
On the onvergene of stationary sequenes in topologyoptimization∗Anton Evgrafov† and Mihael Patriksson‡January 14, 2005AbstratWe onsider strutural topology optimization problems inluding unilateral onstraints arising fromnon-penetration onditions in ontat mehanis. The resulting non-onvex non-smooth problems areinstanes of mathematial programs with equilibrium onstraints (MPEC), or bi-level programs. Ap-plying nested (impliit programming) algorithms to this lass of problems is problemati owing to thesingularity of the feasible set. We propose a perturbation strategy ombining the relaxation of theequilibrium onstraint with the restrition of the design domain to its regular part only. This strategyallows us to attak the problem numerially using standard nonlinear programming algorithms.We rigorously study the optimality onditions for the original singular problem as well as the on-vergene of stationary points and globally optimal solutions to approximating problems towards respe-tively stationary points and globally optimal solutions to the original problem. A limited numerialbenhmarking of the algorithm is performed.Keywords: topology optimization, ε-perturbation, loal optimality, stress singularity, MPEC,smoothing1 IntrodutionThe optimum design of trusses is onerned with the distribution of the available material among struturalmembers (bars) in order to arry a given set of loads as e�iently as possible, subjet to mehanial andtehnologial onstraints. The distinguishing feature of strutural optimization problems is the preseneof the ompliating equilibrium onstraint, relating design variables (i.e., those ontrolling the materialdistribution) with state variables (e.g., nodal displaements and stresses in the strutural members). Ver-bally, the relation between the two sets of variables an be formulated as follows: the state variables solvea parametri optimization problem with design variables as parameters. Therefore, the problem belongsto a lass of di�ult optimization problems known as mathematial programs with equilibrium onstraints(MPEC), or generalized bi-level programming problems.In the framework of topology optimization (as opposed to sizing optimization), the topology of a trussmay hange as a result of the optimization proess, that is, if a zero amount of material is alloatedto some parts; this possibility signi�antly enlarges the design spae and, at the same time, inreases theomputational omplexity of the problem. The former implies the possibility to obtain optimal designs thatperform muh better than their �sizing� ounterparts [Mi04℄; the latter plaes signi�ant requirements onalgorithms for solving topology optimization problems.In most ases, �standard� algorithms for di�erentiable nonlinear programming problems an be applieddiretly to sizing optimization problems. Therefore, one natural approah to topology optimization is tointrodue a small but positive lower bound ε on the bar volumes, thus onverting the problem into a sizingone. Solving a sequene of sizing problems for ε onverging to zero produes a sequene of designs, whoselimit points one hopes are optimal in the original topology optimization problem.Unfortunately, some important onstraints produe design domains that violate standard nonlinearprogramming onstraint quali�ations; in partiular, some optimal solutions annot be reahed as limits ofany sequene of stritly positive feasible designs. The stress singularity phenomenon appearing in topologyoptimization problems with onstraints on the maximal e�etive stresses in the strutural members isprobably the one most studied and the one that has attrated the most reent interest�we mention the
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work in [SvG68, ChG97, Pet01, StS01℄, just to name a few referenes. Similarly, loal (Euler) buklingonstraints [GCY01℄, and global (system) stability onstraints [Evg04℄ are known to exhibit a singularbehaviour.Sizing approximations, studied in the ited papers, are all onerned with approximations of the globallyoptimal solutions. In omputational pratie, however, it is very di�ult to solve the non-onvex approx-imating problems to global optimality. Sine most numerial nonlinear optimization algorithms an only�nd stationary points of the approximating sizing problems, in this paper we study the limit points ofsuh sequenes. We show that they are indeed stationary, in some sense, in the limiting (that is, original)topology optimization problem as well.1.1 Equilibrium problemWe onsider a truss with m bars and n degrees of freedom. There are r designated nodes of the truss thatmay ome into fritionless unilateral ontat with rigid obstales.Given positions of the nodes, the design (and topology in partiular) of a truss an be desribed bypresribing for eah bar i, i = 1, . . . , m, the amount of material xi ≥ 0 alloated to this bar. For onvenienewe ollet all the design variables in a vetor x = (x1, . . . , xm)t ∈ R
m
+ . We introdue an index set of thepresent (or, ative) members in the struture I(x) = { i = 1, . . . , m | xi > 0 }, and denote by Ic(x) theomplement of I(x) in { 1, . . . , m }.Given a partiular design x, the equilibrium status of a truss an be desribed by speifying

◦ a pseudo-fore si (also known as the normalized stress, whih is in fat a stress in the bar times itsvolume) for eah bar i ∈ I(x) present in the struture . To simplify the notation we ollet all values si,
i = 1, . . . , m, into one vetor s ∈ R

m, assuming si = 0 for i 6∈ I(x);
◦ a ontat fore λj for eah of the potential ontat nodes j = 1, . . . , r. These values are olleted in avetor λ ∈ R

r
+; and

◦ a displaement uk for eah of the strutural degrees of freedom k = 1, . . . , n. These values are olletedin a vetor u ∈ R
n.The triple (s, λ, u) will be referred to as state variables.For a vetor v ∈ R

q, and an index set I = { i1, . . . , i|I| } ⊆ { 1, . . . , q }, we denote by vI the subvetor
(vi1 , . . . , vi|I|)

t.The values of the state variables for a spei� design x are determined using various energy priniples.Therefore, we de�ne the omplementary energy of the struture as
E(x, s, λ) :=

1

2

∑

i∈I(x)

s2
i

Exi

+ gtλ,where E is the Young modulus of the strutural material, and g ∈ R
r is a vetor of gaps between theontat nodes and rigid obstales. We also de�ne the linearized strain energy:

Π(x, u) :=
1

2
ut

K(x)u,where K(x) is the sti�ness matrix of the struture. The latter matrix is de�ned as
K(x) :=

∑

i∈I(x)

xiKi,where Ki = EBt
iBi is the loal sti�ness matrix for the bar i = 1, . . . , m, and Bi ∈ R

1×n is a kinematitransformation matrix for the bar i = 1, . . . , m.In this notation the equilibrium state of the struture under the external load f ∈ R
n an be hara-terized using a primal-dual pair of onvex quadrati programming problems:

(C)x(f )






min
(s,λ)

E(x, s, λ),s.t. Ctλ +
∑

i∈I(x)

Bt
isi = f ,

λ ≥ 0,

(P)x(f )

{
min

u
Π(x, u) − f tu,s.t.Cu ≤ g,where C ∈ R

r×n is a kinemati transformation matrix. We have impliitly assumed that the matrix Cis quasi-orthogonal, that is, that CCt = I. The problem (C)x(f ) is known as the priniple of minimum2



omplementary energy, and the problem (P)x(f) is the priniple of minimum potential energy.Equivalently, the equilibrium problem an be written as a KKT system for the pair (C)x(f ) and (P)x(f ).De�ne
Q(x) :=




Bt Ct 0

0 0 −C

I 0 −D(x)B


 , q(f ) :=



−f

g

0


 ,and Y := R

m × R
r
+ × R

n, where B ∈ R
m×n is the matrix with rows B1, . . . , Bm, and D(x) =

E−1diag(x) ∈ R
m×m. Then, the pair (s, λ) solves (C)x(f) and u solves (P)x(f) if and only if the vetor

y∗ = (st, λt, ut)t ∈ Y solves the a�ne variational inequality problem AVI(q(f ), Q(x), Y ) [see, e.g., [FaP03℄for the de�nition℄:
[Q(x)y∗ + q(f)]t(y − y∗) ≥ 0, for all y ∈ Y .For the rest of the paper, we make the blanket assumption that for all positive designs x it holds thatnullK(x) ∩ r {u ∈ R

n | Cu ≤ g } = ∅, (1)where null(·) denotes the null spae of a given matrix, and r(·) is the reession one of a given set(f. [HKP99℄). This assumption is neessary to in order to guarantee the feasibility of the topology op-timization problems we are going to onsider, and is weaker than assuming non-singularity of K(x) forpositive designs (the latter assumption is �standard� for ontat-less problems, and then essentially equiv-alent to (1) beause the reession one involved equals R
n in the ontat-less ase). The assumption (1)does not exlude problems where the struture is supported on rigid obstales only (see Figure 3).Either of the equilibrium problem formulations (C)x(f), (P)x(f), or AVI(q(f), Q(x), Y ) has its advan-tages and disadvantages. For example, the problem (C)x(f) possesses at most one optimal solution forevery design x ∈ R

m
+ ; at the same time, the objetive funtion E is only lower semiontinuous (and may bein�nite) for some x ∈ ∂R

m
+ (f. [PaP02℄).Our ultimate goal in this paper is to establish stationary onditions that must be veri�ed by limit pointsof ertain sequenes of positive designs. We annot use the equilibrium formulation given by the problem

