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Gray Coding for Multilevel Constellations
In Gaussian Noise

Erik Agrell, Johan Lassing, Erik G. Strom, and Tony Ottosso

Abstract— The problem of finding the optimal labeling (bit-to-
symbol mapping) of multilevel coherent PSK, PAM, and QAM
constellations with respect to minimizing the bit error probabil-

ity (BEP) over a Gaussian channel is addressed. We show that

using the binary reflected Gray code (BRGC) to label the signa
constellation results in the lowest possible BEP for high esugh
signal energy-to-noise ratios and analyze what is “high engh”
in this sense. It turns out that the BRGC is optimal for PSK and
PAM systems whenever the target BEP is at most a few percent,
which covers most systems of practical interest. New and sipie
closed-form expressions are presented for the BEP of PSK, RA
and QAM using the BRGC.

Index Terms— binary reflected Gray code, bit error probabil-
ity, bit error rate, constellation labeling, digital modul ation, Gray
mapping, optimal labeling, PAM, PSK, QAM.

|. INTRODUCTION

The BEP of the systems considered herein was shown in [5]
to be a function of two quantities; the average distance-spec
trum (ADS), derived from the constellation labeling, ané th
communication channel. We established in [5] the somewhat
artificial result that the BRGC is the optimum labeling fokPS
and PAM with respect to certain properties of the ADS, and the
question whether the BRGC also yields minimum BEP over a
practical channel with a finite (and in some cases even for in-
finite) SNR was left unanswered. In this paper, the optimalit
criterion is therefore changed from the one in [5] to the more
relevant requirement that the optimal labeling should mine
the BEP of the communication system. We assume an AWGN
channel and show that the minimum achievable BEP is, indeed,
obtained by using the BRGC as long as the signal energy-to-
noise ratio is higher than a finite threshold, which depends o
the modulation scheme and the size of the constellation.

This paper addresses the problem of selecting an optimalThe paper is organized as follows. In Section I1, the prelim-

labeling with respect to minimizing the bit error probatyili

inaries are presented and a proof method is outlined forgihe o

(BEP) in digital communication systems with coherent symb@mality of the BRGC. Section 1l presents general BEP espre
detection over an additive white Gaussian noise (AWGN) ehagions for each of the three studied modulation formats, whic

nel [1]. We study transmission of equally likely, statisliy in-
dependent bits using multilevel phase shift keying (PSKls@

hold for arbitrary labelings. In Section IV, we derive a par-
ticularly useful partitioning of the set of all possible &imgs

amplitude modulation (PAM), and quadrature amplitude mogeompeting with the BRGC on being the optimal labeling).sThi
ulation (QAM) systems; with the binary reflected Gray codgartitioning is used in Sections V-VII to prove the optirtyali
(BRGC), other Gray codes, and other labelings; for finite arg the BRGC for PSK, PAM, and QAM, respectively. In Sec-

infinite signal-to-noise ratios (SNR). Only uncoded traissm

tion VIII, the analysis from Section Ill is continued and spe

sion (or more precisely, coding without redundancy) is comtalized to the case of BRGC labelings, resulting in explici
sidered. The corresponding problem in systems with err@ftosed-form expressions for the ADS and BEP of the BRGC.

correcting codes is considered in, e.g., [2].

Finally, conclusions and comments are given in Section IX.

It is established engineering knowledge that labelingaign

constellations with Gray codes (in particular, the BRGGQ {8h

Il. PRELIMINARIES

way to reduce the BEP for the systems considered in this paper

There exist,_however,_a multitude of nonequiv_alent Grayesod  gome of the most central definitions and notation for the pa-
The theoretical question whether the BRGC is the best Wayﬂ@r are collected in this section. The proof method is alde ou

label the constellations has so far been an open questicnrireve“ned and two important analytical results, central to theggs,
the asymptotic case of infinite SNR, although this is sormsssimare given

stated as a fact in the literature [4]. That the use of the BRGC
(or even Gray codes) is not optimal for all SNR’s for at least

some constellation sizes can be demonstrated by expligit evA. Definitions and Notation

uation of the BEP for various labelings and modulation forms

(see [5, Fig. 8] for a 64-QAM example).
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The presented work deals with binary labelings and in this
subsection we introduce the nomenclature and definiticats th
are used in the discussion.

A binary labeling\ of orderm € Z¥ is defined as a se-
quence ofM = 2™ distinct vectors (labels or codewords),
A = (e, c1,...,cn—1), where eacle; € {0,1}™. A rectan-
gular binary labeling\ of order(my,my) € Z* x Z* consists
of all vectors (labels) i{0, 1}™1 ™2 arranged in a matrix of
dimensionM; = 2™t by My = 2™z,
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TABLE indexT'(\) of a PSK labeling\ € A, as
THE BINARY REFLECTEDGRAY CODES OF ORDERSn = 1,2, 3, AND 4.

T(\) 2 min{k € Z* : d(k, \) # d(k, Bm)}. (1)

| 61 B2 B3 B ]
0 00 000 0000 From [5, Th. 5] we know that
1 01 001 0001 7 7
10 010 0010 atk = T'(A). The definition (1) also applies to PAM ik, \)
110 0110 is replaced withh(k, \) (defined in Section I1I-B).
111 0111 The set of all critical indices is theritical index set
101 0101
100 0100 U, 2{T(\): A€ A} (3)
1100
1101 In addition, it will be convenient to have a designator far et
1111 of labelings for whichl'(\) = ¢,
1110 o _
1010 A (i) ={X € A : T(A) =i} (4)
i 8 é i Although obvious from (3) and (4), we explicitly state that
1000 A= Al
1€V,
A binary labeling\’ of orderm is said to beoptimal for and . , o
signal energy-to-noise ratipif Ap(i) NV Am(j) =2 fori#
, since these relations are central to the proof method as de-
By (N, y) < By (A7) scribed in the next subsection.

for all labelings\ of orderm, wherepR, (A, ~) is the bit error )
probability, which is defined for PSK, PAM, and QAM system®: Outline of Proof Method
in Section Ill, andy is defined a¥ /Ny, whereE; is the sym- Before proceeding to the details, we give an outline of the
bol energy andV, /2 is the two-sided power spectral density ofroof method that will be used. Using the definitions and the
the AWGN. notation introduced in the previous subsection, the ainhisf t
Throughout the paper, we discuss a particular class of-labpéper is for eachn and each modulation form to establish a
ings; Gray codes. Ainary Gray codeof orderm is a binary range ofy for which
labeling with M = 2™ distinct labels, where adjacent labels ]
differ in only one of them positions. If we impose the addi- Po(Bm,7) < ehs Py(A ) (5)
tional requirement that the first and the last labels diffeai
single position, the labeling is said to beyclic binary Gray that is, for what signal energy-to-noise ratios the latgefi,
code Analogously, aectangular binary Gray codés a rect- Will result in the lowest BEP among all possible labelingse W
angular labeling where adjacent labels, horizontally al age define theoptimality thresholdy;;, for orderm as the smallest
vertically, differ in only one bit. value such that (5) holds for ajl > ;..
Among the cyclic Gray codes, we are especially interested inWe will address (5) by using the equivalent formulation
the binary reflected Gray codéBRGC) [3, 5], and we denote
the BRGC of ordem by j3,,. For reference, we have listét}, 0< min | min Py(\,7) — Bo(Bm.7)]| - (6)
form = 1,...,4 in Table I. With atwo-dimensional BRGC €T [ A€M (D)

we mean the direct product of two BRGC's. The BRGC Calje will, for eachi € V,,,, lowerbound the expression inside the

be transformed into a number of labelings that yield exabty brackets in (6) and establish a range,dor which the bound

same BEP by means of some trivial operations such as im]%rhon—negative This yields an upper boujg on~* , which
changing bit positions. The role of such operations was d'i§'computed sebarately for PSK, PAM, and QAM m
cussed in some depth in [5], and we will not say more about ' ’ '

them here. We loosely refer to the class of all such labelirsgs .
theBRGC. C. Two Lemmas of Monotonicity

