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Abstract

Consider a two-person zero-sum game played on a random n× n-matrix where the entries are iid
normal random variables. Let Z be the number of rows in the support of the optimal strategy
for player I given the realization of the matrix. (The optimal strategy is a.s. unique and Z a.s.
coincides with the number of columns of the support of the optimal strategy for player II.) Faris
an Maier [4] make simulations that suggest that as n gets large Z has a distribution close to
binomial with parameters n and 1/2 and prove that P (Z = n) ≤ 2−(k−1). In this paper a few
more theoretically rigorous steps are taken towards the limiting distribution of Z: It is shown that

there exists a < 1/2 (indeed a < 0.4) such that P
(

( 12 − a)n < Z < ( 12 + a)n
)

→ 1 as n → ∞. It
is also shown that EZ = ( 12 + o(1))n.

We also prove that the value of the game with probability 1 − o(1) is at most Cn−1/2 for some
C < ∞ independent of n. The proof suggests that an upper bound is in fact given by f(n)n−1,
where f(n) is any sequence such that f(n)→∞, and it is pointed out that if this is true, then the
variance of Z is o(n2) so that any a > 0 will do in the bound on Z above.

1 Introduction

A two-person zero-sum game is a game played on anm×n-matrix A = [aij ] (known to both players)
where player I and player II simultaneously tell the number of a row, i, and column, j, respectively.
Player II then pays aij dollars to player I (where, of course, a negative aij is interpreted as player
I paying −aij to player II). The obvious question is how the two players should make their choices.
In case A contains a saddle point, i.e. an entry which is smallest in its row and greatest in its
column, then one quickly realizes that player I should pick the row and player II the column of the
saddle point, but in all other cases the question is not meaningful unless one allows randomization,
i.e. using chance to make your choice. To be precise the two players each use a probability vector,
p = [p1 p2 . . . pm]

T for player I and q = [q1 q2 . . . qn]
T for player II. This is to be interpreted that

player I will bet on row i with probability pi, i = 1, . . . ,m, and player II will bet on column j with
probability qj , j = 1, . . . , n. Randomized strategies of this kind are called mixed strategies. The
goal is now for player I to find a p that gives him as high expected winnings as possible and for
player II to find q that gives her as low expected losses as possible, or equivalently gives player I
as low expected winnings as possible.

According to the well-known Minimax Theorem of von Neumann and Morgenstern (see e.g. [5,
Section II.4]) there exist a number V , called the value of the game, and mixed strategies p0 and
q0, called optimal strategies, for the two players respectively with the following property: When
player I plays p0 then his expected winnings are at least V whatever player II does and when
player II plays q0 then player I’s expected winnings are at most V whatever he does. More
formally V = pT

0 Aq0, pT
0 Aq ≥ V for every q and pTAq0 ≤ V for every p. Another way to

describe p0 and q0 are that p0 maximizes minj Cj(p) over all possible mixed strategies p and q0
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minimizes maxi Ri(q) over all possible q’s, where Cj(p) =
∑m

i=1 piaij , the expected winnings for
player I when player II plays column j, and analogously Ri(q) =

∑n
j=1 qjaij .

In this paper we will study the optimal strategies and the value when the game matrix A is a
random n × n-matrix X where the entries are iid standard normal. We know from the Minimax
Theorem that given the realization of X there will be optimal strategies for the two players and we
shall mainly study the number of rows (columns) that will get a positive probability in an optimal
strategy for player I (player II).
References to random games are sparse. The papers [1], [2], [3], [4], [6] and [7] are concerned
with situations which are “similar in spirit” to our setting. However most of them treat random
general-sum games, a setting which is in fact in a sense is simpler than the zero-sum case because
of the often assumed independence between the payoffs for different players. Among the mentioned
papers only Cover [3] and Faris-Maier [4] consider the present setting and of these only the latter
is directly concerned with the present questions. Faris and Maier show that the probability that
an optimal strategy has full support is bounded from above by 2−(n−1) and make simulations
that suggest that the number of rows/colums in the support is asymptotically close to a binomial
distribution with parameters n and 1/2. In Section 2 we take a few more theoretically rigorous
steps towards the limiting distrubtion by showing on one hand that with probability tending to 1
this number is between 01.n and 0.9n and on the other hand that its expectation is (1 + o(1) 1

2 .
We will also provide a high probability upper bound on the value of the game.