(C)x(f) for this purpose, beause its objetive funtion violates suh a basi ondition for sensitivityanalysis as ontinuity. Neither is the problem (P)x(f ) suitable for us, beause the design-to-state mappingit indues is not losed [PaP02℄. Therefore, we will use the primal-dual haraterization of the equilibriumgiven by AVI(q(f ), Q(x), Y ) in the sequel.We lose the subsetion by de�ning the feasible set generated by the equilibrium onstraint:
F(f) := { (x, s, λ, u) ⊂ R

m
+ × R

m × R
r
+ × R

n | (s, λ, u) ∈ SOL(q(f), Q(x), Y ) }. (2)1.2 Weight minimization problemWe use a stress onstrained weight minimization problem of a truss subjet to unilateral fritionless ontatwith some rigid obstales as a representative of the di�ult strutural optimization problems. To skip oneindex and simplify the notation we onsider a single load ase only; this does not a�et the appliability ofour results to multiple load ases in any way.The weight minimization problem an be written as follows:
(W)






min
(x,s,λ,u)

w(x) :=

m∑

i=1

xi,s.t. (x, s, λ, u) ∈ F(f),

σixi ≤ si ≤ σixi, i = 1, . . . , m,where σi ≤ 0 and σi ≥ 0 are the stress bounds in ompression and tension for the bar i = 1, . . . , m, and
F(f) is given by (2).The results of the present paper are of ourse appliable to a wider lass of problems than (W). Forexample, more general objetive funtions an be onsidered as long as they are reasonably regular [dif-ferentiable, or Lipshitz ontinuous w.r.t. (x, s, λ, u)℄; additional onstraints may be onsidered (suh asbounds on admissible displaements, loal bukling onstraints, or global stability onstraints). However,to keep the notation simple we do not disuss suh straightforward generalizations in detail.1.3 SingularityFor illustrational purposes here we reprodue an aademi example introdued in [Pet01℄.3
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fFigure 1: 1-bar truss struture.Consider a simple 2-bar struture shown in Figure 1. Assume that E = 1, f = 1, −σ1 = σ1 = 1,
−σ2 = σ2 = 1/2. In this ase, the weight minimization problem is formulated as follows:

min
(x,s,λ,u)

x1 + x2,s.t. x1 ≥ 0, x2 ≥ 0,

−x1 + s1 ≤ 0, −x2 + s2/2 ≤ 0,

−x1 − s1 ≤ 0, −x2 − s2/2 ≤ 0,

s1 − x1u = 0, s2 + x2u = 0,

s1 − s2 = 1.The unique globally optimal solution to this problem is (x∗
1, x

∗
2, s

∗
1, s

∗
2, u) = (1, 0, 1, 0, 1). It is easy toverify that while the KKT onditions are satis�ed at this point, MFCQ (hene, LICQ) is violated. Thissituation in strutural optimization is rather typial, despite the fat that LICQ generially holds in non-linear programming. For our developments it also means that, in the presene of ontat onditions, weannot assume that the resulting MPEC problem satis�es MPEC-LICQ, despite the orresponding generiresult [Sh01℄. (We also note that while weight minimization problems in a single-load ase may be astusing linear programming tehniques [StS04℄, we do not use this simpli�ation sine, arguably, single-loadase problems rarely appear in pratial situations.)In what follows we will onentrate on onstruting approximation problems that are (at least undersome mild assumptions) quali�ed in the sense of Mangasarian and Fromowitz, and allow us to approxi-mate both globally optimal solutions and stationary points of singular problems arising in truss topologyoptimization.2 Previous results2.1 ε-perturbation of Cheng and Guo and variationsThe so-alled ε-perturbation of strutural topology optimization problems, or approximation with a se-quene of sizing optimization problems, has beome a lassi topi. Convergene results of this type allowone, at least in priniple, to ompute optimal solutions to strutural topology optimization problems bysolving a sequene of smooth non-onvex approximating problems. Suh approximations do not su�er frommany numerial di�ulties possessed by the original model problem (W), so that e�ient solvers are readilyavailable.For some truss topology optimization problems (suh as, e.g., ompliane minimization, possibly withso-alled �strong� stress onstraints [Ah98℄) the naïve replaement of the lower bound 0 on design variableswith a small positive value ε > 0 tending to zero (whene the name�ε-perturbation) is su�ient. Suha strategy has been rigorously studied for trusses, without (Ahtziger [Ah98℄) and with (Patriksson andPetersson [PaP02℄) unilateral onstraints.On the other hand, there are many other lasses of topology optimization problems inluding importantmehanial onstraints (e.g., stress onstraints [SvG68℄, loal bukling onstraints [GCY01℄, and globalbukling onstraints [Evg04℄) where the simple strategy outlined above leads to erroneous results, owing tothe ompliated singular struture of the design domain near the points where the truss topology hanges.Historially, the study of singularity phenomena for truss topology optimization problems started withproblems inluding stress onstraints only. Sved and Ginos [SvG68℄ observed that suh problems may have4



singular solutions, and the properties of the feasible region were further investigated by Kirsh [Kir90℄,Cheng and Jiang [ChJ92℄, and Rozvany and Birker [RoB94℄. Cheng and Guo [ChG97℄ were the �rst topropose a more sophistiated restrition-relaxation proedure, where not only lower bounds but also stressonstraints were perturbed. They established the onvergene of the optimal values of the perturbed prob-lems to the optimal value of the original problem, while Petersson [Pet01℄ (using the ontinuity of ertaindesign�to�state parameterized mappings) has established the onvergene of optimal solutions. Sine then,the ε-perturbation has been extended by many authors in many ways: Duysinx and Bendsøe [DuB98℄and Duysinx and Sigmund [DuS98℄ onsidered ontinuum strutures; Guo et al. [GCY01℄ inluded loalbukling onstraints into the problem; Patriksson and Petersson [PaP02℄ generalized the result for trussesinluding unilateral onstraints; Evgrafov et al. [EPP03℄ onsidered the possibility of stohasti fores; andEvgrafov [Evg04℄ studied the linearized elasti stability onstraint.Despite the lear advantage of approximating the nonsmooth, singular optimization problem with asequene of smooth and regular ones, all the sizing approximations onsidered above su�er from the samedi�ulty. While the underlying theoretial results are onerned with the approximation of the globallyoptimal solutions, in omputational pratie it is impossible to solve the non-onvex approximating problemsto global optimality. There are also negative results regarding this issue: the ε-perturbation approah mayfail to �nd a globally optimal solution even for topology optimization problems with only 2 design variables(see [StS01℄)!The analysis of the onvergene of stationary points to the approximating problems towards stationarypoints of the limiting (that is, original) problem is di�ult; for example, the dependene of the equilibriumstate of the struture upon the design near the points where the topology hanges is nonsmooth, and evennon-Lipshitz ontinuous.In onstruting a new ε-perturbation we try to address these issues, onentrating on the onvergeneof both globally optimal solutions and stationary points towards the respetive limits.2.2 The extended formulation of Stolpe and SvanbergReently, Stolpe and Svanberg [StS03℄ proposed an alternative method for the solution of the truss topologyoptimization problems inluding stress and loal bukling onstraints, whih is based on the Karush�Kuhn�Tuker (KKT) formulation of the equilibrium onstraint. In this formulation the state variables are treatedequally to the design variables, and arti�ial lower bounds on the design are unneessary. In the abseneof unilateral onstraints, the formulation is suitable for any SQP algorithm, and for some numerial exam-ples Stolpe and Svanberg report that suh an algorithm has a better performane than an ε-perturbationbased approah. Later, a branh-and-ut algorithm based on this formulation has been developed [Sto04℄;furthermore, Ahtziger [Ah03℄ has made the onjeture that every globally optimal solution to a topol-ogy optimization problem inluding stress and loal bukling onstraints (but not inluding unilateralonstraints) is a KKT point in the extended formulation.Unfortunately, the KKT formulation of the lower level equilibrium problem for trusses with unilateralonstraints inludes omplementarity onditions, whih are known to violate standard nonlinear program-ming onstraint quali�ations. Therefore, the extended formulation annot be used diretly to solve topol-ogy optimization problems for trusses in ontat with rigid obstales, or inluding tensile-only members(ropes or ables).We therefore propose a new approximation sheme, whih allows for the violation of the lower-levelequilibrium onditions, and thus does not inlude the ompliating omplementarity onstraints.3 Previous methods for general MPEC problemsAmong iterative algorithms for MPEC problems, our ε-perturbation method is speial in that it ombinesrelaxation (of the equilibrium onditions) and restri�ation (of the design spae). Most iterative algorithmsfor general MPEC problems belong to the relaxation ategory, wherein onstraints are penalized or om-plementarity onditions are smoothed. In the latter ategory, the methods of Fahinei et al. [FJQ99℄ andSholtes [Sh01℄ have relations to ours that are interesting to explore, in order to analyze the strength of ouronvergene results. Due to the stronger regularity properties of the problems onsidered in [FJQ99, Sh01℄,their onvergene results are shown to be stronger; we then seek to explain why loal, iterative methods forour problem are unlikely to yield better onvergene harateristis than those that we reah in this paper.3.1 The smoothing algorithm of [FJQ99℄Consider the problem to 5