The ADS of the labeling\, denoted byi(k, \) for PSK, es-  In order to find the range of for which (5) is valid, we
sentially tells us the average number of bits that diffevin t make use of two results from calculus, which are derived in
labels separated bl symbols in the constellation. The pre-this subsection.
cise definitions depend on the constellation and follow in-Se Lemma 1:For constants andb such that) < a < b, con-
tion Ill. Letting A,,, denote the set of all labelings having arsider the differencé\ (z) = f(bx) — f(ax). If
ADS that differs from the ADS of3,,,, we define thecritical « f(x)is continuous and twice differentiable for> 0,
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e f'(x)>0forz >0, and
o f"’(z)>0forz >0,
thenA(x) is a strictly increasing function im for z > 0.
Proof: Sincef”(z) > 0forxz > 0, we havefob < a < b
andz > 0

bx
0< f(t)dt = f'(bx) — f'(ax).
Sincef’(x) > 0 for z > 0, we have
F(ba) = (a2) < 1/ (ba) = 2 (a) = 2L

for 0 < a < b, showing thatA’(z) > 0, which completes the
proof. O
The next lemma involves the Gaussian Q-function

Q(z) e /2 gt

)&

N V2T /
Lemma 2: For two constantg andb, such thath < a < b,

the ratio

 Qlax)
@) = Gy

is a strictly increasing function af for z > 0.
Proof: Let f(z) = —log@Q(x), which is a continuous,
twice differentiable function for alt with first derivative

oy Q@)

PO =g
For the second derivative we have

" _ Ql(x)z B QH(‘T)Q(*T)
T
and since
we havef’(x) > 0 for all z and
1" _ xe_%m2 % ’ _

Now, ase~2%" /z\/27 is a well known upper bound of(z)
for z > 0 [6, p. 98], we conclude that far > 0, we have
f"(x) > 0. Applying Lemma 1 tof (z), we find that

Q(ax)

Q(bx)

is a strictly increasing function far > 0 and0 < a < b, which
also implies that(z) = ¢*(*) is a strictly increasing function
of x for z > 0. d

A(z) = —log Q(bx) + log Q(ax)

= log

[1l. BEP OF SYSTEMS WITH ANY LABELING
This section provides simple, closed-form expressionti®r

BEP of each of the three studied modulation formats. They &l(a,

VEgsina
I'(a,7)
\ ) )
@
VEs
Fig. 1. The shaded area represents the probaliility, v) that would result

from integration of a Gaussian pdf with variand& /2 in each dimension,
centered orD, over this region.

A. Bit Error Probability for PSK

The average BEP af/-PSK, wherel\/ = 2™ for any integer
m > 1, over AWGN channels can be written [7]

M-1

Zcik/\

k=1

= (7)

1
m

whered(k, \) is the ADS of an)M/-PSK constellation labeling
A. Itis defined for all integers as

M—1

Z du (€1, €(15k) mod M)

=0

1

d(k,\) 2 i (8)

wherec;, is them-bit binary label assigned to th¢h constella-
tion point and the Hamming distandg (c;, cx) is the number
of positions in whiche; andc, differ. The ADS denotes the av-
erage number of bits that differ between binary labels assig
to constellation points separated bgteps in the PSK constel-
lation. If it is clear from the context which labelingis con-
cerned, we will simply writei(k) for the ADS. Thecrossover
probability P(k,~) is the probability that the received signal
vector is found in a decision region belonging to a signahpoi
k steps away (clockwise along the PSK circle) from the trans-
mitted signal point.

To find an expression faP (k, ) for a given symbol energy-
to-noise ratioy = E,/N,, we refer to Figure 1 and consider
a rotationally invariant, two-dimensional Gaussian piulity
density function (pdf) with varianc&’, /2 per dimension, cen-
tered on the poinO. In the two-dimensional setting consid-
ered herein, the noncentratistribution gives the probability
v), which for0 < a < 7 denotes the integral of the Gaus-

separate the influence of the channel from that of the lapelirsian pdf over the region bounded by angles not containing

where the latter is captured by the ADS.

O. Fork =1,...,M/2 — 1, the probabilityP(k, ) is related
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to I'(a, y) through the relation FurthermoreP (k, 1) is expressed in terms of the Gaussign
function as
1 2k — 1) (2k+1)m
P(’W—z[F( i ”) F( YR Plhon) £ Q((2k — D) — Q((2k+ D). (17)
al [T (ar,v) = T (bx, )] (9) The ADShK(k,u) of any sequence = (co,...,car—1) of M
2 binary vectors is defined for all integetsas
while for k = 0, p M=1
™ B(kv u) £ — (dH (C;, c;Jrk) + dH (C;, C;—k)) (18)
P(O,v)zl—F(M,V) M =
and fork = M /2, we have with ¢} = cr(M.,i), Wherer is a ramp function given by
P(M/2,7) =T (w - %’y) : (10) 0, i<0
r(M,i) & { i, 0<i<M-1 (19)
By symmetry,P(k,v) = P(M — k,~v)fork=M/2+1,..., M-1, i>M-1.
M —1.

There exist several expressions for the probabliity, v), As for the PSK case, we will writé(k) for the ADS if it is
which is closely related to the noncenttadistribution [8,9], obvious from the context which sequencés concerned.

for example It follows straightforwardly from this definition that fomg
sequence:, h(0,u) = 0. More importantly, for the special
Fan) — 1 /Tr—a 677322; do (1) case whent = X\ is a labeling, we note that for > A — 1,
’ 7 Jo (18) counts the average number of ones per label taken awer th

. 1 [ _jen?e gntire labeling. For any labeling this averagenig2, so that
=2Q(v/2ysina) — ;/ e "nTedp. (12) p(k,\) = m/2for k > M — 1. This fact can be exploited to
0 reduce the number of terms in (15) and obtain

For numerical stability, we prefer (11) f > #/2 and (12)

M—-2
otherwise. The expression (11) was given in [10, p. 198] and P\ ~) = oM — 3 2 Bk
(12) can be proved usinig(w/2,v) = Q(1/27), see Figure 1. b(A7) = Q(( )+ m (k, A)
We may simplify the above BEP expressions further. By in- . B B .
serting (9) and (10) in (7), we find that [Q((2k = 1)p) = Q(k + Dp)]. (20)
M/2 As in the case ofM-PSK, we may simplify the expres-
1 < sion further. Taking differences df(k, \) instead of theQ-
P = £ Ak, M (ak,7) (13) " functions, we obtain
h D) M—-1
where _ < 5 _
) ) ) By(A7) = — ; S(k,NQ((2k = D) (21)
Ak, \) 2 d(k,\) —d(k —1,)) (14) B
where it follows from (18) and (19) that the differential AGS
is thedifferential ADS ~ ~ ~
5(k,\) & h(k,\) —h(k —1,))
B. Bit Error Probability for PAM 1 M_zk:_l (2du(cis cirr)
= o7 H(Cl, Citk
The BEP expression fak/-PAM can be written in a form 2M = i

similar to (7) and is again a function of the labelirxgised to —du(er Cror ) —dulcr. c _ 22
label the constellation and the signal energy-to-noise raf5] (e 1) aler, Hk)) (22)
The expressions (21)—(22) provide a convenient methodkte ev