2 Random games

From now on we shall play the game on the n × n-matrix X = [Xij ]1≤i,j≤n where the Xij ’s
are iid standard normal random variables. (The assumption of normal distribution is mostly for
convenience and most of what we do can equally well be done for any continuous distribution
symmetric about 0.) Given any realization there will be an optimal strategy p for player I and an
optimal strategy q for player II. The following is a simple but important observation:

Lemma 2.1 With probability 1 the optimal strategies are unique and their supports are of the same
size.

Proof. Note first that since the distribution of the Xij ’s is continuous, every sub-matrix of X is
a.s. non-singular. Now pick any subset of the rows, let k denote the size of the subset and let p be
any strategy for player I having that subset as its support. Since the k × n-sub-matrix on these
rows is non-singular no more than k of the Cj(p)’s can be equal. Consequently Cj(p) = V for at
most k different j’s; let I(p) denote the set of these j’s. The reasoning applies in particular when p

is an optimal strategy and the rows picked are those of its support. But then any optimal strategy
for player II must have a support which is contained in I(p); otherwise it would not be optimal.
Indeed the support of an optimal strategy for player II must be contained in the intersection of
the I(p)’s over all optimal p. Taking the symmetry of the situation into account it now follows
that all optimal strategies for player I have the same support, that the same goes for player II
and that the two supports are of the same size, k. Finally uniqueness follows from non-singularity
of the k × k-matrix on the rows and columns of these supports since if p and p′ are two optimal
strategies for player I then Cj(p) = Cj(p

′) for all j’s of this sub-matrix and so p = p′. 2

By Lemma 2.1 both players will have optimal strategies supported on the same number of rows or
columns. Denote this random quantity by Z. I.e.

Z = |{i ∈ [n] : pi > 0}| = |{j ∈ [n] : qj > 0}|

where p and q are the unique optimal strategies for player I and player II respectively. Also
given that Z = k the whole game will take place on the corresponding k × k-sub-matrix on which
Cj(p) = Ri(q) = V for all rows i and columns j. In particular the Cj(p)’s are equal for all j on
this sub-matrix as are the Ri(q)’s for all i. Denote the random set of rows on which p has its
support by GI and the set of columns on which q has its support by GII and put G = GI × GII

We will work on bounding the probability that G equals a beforehand specified k × k sub-array
B = BI ×BII of [n]× [n]. A consequence of what we just stated is that a necessary condition on
B for the event {G = B} is
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(E) There are mixed strategies p and q for the two-person zero-sum game played on X (B) such
that Ci(p) = Cj(p) and Ri(q) = Rj(q) for all (i, j) ∈ B.

The two strategies in this condition are called equalizing strategies (for B and for player I and player
II respectively). It takes more than (E) for B to be G, namely that the two equalizing strategies
are optimal on the whole of X , i.e. that the Cj ’s and Ri’s are all not just equal but actually equal
to V . Now saying that p and q are optimal on X is the same as saying on one hand that they are
optimal on X (B) and on the other hand that there is no other square sub-matrix of X for which
any of the players can find a better strategy. The first part is covered by (E) so consider now the
latter part. Assume without loss of generality that B is the array [k]× [k], i.e. corresponding to the
first k rows and columns. Denote by VB the value of the game on X (B) and let pB and qB denote
the corresponding optimal strategies. We want a simple criterion for determining when VB = V .
Create an (n− k + 1)× (n− k + 1)-matrix SB = [sij ] by putting sij = Xk−1+i,k−1+j when i ≥ 2
and j ≥ 2, s11 = VB , s1j =

∑k
i=1 pB(i)Xi,k−1+j when j ≥ 2 and si1 =

∑k
j=1 qB(j)Xk−1+i,j when

i ≥ 2.

Lemma 2.2 One has VB = V if and only if s11 is a saddle point of SB.

Proof. Assume first that VB = V . Then pB and qB are optimal strategies on the whole of X
(with pB(i) = qB(i) regarded as 0 for i > k). Thus since the entries 2, 3, . . . , n − k + 1 of the
first row of SB are Ck+1(pB), Ck+2(pB), . . . , Cn(pB) and the entries 2, 3, . . . , n− k+1 of the first
column are Rk+1(qB), Rk+2(qB), . . . , Rn(qB) one has that s11 = VB must be smallest in the first
row and greatest in the first column, i.e. a saddle point. On the other hand if s11 is a saddle point
none of the players can do better than using pB and qB respectively and therefore VB = V . 2

Thus in order for a square sub-array B of [n]× [n] to be G we can add the following condition:

(S) The entry s11 of SB is a saddle point.

Let EB be the event that a given k × k sub-array B satisfies (E) and denote by SB the event that
B satisfies (S). We have argued that {G = B} = EB ∩ SB and so

P (G = B) = P (EB ∩ SB).