(M)






min
(x,y)

f(x, y),s.t. {
x ∈ X,

y solvesVI(F (x, ·), C(x)),where f : R
n+m 7→ R is ontinuously di�erentiable, X ⊂ R

n is nonempty and ompat, and, for eah x ∈ Xand for a ontinuously di�erentiable funtion F : R
n+m 7→ R

m, VI(F (x, ·), C(x)) denotes the variationalinequality de�ned by the pair (F (x, ·), C(x)),
y ∈ C(x); F (x, y)t(z − y) ≥ 0, z ∈ C(x),where C(x) = {y ∈ R

m | gi(x, y) ≥ 0, i = 1, . . . , ℓ }, g : R
n+m 7→ R

ℓ being twie ontinuouslydi�erentiable and onave in the seond argument.For the lower-level VI, we assume that C(x) 6= ∅ for all x in an open set A ontaining X , that C(x) isuniformly ompat on A (with C(x) ⊂ B for some open bounded set B ⊂ R
m), that F (x, ·) is uniformlystrongly monotone on B for all x ∈ A, and that for every pair (x, y) for whih x ∈ X and y solves

VI(F (x, ·), C(x)), the partial gradients ∇y gi(x, y), i ∈ I(x, y) := { i = 1, . . . , ℓ | gi(x, y) = 0 }, arelinearly independent (that is, the linear independene CQ, LICQ).By these assumptions, VI(F (x, ·), C(x)) has a unique solution for eah x ∈ X , and eah lower-level VIis equivalent to the existene of a (unique) multiplier vetor λ ∈ R
ℓ suh that

F (x, y) −∇y g(x, y)λ = 0
m, (3a)

0
ℓ ≤ g(x, y) ⊥ λ ≥ 0

ℓ. (3b)Let
H0(x, y, z, λ) :=




F (x, y) −∇y g(x, y)
g(x, y) − z

−2 min(z, λ)


 , (x, y, z, λ) ∈ R

n+m+2ℓ.The KKT system (3) is equivalent to the statement that H0(x, y, z, λ) = 0
m+2ℓ. We therefore write

(P)






min
(x,y)

f(x, y),s.t. {
x ∈ X,

H0(x, y, z, λ) = 0
m+2ℓ,whih is an equivalent, non-smooth, restatement of (M), in the sense that the two problems share globalas well as loal optimal solutions in x (f. [FJQ99, Proposition 1℄).Fahinei et al. [FJQ99℄ onsider a smooth reformulation of the problem (P), as follows. We introduethe funtion φ : R

2 7→ R by
φµ(a, b) :=

√
(a − b)2 + 4µ2 − (a + b), (a, b) ∈ R

2.For this funtion, we have that ([FJQ99, Proposition 2℄)
φµ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = µ2.For µ = 0, φµ(a, b) = −2 min(a, b); for µ 6= 0, φµ is in C∞; and for every pair (a, b), limµ→0 φµ(a, b) =

−2 min(a, b). The funtion φµ therefore serves as a smooth perturbation of the min funtion. We onsiderreplaing the operator H0 in the problem (P) above with the smooth operator Hµ, de�ned by
Hµ(x, y, z, λ) :=




F (x, y) −∇y g(x, y)
g(x, y) − z

Φµ(z, λ)


 , (x, y, z, λ) ∈ R

n+m+2ℓ,where Φ(z, λ) := (φ(z1, λ1), . . . , φ(zℓ, λℓ)), thus de�ning the smoothing problem
(Pµ)






min
(x,y)

f(x, y),s.t. {
x ∈ X,

Hµ(x, y, z, λ) = 0
m+2ℓ.6



While (P0) oinides with the non-smooth problem (M), the problem (Pµ) for µ 6= 0 is a smoothoptimization problem. We denote the feasible set to (Pµ) by Fµ ⊂ R
n+m+2ℓ. The funtion Hµ is not onlyloally Lipshitz ontinuous for every µ but also regular (in the sense that the diretional derivative existsin all diretions and equals the Clarke derivative; f. [FJQ99, Lemma 1℄), and its generalized Jaobianwith respet to (y, z, λ) is non-singular for every µ and feasible point of the problem (Pµ), f. [FJQ99,Proposition 3℄. Further, for every x̄ ∈ X and µ ∈ R there exists a unique point in Fµ suh that its x-partequals x̄, and this vetor,

w̄µ := (x̄, yµ(x̄), yµ(x̄), λµ(x̄)), (4)is ontinuous in µ. The feasible sets Fµ of the problem (Pµ) are non-empty and uniformly ompat, whenethe problems (Pµ) have optimal solutions.The �rst-order optimality onditions for the problem (Pµ) an be written as follows: with L(x, y, λ) :=
F (x, y)−∇y g(x, y)λ, if (x, y, z, λ) is a loally optimal solution to (Pµ), then there exist vetors (θ, ρ, σ) ∈
R

m+2ℓ and s ∈ NX(x) × R
m+2ℓ suh that (f. [FJQ99, Theorem 2℄)

0
n+m ∈ ∇f(x, y) + ∇L(x, y, λ)θ + ∇(g(x, y) − z)ρ +

ℓ∑

i=1

∂φµ(zi, λi)σi + M‖(1, θ, ρ, σ)‖s, (5)where M is a Lipshitz onstant for (f, Hµ) around (x, y, z, λ). Sine the multiplier for ∇f(x, y) isnon-zero (it then equals 1, without any loss of generality), this ondition is stronger than the Fritz�Johnonditions, and is in fat the KKT onditions for the problem. While one may then refer to this onditionfor µ = 0 as the KKT onditions for the MPEC problem (M), Fahinei et al. [FJQ99℄ refer to it is asstrong C-stationarity (SCS).A global version of the smoothing algorithm is immediate. A more pratial algorithm is obtained byreplaing, in the algorithm above, global optimality in (Pµτ
) of the vetor wτ by stationarity in the senseof the KKT system (5). For this algorithm, it is shown in [FJQ99, Theorem 4℄ that the sequene {wτ}of KKT points in (Pµτ

