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Gray Coding for Multilevel Constellations
in Gaussian Noise

Erik Agrell, Johan Lassing, Erik G. Ström, and Tony Ottosson

Abstract— The problem of finding the optimal labeling (bit-to-
symbol mapping) of multilevel coherent PSK, PAM, and QAM
constellations with respect to minimizing the bit error probabil-
ity (BEP) over a Gaussian channel is addressed. We show that
using the binary reflected Gray code (BRGC) to label the signal
constellation results in the lowest possible BEP for high enough
signal energy-to-noise ratios and analyze what is “high enough”
in this sense. It turns out that the BRGC is optimal for PSK and
PAM systems whenever the target BEP is at most a few percent,
which covers most systems of practical interest. New and simple
closed-form expressions are presented for the BEP of PSK, PAM,
and QAM using the BRGC.

Index Terms— binary reflected Gray code, bit error probabil-
ity, bit error rate, constellation labeling, digital modul ation, Gray
mapping, optimal labeling, PAM, PSK, QAM.

I. I NTRODUCTION

This paper addresses the problem of selecting an optimal
labeling with respect to minimizing the bit error probability
(BEP) in digital communication systems with coherent symbol
detection over an additive white Gaussian noise (AWGN) chan-
nel [1]. We study transmission of equally likely, statistically in-
dependent bits using multilevel phase shift keying (PSK), pulse
amplitude modulation (PAM), and quadrature amplitude mod-
ulation (QAM) systems; with the binary reflected Gray code
(BRGC), other Gray codes, and other labelings; for finite and
infinite signal-to-noise ratios (SNR). Only uncoded transmis-
sion (or more precisely, coding without redundancy) is con-
sidered. The corresponding problem in systems with error-
correcting codes is considered in, e.g., [2].

It is established engineering knowledge that labeling signal
constellations with Gray codes (in particular, the BRGC [3]) is a
way to reduce the BEP for the systems considered in this paper.
There exist, however, a multitude of nonequivalent Gray codes.
The theoretical question whether the BRGC is the best way to
label the constellations has so far been an open question even in
the asymptotic case of infinite SNR, although this is sometimes
stated as a fact in the literature [4]. That the use of the BRGC
(or even Gray codes) is not optimal for all SNR’s for at least
some constellation sizes can be demonstrated by explicit eval-
uation of the BEP for various labelings and modulation forms
(see [5, Fig. 8] for a 64-QAM example).
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The BEP of the systems considered herein was shown in [5]
to be a function of two quantities; the average distance spec-
trum (ADS), derived from the constellation labeling, and the
communication channel. We established in [5] the somewhat
artificial result that the BRGC is the optimum labeling for PSK
and PAM with respect to certain properties of the ADS, and the
question whether the BRGC also yields minimum BEP over a
practical channel with a finite (and in some cases even for in-
finite) SNR was left unanswered. In this paper, the optimality
criterion is therefore changed from the one in [5] to the more
relevant requirement that the optimal labeling should minimize
the BEP of the communication system. We assume an AWGN
channel and show that the minimum achievable BEP is, indeed,
obtained by using the BRGC as long as the signal energy-to-
noise ratio is higher than a finite threshold, which depends on
the modulation scheme and the size of the constellation.

The paper is organized as follows. In Section II, the prelim-
inaries are presented and a proof method is outlined for the op-
timality of the BRGC. Section III presents general BEP expres-
sions for each of the three studied modulation formats, which
hold for arbitrary labelings. In Section IV, we derive a par-
ticularly useful partitioning of the set of all possible labelings
(competing with the BRGC on being the optimal labeling). This
partitioning is used in Sections V–VII to prove the optimality
of the BRGC for PSK, PAM, and QAM, respectively. In Sec-
tion VIII, the analysis from Section III is continued and spe-
cialized to the case of BRGC labelings, resulting in explicit,
closed-form expressions for the ADS and BEP of the BRGC.
Finally, conclusions and comments are given in Section IX.

II. PRELIMINARIES

Some of the most central definitions and notation for the pa-
per are collected in this section. The proof method is also out-
lined and two important analytical results, central to the proofs,
are given.

A. Definitions and Notation

The presented work deals with binary labelings and in this
subsection we introduce the nomenclature and definitions that
are used in the discussion.

A binary labelingλ of orderm ∈ Z
+ is defined as a se-

quence ofM = 2m distinct vectors (labels or codewords),
λ = (c0, c1, . . . , cM−1), where eachci ∈ {0, 1}m. A rectan-
gular binary labelingλ of order(m1, m2) ∈ Z

+ ×Z
+ consists

of all vectors (labels) in{0, 1}m1+m2 , arranged in a matrix of
dimensionM1 = 2m1 by M2 = 2m2 .
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TABLE I
THE BINARY REFLECTEDGRAY CODES OF ORDERSm = 1, 2, 3, AND 4.

β1 β2 β3 β4

0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 1

1 1 0 1 1 0 0 1 1
1 0 0 1 0 0 0 1 0

1 1 0 0 1 1 0
1 1 1 0 1 1 1
1 0 1 0 1 0 1
1 0 0 0 1 0 0

1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0

A binary labelingλ′ of order m is said to beoptimal for
signal energy-to-noise ratioγ if

Pb (λ′, γ) ≤ Pb (λ, γ)

for all labelingsλ of orderm, wherePb (λ, γ) is the bit error
probability, which is defined for PSK, PAM, and QAM systems
in Section III, andγ is defined asEs/N0, whereEs is the sym-
bol energy andN0/2 is the two-sided power spectral density of
the AWGN.

Throughout the paper, we discuss a particular class of label-
ings; Gray codes. Abinary Gray codeof orderm is a binary
labeling withM = 2m distinct labels, where adjacent labels
differ in only one of them positions. If we impose the addi-
tional requirement that the first and the last labels differ in a
single position, the labeling is said to be acyclic binary Gray
code. Analogously, arectangular binary Gray codeis a rect-
angular labeling where adjacent labels, horizontally as well as
vertically, differ in only one bit.

Among the cyclic Gray codes, we are especially interested in
the binary reflected Gray code(BRGC) [3, 5], and we denote
the BRGC of orderm by βm. For reference, we have listedβm

for m = 1, . . . , 4 in Table I. With atwo-dimensional BRGC
we mean the direct product of two BRGC’s. The BRGC can
be transformed into a number of labelings that yield exactlythe
same BEP by means of some trivial operations such as inter-
changing bit positions. The role of such operations was dis-
cussed in some depth in [5], and we will not say more about
them here. We loosely refer to the class of all such labelingsas
theBRGC.

The ADS of the labelingλ, denoted bȳd(k, λ) for PSK, es-
sentially tells us the average number of bits that differ in two
labels separated byk symbols in the constellation. The pre-
cise definitions depend on the constellation and follow in Sec-
tion III. Letting Λm denote the set of all labelings having an
ADS that differs from the ADS ofβm, we define thecritical

indexT (λ) of a PSK labelingλ ∈ Λm as

T (λ) , min{k ∈ Z
+ : d̄(k, λ) 6= d̄(k, βm)}. (1)

From [5, Th. 5] we know that

d̄(k, λ) > d̄(k, βm) (2)

atk = T (λ). The definition (1) also applies to PAM if̄d(k, λ)
is replaced with̄h(k, λ) (defined in Section III-B).