Z Rk, NPk, u(7)) (15) uate the BEP of PAM systems with any labeling.
k=1

SRR

Pb(/\77) =

C. Bit Error Probability for QAM
We consider rectanguldrd; x M, QAM constellations such
6y thatm,; = log, Ml andms = log, M> are integers, which
n(y) =/ U1 (16) are labeled by binary labels of length, + m». To evaluate
the BEP for QAM, we define virtual labels even for imaginary
is half the distance between adjacent constellation vectsr constellation vectors outside tidd; x M, grid as

vided by /Ny /2. In the rest of this papep(y) will some- ,
times be written ag, letting the dependence onbe implicit. Cij = Cr(My9),r(Mz2.j)

where
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for all integersi andj, where the ramp function was defined Substituting these expressions into (24) and simplifyireddg

in (19). the BEP [11]
The BEP for this system, when used for transmission over M1
an AWGN channel with average signal energy-to-noisergtio  p (\ —_"™ p (/\ 1~ )
can be written as b(h x A2,7) my+my 1’M12+M§—27
1 _ +—— DB (N, 27
RO = o D0 > 3k L APk )P p) mi+my " < »ireag-e) &0
k=—oc0l=—0c0

_ ) o ) whereP;, (A1, ) and P, (A2, ) are the BEP’s of the constituent
whereP is the same as in (17) andis still half the distance M;-PAM and M,-PAM systems, obtained from (21).
between adjacent constellation vectors divided b, /2; the

relation betweem and~ is for QAM (cf. (16)) IV. THE CRITICAL INDEX SET

6y In order to address (6), we need to find the critical Bgt
u(y) = —Mlz + M2 -2 (23)  gefined in (3). We will rely on a method called labeliepan-
sion, which is a way to construct a labeling, of orderm from
The labeling) is now rectangular (see Section II-A) and alabelingh,,,_1 of orderm — 1 [5]. For a labelingh,,_; thatis
expanded inta\,, the following relations hold form > 2 and
1 M;—1 Msy—1 ke
— / /
g(kvlv)‘) £ ]\41]\42 Z Z dH(Ci,jvci—ﬁ-k,j-ﬁ—l)' B B
=0 =0 d(4k, Am) = d(2k, Am—1) + f1 (28)
To exploit the symmetry of the constellation, as was done ford(4k + 2, A\,,) = d(2k + 1, A1) + fo
PAM in (15), we form an ADS with two componentandi, - (k. \ Ak + 1A
by averaging components gfin groups of four. This yields d2k +1,\p) = (; A1) 2( A1) + f3 (29)
4 N wherefi, f2, andfs are functions ok andm, but independent
P(\y) = ——— t(k, I, \)P(k l L J2 3 . e !
b(A7) m1 + mo k—uZ; (ks 1, NP (R, 1P 1) of \,—1. The same relations, with differefit, f> and f3, hold
e for h(k, \). An important property of labeling expansion is that
+ AP0, 1) Z to(k, NP (k, 1) (24) expanding’,,_. givesf,,. Furthermore, we derive the follow-
my +mg ing property of expanded cyclic labelings from [5, Lemma 3].

) _ An analogous relation fdt(k, \), not explicitly stated here, can
where for any integers and/ (dropping the dependence @n o yerived from [5, Lemma 3b].

to simplify the notation) Lemma 3:A labeling A of orderm > 2 is an expanded
cyclic Gray code if and only ifd(1,\) = d(1,03,) and

_ 1
L1 B B B Proof: First, that a labeling\ is a cyclic Gray code if
to(k) = 7 19(0,k) +9(0, —k) + g(k,0) + g(=k,0)]. (26) and only ifd(1,\) = d(1,3n) follows from the definition of

. ] ] . a cyclic Gray code. Second, that a cyclic Gray cads order
The expression (24) is suitable for analytically comparing > 3is an expanded cyclic Gray code if and onlyiif3, \) =

performance of various labelings, as will be done in Sectiqﬂ?) 3,,) was proved in [5, Lemma 3]. The case = 2 is
VII. To numerically evaluate the BEP of a given labeling, hOWtrivi’aI. 0
ever, the infinite summations can be replaced by a finite numbe e critical index set depends on the modulation form and
of terms, because the orderm, but the method used to find the critical index set
T T . . for PSK and PAM is the same. We derive the critical index set
t(k,) =t k,Mi —1 I,My—1 i . ; O
E Y ,(mlr,l{ o bomin{l, Mz = 1}) for PSK in detail and only point out the essential differesice
to(k) = to(min{k, max{M;, My} — 1}). in the derivation of the critical index set for PAM. QAM is not
The calculations, which are not detailed here, follow infeetr tLeated n th|sfse_c.t|or|1: ?js i W.'” be shov(;/ndln Seculon Vélrttha
analogy with (20)—(22). the concept of critical indices is not needed to analyze #re p

So far, the expressions in this section hold for arbitraryMQA formance of two-dimensional BRGC's.

labelings. In the special case when the QAM labeling is the

direct product of two PAM labelings, the expressions can l#e The Critical Index Set for PSK

simplified further. Indeed, it can be shown that for any pidu  Theorem 4:For PSK constellations, the critical index sets
labelingA; x A2, the two-dimensional ADS components (25)of ordersm < 4 satisfy ¥, = @, U, = ¥y = {1}, and
(26) get the particularly simple forms v, ={1,3}.

Proof: Itis trivial that ¥, = @. Form > 2, we consider

bk, 1) = If(k’ M) + ]f(l’ A2) the setA,,,(1) of labelingsnot having the cyclic Gray property.
Fo(k) = h(k, A1) + h(k, A2) For allm > 2, there is at least one labeling in this set, so defi-
0 2 ' nitely 1 € ¥,,.
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TABLE Il TABLE Il
THE NUMBER OF BINARY GRAY CODES AND BINARY CYCLIC GRAY THE CRITICAL INDEX SET ¥,,, FORPSKAND PAM AS A FUNCTION OFm.
CODES THAT DO NOT HAVE IDENTICALADS AS A FUNCTION OF THE

ORDERmm. THE TABLE, WHICH WAS OBTAINED BY COMPUTER SEARCH | m | v, (PSK) | U, (PAM)
DOES NOT COUNT THE SAME ENTITIES A5, TAB. |], ALTHOUGH THE 1o 7]
NUMERICAL VALUES AGREE FORm < 4. 2 | {1} {1}
3 | {1} {1,3}
| m | cyclic Gray | Gray | 4 | {1,3} {1,3,5}
1 1 1 51 {1,3,5} {1,3,5,9}
2 1 1 6 | {1,3,5,9} {1,3,5,9,17}
3 1 3 7 141,3,5,9,17} {1,3,5,9,17,33}
4 9 131 8 | {1,3,5,9,17,33} | {1,3,5,9,17,33,65}

The setA,,, (k) contains fork > 2 only cyclic Gray codes. the expanded labeling,, and result in a critical index
However,all cyclic Gray codes havé(2) = 2. Therefore, all
cyclic Gray codes have identical ADS's fér= 1 and 2 and, T(Am) = 2T (Am-1) — 1.
henceA,,(2) = @ for all ordersm. ) )

For A, (3), we turn to column 2 of Table II, where the num- N summaryly,, = {1,3}U{2i—11]i € ¥y} form = 5,
ber of cyclic Gray codes that do not have identical ADS ¢hichis equivalentto (30). S U
listed. Since there is only one cyclic Gray code for< 3, The PSK critical index set#,,, are listed in the second col-
Am(3) = @ for m < 3, which completes the proof thatUmn of Table lliform =1,....8.

