
On the 
onvergen
e of stationary sequen
es in topologyoptimization∗Anton Evgrafov† and Mi
hael Patriksson‡January 14, 2005Abstra
tWe 
onsider stru
tural topology optimization problems in
luding unilateral 
onstraints arising fromnon-penetration 
onditions in 
onta
t me
hani
s. The resulting non-
onvex non-smooth problems areinstan
es of mathemati
al programs with equilibrium 
onstraints (MPEC), or bi-level programs. Ap-plying nested (impli
it programming) algorithms to this 
lass of problems is problemati
 owing to thesingularity of the feasible set. We propose a perturbation strategy 
ombining the relaxation of theequilibrium 
onstraint with the restri
tion of the design domain to its regular part only. This strategyallows us to atta
k the problem numeri
ally using standard nonlinear programming algorithms.We rigorously study the optimality 
onditions for the original singular problem as well as the 
on-vergen
e of stationary points and globally optimal solutions to approximating problems towards respe
-tively stationary points and globally optimal solutions to the original problem. A limited numeri
alben
hmarking of the algorithm is performed.Keywords: topology optimization, ε-perturbation, lo
al optimality, stress singularity, MPEC,smoothing1 Introdu
tionThe optimum design of trusses is 
on
erned with the distribution of the available material among stru
turalmembers (bars) in order to 
arry a given set of loads as e�
iently as possible, subje
t to me
hani
al andte
hnologi
al 
onstraints. The distinguishing feature of stru
tural optimization problems is the presen
eof the 
ompli
ating equilibrium 
onstraint, relating design variables (i.e., those 
ontrolling the materialdistribution) with state variables (e.g., nodal displa
ements and stresses in the stru
tural members). Ver-bally, the relation between the two sets of variables 
an be formulated as follows: the state variables solvea parametri
 optimization problem with design variables as parameters. Therefore, the problem belongsto a 
lass of di�
ult optimization problems known as mathemati
al programs with equilibrium 
onstraints(MPEC), or generalized bi-level programming problems.In the framework of topology optimization (as opposed to sizing optimization), the topology of a trussmay 
hange as a result of the optimization pro
ess, that is, if a zero amount of material is allo
atedto some parts; this possibility signi�
antly enlarges the design spa
e and, at the same time, in
reases the
omputational 
omplexity of the problem. The former implies the possibility to obtain optimal designs thatperform mu
h better than their �sizing� 
ounterparts [Mi
04℄; the latter pla
es signi�
ant requirements onalgorithms for solving topology optimization problems.In most 
ases, �standard� algorithms for di�erentiable nonlinear programming problems 
an be applieddire
tly to sizing optimization problems. Therefore, one natural approa
h to topology optimization is tointrodu
e a small but positive lower bound ε on the bar volumes, thus 
onverting the problem into a sizingone. Solving a sequen
e of sizing problems for ε 
onverging to zero produ
es a sequen
e of designs, whoselimit points one hopes are optimal in the original topology optimization problem.Unfortunately, some important 
onstraints produ
e design domains that violate standard nonlinearprogramming 
onstraint quali�
ations; in parti
ular, some optimal solutions 
annot be rea
hed as limits ofany sequen
e of stri
tly positive feasible designs. The stress singularity phenomenon appearing in topologyoptimization problems with 
onstraints on the maximal e�e
tive stresses in the stru
tural members isprobably the one most studied and the one that has attra
ted the most re
ent interest�we mention the
∗This resear
h is supported by the Swedish Resear
h Coun
il (grant 621-2002-5780).
†Department of Mathemati
s, Chalmers University of Te
hnology, SE-412 96 Göteborg, Sweden, toxa�math.
halmers.se
‡Department of Mathemati
s, Chalmers University of Te
hnology, SE-412 96 Göteborg, Sweden, mipat�math.
halmers.se1



work in [SvG68, ChG97, Pet01, StS01℄, just to name a few referen
es. Similarly, lo
al (Euler) bu
kling
onstraints [GCY01℄, and global (system) stability 
onstraints [Evg04℄ are known to exhibit a singularbehaviour.Sizing approximations, studied in the 
ited papers, are all 
on
erned with approximations of the globallyoptimal solutions. In 
omputational pra
ti
e, however, it is very di�
ult to solve the non-
onvex approx-imating problems to global optimality. Sin
e most numeri
al nonlinear optimization algorithms 
an only�nd stationary points of the approximating sizing problems, in this paper we study the limit points ofsu
h sequen
es. We show that they are indeed stationary, in some sense, in the limiting (that is, original)topology optimization problem as well.1.1 Equilibrium problemWe 
onsider a truss with m bars and n degrees of freedom. There are r designated nodes of the truss thatmay 
ome into fri
tionless unilateral 
onta
t with rigid obsta
les.Given positions of the nodes, the design (and topology in parti
ular) of a truss 
an be des
ribed bypres
ribing for ea
h bar i, i = 1, . . . , m, the amount of material xi ≥ 0 allo
ated to this bar. For 
onvenien
ewe 
olle
t all the design variables in a ve
tor x = (x1, . . . , xm)t ∈ R
m
+ . We introdu
e an index set of thepresent (or, a
tive) members in the stru
ture I(x) = { i = 1, . . . , m | xi > 0 }, and denote by Ic(x) the
omplement of I(x) in { 1, . . . , m }.Given a parti
ular design x, the equilibrium status of a truss 
an be des
ribed by spe
ifying

◦ a pseudo-for
e si (also known as the normalized stress, whi
h is in fa
t a stress in the bar times itsvolume) for ea
h bar i ∈ I(x) present in the stru
ture . To simplify the notation we 
olle
t all values si,
i = 1, . . . , m, into one ve
tor s ∈ R

m, assuming si = 0 for i 6∈ I(x);
◦ a 
onta
t for
e λj for ea
h of the potential 
onta
t nodes j = 1, . . . , r. These values are 
olle
ted in ave
tor λ ∈ R

r
+; and

◦ a displa
ement uk for ea
h of the stru
tural degrees of freedom k = 1, . . . , n. These values are 
olle
tedin a ve
tor u ∈ R
n.The triple (s, λ, u) will be referred to as state variables.For a ve
tor v ∈ R

q, and an index set I = { i1, . . . , i|I| } ⊆ { 1, . . . , q }, we denote by vI the subve
tor
(vi1 , . . . , vi|I|)

t.The values of the state variables for a spe
i�
 design x are determined using various energy prin
iples.Therefore, we de�ne the 
omplementary energy of the stru
ture as
E(x, s, λ) :=

1

2

∑

i∈I(x)

s2
i

Exi

+ gtλ,where E is the Young modulus of the stru
tural material, and g ∈ R
r is a ve
tor of gaps between the
onta
t nodes and rigid obsta
les. We also de�ne the linearized strain energy:

Π(x, u) :=
1

2
ut

K(x)u,where K(x) is the sti�ness matrix of the stru
ture. The latter matrix is de�ned as
K(x) :=

∑

i∈I(x)

xiKi,where Ki = EBt
iBi is the lo
al sti�ness matrix for the bar i = 1, . . . , m, and Bi ∈ R

1×n is a kinemati
transformation matrix for the bar i = 1, . . . , m.In this notation the equilibrium state of the stru
ture under the external load f ∈ R
n 
an be 
hara
-terized using a primal-dual pair of 
onvex quadrati
 programming problems:

(C)x(f )






min
(s,λ)

E(x, s, λ),s.t. Ctλ +
∑

i∈I(x)

Bt
isi = f ,

λ ≥ 0,

(P)x(f )

{
min

u
Π(x, u) − f tu,s.t.Cu ≤ g,where C ∈ R

r×n is a kinemati
 transformation matrix. We have impli
itly assumed that the matrix Cis quasi-orthogonal, that is, that CCt = I. The problem (C)x(f ) is known as the prin
iple of minimum2




omplementary energy, and the problem (P)x(f) is the prin
iple of minimum potential energy.Equivalently, the equilibrium problem 
an be written as a KKT system for the pair (C)x(f ) and (P)x(f ).De�ne
Q(x) :=