The set of all critical indices is thecritical index set

Ψm , {T (λ) : λ ∈ Λm}. (3)

In addition, it will be convenient to have a designator for the set
of labelings for whichT (λ) = i,

Λm(i) , {λ ∈ Λm : T (λ) = i}. (4)

Although obvious from (3) and (4), we explicitly state that

Λm =
⋃

i∈Ψm

Λm(i)

and
Λm(i) ∩ Λm(j) = ∅ for i 6= j

since these relations are central to the proof method as de-
scribed in the next subsection.

B. Outline of Proof Method

Before proceeding to the details, we give an outline of the
proof method that will be used. Using the definitions and the
notation introduced in the previous subsection, the aim of this
paper is for eachm and each modulation form to establish a
range ofγ for which

Pb(βm, γ) ≤ min
λ∈Λm

Pb(λ, γ) (5)

that is, for what signal energy-to-noise ratios the labeling βm

will result in the lowest BEP among all possible labelings. We
define theoptimality thresholdγ∗

m for orderm as the smallest
value such that (5) holds for allγ ≥ γ∗

m.
We will address (5) by using the equivalent formulation

0 ≤ min
i∈Ψm

[

min
λ∈Λm(i)

Pb(λ, γ) − Pb(βm, γ)

]

. (6)

We will, for eachi ∈ Ψm, lowerbound the expression inside the
brackets in (6) and establish a range ofγ for which the bound
is non-negative. This yields an upper boundγ̂m on γ∗

m, which
is computed separately for PSK, PAM, and QAM.

C. Two Lemmas of Monotonicity

In order to find the range ofγ for which (5) is valid, we
make use of two results from calculus, which are derived in
this subsection.

Lemma 1:For constantsa andb such that0 ≤ a < b, con-
sider the difference∆(x) = f(bx) − f(ax). If

• f(x) is continuous and twice differentiable forx ≥ 0,
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• f ′(x) > 0 for x > 0, and
• f ′′(x) > 0 for x > 0,

then∆(x) is a strictly increasing function inx for x ≥ 0.
Proof: Sincef ′′(x) > 0 for x > 0, we have for0 ≤ a < b

andx > 0

0 <

∫ bx

ax

f ′′(t) dt = f ′(bx) − f ′(ax).

Sincef ′(x) ≥ 0 for x > 0, we have

f ′(bx) − f ′(ax) ≤ f ′(bx) − a

b
f ′(ax) =

∆′(x)

b

for 0 ≤ a < b, showing that∆′(x) > 0, which completes the
proof. �

The next lemma involves the Gaussian Q-function

Q(x) ,
1√
2π

∫ ∞

x

e−t2/2 dt.

Lemma 2:For two constantsa andb, such that0 ≤ a < b,
the ratio

r(x) =
Q(ax)

Q(bx)

is a strictly increasing function ofx for x > 0.
Proof: Let f(x) = − log Q(x), which is a continuous,

twice differentiable function for allx with first derivative

f ′(x) = −Q′(x)

Q(x)
.

For the second derivative we have

f ′′(x) =
Q′(x)2 − Q′′(x)Q(x)

Q(x)2

and since

Q′(x) = −e−
1

2
x2

√
2π

and Q′′(x) =
xe−

1

2
x2

√
2π

we havef ′(x) > 0 for all x and

f ′′(x) =
xe−

1

2
x2

√
2πQ(x)2

[

e−
1

2
x2

x
√

2π
− Q(x)

]

.

Now, ase−
1

2
x2

/x
√

2π is a well known upper bound onQ(x)
for x > 0 [6, p. 98], we conclude that forx > 0, we have
f ′′(x) > 0. Applying Lemma 1 tof(x), we find that

∆(x) = − logQ(bx) + log Q(ax) = log
Q(ax)

Q(bx)

is a strictly increasing function forx > 0 and0 ≤ a < b, which
also implies thatr(x) = e∆(x) is a strictly increasing function
of x for x > 0. �

III. BEP OF SYSTEMS WITH ANY LABELING

This section provides simple, closed-form expressions forthe
BEP of each of the three studied modulation formats. They all
separate the influence of the channel from that of the labeling,
where the latter is captured by the ADS.

a

√
Es sin a

√
Es

O

Γ(a, γ)

Fig. 1. The shaded area represents the probabilityΓ(a, γ) that would result
from integration of a Gaussian pdf with varianceN0/2 in each dimension,
centered onO, over this region.

A. Bit Error Probability for PSK

The average BEP ofM -PSK, whereM = 2m for any integer
m ≥ 1, over AWGN channels can be written [7]

Pb(λ, γ) =
1

m

M−1
∑

k=1

d̄(k, λ)P (k, γ) (7)

whered̄(k, λ) is the ADS of anM -PSK constellation labeling
λ. It is defined for all integersk as

d̄(k, λ) ,
1

M

M−1
∑

l=0

dH

(

cl, c(l+k) mod M

)

(8)

whereck is them-bit binary label assigned to thekth constella-
tion point and the Hamming distancedH(cj , ck) is the number
of positions in whichcj andck differ. The ADS denotes the av-
erage number of bits that differ between binary labels assigned
to constellation points separated byk steps in the PSK constel-
lation. If it is clear from the context which labelingλ is con-
cerned, we will simply writed̄(k) for the ADS. Thecrossover
probability P (k, γ) is the probability that the received signal
vector is found in a decision region belonging to a signal point
k steps away (clockwise along the PSK circle) from the trans-
mitted signal point.

To find an expression forP (k, γ) for a given symbol energy-
to-noise ratioγ , Es/N0, we refer to Figure 1 and consider
a rotationally invariant, two-dimensional Gaussian probability
density function (pdf) with varianceN0/2 per dimension, cen-
tered on the pointO. In the two-dimensional setting consid-
ered herein, the noncentralt-distribution gives the probability
Γ(a, γ), which for0 ≤ a ≤ π denotes the integral of the Gaus-
sian pdf over the region bounded by angles±a not containing
O. Fork = 1, . . . , M/2 − 1, the probabilityP (k, γ) is related



4 To appear in IEEE TRANS. INFORM. THEORY

to Γ(a, γ) through the relation

P (k, γ) =
1

2

[

Γ

(

(2k − 1)π

M
, γ

)

− Γ

(

(2k + 1)π

M
, γ

)]

,
1

2
[Γ (ak, γ) − Γ (bk, γ)] (9)

while for k = 0,

P (0, γ) = 1 − Γ
( π

M
, γ

)

and fork = M/2, we have

P (M/2, γ) = Γ
(

π − π

M
, γ

)

. (10)

By symmetry,P (k, γ) = P (M − k, γ) for k = M/2 + 1, . . . ,
M − 1.

There exist several expressions for the probabilityΓ(a, γ),
which is closely related to the noncentralt-distribution [8, 9],
for example

Γ(a, γ) =
1

π

∫ π−a

0

e
−γ sin

2 a

sin2 ϕ dϕ (11)

= 2Q(
√

2γ sina) − 1

π

∫ a

0

e
−γ sin

2 a

sin2 ϕ dϕ. (12)

For numerical stability, we prefer (11) ifa ≥ π/2 and (12)
otherwise. The expression (11) was given in [10, p. 198] and
(12) can be proved usingΓ(π/2, γ) = Q(

√
2γ), see Figure 1.

We may simplify the above BEP expressions further. By in-
serting (9) and (10) in (7), we find that

Pb(λ, γ) =
1

m

M/2
∑

k=1

∆̄(k, λ)Γ (ak, γ) (13)

where

∆̄(k, λ) , d̄(k, λ) − d̄(k − 1, λ) (14)

is thedifferential ADS.