) is bounded and every limit point is an SCS point in (P). A ruial part of theproof is the ontinuity property of any sequene of KKT points in the problem (Pµ) as µ tends to zero(f. [FJQ99, Proposition 4℄). The proof of the onvergene result also establishes the important result thatthe sequene {(θτ , ρτ , στ )} of KKT multipliers is bounded. This is a ruial part of any analysis of thestationarity property of a limit point.A yet more pratial algorithm is also devised, in whih the sequene {wτ} of vetors is allowed to bede�ned by near-feasible and approximate KKT points. In other words, in eah iteration τ , the distanefrom the vetor wτ to the feasible set Fµ of the problem (Pµτ
) is bounded by ετ > 0, and the Eulideanlength of the vetor de�ning the right-hand side of the inlusion (5) is also bounded above by this value.Theorem 5 in [FJQ99℄ then states that if {ετ} ↓ 0 as {µτ} → 0, then the sequene {wτ} of approximateKKT points is bounded and every limit point is, again, a SCS point in (P).The latter algorithm was oded and tested in [FJQ99℄ on some small and medium-size MPEC problems;eah problem (Pµτ

) was then solved by utilizing an SQP algorithm. They report that it ompares favourablywith, for example, the impliit programming algorithms proposed in [Out94, OuZ95℄.3.2 The regularization algorithm in [Sh01℄Sholtes [Sh01℄ onsiders the parameterized problem to
(NLP(t))





min
x

f(x),s.t. g(x) ≤ 0
p,

h(x) = 0
q,

G(x) ≥ 0
m,

H(x) ≥ 0
m,

Gi(x)Hi(x) ≤ t,where f, g, h, G, and H are ontinuously di�erentiable. The original problem, (NLP(0)), is ill-posed,whene it is natural to onsider solving (NLP(t)) for t ↓ 0. An MPEC-LICQ is introdued by whih,disregarding the (relaxed) omplementarity onditions, the ative onstraints are all linearly independent.Three stationarity onditions are introdued, whih, in addition to the weak stationarity ondition
∇f(x̄) +

∑

i∈Ig(x̄)

λ̄i∇gi(x̄) +
∑

j∈Ih(x̄)

µ̄j∇hj(x̄) −
∑

k∈IG(x̄)

γ̄k∇Gk(x̄) −
∑

ℓ∈IH(x̄)

ν̄ℓ∇Hℓ(x̄) = 0
n,7



impose the following additional onditions on the omplementarity part:� C-stationarity: m ∈ IG(x̄) ∩ IH(x̄) implies that γ̄mν̄m ≥ 0;� M-stationarity: all m ∈ IG(x̄) ∩ IH(x̄) satisfy either γ̄mν̄m > 0 or γ̄mν̄m = 0;� strong stationarity: m ∈ IG(x̄) ∩ IH(x̄) implies that γ̄m ≥ 0 and ν̄m ≥ 0.The latter is, under MPEC-LICQ, equivalent to a B-stationarity ondition introdued by the author.Based on these onditions, Sholtes establishes that for an arbitrary sequene {tτ} ↓ 0 and a orrespondingsequene {xτ} of stationary points to (NLP(tτ )), a limit point x̄ of {xτ} satis�es the following ([Sh01,Theorems 3.1 and 3.3℄):� x̄ is C-stationary;� x̄ is B-stationary if and only if γ̄m = ν̄m = 0 for every m ∈ IG(x̄) ∩ IH(x̄) ∩ I0, where
I0 := {m | m ∈ IGH(xτ , tτ ) for in�nitely many τ };� if a seond-order su�ieny ondition holds at eah xτ then x̄ is M-stationary.Randomly generated problems with f quadrati and the onstraint funtions all being a�ne were testedagainst a smoothing type method wherein the last onstraint in (NLP(t)) was replaed by the orrespondingequality onstraint.Solving 100 problems, all 100 problems were suessful in the sense that the last problem (with t = 10−16;the starting value was always unity) was solvable. (The solver for eah problem was based on Matlab:sfminon funtion.) In the ase of the smoothing algorithm, 85 problems were suessful, and in 66 asesthe solver enountered solvability problems somewhere between the initial and terminal value of t. Thesmoothing algorithm was not only less robust but also produed worse solutions in some ases: in 47 ofthe 85 problems mentioned above, the two methods produed the same solution, while in the 36 ases theregularization method produed better solutions (at most 12 % better).Sholtes onlusion is that regularization by means of relaxation, as in the onstrution of (NLP(t))is a sensible way of stabilizing existing NLP odes when extended to MPEC problems. He also remarksthat thanks to the fat that problems onstruted and solved in a relaxation/regularization method enom-passes the original feasible set, while smoothing methods do not, whih may imply the possibility to fasterenounter ative sets among the omplementarity onditions.4 A new smoothing approah to topology optimization4.1 MotivationThe smoothing algorithm desribed in Setion 3 may unfortunately not be applied to truss topology opti-mization problems, out of whih (W) is a typial example. The latter problem violates several assumptionsthat are vital for the smoothing algorithm of Fahinei et al. [FJQ99℄, the most important being the lakof the uniform strong monotoniity by the lower-level problem AVI(q(f ), Q(x), Y ). In addition, some ofthe variables (that is, u) may not be uniformly bounded, and upper-level joint onstraints (suh as stressonstraints) are essential in the problem (W).In order to overome the di�ulties outlined we introdue an alternative perturbation sheme for solvingstress onstrained weight minimization problems for trusses inluding unilateral onstraints. It resemblesthe ε-perturbation approah of Cheng and Guo [ChG97℄ (f. Setion 2.1) by the fat that we introduepositive lower bounds on the design variables, thus restriting the design domain. There are importantdi�erenes, however: instead of relaxing the tehnologial onstraints (e.g., stress onstraints in the originalpaper [ChG97℄) we relax the equilibrium onstraint; to aomplish this, we formulate the optimizationproblem using both the design and the state variables, similarly to the extended formulation of Stolpe andSvanberg [StS03℄ (f. Setion 2.2).

8



4.2 Relaxed equilibrium problemFormally, �x an arbitrary ε ≥ 0 and onsider the following perturbation of the feasible set F(f) (f. (2)):
Fε(f ) := { (x, s, λ, u) ∈ R

m
+ × R

m × R
r
+ × R

n | x ≥ o(ε)1m,

E(x, s, λ) + Π(x, u) − f tu ≤ ε

Bts + Ctλ = f ,

Cu ≤ g },where o(ε) is a positive funtion of ε suh that limε↓0 o(ε)/ε = 0. Of ourse, the weak duality theorem foronvex problems implies that F0(f) = F(f ); for positive values of ε the �state� variables (s, λ, u) (whihin the extended formulation play a role equal to that of the design variables x, and do not orrespond toan equilibrium state of the truss anymore) are required to be primal-dual feasible, but only ε-optimal.Finally, for every ε > 0 we onsider the following perturbed version of the stress onstrained weightminimization problem:
(Wε)






min
(x,s,λ,u)

w(x),s.t. (x, s, λ, u) ∈ Fε(f),

σixi ≤ si ≤ σixi, i = 1, . . . , m.From the theoretial point of view, allowing for ε-optimal solutions to the lower-level equilibrium prob-lem means that we �regularize� the bi-level programming problem (W), in the sense de�ned by [LiM97℄;this will allow us to obtain the onvergene of both globally optimal solutions and stationary points (seebelow).At least of equal importane is the following pratial interpretation of the method. If we apply typial�standard� non-linear programming methods to the original non-relaxed problem (W), in many ases it isreasonable to assume that the underlying numerial method does in fat solve somewhat relaxed problem.For example, in methods based on impliit programming, we typially solve the equilibrium problem onlyapproximately (espeially for designs x lose to the boundary of R
m
+ , when the sti�ness matrix K(x)beomes ill-onditioned); at the same time it is easy to keep (linear) feasibility of the state variables in theequilibrium problem. Even if we do not use impliit programming and treat all variables involved in (W)as independent, sometimes it is reasonable to require that the linear onstraints [primal-dual feasibility of