Bt Ct 0

0 0 −C

I 0 −D(x)B


 , q(f ) :=



−f

g

0


 ,and Y := R

m × R
r
+ × R

n, where B ∈ R
m×n is the matrix with rows B1, . . . , Bm, and D(x) =

E−1diag(x) ∈ R
m×m. Then, the pair (s, λ) solves (C)x(f) and u solves (P)x(f) if and only if the ve
tor

y∗ = (st, λt, ut)t ∈ Y solves the a�ne variational inequality problem AVI(q(f ), Q(x), Y ) [see, e.g., [FaP03℄for the de�nition℄:
[Q(x)y∗ + q(f)]t(y − y∗) ≥ 0, for all y ∈ Y .For the rest of the paper, we make the blanket assumption that for all positive designs x it holds thatnullK(x) ∩ r
 {u ∈ R

n | Cu ≤ g } = ∅, (1)where null(·) denotes the null spa
e of a given matrix, and r
(·) is the re
ession 
one of a given set(
f. [HKP99℄). This assumption is ne
essary to in order to guarantee the feasibility of the topology op-timization problems we are going to 
onsider, and is weaker than assuming non-singularity of K(x) forpositive designs (the latter assumption is �standard� for 
onta
t-less problems, and then essentially equiv-alent to (1) be
ause the re
ession 
one involved equals R
n in the 
onta
t-less 
ase). The assumption (1)does not ex
lude problems where the stru
ture is supported on rigid obsta
les only (see Figure 3).Either of the equilibrium problem formulations (C)x(f), (P)x(f), or AVI(q(f), Q(x), Y ) has its advan-tages and disadvantages. For example, the problem (C)x(f) possesses at most one optimal solution forevery design x ∈ R

m
+ ; at the same time, the obje
tive fun
tion E is only lower semi
ontinuous (and may bein�nite) for some x ∈ ∂R

m
+ (
f. [PaP02℄).Our ultimate goal in this paper is to establish stationary 
onditions that must be veri�ed by limit pointsof 
ertain sequen
es of positive designs. We 
annot use the equilibrium formulation given by the problem

(C)x(f) for this purpose, be
ause its obje
tive fun
tion violates su
h a basi
 
ondition for sensitivityanalysis as 
ontinuity. Neither is the problem (P)x(f ) suitable for us, be
ause the design-to-state mappingit indu
es is not 
losed [PaP02℄. Therefore, we will use the primal-dual 
hara
terization of the equilibriumgiven by AVI(q(f ), Q(x), Y ) in the sequel.We 
lose the subse
tion by de�ning the feasible set generated by the equilibrium 
onstraint:
F(f) := { (x, s, λ, u) ⊂ R

m
+ × R

m × R
r
+ × R

n | (s, λ, u) ∈ SOL(q(f), Q(x), Y ) }. (2)1.2 Weight minimization problemWe use a stress 
onstrained weight minimization problem of a truss subje
t to unilateral fri
tionless 
onta
twith some rigid obsta
les as a representative of the di�
ult stru
tural optimization problems. To skip oneindex and simplify the notation we 
onsider a single load 
ase only; this does not a�e
t the appli
ability ofour results to multiple load 
ases in any way.The weight minimization problem 
an be written as follows:
(W)






min
(x,s,λ,u)

w(x) :=

m∑

i=1

xi,s.t. (x, s, λ, u) ∈ F(f),

σixi ≤ si ≤ σixi, i = 1, . . . , m,where σi ≤ 0 and σi ≥ 0 are the stress bounds in 
ompression and tension for the bar i = 1, . . . , m, and
F(f) is given by (2).The results of the present paper are of 
ourse appli
able to a wider 
lass of problems than (W). Forexample, more general obje
tive fun
tions 
an be 
onsidered as long as they are reasonably regular [dif-ferentiable, or Lips
hitz 
ontinuous w.r.t. (x, s, λ, u)℄; additional 
onstraints may be 
onsidered (su
h asbounds on admissible displa
ements, lo
al bu
kling 
onstraints, or global stability 
onstraints). However,to keep the notation simple we do not dis
uss su
h straightforward generalizations in detail.1.3 SingularityFor illustrational purposes here we reprodu
e an a
ademi
 example introdu
ed in [Pet01℄.3
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fFigure 1: 1-bar truss stru
ture.Consider a simple 2-bar stru
ture shown in Figure 1. Assume that E = 1, f = 1, −σ1 = σ1 = 1,
−σ2 = σ2 = 1/2. In this 
ase, the weight minimization problem is formulated as follows:

min
(x,s,λ,u)

x1 + x2,s.t. x1 ≥ 0, x2 ≥ 0,

−x1 + s1 ≤ 0, −x2 + s2/2 ≤ 0,

−x1 − s1 ≤ 0, −x2 − s2/2 ≤ 0,

s1 − x1u = 0, s2 + x2u = 0,

s1 − s2 = 1.The unique globally optimal solution to this problem is (x∗
1, x

∗
2, s

∗
1, s

∗
2, u) = (1, 0, 1, 0, 1). It is easy toverify that while the KKT 
onditions are satis�ed at this point, MFCQ (hen
e, LICQ) is violated. Thissituation in stru
tural optimization is rather typi
al, despite the fa
t that LICQ generi
ally holds in non-linear programming. For our developments it also means that, in the presen
e of 
onta
t 
onditions, we
annot assume that the resulting MPEC problem satis�es MPEC-LICQ, despite the 
orresponding generi
result [S
h01℄. (We also note that while weight minimization problems in a single-load 
ase may be 
astusing linear programming te
hniques [StS04℄, we do not use this simpli�
ation sin
e, arguably, single-load
ase problems rarely appear in pra
ti
al situations.)In what follows we will 
on
entrate on 
onstru
ting approximation problems that are (at least undersome mild assumptions) quali�ed in the sense of Mangasarian and Fromowitz, and allow us to approxi-mate both globally optimal solutions and stationary points of singular problems arising in truss topologyoptimization.2 Previous results2.1 ε-perturbation of Cheng and Guo and variationsThe so-
alled ε-perturbation of stru
tural topology optimization problems, or approximation with a se-quen
e of sizing optimization problems, has be
ome a 
lassi
 topi
. Convergen
e results of this type allowone, at least in prin
iple, to 
ompute optimal solutions to stru
tural topology optimization problems bysolving a sequen
e of smooth non-
onvex approximating problems. Su
h approximations do not su�er frommany numeri
al di�
ulties possessed by the original model problem (W), so that e�
ient solvers are readilyavailable.For some truss topology optimization problems (su
h as, e.g., 
omplian
e minimization, possibly withso-
alled �strong� stress 
onstraints [A
h98℄) the naïve repla
ement of the lower bound 0 on design variableswith a small positive value ε > 0 tending to zero (when
e the name�ε-perturbation) is su�
ient. Su
ha strategy has been rigorously studied for trusses, without (A
htziger [A
h98℄) and with (Patriksson andPetersson [PaP02℄) unilateral 
onstraints.On the other hand, there are many other 
lasses of topology optimization problems in
luding importantme
hani
al 
onstraints (e.g., stress 
onstraints [SvG68℄, lo
al bu
kling 
onstraints [GCY01℄, and globalbu
kling 
onstraints [Evg04℄) where the simple strategy outlined above leads to erroneous results, owing tothe 
ompli
ated singular stru
ture of the design domain near the points where the truss topology 
hanges.Histori
ally, the study of singularity phenomena for truss topology optimization problems started withproblems in
luding stress 
onstraints only. Sved and Ginos [SvG68℄ observed that su
h problems may have4