B. Bit Error Probability for PAM

The BEP expression forM -PAM can be written in a form
similar to (7) and is again a function of the labelingλ used to
label the constellation and the signal energy-to-noise ratio γ [5]

Pb(λ, γ) =
2

m

∞
∑

k=1

h̄(k, λ)P(k, µ(γ)) (15)

where

µ(γ) =

√

6γ

M2 − 1
(16)

is half the distance between adjacent constellation vectors di-
vided by

√

N0/2. In the rest of this paper,µ(γ) will some-
times be written asµ, letting the dependence onγ be implicit.

Furthermore,P(k, µ) is expressed in terms of the GaussianQ-
function as

P(k, µ) , Q ((2k − 1)µ) − Q ((2k + 1)µ) . (17)

The ADSh̄(k, u) of any sequenceu = (c0, . . . , cM−1) of M
binary vectors is defined for all integersk as

h̄(k, u) ,
1

2M

M−1
∑

l=0

(

dH(c′l, c
′
l+k) + dH(c′l, c

′
l−k)

)

(18)

with c
′
i , cr(M,i), wherer is a ramp function given by

r(M, i) ,











0, i < 0

i, 0 ≤ i ≤ M − 1

M − 1, i > M − 1.

(19)

As for the PSK case, we will writēh(k) for the ADS if it is
obvious from the context which sequenceu is concerned.

It follows straightforwardly from this definition that for any
sequenceu, h̄(0, u) = 0. More importantly, for the special
case whenu = λ is a labeling, we note that fork ≥ M − 1,
(18) counts the average number of ones per label taken over the
entire labeling. For any labeling this average ism/2, so that
h̄(k, λ) = m/2 for k ≥ M − 1. This fact can be exploited to
reduce the number of terms in (15) and obtain

Pb(λ, γ) = Q ((2M − 3)µ) +
2

m

M−2
∑

k=1

h̄(k, λ)

· [Q ((2k − 1)µ) − Q ((2k + 1)µ)] . (20)

As in the case ofM -PSK, we may simplify the expres-
sion further. Taking differences of̄h(k, λ) instead of theQ-
functions, we obtain

Pb(λ, γ) =
2

m

M−1
∑

k=1

δ̄(k, λ)Q ((2k − 1)µ) (21)

where it follows from (18) and (19) that the differential ADSis

δ̄(k, λ) , h̄(k, λ) − h̄(k − 1, λ)

=
1

2M

M−k−1
∑

l=0

(

2dH(cl, cl+k)

− dH(cl, cl+k−1) − dH(cl+1, cl+k)
)

. (22)

The expressions (21)–(22) provide a convenient method to eval-
uate the BEP of PAM systems with any labeling.

C. Bit Error Probability for QAM

We consider rectangularM1 ×M2 QAM constellations such
that m1 = log2 M1 andm2 = log2 M2 are integers, which
are labeled by binary labels of lengthm1 + m2. To evaluate
the BEP for QAM, we define virtual labels even for imaginary
constellation vectors outside theM1 × M2 grid as

c
′
i,j = cr(M1,i),r(M2,j)
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for all integersi andj, where the ramp functionr was defined
in (19).

The BEP for this system, when used for transmission over
an AWGN channel with average signal energy-to-noise ratioγ,
can be written as

Pb(λ, γ) =
1

m1 + m2

∞
∑

k=−∞

∞
∑

l=−∞

ḡ(k, l, λ)P(k, µ)P(l, µ)

whereP is the same as in (17) andµ is still half the distance
between adjacent constellation vectors divided by

√

N0/2; the
relation betweenµ andγ is for QAM (cf. (16))

µ(γ) =

√

6γ

M2
1 + M2

2 − 2
. (23)

The labelingλ is now rectangular (see Section II-A) and

ḡ(k, l, λ) ,
1

M1M2

M1−1
∑

i=0

M2−1
∑

j=0

dH(c′i,j , c
′
i+k,j+l).

To exploit the symmetry of the constellation, as was done for
PAM in (15), we form an ADS with two components̄t and t̄0
by averaging components ofḡ in groups of four. This yields

Pb(λ, γ) =
4

m1 + m2

∞
∑

k=1

∞
∑

l=1

t̄(k, l, λ)P(k, µ)P(l, µ)

+
4P(0, µ)

m1 + m2

∞
∑

k=1

t̄0(k, λ)P(k, µ) (24)

where for any integersk andl (dropping the dependence onλ
to simplify the notation)

t̄(k, l) ,
1

4
[ḡ(k, l) + ḡ(k,−l) + ḡ(−k, l) + ḡ(−k,−l)] (25)

t̄0(k) ,
1

4
[ḡ(0, k) + ḡ(0,−k) + ḡ(k, 0) + ḡ(−k, 0)] . (26)

The expression (24) is suitable for analytically comparingthe
performance of various labelings, as will be done in Section
VII. To numerically evaluate the BEP of a given labeling, how-
ever, the infinite summations can be replaced by a finite number
of terms, because

t̄(k, l) = t̄(min{k, M1 − 1}, min{l, M2 − 1})
t̄0(k) = t̄0(min{k, max{M1, M2} − 1}).

The calculations, which are not detailed here, follow in perfect
analogy with (20)–(22).

So far, the expressions in this section hold for arbitrary QAM
labelings. In the special case when the QAM labeling is the
direct product of two PAM labelings, the expressions can be
simplified further. Indeed, it can be shown that for any product
labelingλ1 × λ2, the two-dimensional ADS components (25)–
(26) get the particularly simple forms

t̄(k, l) = h̄(k, λ1) + h̄(l, λ2)

t̄0(k) =
h̄(k, λ1) + h̄(k, λ2)

2
.

Substituting these expressions into (24) and simplifying yields
the BEP [11]

Pb(λ1 × λ2, γ) =
m1

m1 + m2
Pb

(

λ1,
M2

1 − 1

M2
1 + M2

2 − 2
γ

)

+
m2

m1 + m2
Pb

(

λ2,
M2

2 − 1

M2
1 + M2

2 − 2
γ

)

(27)

wherePb(λ1, γ) andPb(λ2, γ) are the BEP’s of the constituent
M1-PAM andM2-PAM systems, obtained from (21).

IV. T HE CRITICAL INDEX SET

In order to address (6), we need to find the critical setΨm

defined in (3). We will rely on a method called labelingexpan-
sion, which is a way to construct a labelingλm of orderm from
a labelingλm−1 of orderm−1 [5]. For a labelingλm−1 that is
expanded intoλm the following relations hold form ≥ 2 and
k ∈ Z

d̄(4k, λm) = d̄(2k, λm−1) + f1 (28)

d̄(4k + 2, λm) = d̄(2k + 1, λm−1) + f2

d̄(2k + 1, λm) =
d̄(k, λm−1) + d̄(k + 1, λm−1)

2
+ f3 (29)

wheref1, f2, andf3 are functions ofk andm, but independent
of λm−1. The same relations, with differentf1, f2 andf3, hold
for h̄(k, λ). An important property of labeling expansion is that
expandingβm−1 givesβm. Furthermore, we derive the follow-
ing property of expanded cyclic labelings from [5, Lemma 3].
An analogous relation for̄h(k, λ), not explicitly stated here, can
be derived from [5, Lemma 3b].

Lemma 3:A labeling λ of order m ≥ 2 is an expanded
cyclic Gray code if and only ifd̄(1, λ) = d̄(1, βm) and
d̄(3, λ) = d̄(3, βm).