Wy =Wy = {1}
Form = 4, we conclude from Lemma 3 and the fact thag. The Critical Index Set for PAM

the Gray code of order: = 3 is unique that there is only one L . R -
expanded Gray code of order 4, which is the BRGC. Henc For PAM, the critical index set is derived in a similar wayeth

As(i) = @ fori > 4. On the other hand, there exist severa ifference is that the ADS is defined by (18) and we exclude the

Gray codes of order 4 that are not the BRGC, see Table I, cdphc requirement on the Gray codes. The change of defmitio

. or the ADS results in different values far(k) for k& = 1,2
consequently not expanded, Wh.'Ch proves g@) # 2. O compared to the PSK case, but the conclusion/tkia} is iden-
Theorem 5:For m > 5, V,, is obtained from¥,,_; by

. tical for all Gray codes of orden > 3 for k = 1, 2 is still valid
adding another element to the set, namely, [5, Lemma 2b].

From column 3 of Table Il, we see that in the class of not
necessarily cyclic Gray codes, there are three classesayf Gr
codes of ordermn = 3 that do not have identical ADS’s. This
means that the critical index sets are not the same for PAM as
for PSK. Indeed, they are given by the following two theorems
W Theorem 6:V, =g, ¥y ={1},and¥3 = {1, 3}.

Theorem 7:Form > 4, ¥,, is given by (30).

. . 1 We omit the proofs, which are analogous to the proofs of
labelings exist for all orders, see [12] and [13, pp. 14"E51d Theorems 4-5. The critical index sets of PAM are listed in the

they have the property that thé bit transitions in a cyclic list .

of the M labels are distributed as evenly as possible among tWérd column of Table lll forn =1,..., 8.

m bit positions. To be precise, no more thafym + 2 transi-

tions occur in any one position of a balanced Gray code. In an V. THE OPTIMAL PSK LABELING
expanded Gray code, on the other hand, half of the transition
occur in the same bit [5] (cf. Table I). Sindé/2 > M/m + 2

v,=v,,_1U {2(max \I/m_l) - 1} (30)

Proof: From the previous proot, € ¥,,, and2 ¢ ¥, for
m > 2. To establish whe € ¥,,,, we recall from Lemma 3
thatA,,(3) is the set of Gray codes that are not expanded Gr
codes. We will prove that this set is nonempty for> 4 by
showing that it includes the classlmdlancedGray codes. Such

At this point, we have established the foundation requiced t
address the proof of the optimality ¢f,,. In this section, we
form > 4, we conclude that fom > 4, balanced Gray COdesuse the results in Section IV to derive sufficient conditions

are not expanded,,,(3) # &, and3 € V.. _the signal energy-to-noise ratio for whigh, is optimal for an
Now, for T'(\) > 4, we are dealing with the class of CyC“CM—PSK system

Gray codes for whichi(k) is identical to the ADS of3,, for

k = 1,2, and 3. From Lemma 3, we know that all such la-

belings of ordern can be constructed by expansion of a Grag. The Bounding Ratio

code of ordern — 1. Hence, their ADS'’s can be calculated The procedure we use is to compdig to all labelings in
using (28)—(29). From the recursions we find that the clitic = This is done by finding, for eache ¥,,, a signal energy-
indexT'(A,—1) of a labeling of ordern — 1 will propagate to o-nojse ratioy such that

1The perhaps earliest proof of the existence of balanced Grdgs for alim < ;
is attributed to T. Bakos [14]. Py (B, ) = rilgl(z) Py (A7) (31)
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and showing that the highest of these values taken overall
¥, provides ay above whichg,, yields the lowest possible
BEP over the Gaussian channel.

For this purpose, we define theunding ratiofor PSK as

M—i—1
A Zk:i-i-l P(k,’Y)
2P(i,v)

whose significance is given by the following lemma.
Lemma 8:For any: € V,,, a sufficient criterion for (31) is
that

R(i, ) (32)

R(i,y) < m

Proof: Lete £ 2/M andw £ m — 1. Define

d(k, Bm), k=0,...i—1

diky & § A Im) e (39
dk,Bm) —w, k=i+1,...,M/2
di(M — k) k=M/2+1,...,M—1.

The value ak = 7 is a lower bound on the difference between

the ADS of a labeling\ € A,, (i) andg,,. To show this, we ob-
serve that the sum (8) for any givértontains the same numbe
of terms for whiche; has odd parity and ;) moqa 1 has even

parity as vice versa. In both cases, the Hamming distancev\}'
odd, whereas in all other cases, it is even. Hence, (8) crumta}x
an even number of odd terms, which proves that the resolutio

of d(k, ) is e. From this fact and (2), we conclude that th
ADS of any\ € A,, (i) satisfiesi(k, \) > d; (k).
If now R(i,v) < €/w, then

M—i—1
0 < 2P(i,y)e— Z P(k,y)w
k=i+1
M-1
=" P(k,y) (ds(k) — d(k, Bn))
161711 M-1
< Z P(kv’Y)J(kv/\) - Z P(kv’}/)cz(kaﬂm)
k=1 k=1

= Pb(/\7'7) — Pb(ﬁma/}/)

for any labelingh € A,, (7). O
Note that the bounds given kyandw in (33) are chosen for
their simplicity; it is possible to find and use tighter bosnd

but we have yet to find bounds that would give more than a

marginal effect on the derived upper thresholds.

B. BRGC Optimality Thresholds fa -PSK

r
We now proceed to derive sufficient conditions of optimality
of 3, for M-PSK over the Gaussian channel. We will evaluate

(32) for eachi € ¥,, and find a range of for which all these
|¥,,| inequalities are valid simultaneously.

Lemma 9:For anym > 3 and: € V¥,,, and witha; andb; as
defined in (9), there exists a unigye= ~,, (i) that satisfies the
inequality

Q (vV2ysina;) . M(m —1)
2

Q (VEsimbi) © 59

I.

with equality. The inequality is valid for af > ~,,, (7).

Proof: The left-hand side of (34) is equal to one for= 0
and a continuous function of for v > 0. To complete the
proof, we will show that it is also strictly increasing and-un
bounded. From the implicit definition in (9),

(2max V¥, + )7
2m '

max b; = bmax\Ilm =
1€V,

Sincemax U,,, = 23 4+ 1 form > 4 andmax U5 = 1,
1
— _|_ -

b, < 3 <7T
A 7T =
4 2

2m
foranym > 3 andi € ¥,,. From Lemma 2, we see that for
0<a; <b; <7m/2,i.e.,0 <sina; < sinb;, the left-hand side
of (34) is strictly increasing with/2+ (and therefore also with
7). In addition, invoking well-known bounds on tidggfunction
[6, p. 98], we have
<1

Q (ax)
Q (bx)
which, forb > a > 0, can be made arbitrarily large by increas-
ing x. (I
The valuey,, (i) defined in this lemma is the threshold above
Rich the BRGC of ordem is better than any labeling in
(1), as stated in the following theorem.
heorem 10:P,(\,v) > Py(Bm,y) for everym > 2,4 €

b

1
a2x?