singular solutions, and the properties of the feasible region were further investigated by Kirs
h [Kir90℄,Cheng and Jiang [ChJ92℄, and Rozvany and Birker [RoB94℄. Cheng and Guo [ChG97℄ were the �rst topropose a more sophisti
ated restri
tion-relaxation pro
edure, where not only lower bounds but also stress
onstraints were perturbed. They established the 
onvergen
e of the optimal values of the perturbed prob-lems to the optimal value of the original problem, while Petersson [Pet01℄ (using the 
ontinuity of 
ertaindesign�to�state parameterized mappings) has established the 
onvergen
e of optimal solutions. Sin
e then,the ε-perturbation has been extended by many authors in many ways: Duysinx and Bendsøe [DuB98℄and Duysinx and Sigmund [DuS98℄ 
onsidered 
ontinuum stru
tures; Guo et al. [GCY01℄ in
luded lo
albu
kling 
onstraints into the problem; Patriksson and Petersson [PaP02℄ generalized the result for trussesin
luding unilateral 
onstraints; Evgrafov et al. [EPP03℄ 
onsidered the possibility of sto
hasti
 for
es; andEvgrafov [Evg04℄ studied the linearized elasti
 stability 
onstraint.Despite the 
lear advantage of approximating the nonsmooth, singular optimization problem with asequen
e of smooth and regular ones, all the sizing approximations 
onsidered above su�er from the samedi�
ulty. While the underlying theoreti
al results are 
on
erned with the approximation of the globallyoptimal solutions, in 
omputational pra
ti
e it is impossible to solve the non-
onvex approximating problemsto global optimality. There are also negative results regarding this issue: the ε-perturbation approa
h mayfail to �nd a globally optimal solution even for topology optimization problems with only 2 design variables(see [StS01℄)!The analysis of the 
onvergen
e of stationary points to the approximating problems towards stationarypoints of the limiting (that is, original) problem is di�
ult; for example, the dependen
e of the equilibriumstate of the stru
ture upon the design near the points where the topology 
hanges is nonsmooth, and evennon-Lips
hitz 
ontinuous.In 
onstru
ting a new ε-perturbation we try to address these issues, 
on
entrating on the 
onvergen
eof both globally optimal solutions and stationary points towards the respe
tive limits.2.2 The extended formulation of Stolpe and SvanbergRe
ently, Stolpe and Svanberg [StS03℄ proposed an alternative method for the solution of the truss topologyoptimization problems in
luding stress and lo
al bu
kling 
onstraints, whi
h is based on the Karush�Kuhn�Tu
ker (KKT) formulation of the equilibrium 
onstraint. In this formulation the state variables are treatedequally to the design variables, and arti�
ial lower bounds on the design are unne
essary. In the absen
eof unilateral 
onstraints, the formulation is suitable for any SQP algorithm, and for some numeri
al exam-ples Stolpe and Svanberg report that su
h an algorithm has a better performan
e than an ε-perturbationbased approa
h. Later, a bran
h-and-
ut algorithm based on this formulation has been developed [Sto04℄;furthermore, A
htziger [A
h03℄ has made the 
onje
ture that every globally optimal solution to a topol-ogy optimization problem in
luding stress and lo
al bu
kling 
onstraints (but not in
luding unilateral
onstraints) is a KKT point in the extended formulation.Unfortunately, the KKT formulation of the lower level equilibrium problem for trusses with unilateral
onstraints in
ludes 
omplementarity 
onditions, whi
h are known to violate standard nonlinear program-ming 
onstraint quali�
ations. Therefore, the extended formulation 
annot be used dire
tly to solve topol-ogy optimization problems for trusses in 
onta
t with rigid obsta
les, or in
luding tensile-only members(ropes or 
ables).We therefore propose a new approximation s
heme, whi
h allows for the violation of the lower-levelequilibrium 
onditions, and thus does not in
lude the 
ompli
ating 
omplementarity 
onstraints.3 Previous methods for general MPEC problemsAmong iterative algorithms for MPEC problems, our ε-perturbation method is spe
ial in that it 
ombinesrelaxation (of the equilibrium 
onditions) and restri�
ation (of the design spa
e). Most iterative algorithmsfor general MPEC problems belong to the relaxation 
ategory, wherein 
onstraints are penalized or 
om-plementarity 
onditions are smoothed. In the latter 
ategory, the methods of Fa

hinei et al. [FJQ99℄ andS
holtes [S
h01℄ have relations to ours that are interesting to explore, in order to analyze the strength of our
onvergen
e results. Due to the stronger regularity properties of the problems 
onsidered in [FJQ99, S
h01℄,their 
onvergen
e results are shown to be stronger; we then seek to explain why lo
al, iterative methods forour problem are unlikely to yield better 
onvergen
e 
hara
teristi
s than those that we rea
h in this paper.3.1 The smoothing algorithm of [FJQ99℄Consider the problem to 5



(M)






min
(x,y)

f(x, y),s.t. {
x ∈ X,

y solvesVI(F (x, ·), C(x)),where f : R
n+m 7→ R is 
ontinuously di�erentiable, X ⊂ R

n is nonempty and 
ompa
t, and, for ea
h x ∈ Xand for a 
ontinuously di�erentiable fun
tion F : R
n+m 7→ R

m, VI(F (x, ·), C(x)) denotes the variationalinequality de�ned by the pair (F (x, ·), C(x)),
y ∈ C(x); F (x, y)t(z − y) ≥ 0, z ∈ C(x),where C(x) = {y ∈ R

m | gi(x, y) ≥ 0, i = 1, . . . , ℓ }, g : R
n+m 7→ R

ℓ being twi
e 
ontinuouslydi�erentiable and 
on
ave in the se
ond argument.For the lower-level VI, we assume that C(x) 6= ∅ for all x in an open set A 
ontaining X , that C(x) isuniformly 
ompa
t on A (with C(x) ⊂ B for some open bounded set B ⊂ R
m), that F (x, ·) is uniformlystrongly monotone on B for all x ∈ A, and that for every pair (x, y) for whi
h x ∈ X and y solves

VI(F (x, ·), C(x)), the partial gradients ∇y gi(x, y), i ∈ I(x, y) := { i = 1, . . . , ℓ | gi(x, y) = 0 }, arelinearly independent (that is, the linear independen
e CQ, LICQ).By these assumptions, VI(F (x, ·), C(x)) has a unique solution for ea
h x ∈ X , and ea
h lower-level VIis equivalent to the existen
e of a (unique) multiplier ve
tor λ ∈ R
ℓ su
h that

F (x, y) −∇y g(x, y)λ = 0
m, (3a)

0
ℓ ≤ g(x, y) ⊥ λ ≥ 0

ℓ. (3b)Let
H0(x, y, z, λ) :=




F (x, y) −∇y g(x, y)
g(x, y) − z

−2 min(z, λ)


 , (x, y, z, λ) ∈ R

n+m+2ℓ.The KKT system (3) is equivalent to the statement that H0(x, y, z, λ) = 0
m+2ℓ. We therefore write

(P)






min
(x,y)

f(x, y),s.t. {
x ∈ X,

H0(x, y, z, λ) = 0
m+2ℓ,whi
h is an equivalent, non-smooth, restatement of (M), in the sense that the two problems share globalas well as lo
al optimal solutions in x (
f. [FJQ99, Proposition 1℄).Fa

hinei et al. [FJQ99℄ 
onsider a smooth reformulation of the problem (P), as follows. We introdu
ethe fun
tion φ : R

2 7→ R by
φµ(a, b) :=

√
(a − b)2 + 4µ2 − (a + b), (a, b) ∈ R

2.For this fun
tion, we have that ([FJQ99, Proposition 2℄)
φµ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = µ2.For µ = 0, φµ(a, b) = −2 min(a, b); for µ 6= 0, φµ is in C∞; and for every pair (a, b), limµ→0 φµ(a, b) =

−2 min(a, b). The fun
tion φµ therefore serves as a smooth perturbation of the min fun
tion. We 
onsiderrepla
ing the operator H0 in the problem (P) above with the smooth operator Hµ, de�ned by
Hµ(x, y, z, λ) :=




F (x, y) −∇y g(x, y)
g(x, y) − z

Φµ(z, λ)


 , (x, y, z, λ) ∈ R

n+m+2ℓ,where Φ(z, λ) := (φ(z1, λ1), . . . , φ(zℓ, λℓ)), thus de�ning the smoothing problem
(Pµ)






min
(x,y)

f(x, y),s.t. {
x ∈ X,

Hµ(x, y, z, λ) = 0
m+2ℓ.6



While (P0) 
oin
ides with the non-smooth problem (M), the problem (Pµ) for µ 6= 0 is a smoothoptimization problem. We denote the feasible set to (Pµ) by Fµ ⊂ R
n+m+2ℓ. The fun
tion Hµ is not onlylo
ally Lips
hitz 
ontinuous for every µ but also regular (in the sense that the dire
tional derivative existsin all dire
tions and equals the Clarke derivative; 
f. [FJQ99, Lemma 1℄), and its generalized Ja
obianwith respe
t to (y, z, λ) is non-singular for every µ and feasible point of the problem (Pµ), 
f. [FJQ99,Proposition 3℄. Further, for every x̄ ∈ X and µ ∈ R there exists a unique point in Fµ su
h that its x-partequals x̄, and this ve
tor,

w̄µ := (x̄, yµ(x̄), yµ(x̄), λµ(x̄)), (4)is 
ontinuous in µ. The feasible sets Fµ of the problem (Pµ) are non-empty and uniformly 
ompa
t, when
ethe problems (Pµ) have optimal solutions.The �rst-order optimality 
onditions for the problem (Pµ) 
an be written as follows: with L(x, y, λ) :=
F (x, y)−∇y g(x, y)λ, if (x, y, z, λ) is a lo
ally optimal solution to (Pµ), then there exist ve
tors (θ, ρ, σ) ∈
R

m+2ℓ and s ∈ NX(x) × R
m+2ℓ su
h that (
f. [FJQ99, Theorem 2℄)