Proof: First, that a labelingλ is a cyclic Gray code if
and only if d̄(1, λ) = d̄(1, βm) follows from the definition of
a cyclic Gray code. Second, that a cyclic Gray codeλ of order
m ≥ 3 is an expanded cyclic Gray code if and only ifd̄(3, λ) =
d̄(3, βm) was proved in [5, Lemma 3]. The casem = 2 is
trivial. �

The critical index set depends on the modulation form and
the orderm, but the method used to find the critical index set
for PSK and PAM is the same. We derive the critical index set
for PSK in detail and only point out the essential differences
in the derivation of the critical index set for PAM. QAM is not
treated in this section, as it will be shown in Section VII that
the concept of critical indices is not needed to analyze the per-
formance of two-dimensional BRGC’s.

A. The Critical Index Set for PSK

Theorem 4:For PSK constellations, the critical index sets
of ordersm ≤ 4 satisfy Ψ1 = ∅, Ψ2 = Ψ3 = {1}, and
Ψ4 = {1, 3}.

Proof: It is trivial thatΨ1 = ∅. Form ≥ 2, we consider
the setΛm(1) of labelingsnot having the cyclic Gray property.
For allm ≥ 2, there is at least one labeling in this set, so defi-
nitely 1 ∈ Ψm.
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TABLE II
THE NUMBER OF BINARY GRAY CODES AND BINARY CYCLIC GRAY

CODES THAT DO NOT HAVE IDENTICALADS AS A FUNCTION OF THE

ORDERm. THE TABLE, WHICH WAS OBTAINED BY COMPUTER SEARCH,

DOES NOT COUNT THE SAME ENTITIES AS[5, TAB . I], ALTHOUGH THE

NUMERICAL VALUES AGREE FORm ≤ 4.

m cyclic Gray Gray

1 1 1
2 1 1
3 1 3
4 9 131

The setΛm(k) contains fork ≥ 2 only cyclic Gray codes.
However,all cyclic Gray codes havēd(2) = 2. Therefore, all
cyclic Gray codes have identical ADS’s fork = 1 and 2 and,
hence,Λm(2) = ∅ for all ordersm.

ForΛm(3), we turn to column 2 of Table II, where the num-
ber of cyclic Gray codes that do not have identical ADS is
listed. Since there is only one cyclic Gray code form ≤ 3,
Λm(3) = ∅ for m ≤ 3, which completes the proof that
Ψ2 = Ψ3 = {1}.

For m = 4, we conclude from Lemma 3 and the fact that
the Gray code of orderm = 3 is unique that there is only one
expanded Gray code of order 4, which is the BRGC. Hence,
Λ4(i) = ∅ for i ≥ 4. On the other hand, there exist several
Gray codes of order 4 that are not the BRGC, see Table II, and
consequently not expanded, which proves thatΛ4(3) 6= ∅. �

Theorem 5:For m ≥ 5, Ψm is obtained fromΨm−1 by
adding another element to the set, namely,

Ψm = Ψm−1 ∪ {2(maxΨm−1) − 1}. (30)

Proof: From the previous proof,1 ∈ Ψm and2 /∈ Ψm for
m ≥ 2. To establish when3 ∈ Ψm, we recall from Lemma 3
thatΛm(3) is the set of Gray codes that are not expanded Gray
codes. We will prove that this set is nonempty form ≥ 4 by
showing that it includes the class ofbalancedGray codes. Such
labelings exist for all orders, see [12] and [13, pp. 14-15]1 and
they have the property that theM bit transitions in a cyclic list
of theM labels are distributed as evenly as possible among the
m bit positions. To be precise, no more thanM/m + 2 transi-
tions occur in any one position of a balanced Gray code. In an
expanded Gray code, on the other hand, half of the transitions
occur in the same bit [5] (cf. Table I). SinceM/2 > M/m + 2
for m ≥ 4, we conclude that form ≥ 4, balanced Gray codes
are not expanded,Λm(3) 6= ∅, and3 ∈ Ψm.

Now, for T (λ) ≥ 4, we are dealing with the class of cyclic
Gray codes for which̄d(k) is identical to the ADS ofβm for
k = 1, 2, and 3. From Lemma 3, we know that all such la-
belings of orderm can be constructed by expansion of a Gray
code of orderm − 1. Hence, their ADS’s can be calculated
using (28)–(29). From the recursions we find that the critical
indexT (λm−1) of a labeling of orderm − 1 will propagate to

1The perhaps earliest proof of the existence of balanced Graycodes for allm
is attributed to T. Bakos [14].

TABLE III
THE CRITICAL INDEX SET Ψm FOR PSKAND PAM AS A FUNCTION OFm.

m Ψm (PSK) Ψm (PAM)

1 ∅ ∅

2 {1} {1}
3 {1} {1, 3}
4 {1, 3} {1, 3, 5}
5 {1, 3, 5} {1, 3, 5, 9}
6 {1, 3, 5, 9} {1, 3, 5, 9, 17}
7 {1, 3, 5, 9, 17} {1, 3, 5, 9, 17, 33}
8 {1, 3, 5, 9, 17, 33} {1, 3, 5, 9, 17, 33, 65}

the expanded labelingλm and result in a critical index

T (λm) = 2T (λm−1) − 1.

In summary,Ψm = {1, 3}∪{2i−1 | i ∈ Ψm−1} for m ≥ 5,
which is equivalent to (30). �

The PSK critical index setsΨm are listed in the second col-
umn of Table III form = 1, . . . , 8.

B. The Critical Index Set for PAM

For PAM, the critical index set is derived in a similar way; the
difference is that the ADS is defined by (18) and we exclude the
cyclic requirement on the Gray codes. The change of definition
for the ADS results in different values for̄h(k) for k = 1, 2
compared to the PSK case, but the conclusion thath̄(k) is iden-
tical for all Gray codes of orderm ≥ 3 for k = 1, 2 is still valid
[5, Lemma 2b].

From column 3 of Table II, we see that in the class of not
necessarily cyclic Gray codes, there are three classes of Gray
codes of orderm = 3 that do not have identical ADS’s. This
means that the critical index sets are not the same for PAM as
for PSK. Indeed, they are given by the following two theorems.

Theorem 6:Ψ1 = ∅, Ψ2 = {1}, andΨ3 = {1, 3}.
Theorem 7:Form ≥ 4, Ψm is given by (30).
We omit the proofs, which are analogous to the proofs of

Theorems 4–5. The critical index sets of PAM are listed in the
third column of Table III form = 1, . . . , 8.

V. THE OPTIMAL PSK LABELING

At this point, we have established the foundation required to
address the proof of the optimality ofβm. In this section, we
use the results in Section IV to derive sufficient conditionson
the signal energy-to-noise ratio for whichβm is optimal for an
M -PSK system.

A. The Bounding Ratio

The procedure we use is to compareβm to all labelings in
Λm. This is done by finding, for eachi ∈ Ψm, a signal energy-
to-noise ratioγ such that

Pb (βm, γ) ≤ min
λ∈Λm(i)

Pb (λ, γ) (31)
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and showing that the highest of these values taken over alli ∈
Ψm provides aγ above whichβm yields the lowest possible
BEP over the Gaussian channel.

For this purpose, we define thebounding ratiofor PSK as

R(i, γ) ,

∑M−i−1
k=i+1 P (k, γ)

2P (i, γ)
(32)

whose significance is given by the following lemma.
Lemma 8:For anyi ∈ Ψm, a sufficient criterion for (31) is

that

R(i, γ) ≤ 2

M(m − 1)
.