>
a

) e12(1)27112)/2 (35)

U, v > Y (3), and € Ay, (4).

Proof: Form = 2, to begin with,

P(2,7)

02 =2p0)

<1
2

so Lemma 8 is satisfied for ajlandi € ¥ = {1}. Hence 5,
is optimal for ordern = 2 at any SNR.
Form > 3, the bounding ratio (32) is rewritten using (9)—

(10) as
I (bi,v)

r (a’iv 7) =T (b’tv 7)
which is valid forl < ¢ < M/2 — 1. In general, the bounding
ratio is tedious to handle directly, so we derive a more atalet
upper bound orRk(i, ) using the@-function. Again referring
to Figure 1, an upper bound @i{a, ) for0 < a < /2 is

T (a,v) <2Q (msina) .

Furthermore, fo0 < a < b < 7/2, the differencd(a,v) —
(b,~) is lowerbounded by

2Q (\/275111(1) -2Q (\/27sinb) <T(a,y) =T (b,7y).
Now (36) yields, for alk > 1 such thab < a; < b; < 7/2,

Q (\/ﬂSin bz)
Q (\/ﬂsin ai) -Q (\/ﬂsin bi)
1

- Q(v27sina;)/Q(yv/2ysinb;) — 17

R(i,v) = (36)

R(i,7) <
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TABLE IV
50 | THE M -PSKMAXIMAL OPTIMALITY THRESHOLDS ’Ay FORM = 2,...,10
FROM (37)AND LEMMA 9, THE CORRESPONDING BIT ENERGYTO-NOISE
m =10 RATIO 41, £ 4/m, AND THE BEPWHEN THE BRGCIS USED AT~ = 4.
40|
| m [ A[dB] | 3 [dB] | B (Bm.3) |
g 30 |- 2 —0o0 —0o0 0.5
= 3| 38 | -11 0.147
= 4 10.6 4.6 0.090
2 \ 5| 167 | 9.7 0.070
=, 6 | 236 | 158 0.049
10 >¥\X 7| 303 | 219 0.036
8 37.0 28.0 0.027
& 9| 436 | 340 | 0021
O e ey m=3 10| 50.1 | 40.1 0.016
1 s s 9 17 s 65 120 257
1
Fig. 2. The functiony, (s) for i € ¥,, fromm = 2 (bottom, PAM only) to VI. THE OPTIMAL PAM LABELING
m I:3All\(/)l (top pair of curves). Bulletss) mark M/-PSK and crosses) mark |4 thjg section, we apply the methods used to prove optimal-

ity of 3, for M-PSK to systems usindy/-PAM.

Fory > ~m (i), the denominator is at leadt (m — 1)/2 by A The Bounding Ratio

Lemma 9. Lemma 8 completes the proof. O The proof method for the PAM case is very similar to that
Corollary 11: For anyM-PSK constellation, the optimal la- of the PSK case; the main difference lies in the evaluation of
beling at asymptotically high SNR is the BRGC. the crossover probabilities. We again use the inequality, (3
In Figure 2, the functiony,, (i) is shown fori € ¥,, and this time using (15) for the BEP expression, in order to find
m = 3,4,...,10. The interpretation ofy,, (i) is the follow- @ signal energy-to-noise ratio threshold above whighgives

ing. Consider a labeling € A,, (i), i.e., a labeling for which the lowest possible BEP of all labelings.

T(\) = i. Fory > v,(i), Bm will result in a lower BEP ac- Lemma 13:Foranyi € ¥,

cording to (7) over a Gaussian channel, irrespective of th8 A S Pk, p) 1

values of for k > 4. If v < ~,,(7), there may exist label- k=it1 M

ings A € A, (i) such that the BEP is lower than g, even P i 1) T (m-1(M-1)

thoughd(s, 5,,) < d(i, /\_). For example., we see from Figure 2¢ ;5 sufficient criterion 0l (B, 7) < minxen,, i) Po(A7)-

that form = 4, any cyclic Gray code will give lower BEP than Proof: We rewrite (18) fork > 1 as i

any non-Gray labeling for > 9.7 dB. Compared to the cyclic -

Gray codes in\4(3), 34 gives a lower BEP than all these label- 1 [M=2 M—1

ings fory > 10.5 dB. For9.7dB < v < 10.5 dB, the optimal  h(k) = Wi Z du(cj, ¢jyp) + Z di(c}, €5 y,)

labeling may be different from,, but it must be a cyclic Gray j=0 j=1

code. (39)
We define thamaximal optimality thresholdf orderm > 3

as

(38)

and observe that each of thé/ — 2 terms is between 1 and,
A = max i (7) 37) inclusively. Hence,
€W,
1

1— —
M

and we let, formallyjs = —co. Clearly,¥,, is an upper bound
on the corresponding optimality threshejfi. The main theo-
rem for PSK now follows from Theorem 10. wherew £ (m — 1)(1 — 1/M). Furthermore, the resolution
Theorem 12:The BRGC is optimal for anyi/-PSK constel- Of A(i) is ¢ £ 1/M, which can be shown by considering the
lation aty > 4. following two cases separately. 4f= 1, the terms ofi(4) in

The maximal optimality threshold (as seen in Figure 2) {$9) are pairwise equal, andif> 1, X is a Gray code and the
given in Table IV form = 2,3,...,10. We note that for this SUM forh(i) contains an even number of odd values. In both
range ofm, it is only for m = 4 that4,, # ym(1). From Cases2Mh(i)is even. _ o
the columnP; (%, 3,,), computed as detailed in Section Vi1, Therefore, the ADS of any labeling € A, (i) satisfies
we conclude that the maximal optimality thresholds are éade(k, A) = hi(k), where
quite low from a practical viewpoint; the BRGC is the optimal _
labeling whenever the targeted BER is less than 1.6 % and 5 (K, Bm), k=01,....,i -1
m < 10, which covers mosd/-PSK systems of practical inter- (k. Bm) +e, k=i
est. h(k,Bm) —w, k=i+1,i+2,...

&
=
N~—
>
> >
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If now (38) holds, then TABLEV
THE M -PAM MAXIMAL OPTIMALITY THRESHOLDS 4 OBTAINED FROM

i s (37)AND LEMMA 14, THE CORRESPONDING BIT ENERGYTO-NOISE RATIO
0< P(Z’ H)E - kzl P(k’ u)w Yo = 4/m, AND THE BEPWHEN THEBRGCIS USED ATy = 4.
=it

= 3" Pk, ) (halk) = Bk, Brn) | m | A[dB] | A [dB] | Py(Bm,?) |
=1 2 | -26 -5.6 0.277
o0 oo 3 7.3 25 0.146
< Pk, wh(k,N) = > Pk, )k, Bm) 4 | 152 9.2 0.090
k=1 k=1 51| 224 15.4 0.061
=P (NY) = Po(Bm, ) 6 | 29.3 21.5 0.044
7| 36.0 27.5 0.032
for any labelingh € A,,,(i). O 8 42.6 33.6 0.025
As for the PSK case, it is possible to sharpen these bounds in 9| 491 396 0.019
many ways, e.g., by letting; (k) = h(k, Bm) for k > M — 1, 10| 55.6 | 456 0.015

but as such improvements appear to influence the overall BEP
very little, we use the above bounds for simplicity.