Let us now bound the right hand side. Begin by conditioning on X (B):

P (EB ∩ SB) = E[P (EB ∩ SB |X (B))] = E[1EB
P (SB |X (B))],

the second equality following from the fact that EB is X (B)-measurable. Now P (SB |X (B)) is the
probability that s12, . . . , s1,n−k+1 are all greater that VB and s21, . . . , sn−k+1,1 are all less than VB .
Since given any outcome of X (B) these entries constitute two sets of iid normal random variables
with expectation 0 (but with different variances; ‖pB‖2 and ‖qB‖2 respectively) we see that, since
VB is either positive or negative, this conditional probability is at most 2

−(n−k). Therefore

P (EB ∩ SB) ≤
1

2n−k
P (EB) (2.1)

and it remains to bound P (EB). Doing this will take slightly more work: For any k× k-matrix M
with iid standard normal entries, put E = E(M) for the event thatM satisfies (E). Write E = R∩C
where R is the event that there exists a strategy p on M for player I such that Ci(p) = Cj(p)
for all i, j ∈ [k] and C is the event that there exists a strategy q on B for player II such that
Ri(q) = Rj(q) for all i and j. Another way of expressing C is that the (almost surely) unique
vector x such that Mx = α1 for some α 6= 0 and xT 1 = 1 (unique because M is a.s. non-singular)
has only positive entries. This in turn is the same event as that the a.s. unique solution toMx = 1

has either all positive or all negative entries. Since x = M−11, this is the same as saying that
the row sums of M−1 are either all positive or all negative. Now since the distribution of M is
invariant under (right or left) multiplication by any orthogonal matrix, then so is M−1. More
formally, if Q is a k × k orthogonal matrix, then

QM−1 = (MQT )−1 =d M
−1
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and
M−1Q = (QTM)−1 =d M

−1.

In particular the distribution of M−1 is invariant under the operation of changing the sign of all
the entries in a given set of rows; this corresponds to taking Q to be diagonal and orthogonal (i.e.
with all diagonal entries being 1 or −1) and multiplying M−1 from the left by Q. Thus

P (C) = P (C(M)) = P (C(MQT ))

for all such Q’s. However there are always exactly two Q’s for which C(MQT ) occurs. Since there
are exactly 2k diagonal orthogonal matrices of dimension k × k we get that

P (C) = 1

2k−1
.

An analogous argument also tells us that R has the same probability. An immediate consequence
of these two results is that P (E) ≤ 2−(k−1). Putting M = X (B) and taking (2.1) into account we
have established:

Proposition 2.3 Let B be any k × k sub-matrix of X . Then

(a) P (CB) = P (RB) =
1

2k−1 ,

(b) P (EB) ≤ 1
2k−1 ,

(c) P (EB ∩ SB) ≤ 1
2n−1 .

Note that Faris and Maier’s result follows from (b) with B = X .
We now arrive at our main result:

Theorem 2.4 Let Z be defined as above. Then there exists a < 1/2 such that

lim
n→∞

P
(

(
1

2
− a)n < Z < (

1

2
+ a)n

)

= 1.

Proof. To be specific we will prove that one can take a = 0.4. By Proposition 2.3

P (G = B) ≤ 1

2n−1

for any k × k sub-array B of [n]× [n]. The number of k × k sub-arrays is
(

n
k

)2
and so

P (Z = k) ≤
(

n
k

)2

22n−k−1
.

By Stirling’s formula
(

n

k

)

≤ nn

(n− k)n−kkk

and writing k = bn thus yields

P (Z = k) ≤ 2
(

2(bb(1− b)1−b)2
)−n

.

Put r(b) = 2(bb(1 − b)1−b)2, i.e. the expression in brackets on the right hand side. The function
r(b) is symmetric about b = 1/2, increasing on [0, 1/2) and decreasing on (1/2, 1]. Since r(0.1) =
r(0.9) < 1 we get as n→∞ that

P
(

0.1n ≤ Z ≤ 0.9n
)

≤ 0.4n(r(0.1n))n → 0

which completes the proof. 2

Remark. As indicated earlier, nothing of what we have done relies on the fact that the Xij ’s are
normal. All that matters is that the Xij ’s are iid with some continuous distribution symmetric
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about 0. In this more general case the distribution of X is no longer invariant under arbitrary
orthogonal transformations. However invariance remains for the very special cases of orthogonal
transformations that we use.