Proof: Let ǫ , 2/M andω , m − 1. Define

ďi(k) ,



















d̄(k, βm), k = 0, . . . , i − 1

d̄(k, βm) + ǫ, k = i

d̄(k, βm) − ω, k = i + 1, . . . , M/2

ďi(M − k) k = M/2 + 1, . . . , M − 1.

(33)

The value atk = i is a lower bound on the difference between
the ADS of a labelingλ ∈ Λm(i) andβm. To show this, we ob-
serve that the sum (8) for any givenk contains the same number
of terms for whichcl has odd parity andc(l+k) mod M has even
parity as vice versa. In both cases, the Hamming distance is
odd, whereas in all other cases, it is even. Hence, (8) contains
an even number of odd terms, which proves that the resolution
of d̄(k, λ) is ǫ. From this fact and (2), we conclude that the
ADS of anyλ ∈ Λm(i) satisfiesd̄(k, λ) ≥ ďi(k).

If now R(i, γ) ≤ ǫ/ω, then

0 ≤ 2P (i, γ)ǫ−
M−i−1
∑

k=i+1

P (k, γ)ω

=

M−1
∑

k=1

P (k, γ)
(

ďi(k) − d̄(k, βm)
)

≤
M−1
∑

k=1

P (k, γ)d̄(k, λ) −
M−1
∑

k=1

P (k, γ)d̄(k, βm)

= Pb(λ, γ) − Pb(βm, γ)

for any labelingλ ∈ Λm(i). �

Note that the bounds given byǫ andω in (33) are chosen for
their simplicity; it is possible to find and use tighter bounds,
but we have yet to find bounds that would give more than a
marginal effect on the derived upper thresholds.

B. BRGC Optimality Thresholds forM -PSK

We now proceed to derive sufficient conditions of optimality
of βm for M -PSK over the Gaussian channel. We will evaluate
(32) for eachi ∈ Ψm and find a range ofγ for which all these
|Ψm| inequalities are valid simultaneously.

Lemma 9:For anym ≥ 3 andi ∈ Ψm and withai andbi as
defined in (9), there exists a uniqueγ = γm(i) that satisfies the
inequality

Q
(√

2γ sin ai

)

Q
(√

2γ sin bi

) ≥ 1 +
M(m − 1)

2
(34)

with equality. The inequality is valid for allγ ≥ γm(i).
Proof: The left-hand side of (34) is equal to one forγ = 0

and a continuous function ofγ for γ ≥ 0. To complete the
proof, we will show that it is also strictly increasing and un-
bounded. From the implicit definition in (9),

max
i∈Ψm

bi = bmaxΨm
=

(2 maxΨm + 1)π

2m
.

SincemaxΨm = 2m−3 + 1 for m ≥ 4 andmaxΨ3 = 1,

bi ≤
(

1

4
+

3

2m

)

π <
π

2

for anym ≥ 3 andi ∈ Ψm. From Lemma 2, we see that for
0 ≤ ai < bi ≤ π/2, i.e.,0 ≤ sinai < sin bi, the left-hand side
of (34) is strictly increasing with

√
2γ (and therefore also with

γ). In addition, invoking well-known bounds on theQ-function
[6, p. 98], we have

Q (ax)

Q (bx)
≥ b

a

(

1 − 1

a2x2

)

ex2(b2−a2)/2 (35)

which, forb > a > 0, can be made arbitrarily large by increas-
ing x. �

The valueγm(i) defined in this lemma is the threshold above
which the BRGC of orderm is better than any labeling in
Λm(i), as stated in the following theorem.

Theorem 10:Pb(λ, γ) ≥ Pb(βm, γ) for everym ≥ 2, i ∈
Ψm, γ ≥ γm(i), andλ ∈ Λm(i).

Proof: Form = 2, to begin with,

R(1, γ) =
P (2, γ)

2P (1, γ)
<

1

2

so Lemma 8 is satisfied for allγ andi ∈ Ψ2 = {1}. Hence,β2

is optimal for orderm = 2 at any SNR.
For m ≥ 3, the bounding ratio (32) is rewritten using (9)–

(10) as

R(i, γ) =
Γ (bi, γ)

Γ (ai, γ) − Γ (bi, γ)
(36)

which is valid for1 ≤ i ≤ M/2 − 1. In general, the bounding
ratio is tedious to handle directly, so we derive a more tractable
upper bound onR(i, γ) using theQ-function. Again referring
to Figure 1, an upper bound onΓ(a, γ) for 0 ≤ a ≤ π/2 is

Γ (a, γ) ≤ 2Q
(

√

2γ sina
)

.

Furthermore, for0 ≤ a ≤ b ≤ π/2, the differenceΓ(a, γ) −
Γ(b, γ) is lowerbounded by

2Q
(

√

2γ sin a
)

− 2Q
(

√

2γ sin b
)

≤ Γ (a, γ) − Γ (b, γ) .

Now (36) yields, for alli ≥ 1 such that0 ≤ ai ≤ bi ≤ π/2,

R(i, γ) ≤ Q
(√

2γ sin bi

)

Q
(√

2γ sin ai

)

− Q
(√

2γ sin bi

)

=
1

Q(
√

2γ sinai)/Q(
√

2γ sin bi) − 1
.
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Fig. 2. The functionγm(i) for i ∈ Ψm from m = 2 (bottom, PAM only) to
m = 10 (top pair of curves). Bullets (•) markM -PSK and crosses (×) mark
M -PAM.

For γ ≥ γm(i), the denominator is at leastM(m − 1)/2 by
Lemma 9. Lemma 8 completes the proof. �

Corollary 11: For anyM -PSK constellation, the optimal la-
beling at asymptotically high SNR is the BRGC.

In Figure 2, the functionγm(i) is shown fori ∈ Ψm and
m = 3, 4, . . . , 10. The interpretation ofγm(i) is the follow-
ing. Consider a labelingλ ∈ Λm(i), i.e., a labeling for which
T (λ) = i. For γ > γm(i), βm will result in a lower BEP ac-
cording to (7) over a Gaussian channel, irrespective of the ADS
values ofλ for k > i. If γ < γm(i), there may exist label-
ingsλ ∈ Λm(i) such that the BEP is lower than forβm even
thoughd̄(i, βm) < d̄(i, λ). For example, we see from Figure 2
that form = 4, any cyclic Gray code will give lower BEP than
any non-Gray labeling forγ ≥ 9.7 dB. Compared to the cyclic
Gray codes inΛ4(3), β4 gives a lower BEP than all these label-
ings forγ ≥ 10.5 dB. For9.7 dB ≤ γ ≤ 10.5 dB, the optimal
labeling may be different fromβ4, but it must be a cyclic Gray
code.

We define themaximal optimality thresholdof orderm ≥ 3
as

γ̂m = max
i∈Ψm

γm(i) (37)

and we let, formally,̂γ2 = −∞. Clearly,γ̂m is an upper bound
on the corresponding optimality thresholdγ∗

m. The main theo-
rem for PSK now follows from Theorem 10.

Theorem 12:The BRGC is optimal for anyM -PSK constel-
lation atγ ≥ γ̂m.

The maximal optimality threshold (as seen in Figure 2) is
given in Table IV form = 2, 3, . . . , 10. We note that for this
range ofm, it is only for m = 4 that γ̂m 6= γm(1). From
the columnPb(γ̂, βm), computed as detailed in Section VIII,
we conclude that the maximal optimality thresholds are indeed
quite low from a practical viewpoint; the BRGC is the optimal
labeling whenever the targeted BEPPb is less than 1.6 % and
m ≤ 10, which covers mostM -PSK systems of practical inter-
est.