L where i is the positive root ofQ () — 3Q(3u) + 2Q(5u).
B. BRGC Optimality Thresholds fad-PAM For anyy < ~;, the NBC is the best labeling, while for
The theorems in this Section are analogous to similar theg-> ~%, of course, the BRGC s the best one. At the thresh-
rems in Section V-B, but the proofs are simpler, thanks to thgy v§ = —5.22 dB, the BEP isP,(62,75) = 0.337, to be
attractive properties of the Gaussi@rfunction. compared withP,, (3, 42) = 0.277.
Lemma 14:For anym > 2 andi € V¥,,, there exists a

uniquey = m(i) that satisfies VIl. THE OPTIMAL QAM L ABELING

Q((2i — Hp(y)) Not surprisingly, a similar technique as in the previous two
Q((2i+ Du(y)) 21+ (m =DM 1) (40) sections can be applied to rectangular QAM constellations.

_ . ) . L _ We will show that the same results hold: the two-dimensional

for < > 1 with equality. The inequality is valid for aly > ppGc is optimal for high enough SNR, and finite thresholds
Y (1). are obtained above which the BRGC is better than any other

q Proof:_ The Iel;t—har_1d S'd? of (49 is equal to one fp; 0 q labeling. However, the QAM case is different from PSK and
and a continuous function of for y > 0. From Lemma 2 an PAM in two respects. Firstly, the critical indices are ient;

the relation (16) between and-y, the left-hand side of (40) is if we only determine when Gray codes are better than non-Gray

strictly increasing iny for a giveni. It can be made arbitrarily ¢,y for QAM, then earlier results can be used to estalhiagh t
Iar_?ﬁ, as Sh(i\g’_r}m /(\35)' > p ¢ > 9 the BRGC is the best of all Gray codes. Secondly, the maximal

eorem 15:P,(X, ) = Py(6m,7) for everym > 2,14 € optimality threshold turns out to be much higher than for PSK
U, v > v (), andX € Ay, (4). _ _ and PAM.

13 1P;00f' d'll'-he theolréelm follows immediately from Lemma The starting point is the BEP expression (24) and the ADS
('J(oro?lya?n 16??or?2n M—PAM constellation, the optimal la- components(k, [, A) andfo(k, A). We will upperbound and
beli i Y 2o toli ”y hiah SNR is th BRéC P lowerbound these components for Gray and non-Gray label-

e‘ll?lg 20%5,3/322 ?OI((:;TO))/ foI?e v ;Sre se;mwn in.Fi ure 2 for ings, respectively. This allows us to lowerbound the défere
m 9 in BEP for the two classes of labelings. Particular atteniso

m = 2,3,...,10. The maximal optimality thresholds, again__. - S .
defined as in (37), are listed in Table V along with the resul aid toto(1, ), which is the value where Gray codes differ

ing Pu (B, 5), computed as in Section VIIL. In analogy with rom non-Gray labelings. It can be shown that for any rectan-
Theorem 12, the main result of this section is stated as a thgglar Gray codég of order(my, ms),
rem, which follows immediately from Theorem 15. _ 1 1 A

T”he_orem 17:The BRGC is optimal for anyl/-PAM con- to(1,Aq) =1~ oM,  2M, t
stellation aty > 4,,,. - N

The last t(’:Yqur’Ln of Table V indicates that the theorem holds ~ 0(F»Ac) < ma+ma = tf’ k22
for most M -PAM systems of practical interesto( < 10 and t(k,1,Aa) < my+mg = i3, k,l1>1
P, < 1.5%). Form = 2, we also compare the upper bound , )
4 with the optimality thresholdy;, which can be calculated @nd for any non-Gray labelingyc with m; > 2 andm; > 2,
exactly. To do this, we first generate all distinct labelirfigs
the sense of having different ADS's) of order= 2. There are
three such labelings: the BRGC, the natural binary code (NBC to(k, Ang) > 1 — Lo
and another non-Gray labeling. We calculate their difféaén 2My - 2M;
ADS’s (22) and equate pairwise their BEP’s (21) to find all in- k1, Ang) > 1 — — 1y — ws, k1> 1
tersections between the BEP curves. The resulf is- 5,2 /2 - MM -

to(1, Ang) >t + €

:1?2—(4)2, k22
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TABLE VI Proof: From [2], we know that the only way to assign
THE M > M QAM MAXIMAL OPTIMALITY THRESHOLDS § FROM a Gray code to a rectangular QAM constellation is by taking
THEOREM18, THE CORRESPONDING BIT ENERGYTO-NOISE RATIO the direct product of two PAM constellations, each labelgd b
b = 4/(2m), AND THE BEPWHEN THEBRGCIS USED AT = 4. a Gray code. The BEP of such direct product constellations is
given by (27), which is minimized for any > 4 when\; =
| m X B, ) | Bm, andXy = [,,,,, according to Theorem 17 and the definition
2 12.6 6.5 0.022 (42). We conclude that the two-dimensional BRGC is optimal
3| 215 13.7 2.7-1073 for QAM whenevery > 4. O
4 29.2 20.2 3.9-1074 The maximal optimality threshold$ of square constella-
5 36.4 26.4 6.3-107° tions are listed in Table VI. They were obtained by numelycal
6 43.4 32.6 1.1-107° solving (41). The corresponding BEP of the two-dimensional
7 | 50.1 38.7 2.0-1076 BRGC, evaluated as in Section VI, is also listed. It is ret&-
8 56.8 44.7 3.8-1077 ing to observe that the upper thresholds are much higher than
9 63.3 50.8 7.5-1078 the corresponding values for PSK and PAM, ang ~; for all
10| 69.8 56.8 1.5-1078 ordersm in the range of the tables. It is still safe to conclude

that the BRGC is asymptotically optimal even for QAM, but
we cannot claim that the BRGC is optimal in the SNR range
€ 2 3/(2MMs), ws 2 my +my —1+1/(2M;) +1/(2M-), of practical interest. This is partly due to the fact that tised

andws £ my +mg — 1+ 1/(M, M) are all positive. bounding technique appears to be weaker for QAM than for
Theorem 18:Let PSK and PAM, but also to the fact that non-Gray codes are in-
N Q(3p) deed more competitive in two dimensions. Specifically, e t
t(pn) = (26 + w3)Q(p) + (€ + w2) o) (41) most likely symbol errors for QAM require that the norm of

the noise vector exceegsandv/2, respectively, whereas the
If t(1(ve)) = €, where the relation betwegnandy for QAM  corresponding values for PAM areand3y. Therefore, sacri-
is given by (23), them,(A\¢,v) < Py(Ang,v) forany Gray ficing the Gray property, which implies that more bit errors a
code)¢, any non-Gray labelingne, and anyy > v¢. associated with the most likely error pattern, carries aieea
Proof: From (24), the difference in BEP between any nomsenalty for PAM than QAM.
Gray labeling and any Gray code can now be lowerbounded asf the optimality thresholdygs, is known for ani-PAM
4 constellation, thery = 2+3,\ is a lower bound on the opti-
Py(MAne,7) — Po(Aa,7) > ey <€7’(07N)7’(17M) mality threshold for am\/ x M QAM constellation via (27).
! 2 Specifically, we conclude from the 4-PAM results in Sec. VI-

- =S B that the two-dimensional BRGC is the bgsbduct label-
—woP(0 Pk, ) — Pk, )P, ; ) ;
w2 kzzg ) s Z Z (k, 1P M)) ing (but not necessarily the best labeling) fbix 4 QAM at

A e ¥ > 5 = —2.21 dB, for which Py(8a x f»,5) — 0.337, and
= (e(l —2Q(u)(Q(r) — Q(3w)) that the product of two NBC's is the best product labeliat)
! 2 v < 4. This lower bound, however, is still far from the upper
— wa(1—2Q(1)Q(3k) — w3Q2(u)) il::1ottr11ri1sdifr?[renrm\/a:d 2 in Table VI and we do not know whetg' lies
4
= M1+ ma (€ — (1) Q). VIIl. BEP OF SYSTEMS WITH BRGC LABELINGS

Now that the BRGC has been shown to minimize the BEP of
multilevel PSK, PAM, and QAM transmission over the Gaus-
sian channel for large enough SNR, we evaluate this minimum
BEP in the three cases. This is achieved by deriving closed-
form expressions for the differential ADS of the BRGC and
utilizing the general BEP expressions given in Section III.