So the bounds of Proposition 2.3 allow us to conclude that with high probability the support of the
optimal strategy will be between 0.1n and 0.9n. However it is difficult from reading the arguments
not to note that we “wasted” a lot of information: E.g. when bounding P (E) we only used the
obvious bound P (E) = P (R∩ C) ≤ P (C) and it seems likely that P (E) should be of much smaller
order than P (R) and P (C). In fact we believe that C and R are slightly positively correlated
but asymptotically not far from independent. (Independence in a strict sense does not hold, for
example in the case k = 2 one has P (C) = P (R) = 1/2 whereas P (E) = 1/3.) Simulations and
heuristics support the following conjecture:

Conjecture 2.5 Let M be a k × k matrix whose entries are iid standard normal. Then

1

4k−1
≤ P (EM ) ≤

2

4k−1
.

Despite considerable effort we have not been able to prove Conjecture 2.5 which we think is
interesting in its own right. However the following result is very similar and may serve as strong
evidence for the conjecture: Recall that R and C are the events that the entries of (M−1)T 1 and
M−11 respectively are either all positive or all negative. Replace the vector 1 by ei, the i’th base
vector of Rk and denote the corresponding new events by Ri and Ci. Then:

Theorem 2.6 The events Ri and Cj are independent for all i, j ∈ [k].

Proof. The event Ri is the event that the entries of the i’th column of M−1 all have the same
sign and Cj is the event that entries of the j’th row of M−1 all have the same sign. Thus Ri ∩ Cj

is the event that all the entries of the 2k − 1-dimensional vector

b := (β1i, . . . , βj−1,i, βj+1,i, . . . , βki, βji, βj1, . . . , βj,i−1, βj,i+1, . . . , βjk),

where the β’s are the entries of M−1, have the same sign. Since the distribution of M−1 is
invariant under orthogonal transformations, the distribution of b is invariant under orthogonal
transformations that leave either the first k entries or the last k entries fixed. This implies that the
distribution of b is invariant under changing the sign of any given subset of its entries. Since there
are exactly 22k−1 ways of doing this and since all these correspond to disjoint transformations of
Ri ∩ Cj of which exactly two always occur (as in the proof of P (C) = 2−(k−1)), we get that

P (Ri ∩ Cj) =
2

22k−1
=

1

4k−1

as desired. 2

Assuming that Conjecture 2.5 holds would produce a considerably smaller a in Theorem 2.4, but
it would not bring a arbitrarily close to 0. However what we believe, and what is supported by
Faris and Maier’s simulation as well as our own, is that in fact any a > 0 will do:

Conjecture 2.7 For any a > 0

lim
n→∞

P
(

(
1

2
− a)n < Z < (

1

2
+ a)n

)

= 1.

To shed further light on the distribution of Z and give furher evidence of Conjecture 2.7, we next
calculate EZ:

Theorem 2.8

EZ = (1 + o(1))
n

2
.
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Proof. Lemma 2.2 easily generalizes to cases when B is not square, so the event that a particular
row, say row 1, is in the support of player I’s optimal strategy is the event that V1 :=

∑n
j=1 q

′
jX1j >

V ′ where V ′ is the value of the game on the matrix X ′ obtained from X by removing row 1 and
q′ is the optimal strategy for player II on X ′. Clearly V ′ ≤ V and the distribution of V1 given
X ′ is ymmetric about 0, so the probability that row 1 is in the support is at least 1/2. We must
show that this probability is also not essentially bigger than 1/2. We do this by showing that the
expected loss caused to player I from the removal of row 1 is small compared to the variance ‖q′‖2
of V1 given X ′. Let player I use a strategy p′ on X ′ given by putting p′1 = 0 (obviously) and
p′i = pi + p1/(n− 1) where p is the optimal strategy on the whole of X . (To be correct one must
set p′i to something else in cases when pi + p1/(n− 1) > 1. However it is easily seen that this will
with probability tending to 1 not happen: Playing on at most two rows would cause player I a loss
of at least order O(1).) Then

V ′ ≥ min
j

n
∑

i=2

p′iXij = min
j

n
∑

i=2

(pi +
1

n− 1)Xij

= min
j

(

n
∑

i=1

piXij − p1X1j +
p1

n− 1

n
∑

i=2

Xij

)

≥ V − p1

n− 1 maxj
|

n
∑

i=2

Xij | − p1max
j

X1j .