TABLE IV
THE M -PSKMAXIMAL OPTIMALITY THRESHOLDS γ̂ FORm = 2, . . . , 10

FROM (37) AND LEMMA 9, THE CORRESPONDING BIT ENERGY-TO-NOISE

RATIO γ̂b , γ̂/m, AND THE BEPWHEN THE BRGC IS USED ATγ = γ̂ .

m γ̂ [dB] γ̂b [dB] Pb(βm, γ̂)

2 −∞ −∞ 0.5
3 3.8 −1.1 0.147
4 10.6 4.6 0.090
5 16.7 9.7 0.070
6 23.6 15.8 0.049
7 30.3 21.9 0.036
8 37.0 28.0 0.027
9 43.6 34.0 0.021
10 50.1 40.1 0.016

VI. T HE OPTIMAL PAM LABELING

In this section, we apply the methods used to prove optimal-
ity of βm for M -PSK to systems usingM -PAM.

A. The Bounding Ratio

The proof method for the PAM case is very similar to that
of the PSK case; the main difference lies in the evaluation of
the crossover probabilities. We again use the inequality (31),
this time using (15) for the BEP expression, in order to find
a signal energy-to-noise ratio threshold above whichβm gives
the lowest possible BEP of all labelings.

Lemma 13:For anyi ∈ Ψm,
∑∞

k=i+1 P(k, µ)

P(i, µ)
≤ 1

(m − 1)(M − 1)
(38)

is a sufficient criterion forPb(βm, γ) ≤ minλ∈Λm(i) Pb(λ, γ).
Proof: We rewrite (18) fork ≥ 1 as

h̄(k) =
1

2M





M−2
∑

j=0

dH(c′j , c
′
j+k) +

M−1
∑

j=1

dH(c′j , c
′
j−k)





(39)

and observe that each of the2M − 2 terms is between 1 andm,
inclusively. Hence,

1 − 1

M
≤ h̄(k) ≤ 1 − 1

M
+ ω

whereω , (m − 1)(1 − 1/M). Furthermore, the resolution
of h̄(i) is ǫ , 1/M , which can be shown by considering the
following two cases separately. Ifi = 1, the terms of̄h(i) in
(39) are pairwise equal, and ifi > 1, λ is a Gray code and the
sum for h̄(i) contains an even number of odd values. In both
cases,2Mh̄(i) is even.

Therefore, the ADS of any labelingλ ∈ Λm(i) satisfies
h̄(k, λ) ≥ ȟi(k), where

ȟi(k) ,











h̄(k, βm), k = 0, 1, . . . , i − 1

h̄(k, βm) + ǫ, k = i

h̄(k, βm) − ω, k = i + 1, i + 2, . . .
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If now (38) holds, then

0 ≤ P(i, µ)ǫ−
∞
∑

k=i+1

P(k, µ)ω

=

∞
∑

k=1

P(k, µ)
(

ȟi(k) − h̄(k, βm)
)

≤
∞
∑

k=1

P(k, µ)h̄(k, λ) −
∞
∑

k=1

P(k, µ)h̄(k, βm)

= Pb(λ, γ) − Pb(βm, γ)

for any labelingλ ∈ Λm(i). �

As for the PSK case, it is possible to sharpen these bounds in
many ways, e.g., by lettinǧhi(k) = h̄(k, βm) for k ≥ M − 1,
but as such improvements appear to influence the overall BEP
very little, we use the above bounds for simplicity.

B. BRGC Optimality Thresholds forM -PAM

The theorems in this Section are analogous to similar theo-
rems in Section V-B, but the proofs are simpler, thanks to the
attractive properties of the GaussianQ-function.

Lemma 14:For anym ≥ 2 and i ∈ Ψm, there exists a
uniqueγ = γm(i) that satisfies

Q ((2i − 1)µ(γ))

Q ((2i + 1)µ(γ))
≥ 1 + (m − 1)(M − 1) (40)

for i ≥ 1 with equality. The inequality is valid for allγ ≥
γm(i).

Proof: The left-hand side of (40) is equal to one forγ = 0
and a continuous function ofγ for γ ≥ 0. From Lemma 2 and
the relation (16) betweenµ andγ, the left-hand side of (40) is
strictly increasing inγ for a giveni. It can be made arbitrarily
large, as shown in (35). �

Theorem 15:Pb(λ, γ) ≥ Pb(βm, γ) for everym ≥ 2, i ∈
Ψm, γ ≥ γm(i), andλ ∈ Λm(i).

Proof: The theorem follows immediately from Lemma
13, (17), and Lemma 14. �

Corollary 16: For anyM -PAM constellation, the optimal la-
beling at asymptotically high SNR is the BRGC.

The solutions to (40) fori ∈ Ψm are shown in Figure 2 for
m = 2, 3, . . . , 10. The maximal optimality thresholds, again
defined as in (37), are listed in Table V along with the result-
ing Pb(βm, γ̂m), computed as in Section VIII. In analogy with
Theorem 12, the main result of this section is stated as a theo-
rem, which follows immediately from Theorem 15.

Theorem 17:The BRGC is optimal for anyM -PAM con-
stellation atγ ≥ γ̂m.

The last column of Table V indicates that the theorem holds
for mostM -PAM systems of practical interest (m ≤ 10 and
Pb ≤ 1.5 %). Form = 2, we also compare the upper bound
γ̂2 with the optimality thresholdγ∗

2 , which can be calculated
exactly. To do this, we first generate all distinct labelings(in
the sense of having different ADS’s) of orderm = 2. There are
three such labelings: the BRGC, the natural binary code (NBC),
and another non-Gray labeling. We calculate their differential
ADS’s (22) and equate pairwise their BEP’s (21) to find all in-
tersections between the BEP curves. The result isγ∗

2 = 5µ2/2

TABLE V
THE M -PAM MAXIMAL OPTIMALITY THRESHOLDS γ̂ OBTAINED FROM

(37) AND LEMMA 14, THE CORRESPONDING BIT ENERGY-TO-NOISE RATIO

γ̂b , γ̂/m, AND THE BEPWHEN THE BRGC IS USED ATγ = γ̂ .

m γ̂ [dB] γ̂b [dB] Pb(βm, γ̂)

2 –2.6 –5.6 0.277
3 7.3 2.5 0.146
4 15.2 9.2 0.090
5 22.4 15.4 0.061
6 29.3 21.5 0.044
7 36.0 27.5 0.032
8 42.6 33.6 0.025
9 49.1 39.6 0.019
10 55.6 45.6 0.015

whereµ is the positive root ofQ(µ) − 3Q(3µ) + 2Q(5µ).
For any γ < γ∗

2 , the NBC is the best labeling, while for
γ > γ∗

2 , of course, the BRGC is the best one. At the thresh-
old γ∗

2 = −5.22 dB, the BEP isPb(β2, γ
∗
2) = 0.337, to be

compared withPb(β2, γ̂2) = 0.277.

VII. T HE OPTIMAL QAM L ABELING

Not surprisingly, a similar technique as in the previous two
sections can be applied to rectangular QAM constellations.
We will show that the same results hold: the two-dimensional
BRGC is optimal for high enough SNR, and finite thresholds
are obtained above which the BRGC is better than any other
labeling. However, the QAM case is different from PSK and
PAM in two respects. Firstly, the critical indices are irrelevant;
if we only determine when Gray codes are better than non-Gray
codes for QAM, then earlier results can be used to establish that
the BRGC is the best of all Gray codes. Secondly, the maximal
optimality threshold turns out to be much higher than for PSK
and PAM.

