the model parameters that describe system properties such as flow 
dynamics (time constants) and rain influence can be adapted in real-time. As seen in Figure 4 and 
Figure 6 the rain impulse response of the runoff flow decrease rapidly at first, but after a certain point 
it declines more slowly, lasting for several days or weeks. The adaptation of model parameters helps 
predict the flow during such circumstances. 
 
Two parameters that affect the adaptive ARX prediction are the forgetting factor � and the initial 
value of the P matrix. For Pinit = aI a smaller value of a results initially in a slower adaptation of the � 
vector. A smaller value for � means that recent data is more significant and results in a higher 
variation in the � values. The increased adaptation comes at the price of a lower stability, with 
measurement errors having a larger impact on the model parameters. 
 
In Figure 8 plots of typical flows for dry weather and storm are shown. By using the adaptive flow 
pattern estimation it is possible to make good predictions for periods up to 24 hours in dry weather 
conditions. With the addition of the parametric stormwater model predictions can also be made of the 
runoff component, but with a 24 hour prediction time the results are rather inaccurate, as seen in 
Figure 8b. During such periods a much shorter prediction horizon has to be used (Figure 8a), where 
the prediction time is two hours. 
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Figure 7 (a) Simple flow prediction “same as now”. (b) ARX model prediction. The ARX 
model has two advantages over the simple prediction. The use of predictions of 
future rain as an external input gives a more rapid response to stormwater runoff. 
As the dynamics of the runoff component is modelled it can also make an estimation 
of how fast the flow will decrease after the rain. 

 
CONCLUSIONS 
By using the flow pattern estimation for dry weather flow it is possible to make quite good predictions 
for periods up to 24 hours. By adding runoff flow prediction using an adaptive ARX filter, the model 
can also handle rainy conditions with a prediction time of a few hours. To achieve a good prediction 
of the initial runoff flow rain response, a prognosis of future rain levels should be used as an extra 
input to the ARX model. 
 
The recursive update of parameters means that the model will adapt itself to changes in the system 
and eliminates the need for historic data for model identification. This makes it possible to implement 
in a newly constructed system and can at the same time provide better results than a model with 
constant parameters identified from a large set of historical data, depending on how much the 
modelled system varies over time. 
 
The results indicate that useful predictions of future influent flow can be made using these models. 
The calculation of momentaneous flow has been implemented in the Rya WWTP’s SCADA system, 
and the operator can view the dry weather and stormwater runoff flows and storage volumes and use 
this information for planning pumping strategies during rain events. During the spring of 2005 the 
prediction of future flows will be implemented together with new control algorithms for the inlet 
pumping station. 
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Figure 8 Influent flow prediction with (a) 2 and (b) 24 hour prediction horizon. It is possible 
to use the model for 24 hour predictions with good results as long as there is no 
stormwater runoff in which case the prediction time has to be significantly shorter. 
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