(s, λ, u) and stress onstraints℄ are satis�ed with higher auray than the non-linear onstraints expressingoptimality of the state, whih again results in a feasible set similar to Fε(f). In partiular, this may explainthe suess of SNOPT in solving the weight minimization problem with stress and loal bukling onstraintsreported in [StS03℄.Remark 4.1. In the multiple-load ase, the problem (Wε) will have several onstraints of the form
(x, sk, λk, uk) ∈ Fε(fk), where fk is a vetor of external fores orresponding to the load ase k, andthe triple (sk, λk, uk) ∈ R

m × R
r
+ × R

n represents the �state� variables for the load ase k, k = 1, . . . , ℓ.In the rest of the setion, we study the theoretial properties of the point-to-set mapping ε ⇉ Fε(f )whih will allow us to establish the onvergene of globally optimal solutions as well as stationary pointsas ε ↓ 0.4.3 Properties of ε ⇉ F ε(f )In this setion we show that the point-to-set mapping ε ⇉ Fε(f) enjoys most of the nie properties one anexpet from a point-to-set mapping: under some mild onditions it has ompat (although, unfortunately,non-onvex) images, and is losed and lower semiontinuous at zero [AuF90, Chapter 1℄. Furthermore,in Proposition 4.6 we demonstrate the ontinuity of the design-to-fore �sub-mapping� x ⇉ (s, λ) (seeProposition 4.6 for the formal de�nition), a property originally established for the unperturbed feasible set
F by Petersson [Pet01℄ for trusses without unilateral onstraints, and later generalized by Patriksson andPetersson [PaP02℄.We formulate the results as a sequene of short propositions.Proposition 4.2 (Closed images). For eah ε ≥ 0 the set Fε(f) is losed.Proof. The laim follows easily from the lower semiontinuity of E(·, ·, ·) (f. [PaP02, Lemma 3.2℄) togetherwith the ontinuity of the other funtions de�ning Fε(f), ε ≥ 0.Proposition 4.3 (Lower semiontinuity). The multi-funtion ε ⇉ Fε(f ) is lower semiontinuous atzero. 9



Proof. Let (x, s, λ, u) ∈ F(f). Then, { (x + o(ε)1m, s, λ, u) } ∈ Fε(f ) for all enough small ε > 0, where
1

m = (1, . . . , 1)t ∈ R
m
+ .Remark 4.4. The same onstrution establishes the lower semiontinuity of the multi-funtions ε → (Fε ∩

K), where (independent of ε) the losed set K may represent stress, sti�ness, or global stability onstraints,or any ombination thereof.We stress that the lassi ε-perturbation of Cheng and Guo [ChG97℄ results in a l.s.. mapping inludingdesign variables only ; i.e., there might be some displaement vetors orresponding to the limiting designthat annot be approximated with the displaements orresponding to positive designs.Proposition 4.5 (Closedness). The multi-funtion ε ⇉ Fε(f ) is losed at zero.Proof. The laim follows from the lower semiontinuity of E(·, ·, ·) (f. [PaP02, Lemma 3.2℄) together withthe ontinuity of the other funtions, de�ning the sets Fε(f ), ε ≥ 0.Proposition 4.6 (Continuity of the design�to�fore mapping). Let {εk} be a positive sequene,onverging to zero. Assume that (xk, sk, λk, uk) ∈ Fεk(f), and that {xk} → x. Suppose further that foreah k = 1, 2, . . . , i = 1, . . . , m, the stress onstraints σix
k
i ≤ sk

i ≤ σix
k
i onstraints are satis�ed. Then,

{(sk, λk)} → (s, λ), this limit vetor solves (C)x(f), and there is a vetor u solving (P)x(f ). [In partiular,
(x, s, λ, u) ∈ F .℄Proof. The additional stress onstraints imply the uniform boundedness of the sequene of omplementaryenergies {E(xk, sk, λk)}, as has been established in [PaP02℄. Therefore, the sequene {(sk, λk)} is bounded,owing to the oerivity of E , whih is loally uniform with respet to the design. Let (s, λ) be an arbitrarylimit point of this sequene. The lower semiontinuity of E and the uniform boundedness of energies yieldthat

E(x, s, λ) ≤ lim inf
k→∞

E(xk, sk, λk) < ∞.Therefore, the problem (C)x(f) is feasible and thus possesses a unique optimal solution (f. [PaP02, Theo-rem 2.1℄).Let now (s̃, λ̃) be an arbitrary fore distribution that is feasible in (C)x(f ). Then, from the εk-optimalityof (sk, λk) and feasibility of (s̃, λ̃) in (C)xk(f ) it follows that
E(x, s, λ) ≤ lim inf

k→∞
E(xk, sk, λk) ≤ lim

k→∞
E(xk, s̃, λ̃) + εk = E(x, s̃, λ̃),where the equality follows from the ontinuity of E(·, s̃, λ̃) (f. [PaP02, Lemma 3.2℄). Therefore, (s, λ) isoptimal in (C)x(f ). It follows that (s, λ) must be the only limit point of the sequene {(sk, λk)}.The existene of at least one dual optimal solution u to (P)x(f ) follows.Proposition 4.7 (Compat images). For every ε > 0 and every onstant M > 0 the set { (x, s, λ, u) ∈

Fε | ‖x‖ ≤ M } is ompat.Proof. The funtion E(x, s, λ) + Π(x, u) − f tu is ontinuous as well as oerive in (s, λ, u), uniformly in
x for all x ≥ o(ε)1m, with ‖x‖ ≤ M .In the subsetions that follow we apply the ontinuity results we have just established to show that the
ε-perturbed problems an indeed be used as approximating problems for small ε, both if we are interestedin globally optimal solutions and stationary points.4.4 Regularity of (Wε)To be of pratial use, every approximating problem (Wε) should be easier to solve than the originalproblem (W). Clearly, the funtions de�ning the onstraints of (Wε) are ontinuously di�erentiable onsome neighbourhood of the feasible set Fε for every ε > 0; therefore, the smooth Fritz�John onditionsmust hold at optimal points. The following (purely aademi) example shows that the feasible sets of theoptimization problems (Wε) do not in general verify MFCQ, and therefore we annot expet the KKTonditions to be satis�ed at every point of loal minimum. On the other hand, in Proposition 4.9 we showthat under rather mild additional onditions MFCQ is veri�ed, so that standard nonlinear programmingalgorithms an be used to �nd loally optimal solutions of (Wε).
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Figure 2: 1-bar truss struture.Example 4.8. Consider the simple 1-bar struture shown in Figure 2 that is made of (aademi) materialwith the Young modulus E = 1. Let f = 3, g = 2, ε = 1, σ = (2 −
√

2), and onsider the point of globalminimum (x, s, λ, u) = (1, 2 −
√

2, 1 +
√

2, 2). At this feasible point in (Wε) the ative onstraints are:




s + λ = f,

− x ≤ −ε2,

u ≤ g,

s ≤ σx,

s2

2x
+ gλ +

1

2
u2x − fu ≤ ε

⇔





s + λ = 3,

− x ≤ −1,

u ≤ 2,

s ≤ (2 −
√

2)x,

s2

2x
+ 2λ +

1

2
u2x − 3u ≤ 1.It is easy to verify that there is no diretion d ∈ R

4 suh that





(
0 1 1 0

)
d = 0,




−1 0 0 0
0 0 0 1
−σ 1 0 0



d ≤ 0
3,

(
− s2

2x2 + u2

2
s
x

g xu − f
)

d < 0,so that MFCQ is violated at (x, s, λ, u).While MFCQ is violated at the point of global minimum in the Example 4.8, this does not preventthe KKT onditions to hold at this point, beause the more basi Abadie's CQ is still veri�ed. While forrealisti trusses the latter CQ is lose to impossible to verify, the following result resolves the problem ofverifying a CQ in most pratial situations.Proposition 4.9. Let (x, s, λ, u) be a point of loal minimum for (Wε), ε > 0. Suppose that any of thefollowing onditions are veri�ed:
(i) E(x, s, λ) + Π(x, u) − f

t
u < ε;