The starting point is the BEP expression (24) and the ADS
components̄t(k, l, λ) and t̄0(k, λ). We will upperbound and
lowerbound these components for Gray and non-Gray label-
ings, respectively. This allows us to lowerbound the difference
in BEP for the two classes of labelings. Particular attention is
paid to t̄0(1, λ), which is the value where Gray codes differ
from non-Gray labelings. It can be shown that for any rectan-
gular Gray codeλG of order(m1, m2),

t̄0(1, λG) = 1 − 1

2M1
− 1

2M2
, t̂1

t̄0(k, λG) ≤ m1 + m2 , t̂2, k ≥ 2

t̄(k, l, λG) ≤ m1 + m2 , t̂3, k, l ≥ 1

and for any non-Gray labelingλNG with m1 ≥ 2 andm2 ≥ 2,

t̄0(1, λNG) ≥ t̂1 + ǫ

t̄0(k, λNG) ≥ 1 − 1

2M1
− 1

2M2
= t̂2 − ω2, k ≥ 2

t̄(k, l, λNG) ≥ 1 − 1

M1M2
= t̂3 − ω3, k, l ≥ 1
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TABLE VI
THE M × M QAM MAXIMAL OPTIMALITY THRESHOLDS γ̂ FROM

THEOREM18, THE CORRESPONDING BIT ENERGY-TO-NOISE RATIO

γ̂b = γ̂/(2m), AND THE BEPWHEN THE BRGC IS USED ATγ = γ̂ .

m γ̂ [dB] γ̂b [dB] Pb(βm × βm, γ̂)

2 12.6 6.5 0.022
3 21.5 13.7 2.7 · 10−3

4 29.2 20.2 3.9 · 10−4

5 36.4 26.4 6.3 · 10−5

6 43.4 32.6 1.1 · 10−5

7 50.1 38.7 2.0 · 10−6

8 56.8 44.7 3.8 · 10−7

9 63.3 50.8 7.5 · 10−8

10 69.8 56.8 1.5 · 10−8

ǫ , 3/(2M1M2), ω2 , m1 + m2 − 1 + 1/(2M1) + 1/(2M2),
andω3 , m1 + m2 − 1 + 1/(M1M2) are all positive.

Theorem 18:Let

t(µ) , (2ǫ + ω3)Q(µ) + (ǫ + ω2)
Q(3µ)

Q(µ)
. (41)

If t(µ(γG)) = ǫ, where the relation betweenµ andγ for QAM
is given by (23), thenPb(λG, γ) ≤ Pb(λNG, γ) for any Gray
codeλG, any non-Gray labelingλNG, and anyγ ≥ γG.

Proof: From (24), the difference in BEP between any non-
Gray labeling and any Gray code can now be lowerbounded as

Pb(λNG, γ) − Pb(λG, γ) ≥ 4

m1 + m2
·
(

ǫP(0, µ)P(1, µ)

− ω2P(0, µ)

∞
∑

k=2

P(k, µ) − ω3

∞
∑

k=1

∞
∑

l=1

P(k, µ)P(l, µ)

)

=
4

m1 + m2

(

ǫ(1 − 2Q(µ))(Q(µ) − Q(3µ))

− ω2(1 − 2Q(µ))Q(3µ) − ω3Q
2(µ)

)

≥ 4

m1 + m2
(ǫ − t(µ))Q(µ).

By Lemma 2 and the monotonicity ofQ(µ), t(µ(γ)) is a contin-
uous, monotonically decreasing function forγ ≥ 0. It ranges
from t(0) = 2ǫ + ω2 + ω3/2 to limγ→∞ t(µ(γ)) = 0 (see
(35)). Thus, there is a unique positive valueγG for which
t(µ(γG)) = ǫ. For anyγ ≥ γG, t(µ(γ)) ≤ ǫ and thus
Pb(λG, γ) ≤ Pb(λNG, γ). �

So far we have shown that all Gray codes are better than all
non-Gray codes in rectangular QAM systems withγ ≥ γG,
but which Gray code is the best of them? This question can be
answered without further analysis by exploiting known results.

Theorem 19:Let

γ̂ , max

{

γG,

(

1 +
M2

2 − 1

M2
1 − 1

)

γ̂m1
,

(

1 +
M2

1 − 1

M2
2 − 1

)

γ̂m2

}

(42)

whereγ̂m are the maximal optimality thresholds for PAM. Then
the BRGC is optimal for anyM1 × M2 QAM constellation at
γ ≥ γ̂.

Proof: From [2], we know that the only way to assign
a Gray code to a rectangular QAM constellation is by taking
the direct product of two PAM constellations, each labeled by
a Gray code. The BEP of such direct product constellations is
given by (27), which is minimized for anyγ ≥ γ̂ whenλ1 =
βm1

andλ2 = βm2
, according to Theorem 17 and the definition

(42). We conclude that the two-dimensional BRGC is optimal
for QAM wheneverγ ≥ γ̂. �

The maximal optimality thresholdŝγ of square constella-
tions are listed in Table VI. They were obtained by numerically
solving (41). The corresponding BEP of the two-dimensional
BRGC, evaluated as in Section VIII, is also listed. It is interest-
ing to observe that the upper thresholds are much higher than
the corresponding values for PSK and PAM, andγ̂ = γG for all
ordersm in the range of the tables. It is still safe to conclude
that the BRGC is asymptotically optimal even for QAM, but
we cannot claim that the BRGC is optimal in the SNR range
of practical interest. This is partly due to the fact that theused
bounding technique appears to be weaker for QAM than for
PSK and PAM, but also to the fact that non-Gray codes are in-
deed more competitive in two dimensions. Specifically, the two
most likely symbol errors for QAM require that the norm of
the noise vector exceedsµ andµ

√
2, respectively, whereas the

corresponding values for PAM areµ and3µ. Therefore, sacri-
ficing the Gray property, which implies that more bit errors are
associated with the most likely error pattern, carries a heavier
penalty for PAM than QAM.

If the optimality thresholdγ∗
PAM is known for anM -PAM

constellation, theňγ = 2γ∗
PAM is a lower bound on the opti-

mality threshold for anM × M QAM constellation via (27).
Specifically, we conclude from the 4-PAM results in Sec. VI-
B that the two-dimensional BRGC is the bestproduct label-
ing (but not necessarily the best labeling) for4 × 4 QAM at
γ > γ̌ = −2.21 dB, for whichPb(β2 × β2, γ̌) = 0.337, and
that the product of two NBC’s is the best product labeling2 at
γ < γ̌. This lower bound, however, is still far from the upper
bound form = 2 in Table VI and we do not know whereγ∗ lies
in this interval.

VIII. BEP OF SYSTEMS WITH BRGC LABELINGS

Now that the BRGC has been shown to minimize the BEP of
multilevel PSK, PAM, and QAM transmission over the Gaus-
sian channel for large enough SNR, we evaluate this minimum
BEP in the three cases. This is achieved by deriving closed-
form expressions for the differential ADS of the BRGC and
utilizing the general BEP expressions given in Section III.