IIn [7], itwas shown that if ad/-PSK constellation is labeled
by G, the ADS is given by

By Lemma 2 and the monotonicity 6f(x), t(u(y)) is a contin-
uous, monotonically decreasing function for> 0. It ranges
from ¢(0) = 2e + wy + w3/2 t0 lim,_,c t((7y)) = 0 (see
(35)). Thus, there is a unique positive valye for which
t(u(ve)) = e Foranyy > ~g, t(u(y)) < e and thus
Pb(/\G7 ) <Pb(/\Ng, ) ]
So far we have shown that all Gray codes are better than aI
non-Gray codes in rectangular QAM systems with> ¢,
but which Gray code is the best of them? This question can be
answered without further analysis by exploiting known tesu d(k, Bpn) = tri (2™, k) + Z tri (2°, k (43)
Theorem 19:Let
A M2 -1\ . M1 1 for all integersk. The functiontri(V, k) is a periodic triangular
7 = max {’YGa <1 + m) m1s < MZ— 1> ’sz} function of periodV, defined by
(42) tri (N, k) £ 2 L {EH
wherey,, are the maximal optimality thresholds for PAM. Then N N
the BRGC is optimal for any/; x M, QAM constellation at 24 g labeling that attains the same BEP-at= 5
v >A. BRGC and one NBC.

is the product of one
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where the functionz] roundsz to the closest integer (ties aresame conclusion cannot be drawn for QAM, possibly because
rounded arbitrarily) the derived upper bounds afi are too loose.

To calculate the BEP in the form (13), we need the differ- The paper includes new closed-form expressions for the BEP
ential ADS of the BRGC. Sincé(k) is a sum of triangular of the three modulation formats wiBRGC labelingg¢Section
sequencesi (k) is a sum of piecewise constant functions. IvIl). These expressions, which we believe are the simplest
particular, available for the purpose, have the additional benefit oasep

9 rating the influence of the labeling on the BEP from that of the
tri (N, k) — tri (N, k — 1) = N(—l)p(’“*l)ﬂ\’J (44) constellation geometry. Analogous BEP expressionsfbi-
trary labelingsare also given (Section Ill).
where|z| denotes the integer part of Combining (14) with
(43) and (44), we obtain

(_1)L(k n2t-m | me 1 L(k 127 APPENDIX
Ak, Bm) = —————+ (45) PROOF OFTHEOREM 20
=1
For labelings that are symmetric in the sense that
dH(Co,Cl) = dH(CMfl,CMflfl) forall [ = O, .. .,M -1,
(22) can be simplified to

for all integersk. We believe that (45), combined with (13), is
the simplest published form for the exact BEPMfPSK with
the BRGC.
The BEP of PAM constellations with the BRGC can be com-
puted using either (15) or (21). Since the former methodsturn < 1
out to yield somewhat complicated expressions [15, Pt. E], w —
treat in this paper only the latter method, which is basechen t - (47)
differential ADS. Thus, the BEP is given by (21) in combina-
tion with the following theorem, which is proved in the Ap-
pendix. Another expression for the BEP of PAM constellaio
was given in [11, eq. (9)—(10)], with a more complicated proo
Theorem 20:The differential ADS of a PAM constellation
labeled with the BRGC of orden is, for1 < k < 2™ — 1,

M—k—1
(du (e, ervn) — du(citr, ciyr)) -

nDeflne a mapping’ : {0,1} — Z such thatf(0) = 1 and
f(1) = —1. If the components of a label, € {0,1}™ are
denoted:; ,,, ¢i.m—1,---,¢i,1, then

cjacl

Zl— (¢j.i)f(ei)) -
i=1

l\3|’—‘

O, Bm) = Xm: (% - 2% V _21/2D (—1)L=172727]

i=1 With this notation, (47) can be written as

(46)

The two-dimensional BRGC is the direct product of two one- m M—k—1
dimensional BRGC's. Thus, the BEP of a rectangular QAM 5. x) 1 Z Flerns) (Flerens) — flen)).
system with the BRGC is simply given by (27) in combination T oM = =0 ’ ’
with (21) and (46). A recursive method to compute the same (48)
BEP was given in [16].

From Table | or by induction om, it is easily verified that
IX. CONCLUSIONS ANDCOMMENTS the labelscy, . . ., cpr—1) of the BRGC satisfy

We have addressed the problem of finding an optimum signal

constellation labeling with respect to minimizing the BER f flew) = (_1)L(l+1/2)2ﬂ

M-PSK, M-PAM, andM; x My QAM under the assumptions
of a Gaussian channel, equally likely and statisticallyeipen- fori = 0,....,M —1andi = 1,...,m. Furthermore, since

denttransmitted bits, and coherent maximum likelihoodisyim the BRGC possesses the reqwred symmetry, (47) and (48) hold
detection. The result is that for the asymptotic case when tgnd the differential ADS of the BRGC is

signal energy-to-noise ratig approaches infinity, the BRGC
gives the lowest possible BEP among all Gray codes (and other

m M—-k—1
labelings), for all three modulation types. 5(k, B) = 1 Z (_1)L(l+k+1/2)2ﬂ
The BRGC is in fact the optimal labeling for a significant 2M =1 =
range of values fofy. In particular, the BRGC is shown to be 1 L(z+3/2)2 RN GV
optimal as long ag > 4, where#¥ is an upper bound on the {( ) (=1) } :

optimality thresholdy* (defined as the smallest SNR for which

the BRGC yields the smallest possible BEP). Numerical valhe bracketed expression is nonzero only whers (n +
ues ofy are given, and by evaluating the BEP at the thresholds/2)2? — 1 for some integen. Wheni goes fron to M —k—1,
the conclusion is drawn that when the BEP is below a few pehenn goes fromhton £ | (M — k)/2¢ —1/2/. (If the brack-
cent, the BRGC is the optimum labeling for PSK and PAM. Theted expression is zero for aiin the interval, them = —1 and
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the sum over, below should be interpreted as zero.) Thus,

2
i=1 n=0
) [(_1)n+L(1+2”‘)/2] _ (_1)n+L(1—2*i)/2]}

(K, Bm) (_1)n+L1/2+(k—1/2)2*i]

m

2M Z(ﬁ + 1)(—1) |_1/2+(k—1/2)2—r|

) {(1:1)[(1+2i)/2] _ (_1)L(1—2*i)/2w

m

1

1 N —1/2)27¢
7 (A + 1)(—1)L=1/227 ]

i=1

(49)

For any0 < ¢ < 1 and any integers andy, |z/y + 1/2] =
[(x 4+ €)/y]. Applying this identity ton and lettinge = 1/2,

we obtain
Ao { ] 4

which substituted into (49) yields (46).

M—Fk+1/2
2i

ACKNOWLEDGMENT

We thank two anonymous reviewers for their suggestions,

which improved the presentation of the paper significantly.