0
n+m ∈ ∇f(x, y) + ∇L(x, y, λ)θ + ∇(g(x, y) − z)ρ +

ℓ∑

i=1

∂φµ(zi, λi)σi + M‖(1, θ, ρ, σ)‖s, (5)where M is a Lips
hitz 
onstant for (f, Hµ) around (x, y, z, λ). Sin
e the multiplier for ∇f(x, y) isnon-zero (it then equals 1, without any loss of generality), this 
ondition is stronger than the Fritz�John
onditions, and is in fa
t the KKT 
onditions for the problem. While one may then refer to this 
onditionfor µ = 0 as the KKT 
onditions for the MPEC problem (M), Fa

hinei et al. [FJQ99℄ refer to it is asstrong C-stationarity (SCS).A global version of the smoothing algorithm is immediate. A more pra
ti
al algorithm is obtained byrepla
ing, in the algorithm above, global optimality in (Pµτ
) of the ve
tor wτ by stationarity in the senseof the KKT system (5). For this algorithm, it is shown in [FJQ99, Theorem 4℄ that the sequen
e {wτ}of KKT points in (Pµτ

) is bounded and every limit point is an SCS point in (P). A 
ru
ial part of theproof is the 
ontinuity property of any sequen
e of KKT points in the problem (Pµ) as µ tends to zero(
f. [FJQ99, Proposition 4℄). The proof of the 
onvergen
e result also establishes the important result thatthe sequen
e {(θτ , ρτ , στ )} of KKT multipliers is bounded. This is a 
ru
ial part of any analysis of thestationarity property of a limit point.A yet more pra
ti
al algorithm is also devised, in whi
h the sequen
e {wτ} of ve
tors is allowed to bede�ned by near-feasible and approximate KKT points. In other words, in ea
h iteration τ , the distan
efrom the ve
tor wτ to the feasible set Fµ of the problem (Pµτ
) is bounded by ετ > 0, and the Eu
lideanlength of the ve
tor de�ning the right-hand side of the in
lusion (5) is also bounded above by this value.Theorem 5 in [FJQ99℄ then states that if {ετ} ↓ 0 as {µτ} → 0, then the sequen
e {wτ} of approximateKKT points is bounded and every limit point is, again, a SCS point in (P).The latter algorithm was 
oded and tested in [FJQ99℄ on some small and medium-size MPEC problems;ea
h problem (Pµτ

) was then solved by utilizing an SQP algorithm. They report that it 
ompares favourablywith, for example, the impli
it programming algorithms proposed in [Out94, OuZ95℄.3.2 The regularization algorithm in [S
h01℄S
holtes [S
h01℄ 
onsiders the parameterized problem to
(NLP(t))





min
x

f(x),s.t. g(x) ≤ 0
p,

h(x) = 0
q,

G(x) ≥ 0
m,

H(x) ≥ 0
m,

Gi(x)Hi(x) ≤ t,where f, g, h, G, and H are 
ontinuously di�erentiable. The original problem, (NLP(0)), is ill-posed,when
e it is natural to 
onsider solving (NLP(t)) for t ↓ 0. An MPEC-LICQ is introdu
ed by whi
h,disregarding the (relaxed) 
omplementarity 
onditions, the a
tive 
onstraints are all linearly independent.Three stationarity 
onditions are introdu
ed, whi
h, in addition to the weak stationarity 
ondition
∇f(x̄) +

∑

i∈Ig(x̄)

λ̄i∇gi(x̄) +
∑

j∈Ih(x̄)

µ̄j∇hj(x̄) −
∑

k∈IG(x̄)

γ̄k∇Gk(x̄) −
∑

ℓ∈IH(x̄)

ν̄ℓ∇Hℓ(x̄) = 0
n,7



impose the following additional 
onditions on the 
omplementarity part:� C-stationarity: m ∈ IG(x̄) ∩ IH(x̄) implies that γ̄mν̄m ≥ 0;� M-stationarity: all m ∈ IG(x̄) ∩ IH(x̄) satisfy either γ̄mν̄m > 0 or γ̄mν̄m = 0;� strong stationarity: m ∈ IG(x̄) ∩ IH(x̄) implies that γ̄m ≥ 0 and ν̄m ≥ 0.The latter is, under MPEC-LICQ, equivalent to a B-stationarity 
ondition introdu
ed by the author.Based on these 
onditions, S
holtes establishes that for an arbitrary sequen
e {tτ} ↓ 0 and a 
orrespondingsequen
e {xτ} of stationary points to (NLP(tτ )), a limit point x̄ of {xτ} satis�es the following ([S
h01,Theorems 3.1 and 3.3℄):� x̄ is C-stationary;� x̄ is B-stationary if and only if γ̄m = ν̄m = 0 for every m ∈ IG(x̄) ∩ IH(x̄) ∩ I0, where
I0 := {m | m ∈ IGH(xτ , tτ ) for in�nitely many τ };� if a se
ond-order su�
ien
y 
ondition holds at ea
h xτ then x̄ is M-stationary.Randomly generated problems with f quadrati
 and the 
onstraint fun
tions all being a�ne were testedagainst a smoothing type method wherein the last 
onstraint in (NLP(t)) was repla
ed by the 
orrespondingequality 
onstraint.Solving 100 problems, all 100 problems were su

essful in the sense that the last problem (with t = 10−16;the starting value was always unity) was solvable. (The solver for ea
h problem was based on Matlab:sfmin
on fun
tion.) In the 
ase of the smoothing algorithm, 85 problems were su

essful, and in 66 
asesthe solver en
ountered solvability problems somewhere between the initial and terminal value of t. Thesmoothing algorithm was not only less robust but also produ
ed worse solutions in some 
ases: in 47 ofthe 85 problems mentioned above, the two methods produ
ed the same solution, while in the 36 
ases theregularization method produ
ed better solutions (at most 12 % better).S
holtes 
on
lusion is that regularization by means of relaxation, as in the 
onstru
tion of (NLP(t))is a sensible way of stabilizing existing NLP 
odes when extended to MPEC problems. He also remarksthat thanks to the fa
t that problems 
onstru
ted and solved in a relaxation/regularization method en
om-passes the original feasible set, while smoothing methods do not, whi
h may imply the possibility to fasteren
ounter a
tive sets among the 
omplementarity 
onditions.4 A new smoothing approa
h to topology optimization4.1 MotivationThe smoothing algorithm des
ribed in Se
tion 3 may unfortunately not be applied to truss topology opti-mization problems, out of whi
h (W) is a typi
al example. The latter problem violates several assumptionsthat are vital for the smoothing algorithm of Fa

hinei et al. [FJQ99℄, the most important being the la
kof the uniform strong monotoni
ity by the lower-level problem AVI(q(f ), Q(x), Y ). In addition, some ofthe variables (that is, u) may not be uniformly bounded, and upper-level joint 
onstraints (su
h as stress
onstraints) are essential in the problem (W).In order to over
ome the di�
ulties outlined we introdu
e an alternative perturbation s
heme for solvingstress 
onstrained weight minimization problems for trusses in
luding unilateral 
onstraints. It resemblesthe ε-perturbation approa
h of Cheng and Guo [ChG97℄ (
f. Se
tion 2.1) by the fa
t that we introdu
epositive lower bounds on the design variables, thus restri
ting the design domain. There are importantdi�eren
es, however: instead of relaxing the te
hnologi
al 
onstraints (e.g., stress 
onstraints in the originalpaper [ChG97℄) we relax the equilibrium 
onstraint; to a

omplish this, we formulate the optimizationproblem using both the design and the state variables, similarly to the extended formulation of Stolpe andSvanberg [StS03℄ (
f. Se
tion 2.2).
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4.2 Relaxed equilibrium problemFormally, �x an arbitrary ε ≥ 0 and 
onsider the following perturbation of the feasible set F(f) (
f. (2)):
Fε(f ) := { (x, s, λ, u) ∈ R