(ii) r = 0, that is, no rigid obstales are present;
(iii) u is not the equilibrium displaement orresponding to x.Then, Abadie's CQ hold at (x, s, λ, u). In partiular, the KKT-onditions for (Wε) hold at this point.Proof. Suppose that (i) holds. Then the relaxed equilibrium onstraint is passive, and the feasible set ofthe problem (Wε) is loally around (x, s, λ, u) de�ned by a�ne onstraints only, whih guarantees Abadie'sCQ.Alternatively, assume that there are no rigid obstales, i.e., (ii) holds. Consider the diretion d =
(αx,0m,0r,−βu), where α > 0, β ≥ 0 are parameters to be determined. This diretion is feasible withrespet to all linear onstraints of (Wε). Furthermore, an easy alulation shows that

∇[E(x, s, λ) − Π(x, u) − f tu]td = −α[E(x, s, λ) − Π(x, u)] − β[2Π(x, u) − f tu] < 0,for some α > 0, β ≥ 0, owing to the inequality
0 < ε = [E(x, s, λ) − Π(x, u)] + [2Π(x, u) − f tu].Thus, the MFCQ is veri�ed, implying Abadie's CQ.11



At last, assume that (iii) is veri�ed. Similarly to the ase (ii) we an show that the diretion d =
(αx,0m,0r, β[u(x) − u]) satis�es the requirements of MFCQ for some α > 0, β ≥ 0, where u(x) is theequilibrium displaement, orresponding to x.Naturally, all three assumptions of Proposition 4.9 are violated by Example 4.8.It is interesting to note that topology optimization problems for trusses without unilateral onstraintsare always quali�ed in the sense of Mangasarian�Fromowitz; it is probably even more interesting to seethat the violation of MFCQ may happen even for �nie� feasible points that verify a strit omplementarityassumption for MPEC problems (like the point onsidered in Example 4.8).4.5 Optimality onditions for (W)Motivated by the desription of the feasible sets of the approximating problems (Wε), ε > 0, in terms ofdi�erentiable inequalities whih lead to at least Fritz�John neessary optimality onditions (see Example 4.8and Proposition 4.9), we may use the same desription with ε = 0 in order to develop non-smooth neessaryoptimality onditions for (W). The biggest di�ulty we enounter is the loss of ontinuity (not to mentiondi�erentiability) of the omplementary energy funtion E . Indeed, if we look at the onstraint involving E :

E(x, s, λ) + Π(x, u) − f tu ≤ 0, (6)we note that the funtion on the left-hand side of the inequality is neither Lipshitz ontinuous nor onvex,and therefore the lassi subdi�erentials of suh funtions are not de�ned. On the other hand, we may usethe struture of this funtion: it is ontinuously di�erentiable everywhere exept when x ∈ ∂R
m
+ , and it isa sum of onvex and Lipshitz ontinuous funtions. Therefore, the notion of limiting subdi�erential ∂a iswell de�ned for suh funtions (see [Mor76℄). In partiular, it holds that

∂a[E(x, s, λ) + Π(x, u) − f tu] = ∂aE(x, s, λ) + ∇[Π(x, u) − f tu].As a result, we obtain the following non-smooth Fritz�John type optimality onditions.Proposition 4.10. Let (x, s, λ, u) be a point of loal minimum for (W). To simplify notation we writeall inequality and equality onstraints of (W), exept the relaxed equilibrium, onstraint in the form:
Ai(x

t, st, λt, ut)t ≤ bi,

Ae(x
t, st, λt, ut)t = be,where Ai ∈ R

Ni×(m+m+r+n), Ae ∈ R
Ne×(m+m+r+n), bi ∈ R

Ni , and be ∈ R
Ne are matries and vetors ofappropriate sizes. Then, the non-smooth Fritz�John optimality onditions hold at (x, s, λ, u), that is, thereare vetors µi ∈ R

Ni

+ , µe ∈ R
Ne , and numbers µ0, µ ∈ R+ not all equal to zero suh that:

0
m+m+r+n ∈ µ0∇w(x) + At

iµi + At
eµe + µ[∂aE(x, s, λ) + ∇(Π(x, u) − f tu))], and

0 = µt
i[Ai(x

t, st, λt, ut)t − bi].
(7)In general, we annot expet the KKT onditions to be satis�ed at every point of loal minimum, be-ause the problem (W) is usually muh less regular than its approximation (Wε), ε > 0, and even the latterproblem may violate the standard nonlinear programming onstraint quali�ations (see Example 4.8). Infat, in Problem 2, Subsetion 5.2, we obtained a loally optimal solution that satis�es the system (7) onlywith µ0 = 0. It is sad to note that this example does not ontain any ontat onditions, and the optimalsolution we obtained is non-singular (in partiular, no bars were removed), yet it is only a FJ point in ourformulation. On the positive side, at least if unilateral ondition are absent, the onditions (7) imply theful�llment of the KKT onditions for a related optimization problem that has a lear engineering inter-pretation. Namely, the stationary point obtained is a KKT point for a �semi-�xed topology� optimizationproblem, in whih the given subset of the bars is removed from the ground struture; formally, the followingresult holds.Proposition 4.11. Assume that the unilateral onstraints are absent and that the point (x̂, ŝ, û) ∈ R

m
+ ×

R
m × R

n satis�es the FJ optimality onditions (7). Let Î = { i = 1, . . . , m | x̂i = 0 }. Then, the point
12



(x̂, ŝ, û) is a KKT-point for the following problem:
(Ŵ)






min
(x,s,u)

w(x)s.t. Bts = f ,

E(x, s, λ) + Π(x, u) − f tu = 0,

σixi ≤ si ≤ σixi, i ∈ { 1, . . . , m } \ Î,

xi = si = 0, i ∈ Î.Proof. Clearly the point (x̂, ŝ, û) is feasible in the problem (Ŵ). Furthermore, it is easy to hek that thefeasible set of the problem (Ŵ) veri�es a Mangasarian�Fromowitz type onstraint quali�ation at (x̂, ŝ, û)[one an, for example, take the diretion d = (x̂,0,−u) ∈ R
m
+ × R

m × R
n to verify that℄, and thus the FJonditions (7) [that an be viewed as FJ onditions for (Ŵ)℄ also imply the KKT onditions.There are of ourse other approahes to optimality onditions for MPEC. For example, [OKZ98, Theo-rem 7.2℄ establishes non-smooth KKT-type onditions for a problem rather similar to (W). However, thestrong regularity ondition on the lower-level problem assumed in [OKZ98, Theorem 7.2℄ is violated by ourproblem, beause the displaements u are in general not uniquely determined for designs x ∈ ∂R

m
+ .4.6 Global onvergeneConvergene of globally optimal solutions to relaxed weight minimization problems with stress onstraints

(Wε) towards globally optimal solutions to the limiting problem (W) as ε ↓ 0 follows easily, given theresults of the previous subsetions.Proposition 4.12. Consider a positive sequene {εk} onverging to zero. Let {(xεk
, sεk

, λεk
, uεk

)} be aorresponding sequene of globally optimal solutions to {(Wεk)}. Then, an arbitrary limit point of thissequene is a globally optimal solution to the limiting problem (W).Proof. That globally optimal solutions to the sequene of problems {(Wεk)} exist follows by the oerivityof the objetive w.r.t. the design variables, Proposition 4.7, and Weierstrass' Theorem).Without any loss of generality, assume that limk→+∞(xεk
, sεk

, λεk
, uεk

) = (x̃, s̃, λ̃, ũ). Then, owing toProposition 4.5, the point (x̃, s̃, λ̃, ũ) is feasible in (W). Together with Remark 4.4 and the ontinuity ofthe objetive funtional this proves the laim.In general, the displaement omponent {uk} of the sequene of global optimal solutions we study inProposition 4.12 need not to have any limit points. However, we may use the fat that our objetivefuntion is independent of the displaements and utilize Proposition 4.6 to establish the following result.Proposition 4.13. Consider a positive sequene {εk} onverging to zero. Let {(xεk
, sεk

, λεk
, uεk

)} be aorresponding sequene of globally optimal solutions to {(Wεk)}. Then, an arbitrary limit point (x0, s0, λ0)of the sequene {(xεk
, sεk

, λεk
)} (and there is at least one) orresponds to some globally optimal solution