REFERENCES

J. G. ProakisDigital CommunicationsMcGraw-Hill, 3rd edition, 1995.
R. D. Wesel, X. Liu, J. M. Cioffi, and C. Komninakis, “Comdfation
labeling for linear encodersJEEE Transactions on Information Theory
vol. 47, no. 6, pp. 2417-2431, Sept. 2001.

F. Gray, “Pulse code communications,” U. S. Patent N@22%8, Mar.
1953.

G. Takahara, F. Alajaji, N. C. Beaulieu, and H. Kuai, “Gotgllation
mappings for two-dimensional signaling of nonuniform sas;” IEEE
Transactions on Communicatigngol. 51, no. 3, pp. 400408, March
2003.

E. Agrell, J. Lassing, E. G. Strom, and T. Ottosson, “@a bptimality
of the binary reflected Gray code EEE Transactions on Information
Theory vol. 50, no. 12, pp. 3170-3182, Dec. 2004.

S. Verd(, Multiuser detection Cambridge University Press, 1998.

J. Lassing, E. G. Strom, T. Ottosson, and E. Agrell, “Quitation of the
exact bit error rate of coheret -ary PSK with Gray code bit mapping,”
IEEE Transactions on Communication®l. 51, no. 11, pp. 1758-1760,
Nov. 2003.

C. E. Shannon, “Probability of error for optimal codesanGaussian
channel,”"Bell System Technical Journafbl. 38, pp. 611-656, May 1959.
J. Lassing, E. Strom, T. Ottosson, and E. Agrell, “Thaesymbol and
bit error probabilities of coheremt/-ary PSK,” inProc. IEEE Interna-
tional Symposium on Information Thepiyokohama, Japan, p. 11, June
2003.

M. K. Simon and M. S. Alouini, Digital Communications over Fading
Channels. A Unified Approach to Performance Analysishn Wiley &
Sons, 2000.

K. Cho and D. Yoon, “On the general BER expression of ared two-
dimensional amplitude modulationsfEEE Transactions on Communi-
cations vol. 50, no. 7, pp. 1074-1080, July 2002.

G. S. Bhat and C. D. Savage, “Balanced Gray cod&kg Electronic
Journal of Combinatoricsvol. 3, no. 1, 1996. paper no. R25.

D. E. Knuth, The Art of Computer Programmingrol. 4, fascicle 2.
Addision-Wesley, 2005.

C. Savage, “Comments by the second author on R25 of wI8n(l),
1996," The Electronic Journal of CombinatoricR005.

J. Lassing, “On the labeling of signal constellatiénBh.D. disserta-
tion, Dept. of Signals and Systems, Chalmers Universityeatifiology,
Goteborg, Sweden, Jan. 2005.

(3]

(4]

5]

(6]
[7]

[9]

(10]

(11]

(12]
(13]
(14]

(15]

To appear in IEEE RANS. INFORM. THEORY

[16] L.-L.Yang and L. Hanzo, “A recursive algorithm for therer probability
evaluation ofM-QAM,” IEEE Communications Lettersol. 4, no. 10,
pp. 304-306, Oct. 2000.

Erik Agrell received the M.S. degree in electrical en-
gineering in 1989 and the Ph.D. degree in informa-
tion theory in 1997, both from Chalmers University
of Technology, Sweden.

From 1988 to 1990, he was with Volvo Technical Developmera 8gstems
Analyst, and from 1990 to 1997, with the Department of Infation Theory,
Chalmers University of Technology, as a Research Assistian1997-1999,
he was a Postdoctoral Researcher with the University ofoiti at Urbana-
Champaign and the University of California, San Diego. 1©9,9he joined
the faculty of Chalmers University of Technology as an AssecProfessor,
holding a position first at Chalmers Lindholmen Universitgll€ge and since
2001 in the Department of Signals and Systems. His curreetireh interests
include geometrical aspects of coding theory, in particldétices and block
codes, bit-to-symbol mappings in digital communicatiosteyns, and coding
and modulation for fiber-optic channels.

Dr. Agrell served as Publications Editor for IEERANSACTIONS ONIN-
FORMATION THEORY from 1999 to 2002.

Johan Lassingwas born in Boras, Sweden, in 1973.
He received the M.S. degree in engineering physics in
1995 and the Ph.D. degree in communication systems
in 2005, both from Chalmers University of Technol-
ogy, Sweden.
From 1997 to 1999 he was with the Swedish space system develip-
nisys Instruments AB and was part of the development of tiensfic mea-
surements satellite ODIN until its launch in 2001. In 2001steeted Qamcom
Technology AB, a company devoted to communication systemagpment im-
plementation, currently with 14 employees. Dr. Lassingentty works as the
CEO of Qamcom Technology AB.
His main research interests lie in the fields of modulatioth @ding theory.

Erik G. Strom (S'93—-M'95-SM'01) received the
M.S. degree from the Royal Institute of Technology
(KTH), Stockholm, Sweden, in 1990, and the Ph.D.
degree from the University of Florida, Gainesville, in
1994, both in electrical engineering. He accepted a
postdoctoral position at the Department of Signals,
Sensors, and Systems at KTH in 1995. In February
1996, he was appointed Assistant Professor at KTH,
and in June 1996 he joined the Department of Signals
and Systems at Chalmers University of Technology,
Goteborg, Sweden, where he is now a Professor in
Communication Systems since June 2003 and head of the Coication Sys-
tems Group since 2005. He received the Chalmers Pedag®gizalin 1998.
Since 1990, he has acted as a consultant for the Educatiooap@®or Individ-
ual Development, Stockholm, Sweden. He is a contributinpauand asso-
ciate editor for Roy Admiralty Publishers’ FesGas-sera®] was a co-guest
editor for the special issue of the IEEBURNAL ON SELECTED AREAS IN
COMMUNICATIONS on Signal Synchronization in Digital Transmission Sys-
tems, 2001. Dr. Strdm was a member of the board of the IEEECOM
Swedish Chapter 2000-2006. His research interests incodemunication
theory in general, and constellation labelings, chanrtehesion, synchroniza-
tion, multiple access, and wireless sensor networks incpdat. He has pub-
lished more than 70 conference and journal papers.



Submitted June 29, 2005; revised May 30, 2006; final versSSept. 19, 2006

Tony Ottossonwas born in Uddevalla, Sweden, in

1969. He received the M.Sc. in Electrical Engi-

neering from Chalmers University of Technology,

Goteborg, Sweden, in 1993, and the Lic. Eng. and
Ph.D. degrees from the Department of Information
Theory, Chalmers University of Technology, in 1995

and 1997, respectively.

Currently he is a Professor at the Communication Systemsp;idepart-
ment of Signals and Systems, Chalmers University of Tedyyol During
1999 he was also working as a Research Consultant at EribtssoResearch
Triangle Park, NC, USA. From 1995 to 1998 he participatecha European
FRAMES (Future Radio wideband Multiple Access System)qmbpoth as a
co-worker and activity leader of the area of coding and matitrh. Dr. Ottos-
son has served as Associate Editor for IEEE Vehicular Tdoggdrom 2000
to 2004.

His research interests are in communication systems aodmnation theory.
Specific topics are modulation, coding, CDMA, multiuseret&ibn, combined
source-channel coding, joint decoding techniques, symikation, cross-layer
interaction and scheduling. Dr. Ottosson has publishecerttan 90 journal
and conference papers, and holds several patents.

13



	försättsblad IEEE2007
	25843.pdf