m
+ × R

m × R
r
+ × R

n | x ≥ o(ε)1m,

E(x, s, λ) + Π(x, u) − f tu ≤ ε

Bts + Ctλ = f ,

Cu ≤ g },where o(ε) is a positive fun
tion of ε su
h that limε↓0 o(ε)/ε = 0. Of 
ourse, the weak duality theorem for
onvex problems implies that F0(f) = F(f ); for positive values of ε the �state� variables (s, λ, u) (whi
hin the extended formulation play a role equal to that of the design variables x, and do not 
orrespond toan equilibrium state of the truss anymore) are required to be primal-dual feasible, but only ε-optimal.Finally, for every ε > 0 we 
onsider the following perturbed version of the stress 
onstrained weightminimization problem:
(Wε)






min
(x,s,λ,u)

w(x),s.t. (x, s, λ, u) ∈ Fε(f),

σixi ≤ si ≤ σixi, i = 1, . . . , m.From the theoreti
al point of view, allowing for ε-optimal solutions to the lower-level equilibrium prob-lem means that we �regularize� the bi-level programming problem (W), in the sense de�ned by [LiM97℄;this will allow us to obtain the 
onvergen
e of both globally optimal solutions and stationary points (seebelow).At least of equal importan
e is the following pra
ti
al interpretation of the method. If we apply typi
al�standard� non-linear programming methods to the original non-relaxed problem (W), in many 
ases it isreasonable to assume that the underlying numeri
al method does in fa
t solve somewhat relaxed problem.For example, in methods based on impli
it programming, we typi
ally solve the equilibrium problem onlyapproximately (espe
ially for designs x 
lose to the boundary of R
m
+ , when the sti�ness matrix K(x)be
omes ill-
onditioned); at the same time it is easy to keep (linear) feasibility of the state variables in theequilibrium problem. Even if we do not use impli
it programming and treat all variables involved in (W)as independent, sometimes it is reasonable to require that the linear 
onstraints [primal-dual feasibility of

(s, λ, u) and stress 
onstraints℄ are satis�ed with higher a

ura
y than the non-linear 
onstraints expressingoptimality of the state, whi
h again results in a feasible set similar to Fε(f). In parti
ular, this may explainthe su

ess of SNOPT in solving the weight minimization problem with stress and lo
al bu
kling 
onstraintsreported in [StS03℄.Remark 4.1. In the multiple-load 
ase, the problem (Wε) will have several 
onstraints of the form
(x, sk, λk, uk) ∈ Fε(fk), where fk is a ve
tor of external for
es 
orresponding to the load 
ase k, andthe triple (sk, λk, uk) ∈ R

m × R
r
+ × R

n represents the �state� variables for the load 
ase k, k = 1, . . . , ℓ.In the rest of the se
tion, we study the theoreti
al properties of the point-to-set mapping ε ⇉ Fε(f )whi
h will allow us to establish the 
onvergen
e of globally optimal solutions as well as stationary pointsas ε ↓ 0.4.3 Properties of ε ⇉ F ε(f )In this se
tion we show that the point-to-set mapping ε ⇉ Fε(f) enjoys most of the ni
e properties one 
anexpe
t from a point-to-set mapping: under some mild 
onditions it has 
ompa
t (although, unfortunately,non-
onvex) images, and is 
losed and lower semi
ontinuous at zero [AuF90, Chapter 1℄. Furthermore,in Proposition 4.6 we demonstrate the 
ontinuity of the design-to-for
e �sub-mapping� x ⇉ (s, λ) (seeProposition 4.6 for the formal de�nition), a property originally established for the unperturbed feasible set
F by Petersson [Pet01℄ for trusses without unilateral 
onstraints, and later generalized by Patriksson andPetersson [PaP02℄.We formulate the results as a sequen
e of short propositions.Proposition 4.2 (Closed images). For ea
h ε ≥ 0 the set Fε(f) is 
losed.Proof. The 
laim follows easily from the lower semi
ontinuity of E(·, ·, ·) (
f. [PaP02, Lemma 3.2℄) togetherwith the 
ontinuity of the other fun
tions de�ning Fε(f), ε ≥ 0.Proposition 4.3 (Lower semi
ontinuity). The multi-fun
tion ε ⇉ Fε(f ) is lower semi
ontinuous atzero. 9



Proof. Let (x, s, λ, u) ∈ F(f). Then, { (x + o(ε)1m, s, λ, u) } ∈ Fε(f ) for all enough small ε > 0, where
1

m = (1, . . . , 1)t ∈ R
m
+ .Remark 4.4. The same 
onstru
tion establishes the lower semi
ontinuity of the multi-fun
tions ε → (Fε ∩

K), where (independent of ε) the 
losed set K may represent stress, sti�ness, or global stability 
onstraints,or any 
ombination thereof.We stress that the 
lassi
 ε-perturbation of Cheng and Guo [ChG97℄ results in a l.s.
. mapping in
ludingdesign variables only ; i.e., there might be some displa
ement ve
tors 
orresponding to the limiting designthat 
annot be approximated with the displa
ements 
orresponding to positive designs.Proposition 4.5 (Closedness). The multi-fun
tion ε ⇉ Fε(f ) is 
losed at zero.Proof. The 
laim follows from the lower semi
ontinuity of E(·, ·, ·) (
f. [PaP02, Lemma 3.2℄) together withthe 
ontinuity of the other fun
tions, de�ning the sets Fε(f ), ε ≥ 0.Proposition 4.6 (Continuity of the design�to�for
e mapping). Let {εk} be a positive sequen
e,
onverging to zero. Assume that (xk, sk, λk, uk) ∈ Fεk(f), and that {xk} → x. Suppose further that forea
h k = 1, 2, . . . , i = 1, . . . , m, the stress 
onstraints σix
k
i ≤ sk

i ≤ σix
k
i 
onstraints are satis�ed. Then,

{(sk, λk)} → (s, λ), this limit ve
tor solves (C)x(f), and there is a ve
tor u solving (P)x(f ). [In parti
ular,
(x, s, λ, u) ∈ F .℄Proof. The additional stress 
onstraints imply the uniform boundedness of the sequen
e of 
omplementaryenergies {E(xk, sk, λk)}, as has been established in [PaP02℄. Therefore, the sequen
e {(sk, λk)} is bounded,owing to the 
oer
ivity of E , whi
h is lo
ally uniform with respe
t to the design. Let (s, λ) be an arbitrarylimit point of this sequen
e. The lower semi
ontinuity of E and the uniform boundedness of energies yieldthat

E(x, s, λ) ≤ lim inf
k→∞

E(xk, sk, λk) < ∞.Therefore, the problem (C)x(f) is feasible and thus possesses a unique optimal solution (
f. [PaP02, Theo-rem 2.1℄).Let now (s̃, λ̃) be an arbitrary for
e distribution that is feasible in (C)x(f ). Then, from the εk-optimalityof (sk, λk) and feasibility of (s̃, λ̃) in (C)xk(f ) it follows that
E(x, s, λ) ≤ lim inf

k→∞
E(xk, sk, λk) ≤ lim

k→∞
E(xk, s̃, λ̃) + εk = E(x, s̃, λ̃),where the equality follows from the 
ontinuity of E(·, s̃, λ̃) (
f. [PaP02, Lemma 3.2℄). Therefore, (s, λ) isoptimal in (C)x(f ). It follows that (s, λ) must be the only limit point of the sequen
e {(sk, λk)}.The existen
e of at least one dual optimal solution u to (P)x(f ) follows.Proposition 4.7 (Compa
t images). For every ε > 0 and every 
onstant M > 0 the set { (x, s, λ, u) ∈

Fε | ‖x‖ ≤ M } is 
ompa
t.Proof. The fun
tion E(x, s, λ) + Π(x, u) − f tu is 
ontinuous as well as 
oer
ive in (s, λ, u), uniformly in
x for all x ≥ o(ε)1m, with ‖x‖ ≤ M .In the subse
tions that follow we apply the 
ontinuity results we have just established to show that the
ε-perturbed problems 
an indeed be used as approximating problems for small ε, both if we are interestedin globally optimal solutions and stationary points.4.4 Regularity of (Wε)To be of pra
ti
al use, every approximating problem (Wε) should be easier to solve than the originalproblem (W). Clearly, the fun
tions de�ning the 
onstraints of (Wε) are 
ontinuously di�erentiable onsome neighbourhood of the feasible set Fε for every ε > 0; therefore, the smooth Fritz�John 
onditionsmust hold at optimal points. The following (purely a
ademi
) example shows that the feasible sets of theoptimization problems (Wε) do not in general verify MFCQ, and therefore we 
annot expe
t the KKT
onditions to be satis�ed at every point of lo
al minimum. On the other hand, in Proposition 4.9 we showthat under rather mild additional 
onditions MFCQ is veri�ed, so that standard nonlinear programmingalgorithms 
an be used to �nd lo
ally optimal solutions of (Wε).
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Figure 2: 1-bar truss stru
ture.Example 4.8. Consider the simple 1-bar stru
ture shown in Figure 2 that is made of (a
ademi
) materialwith the Young modulus E = 1. Let f = 3, g = 2, ε = 1, σ = (2 −
√