(x0, s0, λ0, u0) to the limiting problem (W).Proof. Similar to the proof of Proposition 4.12, but uses Proposition 4.6 instead of Proposition 4.5.4.7 Convergene of stationary pointsThe main result of this paper, Theorem 4.14, uses the fat that stress onstraints are imposed. Furthermore,we need to make an assumption that the sequene of displaements {uε} produed by the smoothingproedure is bounded as ε ↓ 0. We annot guarantee the latter property without imposing expliit boundson the displaements; however, our omputational experiene with the smoothing approah we introdue inthis paper on�rms that onvergene of displaements takes plae in pratie. In any ase, Proposition 4.3asserts that it is at least possible to approximate every equilibrium state using the relaxation approahwe propose; this is ontrary to traditional ε-relaxation, where some equilibrium displaements annot beapproximated.Theorem 4.14. Consider a positive sequene {εk} onverging to zero. Let {(xεk
, sεk

, λεk
, uεk

)} be asequene of KKT-points to {(Wεk)}. Then, every limit point of this sequene is feasible in the limitingproblem (W), and in addition it veri�es the non-smooth FJ stationarity onditions (7).13



Proof. Without loss of generality we assume that {(xεk
, sεk

, λεk
, uεk

)} → (x, s, λ, u) as k onverges toin�nity. Owing to Proposition 4.5, the point (x, s, λ, u) is feasible in (W).The stress onstraints imply that the gradients∇E(xεk
, sεk

, λεk
) are uniformly bounded for k = 1, 2, . . .Therefore, the sequene {∇E(xεk

, sεk
, λεk

)} has at least one limit point that by de�nition is a member of
∂aE(x, s, λ). It is now an easy exerise to verify that the point (x, s, λ, u) satis�es the system (7).Again, the optimality onditions we obtain in Theorem 4.14 are rather weak, but we annot expetmore from points of loal minima for (W) in general; see the disussion in Setion 4.5.5 Numerial experimentsWhile a substantial amount of theoretial studies of topology optimization problems for trusses inludingunilateral fritionless ontat has been arried out (see, e.g., [BTKNZ99, PaP02, EPP03℄), surprisingly littlenumerial experiene has been reported. Therefore we use a omprehensive numerial study of Stolpe [Sto04℄(who was interested in �nding globally optimal solutions using a branh-and-ut algorithm) as a rih andauthoritative soure of benhmark problems, unfortunately however for trusses without ontat. We alsoompare our algorithm against a few tests of �lassi� MPEC algorithms (impliit programming-basedalgorithm, IMPA, [LPR96, Setion 6.3℄, and penalty interior point algorithm, PIPA, [LPR96, Setion 6.1℄),MMA [Sva87℄ (see also [Sva02℄), as well as the smoothing algorithm [FJQ99℄, made by Hilding [HKP99,Hil00℄. Unfortunately, the latter studies are not onerned with topology optimization (i.e., a stritlypositive bound on the bar volumes is imposed) and stress onstraints are not inluded.Below we present some preliminary numerial experiene with an aademi implementation of ourapproximation method.5.1 Implementation issuesA sequene of smooth optimization subproblems {(Wεk)} has been solved using the SQP-solverSNOPT [GMS02℄. The optimal solution obtained at step k was used as a starting point for the step
k + 1. We used a simple update rule for ε: εk+1 = γεk, where γ ∈ [0.25, 0.75].The biggest omputational di�ulty we have noted is that the projeted gradient of the potential energywith respet to displaements is lose to zero for all points feasible in (Wε) when ε is small, resulting inrather slow progress of the optimization proedure based on the �rst order information only. The use ofseond order information in this ase seems essential for improving the performane.Another problem is that the omplementary energy has a rather unusual saling when the designvariables x are lose to the boundary ∂R

m
+ . While we obtained satisfatory results with automati salingin SNOPT, a spei� saling of the relaxed equilibrium onstraint may be neessary for more robustonvergene of the algorithm.5.2 Numerial results: topology optimization, ontat-less aseA number of �lassi� weight minimization problems for trusses without fritionless ontat but inludingstress, and possibly loal bukling onstraints and bounds on displaements have been solved to globaloptimality by Stolpe [Sto04℄. We benhmark our relaxation algorithm against the results reported in theited paper and �nd that in many ases our loal algorithm is apable of �nding globally optimal solutions.We keep the problem numbers assigned by Stolpe [Sto04℄ and report the results we obtained on a subset ofthese problems in Tables 1 (only stress and/or displaement onstraints) and 2 (stress and loal buklingonstraints).Sine we use a loal algorithm to solve non-onvex optimization problems, starting the optimizationproedure from di�erent starting points may result in obtaining di�erent optimal solutions. We startedthe algorithm from the design obtained by uniformly distributing strutural material among bars, andalulating the orresponding equilibrium fores/displaements.Some omments are in order. In problems 24�26 the number of bars in the struture is m = 10, butthe volumes of 4 of them are �xed, whih leaves us only 6 design variables. In addition, these are the onlyproblems with displaement onstraints, and the optimal weight we report di�ers from the known globallyoptimal solution despite the small value of the relaxation parameter ε we used. The reason for suh abehaviour is that the potential energy Π(x, u) − f tu beomes rather insensitive to some omponents ofthe displaements for designs x that are lose to the boundary ∂R

m
+ . In problems 24�26 this allows theoptimization proedure to hoose displaements that are reasonably far from the equilibrium displaements(ompared to the size of the relaxation parameter ε) but are feasible with respet to the imposed bounds onthe displaements. (Reall that Proposition 4.6 does not guarantee the onvergene of the displaements14



Problem m n k wour w[Sto04℄ soure
2 5 4 2 39.9856 33.5000 [ChG97℄
5 4 2 2 185.597 185.667 [Hob96℄
9 10 8 1 4896.95 4898.31 [SF74℄

11 10 8 1 1583.99 1584.00 [SF74℄
13 10 8 1 4425.16 4426.52 [SF74℄
15 10 8 1 1655.99 1656.00 [SF74℄

∗17 25 18 5 510.157 545.264 [SF74℄
18 10 8 1 1583.99 1584.00 [ChG97℄
23 5 4 1 24.0000 24.0000 [ChJ92℄
24 10(6) 8 1 18199.4 18211.8 [Kir90℄
25 10(6) 8 1 20021.8 20035.3 [Kir90℄
26 10(6) 8 1 22799.7 22817.3 [Kir90℄
27 10 8 1 1979.99 1980.00 [GCY01℄
28 5 4 2 79.9713 79.9716 [GCY01℄Table 1: Results of numerial experiments: weight minimization under stress and/or displaement on-straints Problem m n k wour w[Sto04℄ soure

5 4 2 2 408.312 408.628 [Hob96℄
27 10 8 1 8553.44 8553.44 [GCY01℄
28 5 4 2 105.831 105.831 [GCY01℄Table 2: Results of numerial experiments: weight minimization under stress and loal bukling onstraintsas designs onverge.) This may or may not be a problem in pratie, depending on how stringent thedisplaement onstraints are, if present. In partiular, we guarantee the onvergene of fores, and alwayskeep the stress (and loal bukling) onstraints satis�ed, whih means that the struture will not su�erfrom destrutive stresses. (Even though stress onstraints are imposed not on the �equilibrium� stresses,stress bounds are usually hosen far from the point where plasti deformation ours.) In any ase, ouralgorithm suessfully �nds the optimal topology, whih is of major importane in many appliations.In problem 17 our algorithm indeed �nds a better solution to the lassi 25-bar truss problem statedin [SF74℄ than the one reported in [Sto04, SF74℄. The reason for this small vitory of a loal optimizationalgorithm over a global one is that the branh-and-ut method developed in [Sto04℄ may be applied only toproblems with bounds imposed on all variables involved. In the original formulation of the problem 17 takenfrom [SF74℄ there are no upper bounds on the volumes of the bars, and the optimal weight of the trusswe obtained for the original formulation is 510.157. On the other hand, Stolpe [Sto04℄ imposes arti�ialbounds on the design variables for the branh-and-ut method to funtion, whih leads to a globally optimalsolution with the weight 545.264; in fat, the newly introdued bounds are inative at the latter solutionbut owing to the non-onvexity of the problem they annot be safely removed without hanging the optimalsolution. The last omment about the problem 17 is that in the original formulation there are only 2 loadsenarios and many linear onstraints on the design variables related to the required symmetry of the truss.Instead, we onsider all design variables to be independent and obtain a symmetri solution by introduingadditional load ases.5.3 Numerial results: sizing optimization of trusses in ontatHilding et al. [HKP99℄ (see also Hilding [Hil00℄) were interested in minimizing the maximal ontat fore,that is, to ahieve as uniform ontat pressures as possible. The formal problem statement an be writtenas follows:
(Λ)






min
(x,s,λ,u,λmax)