The sums in the second term are normal with mean 0 and variance n−1 and so the expectation of
the maximum does not exceed (n log n)1/2. Since the maximum is not correlated with p1 and Ep1

obviously equals n−1, the expectation of the second term does not exceed n−3/2(log n)1/2. Similarly
the expectation of the third term is bounded by n−1(log n)1/2 and so we can write V ′ ≥ V − Y
where Y is a positive random variable with expectation O(n−1(log n)1/2). By Markov’s inequality
P (Y ≤ n−1 log n) → 1 and so with probability tending to 1, V ′ ≥ V − n−1 log n. Since ‖q′‖2 is
bounded from below by n−1, the standard deviation of V1 given X ′ is at least n−1/2 and so

P (V1 ≤ V − n−1 log n|V1 ≤ V )→ 1

from which it follows that

P (V1 ≥ V ′) = (1 + o(1))
1

2

as desired. 2

Note that Theorem 2.8 together would together with Chebyshev’s inequality imply Conjecture 2.7
if it could also be established that the variance of Z is o(n2). Unfortunately we have not been able
to bound the variance of Z in any useful way. To do that we would e.g. need:

Conjecture 2.9 Let f(n) be any sequence such that f(n)→∞. Then

P (|V | ≤ f(n)n−1)→ 1

as n→∞.

Since it is very natural to ask for results on the value of a random game, results in the spirit of
Conjecture 2.9 are interesting in their own right and not only as instruments for proving results
on the support of the optimal strategy. In order to motivate our belief in Conjecture 2.9 and to
prove a weaker statement, consider the equalizing strategy for, say, player II on an n × n-matrix
M when such exists. In other words consider the a.s. unique solution to Mq = α1 with

∑

i qi = 1
on the event C that q ∈ Rn

+. The solution is

q =
M−11

1TM−11
.

Denote the denominator byW−1. Note that on the event R∩C that there are equalizing strategies
for both players, W is the value of the game on M . We will show that with probability tending to
1 given C, |W | will be of order O(f(n)n−1) for any f(n)→∞.
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To make things a little easier we recall from above that the distribution of M−1 is invariant under
orthogonal transformations. Thus multiplying M−1 from the right by an orthogonal matrix whose
first column is n−1/21 does not change its distribution. ThereforeW−1 is distributed as n1/2 times
the sum of the elements of the first column of M−1 and the event q ∈ Rn

+ transforms into the
event that the first column of M−1 contains only positive or only negative elements.
Now the first column of M−1 can be written as n/Y where n is a unit vector orthogonal to all
but the first row of M and Y is the scalar product of the first row of M with n. (To be specific,
choose n by a fair coin flip from the two possible vectors.) Note that Y is standard normal and
independent of the direction of n. We have that |W |−1 is distributed as n1/2|1T n|/|Y | and on the
event that all entries of n have the same sign we claim that for any b > 0 with probability tending
to 1

(
1√
2
− b)n1/2 ≤ |1T n| ≤ ( 1√

2
+ b)n1/2

which entails that |W | is of order f(n)n−1. To show the claim we use that n has the distribution
of X/‖X‖ where X = (X1, X2, . . . , Xn) with iid standard normal entries. The expectation of
|Xi| is

√

2/π and by standard large deviation theory
∑n

i=1 |Xi| does with high probability not
significantly deviate from n

√

2/π. Similarly, the expectation of X2
i is 1 and so ‖X‖2 is with high

probability close in the same sense to n so that ‖X‖ is close to n1/2. Since conditioning in that
X ∈ Rn

+ does not change the distribution of the |Xi|’s, the claim is proved. We have shown:

Theorem 2.10 For any b > 0 and any f(n)→∞,

P (|W | ≤ f(n)n−1|C)→ 1

as n→∞.

In order to prove that Conjecture 2.9, we would need to prove that the statement of Theorem 2.10
holds whenM is a sub-matrix of X and when we also condition on R(M) and S(M). Heuristically
both of these events tend to decrease |W | even further, but we have not been able to find a way
to handle the intricate dependencies between the entries of X that arise from conditioning on all
three events. Simulations seem to indicate that |V | is of even smaller order than the one given in
Conjecture 2.9. In any case, by using brute force Theorem 2.10 at least gives a nontrivial upper
bound (which to the best of our knowledge is the best known bound) on the value of the game:
The random variable Y =: Y (M) that appears in the proof is standard normal and since there are
less than 4n square sub-matrices M of X , there is a constant D such that maxM Y (M) does with
probability tending to 1 not exceed Dn1/2. Thus YG ≤ Dn1/2. Also there exists d > 0 such that
|1T n| ≥ dn for all B and therefore also for G. Therefore, putting C = D/d,

Theorem 2.11 There exists C <∞ such that with probability tending to 1

|V | ≤ Cn−1/2.
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