2), and 
onsider the point of globalminimum (x, s, λ, u) = (1, 2 −
√

2, 1 +
√

2, 2). At this feasible point in (Wε) the a
tive 
onstraints are:




s + λ = f,

− x ≤ −ε2,

u ≤ g,

s ≤ σx,

s2

2x
+ gλ +

1

2
u2x − fu ≤ ε

⇔





s + λ = 3,

− x ≤ −1,

u ≤ 2,

s ≤ (2 −
√

2)x,

s2

2x
+ 2λ +

1

2
u2x − 3u ≤ 1.It is easy to verify that there is no dire
tion d ∈ R

4 su
h that





(
0 1 1 0

)
d = 0,




−1 0 0 0
0 0 0 1
−σ 1 0 0



d ≤ 0
3,

(
− s2

2x2 + u2

2
s
x

g xu − f
)

d < 0,so that MFCQ is violated at (x, s, λ, u).While MFCQ is violated at the point of global minimum in the Example 4.8, this does not preventthe KKT 
onditions to hold at this point, be
ause the more basi
 Abadie's CQ is still veri�ed. While forrealisti
 trusses the latter CQ is 
lose to impossible to verify, the following result resolves the problem ofverifying a CQ in most pra
ti
al situations.Proposition 4.9. Let (x, s, λ, u) be a point of lo
al minimum for (Wε), ε > 0. Suppose that any of thefollowing 
onditions are veri�ed:
(i) E(x, s, λ) + Π(x, u) − f

t
u < ε;

(ii) r = 0, that is, no rigid obsta
les are present;
(iii) u is not the equilibrium displa
ement 
orresponding to x.Then, Abadie's CQ hold at (x, s, λ, u). In parti
ular, the KKT-
onditions for (Wε) hold at this point.Proof. Suppose that (i) holds. Then the relaxed equilibrium 
onstraint is passive, and the feasible set ofthe problem (Wε) is lo
ally around (x, s, λ, u) de�ned by a�ne 
onstraints only, whi
h guarantees Abadie'sCQ.Alternatively, assume that there are no rigid obsta
les, i.e., (ii) holds. Consider the dire
tion d =
(αx,0m,0r,−βu), where α > 0, β ≥ 0 are parameters to be determined. This dire
tion is feasible withrespe
t to all linear 
onstraints of (Wε). Furthermore, an easy 
al
ulation shows that

∇[E(x, s, λ) − Π(x, u) − f tu]td = −α[E(x, s, λ) − Π(x, u)] − β[2Π(x, u) − f tu] < 0,for some α > 0, β ≥ 0, owing to the inequality
0 < ε = [E(x, s, λ) − Π(x, u)] + [2Π(x, u) − f tu].Thus, the MFCQ is veri�ed, implying Abadie's CQ.11



At last, assume that (iii) is veri�ed. Similarly to the 
ase (ii) we 
an show that the dire
tion d =
(αx,0m,0r, β[u(x) − u]) satis�es the requirements of MFCQ for some α > 0, β ≥ 0, where u(x) is theequilibrium displa
ement, 
orresponding to x.Naturally, all three assumptions of Proposition 4.9 are violated by Example 4.8.It is interesting to note that topology optimization problems for trusses without unilateral 
onstraintsare always quali�ed in the sense of Mangasarian�Fromowitz; it is probably even more interesting to seethat the violation of MFCQ may happen even for �ni
e� feasible points that verify a stri
t 
omplementarityassumption for MPEC problems (like the point 
onsidered in Example 4.8).4.5 Optimality 
onditions for (W)Motivated by the des
ription of the feasible sets of the approximating problems (Wε), ε > 0, in terms ofdi�erentiable inequalities whi
h lead to at least Fritz�John ne
essary optimality 
onditions (see Example 4.8and Proposition 4.9), we may use the same des
ription with ε = 0 in order to develop non-smooth ne
essaryoptimality 
onditions for (W). The biggest di�
ulty we en
ounter is the loss of 
ontinuity (not to mentiondi�erentiability) of the 
omplementary energy fun
tion E . Indeed, if we look at the 
onstraint involving E :

E(x, s, λ) + Π(x, u) − f tu ≤ 0, (6)we note that the fun
tion on the left-hand side of the inequality is neither Lips
hitz 
ontinuous nor 
onvex,and therefore the 
lassi
 subdi�erentials of su
h fun
tions are not de�ned. On the other hand, we may usethe stru
ture of this fun
tion: it is 
ontinuously di�erentiable everywhere ex
ept when x ∈ ∂R
m
+ , and it isa sum of 
onvex and Lips
hitz 
ontinuous fun
tions. Therefore, the notion of limiting subdi�erential ∂a iswell de�ned for su
h fun
tions (see [Mor76℄). In parti
ular, it holds that

∂a[E(x, s, λ) + Π(x, u) − f tu] = ∂aE(x, s, λ) + ∇[Π(x, u) − f tu].As a result, we obtain the following non-smooth Fritz�John type optimality 
onditions.Proposition 4.10. Let (x, s, λ, u) be a point of lo
al minimum for (W). To simplify notation we writeall inequality and equality 
onstraints of (W), ex
ept the relaxed equilibrium, 
onstraint in the form:
Ai(x

t, st, λt, ut)t ≤ bi,

Ae(x
t, st, λt, ut)t = be,where Ai ∈ R

Ni×(m+m+r+n), Ae ∈ R
Ne×(m+m+r+n), bi ∈ R

Ni , and be ∈ R
Ne are matri
es and ve
tors ofappropriate sizes. Then, the non-smooth Fritz�John optimality 
onditions hold at (x, s, λ, u), that is, thereare ve
tors µi ∈ R

Ni

+ , µe ∈ R
Ne , and numbers µ0, µ ∈ R+ not all equal to zero su
h that:

0
m+m+r+n ∈ µ0∇w(x) + At

iµi + At
eµe + µ[∂aE(x, s, λ) + ∇(Π(x, u) − f tu))], and

0 = µt
i[Ai(x

t, st, λt, ut)t − bi].
(7)In general, we 
annot expe
t the KKT 
onditions to be satis�ed at every point of lo
al minimum, be-
ause the problem (W) is usually mu
h less regular than its approximation (Wε), ε > 0, and even the latterproblem may violate the standard nonlinear programming 
onstraint quali�
ations (see Example 4.8). Infa
t, in Problem 2, Subse
tion 5.2, we obtained a lo
ally optimal solution that satis�es the system (7) onlywith µ0 = 0. It is sad to note that this example does not 
ontain any 
onta
t 
onditions, and the optimalsolution we obtained is non-singular (in parti
ular, no bars were removed), yet it is only a FJ point in ourformulation. On the positive side, at least if unilateral 
ondition are absent, the 
onditions (7) imply theful�llment of the KKT 
onditions for a related optimization problem that has a 
lear engineering inter-pretation. Namely, the stationary point obtained is a KKT point for a �semi-�xed topology� optimizationproblem, in whi
h the given subset of the bars is removed from the ground stru
ture; formally, the followingresult holds.Proposition 4.11. Assume that the unilateral 
onstraints are absent and that the point (x̂, ŝ, û) ∈ R

m
+ ×

R
m × R

n satis�es the FJ optimality 
onditions (7). Let Î = { i = 1, . . . , m | x̂i = 0 }. Then, the point
12