λmax,s.t. (x, s, λ, u) ∈ F(f),

xi ≤ xi ≤ xi, i = 1, . . . , m,

w(x) ≤ w,

λℓ ≤ λmax, ℓ = 1, . . . , r,where xi, xi, w are given positive numbers, i = 1, . . . , m. In general, allowing lower bounds on the designvariables to be zero results in an ill-posed optimization problem, unless bounds on the ompliane of the15
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Figure 3: Test problem found in [Hil00℄. 5 × 5 ase is shown.
Trusssize m PIPA IMPA/MMA Smooth.+IMP

A
Smooth.+MM
A

Newsmoothin
g

3 × 3 58 � 3.0 1.0 1.0 1.0
4 × 4 113 � 2.0 1.0 1.0 1.0
5 × 5 190 1.67 2.5 1.0 1.25 1.07

10 × 10 875 2.5 5.0 � � 2.0Table 3: Results of numerial experiments: ontat fore minimization.struture or stress onstraints are added (see [PaP02℄).The problem (Λ) is thus not a topology optimization problem and does not su�er from the di�ultiesoutlined in Setion 4.1; in partiular, the smoothing method of Fahinei [FJQ99℄ outlined in Setion 3 isdiretly appliable to this problem (see [Hil00℄, where smoothing was used for �the heuristi avoiding ofloal minima�) and we use it as one of the benhmarks for our new smoothing algorithm.On some instanes of the problem (Λ) Hilding et al. [HKP99℄ also implemented and tested some lassiMPEC algorithms (IMPA [LPR96, Setion 6.3℄ and PIPA [LPR96, Setion 6.1℄) on the family of struturesshown in Figure 3. Also, they tested on (Λ) a very popular method in the strutural optimization ommu-nity: the method of moving asymptotes, MMA, [Sva87℄, even though it is not guaranteed to work on thisproblem.We apply SNOPT to the following relaxation of the problem (Λ):
(Λε)





min
(x,s,λ,u,λmax)

λmax,s.t. (x, s, λ, u) ∈ Fε(f ),

xi ≤ xi ≤ xi, i = 1, . . . , m,

w(x) ≤ w,

λℓ ≤ λmax, ℓ = 1, . . . , r,where ε > 0 is a relaxation parameter. We report the results we obtained for trusses of di�erent sizes (seeFigure 3) in Table 3 along with the results found in [HKP99, Hil00℄.We report the size of the struture, the number of bars (design variables) and the optimal values obtainedby PIPA and IMPA/MMA as reported in [HKP99℄ (the two latter algorithms are reported to produe thesame optimal values); the optimal values produed by IMPA and MMA as applied to the smoothed MPECusing the methodology introdued in [FJQ99℄, as reported in [Hil00℄; and the optimal values obtained usingour new smoothing proedure. The ��� sign in the table olumns means that the orresponding algorithmhas not been applied to a given problem instane.One an see that our algorithm favourably ompetes with lassi MPEC algorithms on these tests. As16



we already mentioned, general MPEC algorithms annot be applied to truss optimization problems if weremove stritly positive lower bounds on the design variables, i.e., onsider topology optimization problems.6 Conlusions and further researhIn this paper we proposed a new algorithm for solving MPEC problems arising from the topology optimiza-tion of trusses with unilateral ontat onditions. The algorithm is based on the approximation of topologyoptimization problems with sizing-type problems, where in addition we relax the equilibrium onstraint.We studied the onvergene of global optimal solutions and stationary points to approximating problemstowards, respetively, globally optimal solutions and stationary points to the original, singular problem.We have also performed some numerial testing of the proposed method.Many open problems remain. On the numerial side, we need a better implementation (probablyutilizing seond order information); also, a muh more thorough numerial testing should be done, espeiallyfor trusses with unilateral ontat. However, in our opinion, the most hallenging task is to improve theoptimality onditions we obtained in this paper. To do that, the omparative analysis of modern KKT-typeoptimality onditions for general MPEC problems (see, e.g., [FlK02a, FlK02b, FlK02℄) and the FJ-typeoptimality onditions we obtained needs to be performed. We hope to address these questions in our futureresearh.Referenes[Ah98℄ W. Ahtziger. Multiple-load truss topology and sizing optimization: Some properties of minimaxompliane. J. Optim. Theory Appl., 98(2):255�280, 1998.[Ah03℄ W. Ahtziger. On the optimality onditions and primal-dual methods for the detetion of singularoptima. In Carlo Cinquini, Maro Rovati, Paolo Venini, and Roberto Nasimbene, editors, ShortPapers of The Fifth World Congress of Strutural and Multidisiplinary Optimization, pages 1�2, 2003.[AuF90℄ Jean-Pierre Aubin and Hélène Frankowska. Set-Valued Analysis. Birkhäuser Boston In., Boston, MA,1990.[BTKNZ99℄ A. Ben-Tal, M. Ko£vara, A. Nemirovski, and J. Zowe. Free material design via semide�nite program-ming: the multiload ase with ontat onditions. SIAM J. Optim., 9(4):813�832, 1999.[ChG97℄ G. Cheng and X. Guo. ε-relaxed approah in strutural topology optimization. Strut. Optim., 13:258�266, 1997.[ChJ92℄ G. Cheng and Z. Jiang. Study on topology optimization with stress onstraints. Eng. Opt., 20:129�148,1992.[DuB98℄ P. Duysinx and M. P. Bendsøe. Topology optimization with stress onstraints. Int. J. Numer. Meh.Engrg., 43:1453�1478, 1998.[DuS98℄ P. Duysinx and O. Sigmund. New developments in handling stress onstraints in optimal materialdistribution. In Pro. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidiiplinary Analysis andOptimization, pages 1501�1509, 1998.[EPP03℄ Anton Evgrafov, Mihael Patriksson, and Joakim Petersson. Stohasti strutural topology optimiza-tion: Existene of solutions and sensitivity analyses. ZAMM Z. angew. Math. Meh., 83(7):479�492,2003.[Evg04℄ Anton Evgrafov. On globally stable singular topologies. Strut. Multidis. Optim., 2004. Publishedonline 14 Otober 2004, DOI 10.1007/s00158-004-0428-6.[FaP03℄ Franiso Fahinei and Jong-Shi Pang. Finite-dimensional variational inequalities and omplementar-ity problems. Vol. I. Springer Series in Operations Researh. Springer-Verlag, New York, 2003.[FJQ99℄ Franiso Fahinei, Houyuan Jiang, and Liqun Qi. A smoothing method for mathematial programswith equilibrium onstraints. Math. Program., 85(1, Ser. A):107�134, 1999.[FlK02a℄ Mihael L. Flegel and Christian Kanzow. An Abadie-type onstraint quali�ation for mathematialproblems with equilibrium onstraints. Preprint, University of Würzburg, Institute of Applied Math-ematis and Statistis, November 2002.[FlK02b℄ Mihael L. Flegel and Christian Kanzow. On the Guignard onstraint quali�ation for mathemat-ial problems with equilibrium onstraints. Preprint, University of Würzburg, Institute of AppliedMathematis and Statistis, Otober 2002.[FlK02℄ Mihael L. Flegel and Christian Kanzow. Optimality onditions for mathematial programs withequilibrium onstraints: Fritz John and Abadie-type approahes. Preprint, University of Würzburg,Institute of Applied Mathematis and Statistis, May 2002.[GCY01℄ X. Guo, G. Cheng, and K. Yamazaki. A new approah for the solution of singular optima in trusstopology optimization with stress and loal bukling onstraints. Strut. and Multidis. Optim., 22:364�372, 2001. 17
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