In [7], it was shown that if anM -PSK constellation is labeled
by βm, the ADS is given by

d̄(k, βm) = tri (2m, k) +

m
∑

i=2

tri
(

2i, k
)

(43)

for all integersk. The functiontri(N, k) is a periodic triangular
function of periodN , defined by

tri (N, k) , 2

∣

∣

∣

∣

k

N
−

⌊

k

N

⌉∣

∣

∣

∣

2A third labeling that attains the same BEP atγ = γ̌ is the product of one
BRGC and one NBC.
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where the function⌊x⌉ roundsx to the closest integer (ties are
rounded arbitrarily)

To calculate the BEP in the form (13), we need the differ-
ential ADS of the BRGC. Sincēd(k) is a sum of triangular
sequences,̄∆(k) is a sum of piecewise constant functions. In
particular,

tri (N, k) − tri (N, k − 1) =
2

N
(−1)⌊2(k−1)/N⌋ (44)

where⌊x⌋ denotes the integer part ofx. Combining (14) with
(43) and (44), we obtain

∆̄(k, βm) =
(−1)⌊(k−1)21−m⌋

2m−1
+

m−1
∑

i=1

(−1)⌊(k−1)2−i⌋
2i

(45)

for all integersk. We believe that (45), combined with (13), is
the simplest published form for the exact BEP ofM -PSK with
the BRGC.

The BEP of PAM constellations with the BRGC can be com-
puted using either (15) or (21). Since the former method turns
out to yield somewhat complicated expressions [15, Pt. E], we
treat in this paper only the latter method, which is based on the
differential ADS. Thus, the BEP is given by (21) in combina-
tion with the following theorem, which is proved in the Ap-
pendix. Another expression for the BEP of PAM constellations
was given in [11, eq. (9)–(10)], with a more complicated proof.

Theorem 20:The differential ADS of a PAM constellation
labeled with the BRGC of orderm is, for 1 ≤ k ≤ 2m − 1,

δ̄(k, βm) =
m

∑

i=1

(

1

2i
− 1

2m

⌊

k − 1/2

2i

⌉)

(−1)⌊(k−1/2)/2i⌋.

(46)
The two-dimensional BRGC is the direct product of two one-

dimensional BRGC’s. Thus, the BEP of a rectangular QAM
system with the BRGC is simply given by (27) in combination
with (21) and (46). A recursive method to compute the same
BEP was given in [16].

IX. CONCLUSIONS ANDCOMMENTS

We have addressed the problem of finding an optimum signal
constellation labeling with respect to minimizing the BEP for
M -PSK,M -PAM, andM1 × M2 QAM under the assumptions
of a Gaussian channel, equally likely and statistically indepen-
dent transmitted bits, and coherent maximum likelihood symbol
detection. The result is that for the asymptotic case when the
signal energy-to-noise ratioγ approaches infinity, the BRGC
gives the lowest possible BEP among all Gray codes (and other
labelings), for all three modulation types.

The BRGC is in fact the optimal labeling for a significant
range of values forγ. In particular, the BRGC is shown to be
optimal as long asγ ≥ γ̂, whereγ̂ is an upper bound on the
optimality thresholdγ∗ (defined as the smallest SNR for which
the BRGC yields the smallest possible BEP). Numerical val-
ues ofγ̂ are given, and by evaluating the BEP at the thresholds,
the conclusion is drawn that when the BEP is below a few per-
cent, the BRGC is the optimum labeling for PSK and PAM. The

same conclusion cannot be drawn for QAM, possibly because
the derived upper bounds onγ∗ are too loose.

The paper includes new closed-form expressions for the BEP
of the three modulation formats withBRGC labelings(Section
VIII). These expressions, which we believe are the simplest
available for the purpose, have the additional benefit of sepa-
rating the influence of the labeling on the BEP from that of the
constellation geometry. Analogous BEP expressions forarbi-
trary labelingsare also given (Section III).

APPENDIX

PROOF OFTHEOREM 20

For labelings that are symmetric in the sense that
dH(c0, cl) = dH(cM−1, cM−1−l) for all l = 0, . . . , M − 1,
(22) can be simplified to

δ̄(k, λ) =
1

M

M−k−1
∑

l=0

(dH(cl, cl+k) − dH(cl+1, cl+k)) .

(47)

Define a mappingf : {0, 1} → Z such thatf(0) = 1 and
f(1) = −1. If the components of a labelci ∈ {0, 1}m are
denotedci,m, ci,m−1, . . . , ci,1, then

dH(cj , cl) =
1

2

m
∑

i=1

(1 − f(cj,i)f(cl,i)) .

With this notation, (47) can be written as

δ̄(k, λ) =
1

2M

m
∑

i=1

M−k−1
∑

l=0

f(cl+k,i) (f(cl+1,i) − f(cl,i)) .

(48)

From Table I or by induction onm, it is easily verified that
the labels(c0, . . . , cM−1) of the BRGC satisfy

f(cl,i) = (−1)⌊(l+1/2)2−i⌉

for l = 0, . . . , M − 1 andi = 1, . . . , m. Furthermore, since
the BRGC possesses the required symmetry, (47) and (48) hold
and the differential ADS of the BRGC is

δ̄(k, βm) =
1

2M

m
∑

i=1

M−k−1
∑

l=0

(−1)⌊(l+k+1/2)2−i⌉

·
[

(−1)⌊(l+3/2)2−i⌉ − (−1)⌊(l+1/2)2−i⌉] .

The bracketed expression is nonzero only whenl = (n +
1/2)2i−1 for some integern. Whenl goes from0 toM−k−1,
thenn goes from0 to n̂ ,

⌊

(M − k)/2i − 1/2
⌋

. (If the brack-
eted expression is zero for alll in the interval, then̂n = −1 and
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the sum overn below should be interpreted as zero.) Thus,

δ̄(k, βm) =
1

2M

m
∑

i=1

n̂
∑

n=0

(−1)n+⌊1/2+(k−1/2)2−i⌉

·
[

(−1)n+⌊(1+2−i)/2⌉ − (−1)n+⌊(1−2−i)/2⌉]

=
1

2M

m
∑

i=1

(n̂ + 1)(−1)⌊1/2+(k−1/2)2−i⌉

·
[

(−1)⌊(1+2−i)/2⌉ − (−1)⌊(1−2−i)/2⌉]

=
1

M

m
∑

i=1

(n̂ + 1)(−1)⌊(k−1/2)2−i⌋. (49)

For any0 < ǫ < 1 and any integersx andy, ⌊x/y + 1/2⌋ =
⌊(x + ǫ)/y⌉. Applying this identity ton̂ and lettingǫ = 1/2,
we obtain

n̂ =

⌊

M − k + 1/2

2i

⌉

− 1

which substituted into (49) yields (46).
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Göteborg, Sweden, Jan. 2005.

[16] L.-L. Yang and L. Hanzo, “A recursive algorithm for the error probability
evaluation ofM -QAM,” IEEE Communications Letters, vol. 4, no. 10,
pp. 304–306, Oct. 2000.

Erik Agrell received the M.S. degree in electrical en-
gineering in 1989 and the Ph.D. degree in informa-
tion theory in 1997, both from Chalmers University
of Technology, Sweden.

From 1988 to 1990, he was with Volvo Technical Development asa Systems
Analyst, and from 1990 to 1997, with the Department of Information Theory,
Chalmers University of Technology, as a Research Assistant. In 1997–1999,
he was a Postdoctoral Researcher with the University of Illinois at Urbana-
Champaign and the University of California, San Diego. In 1999, he joined
the faculty of Chalmers University of Technology as an Associate Professor,
holding a position first at Chalmers Lindholmen University College and since
2001 in the Department of Signals and Systems. His current research interests
include geometrical aspects of coding theory, in particular lattices and block
codes, bit-to-symbol mappings in digital communication systems, and coding
and modulation for fiber-optic channels.

Dr. Agrell served as Publications Editor for IEEE TRANSACTIONS ONIN-
FORMATION THEORY from 1999 to 2002.

Johan Lassingwas born in Borås, Sweden, in 1973.
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