(x̂, ŝ, û) is a KKT-point for the following problem:
(Ŵ)






min
(x,s,u)

w(x)s.t. Bts = f ,

E(x, s, λ) + Π(x, u) − f tu = 0,

σixi ≤ si ≤ σixi, i ∈ { 1, . . . , m } \ Î,

xi = si = 0, i ∈ Î.Proof. Clearly the point (x̂, ŝ, û) is feasible in the problem (Ŵ). Furthermore, it is easy to 
he
k that thefeasible set of the problem (Ŵ) veri�es a Mangasarian�Fromowitz type 
onstraint quali�
ation at (x̂, ŝ, û)[one 
an, for example, take the dire
tion d = (x̂,0,−u) ∈ R
m
+ × R

m × R
n to verify that℄, and thus the FJ
onditions (7) [that 
an be viewed as FJ 
onditions for (Ŵ)℄ also imply the KKT 
onditions.There are of 
ourse other approa
hes to optimality 
onditions for MPEC. For example, [OKZ98, Theo-rem 7.2℄ establishes non-smooth KKT-type 
onditions for a problem rather similar to (W). However, thestrong regularity 
ondition on the lower-level problem assumed in [OKZ98, Theorem 7.2℄ is violated by ourproblem, be
ause the displa
ements u are in general not uniquely determined for designs x ∈ ∂R

m
+ .4.6 Global 
onvergen
eConvergen
e of globally optimal solutions to relaxed weight minimization problems with stress 
onstraints

(Wε) towards globally optimal solutions to the limiting problem (W) as ε ↓ 0 follows easily, given theresults of the previous subse
tions.Proposition 4.12. Consider a positive sequen
e {εk} 
onverging to zero. Let {(xεk
, sεk

, λεk
, uεk

)} be a
orresponding sequen
e of globally optimal solutions to {(Wεk)}. Then, an arbitrary limit point of thissequen
e is a globally optimal solution to the limiting problem (W).Proof. That globally optimal solutions to the sequen
e of problems {(Wεk)} exist follows by the 
oer
ivityof the obje
tive w.r.t. the design variables, Proposition 4.7, and Weierstrass' Theorem).Without any loss of generality, assume that limk→+∞(xεk
, sεk

, λεk
, uεk

) = (x̃, s̃, λ̃, ũ). Then, owing toProposition 4.5, the point (x̃, s̃, λ̃, ũ) is feasible in (W). Together with Remark 4.4 and the 
ontinuity ofthe obje
tive fun
tional this proves the 
laim.In general, the displa
ement 
omponent {uk} of the sequen
e of global optimal solutions we study inProposition 4.12 need not to have any limit points. However, we may use the fa
t that our obje
tivefun
tion is independent of the displa
ements and utilize Proposition 4.6 to establish the following result.Proposition 4.13. Consider a positive sequen
e {εk} 
onverging to zero. Let {(xεk
, sεk

, λεk
, uεk

)} be a
orresponding sequen
e of globally optimal solutions to {(Wεk)}. Then, an arbitrary limit point (x0, s0, λ0)of the sequen
e {(xεk
, sεk

, λεk
)} (and there is at least one) 
orresponds to some globally optimal solution

(x0, s0, λ0, u0) to the limiting problem (W).Proof. Similar to the proof of Proposition 4.12, but uses Proposition 4.6 instead of Proposition 4.5.4.7 Convergen
e of stationary pointsThe main result of this paper, Theorem 4.14, uses the fa
t that stress 
onstraints are imposed. Furthermore,we need to make an assumption that the sequen
e of displa
ements {uε} produ
ed by the smoothingpro
edure is bounded as ε ↓ 0. We 
annot guarantee the latter property without imposing expli
it boundson the displa
ements; however, our 
omputational experien
e with the smoothing approa
h we introdu
e inthis paper 
on�rms that 
onvergen
e of displa
ements takes pla
e in pra
ti
e. In any 
ase, Proposition 4.3asserts that it is at least possible to approximate every equilibrium state using the relaxation approa
hwe propose; this is 
ontrary to traditional ε-relaxation, where some equilibrium displa
ements 
annot beapproximated.Theorem 4.14. Consider a positive sequen
e {εk} 
onverging to zero. Let {(xεk
, sεk

, λεk
, uεk

)} be asequen
e of KKT-points to {(Wεk)}. Then, every limit point of this sequen
e is feasible in the limitingproblem (W), and in addition it veri�es the non-smooth FJ stationarity 
onditions (7).13



Proof. Without loss of generality we assume that {(xεk
, sεk

, λεk
, uεk

)} → (x, s, λ, u) as k 
onverges toin�nity. Owing to Proposition 4.5, the point (x, s, λ, u) is feasible in (W).The stress 
onstraints imply that the gradients∇E(xεk
, sεk

, λεk
) are uniformly bounded for k = 1, 2, . . .Therefore, the sequen
e {∇E(xεk

, sεk
, λεk

)} has at least one limit point that by de�nition is a member of
∂aE(x, s, λ). It is now an easy exer
ise to verify that the point (x, s, λ, u) satis�es the system (7).Again, the optimality 
onditions we obtain in Theorem 4.14 are rather weak, but we 
annot expe
tmore from points of lo
al minima for (W) in general; see the dis
ussion in Se
tion 4.5.5 Numeri
al experimentsWhile a substantial amount of theoreti
al studies of topology optimization problems for trusses in
ludingunilateral fri
tionless 
onta
t has been 
arried out (see, e.g., [BTKNZ99, PaP02, EPP03℄), surprisingly littlenumeri
al experien
e has been reported. Therefore we use a 
omprehensive numeri
al study of Stolpe [Sto04℄(who was interested in �nding globally optimal solutions using a bran
h-and-
ut algorithm) as a ri
h andauthoritative sour
e of ben
hmark problems, unfortunately however for trusses without 
onta
t. We also
ompare our algorithm against a few tests of �
lassi
� MPEC algorithms (impli
it programming-basedalgorithm, IMPA, [LPR96, Se
tion 6.3℄, and penalty interior point algorithm, PIPA, [LPR96, Se
tion 6.1℄),MMA [Sva87℄ (see also [Sva02℄), as well as the smoothing algorithm [FJQ99℄, made by Hilding [HKP99,Hil00℄. Unfortunately, the latter studies are not 
on
erned with topology optimization (i.e., a stri
tlypositive bound on the bar volumes is imposed) and stress 
onstraints are not in
luded.Below we present some preliminary numeri
al experien
e with an a
ademi
 implementation of ourapproximation method.5.1 Implementation issuesA sequen
e of smooth optimization subproblems {(Wεk)} has been solved using the SQP-solverSNOPT [GMS02℄. The optimal solution obtained at step k was used as a starting point for the step
k + 1. We used a simple update rule for ε: εk+1 = γεk, where γ ∈ [0.25, 0.75].The biggest 
omputational di�
ulty we have noted is that the proje
ted gradient of the potential energywith respe
t to displa
ements is 
lose to zero for all points feasible in (Wε) when ε is small, resulting inrather slow progress of the optimization pro
edure based on the �rst order information only. The use ofse
ond order information in this 
ase seems essential for improving the performan
e.Another problem is that the 
omplementary energy has a rather unusual s
aling when the designvariables x are 
lose to the boundary ∂R

m
+ . While we obtained satisfa
tory results with automati
 s
alingin SNOPT, a spe
i�
 s
aling of the relaxed equilibrium 
onstraint may be ne
essary for more robust
onvergen
e of the algorithm.5.2 Numeri
al results: topology optimization, 
onta
t-less 
aseA number of �
lassi
� weight minimization problems for trusses without fri
tionless 
onta
t but in
ludingstress, and possibly lo
al bu
kling 
onstraints and bounds on displa
ements have been solved to globaloptimality by Stolpe [Sto04℄. We ben
hmark our relaxation algorithm against the results reported in the
ited paper and �nd that in many 
ases our lo
al algorithm is 
apable of �nding globally optimal solutions.We keep the problem numbers assigned by Stolpe [Sto04℄ and report the results we obtained on a subset ofthese problems in Tables 1 (only stress and/or displa
ement 
onstraints) and 2 (stress and lo
al bu
kling
onstraints).Sin
e we use a lo
al algorithm to solve non-
onvex optimization problems, starting the optimizationpro
edure from di�erent starting points may result in obtaining di�erent optimal solutions. We startedthe algorithm from the design obtained by uniformly distributing stru
tural material among bars, and
al
ulating the 
orresponding equilibrium for
es/displa
ements.Some 
omments are in order. In problems 24�26 the number of bars in the stru
ture is m = 10, butthe volumes of 4 of them are �xed, whi
h leaves us only 6 design variables. In addition, these are the onlyproblems with displa
ement 
onstraints, and the optimal weight we report di�ers from the known globallyoptimal solution despite the small value of the relaxation parameter ε we used. The reason for su
h abehaviour is that the potential energy Π(x, u) − f tu be
omes rather insensitive to some 
omponents ofthe displa
ements for designs x that are 
lose to the boundary ∂R

m
+ . In problems 24�26 this allows theoptimization pro
edure to 
hoose displa
ements that are reasonably far from the equilibrium displa
ements(
ompared to the size of the relaxation parameter ε) but are feasible with respe
t to the imposed bounds onthe displa
ements. (Re
all that Proposition 4.6 does not guarantee the 
onvergen
e of the displa
ements14



Problem m n k wour w[Sto04℄ sour
e
2 5 4 2 39.9856 33.5000 [ChG97℄
5 4 2 2 185.597 185.667 [Hob96℄
9 10 8 1 4896.95 4898.31 [S
F74℄

11 10 8 1 1583.99 1584.00 [S
F74℄
13 10 8 1 4425.16 4426.52 [S
F74℄
15 10 8 1 1655.99 1656.00 [S
F74℄

∗17 25 18 5 510.157 545.264 [S
F74℄
18 10 8 1 1583.99 1584.00 [ChG97℄
23 5 4 1 24.0000 24.0000 [ChJ92℄
24 10(6) 8 1 18199.4 18211.8 [Kir90℄
25 10(6) 8 1 20021.8 20035.3 [Kir90℄
26 10(6) 8 1 22799.7 22817.3 [Kir90℄
27 10 8 1 1979.99 1980.00 [GCY01℄
28 5 4 2 79.9713 79.9716 [GCY01℄Table 1: Results of numeri
al experiments: weight minimization under stress and/or displa
ement 
on-straints Problem m n k wour w[Sto04℄ sour
e

5 4 2 2 408.312 408.628 [Hob96℄
27 10 8 1 8553.44 8553.44 [GCY01℄
28 5 4 2 105.831 105.831 [GCY01℄Table 2: Results of numeri
al experiments: weight minimization under stress and lo
al bu
kling 
onstraintsas designs 
onverge.) This may or may not be a problem in pra
ti
e, depending on how stringent thedispla
ement 
onstraints are, if present. In parti
ular, we guarantee the 
onvergen
e of for
es, and alwayskeep the stress (and lo
al bu
kling) 
onstraints satis�ed, whi
h means that the stru
ture will not su�erfrom destru
tive stresses. (Even though stress 
onstraints are imposed not on the �equilibrium� stresses,stress bounds are usually 
hosen far from the point where plasti
 deformation o

urs.) In any 
ase, ouralgorithm su

essfully �nds the optimal topology, whi
h is of major importan
e in many appli
ations.In problem 17 our algorithm indeed �nds a better solution to the 
lassi
 25-bar truss problem statedin [S
F74℄ than the one reported in [Sto04, S
F74℄. The reason for this small vi
tory of a lo
al optimizationalgorithm over a global one is that the bran
h-and-
ut method developed in [Sto04℄ may be applied only toproblems with bounds imposed on all variables involved. In the original formulation of the problem 17 takenfrom [S
F74℄ there are no upper bounds on the volumes of the bars, and the optimal weight of the trusswe obtained for the original formulation is 510.157. On the other hand, Stolpe [Sto04℄ imposes arti�
ialbounds on the design variables for the bran
h-and-
ut method to fun
tion, whi
h leads to a globally optimalsolution with the weight 545.264; in fa
t, the newly introdu
ed bounds are ina
tive at the latter solutionbut owing to the non-
onvexity of the problem they 
annot be safely removed without 
hanging the optimalsolution. The last 
omment about the problem 17 is that in the original formulation there are only 2 loads
enarios and many linear 
onstraints on the design variables related to the required symmetry of the truss.Instead, we 
onsider all design variables to be independent and obtain a symmetri
 solution by introdu
ingadditional load 
ases.5.3 Numeri
al results: sizing optimization of trusses in 
onta
tHilding et al. [HKP99℄ (see also Hilding [Hil00℄) were interested in minimizing the maximal 
onta
t for
e,that is, to a
hieve as uniform 
onta
t pressures as possible. The formal problem statement 
an be writtenas follows:
(Λ)






min
(x,s,λ,u,λmax)

λmax,s.t. (x, s, λ, u) ∈ F(f),

xi ≤ xi ≤ xi, i = 1, . . . , m,

w(x) ≤ w,

λℓ ≤ λmax, ℓ = 1, . . . , r,where xi, xi, w are given positive numbers, i = 1, . . . , m. In general, allowing lower bounds on the designvariables to be zero results in an ill-posed optimization problem, unless bounds on the 
omplian
e of the15
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Figure 3: Test problem found in [Hil00℄. 5 × 5 
ase is shown.
Trusssize m PIPA IMPA/MMA Smooth.+IMP

A
Smooth.+MM
A

Newsmoothin
g

3 × 3 58 � 3.0 1.0 1.0 1.0
4 × 4 113 � 2.0 1.0 1.0 1.0
5 × 5 190 1.67 2.5 1.0 1.25 1.07

10 × 10 875 2.5 5.0 � � 2.0Table 3: Results of numeri
al experiments: 
onta
t for
e minimization.stru
ture or stress 
onstraints are added (see [PaP02℄).The problem (Λ) is thus not a topology optimization problem and does not su�er from the di�
ultiesoutlined in Se
tion 4.1; in parti
ular, the smoothing method of Fa

hinei [FJQ99℄ outlined in Se
tion 3 isdire
tly appli
able to this problem (see [Hil00℄, where smoothing was used for �the heuristi
 avoiding oflo
al minima�) and we use it as one of the ben
hmarks for our new smoothing algorithm.On some instan
es of the problem (Λ) Hilding et al. [HKP99℄ also implemented and tested some 
lassi
MPEC algorithms (IMPA [LPR96, Se
tion 6.3℄ and PIPA [LPR96, Se
tion 6.1℄) on the family of stru
turesshown in Figure 3. Also, they tested on (Λ) a very popular method in the stru
tural optimization 
ommu-nity: the method of moving asymptotes, MMA, [Sva87℄, even though it is not guaranteed to work on thisproblem.We apply SNOPT to the following relaxation of the problem (Λ):
(Λε)





min
(x,s,λ,u,λmax)

λmax,s.t. (x, s, λ, u) ∈ Fε(f ),

xi ≤ xi ≤ xi, i = 1, . . . , m,

w(x) ≤ w,

λℓ ≤ λmax, ℓ = 1, . . . , r,where ε > 0 is a relaxation parameter. We report the results we obtained for trusses of di�erent sizes (seeFigure 3) in Table 3 along with the results found in [HKP99, Hil00℄.We report the size of the stru
ture, the number of bars (design variables) and the optimal values obtainedby PIPA and IMPA/MMA as reported in [HKP99℄ (the two latter algorithms are reported to produ
e thesame optimal values); the optimal values produ
ed by IMPA and MMA as applied to the smoothed MPECusing the methodology introdu
ed in [FJQ99℄, as reported in [Hil00℄; and the optimal values obtained usingour new smoothing pro
edure. The ��� sign in the table 
olumns means that the 
orresponding algorithmhas not been applied to a given problem instan
e.One 
an see that our algorithm favourably 
ompetes with 
lassi
 MPEC algorithms on these tests. As16



we already mentioned, general MPEC algorithms 
annot be applied to truss optimization problems if weremove stri
tly positive lower bounds on the design variables, i.e., 
onsider topology optimization problems.6 Con
lusions and further resear
hIn this paper we proposed a new algorithm for solving MPEC problems arising from the topology optimiza-tion of trusses with unilateral 
onta
t 
onditions. The algorithm is based on the approximation of topologyoptimization problems with sizing-type problems, where in addition we relax the equilibrium 
onstraint.We studied the 
onvergen
e of global optimal solutions and stationary points to approximating problemstowards, respe
tively, globally optimal solutions and stationary points to the original, singular problem.We have also performed some numeri
al testing of the proposed method.Many open problems remain. On the numeri
al side, we need a better implementation (probablyutilizing se
ond order information); also, a mu
h more thorough numeri
al testing should be done, espe
iallyfor trusses with unilateral 
onta
t. However, in our opinion, the most 
hallenging task is to improve theoptimality 
onditions we obtained in this paper. To do that, the 
omparative analysis of modern KKT-typeoptimality 
onditions for general MPEC problems (see, e.g., [FlK02a, FlK02b, FlK02
℄) and the FJ-typeoptimality 
onditions we obtained needs to be performed. We hope to address these questions in our futureresear
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