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ABSTRACT. A uniformly John domain is a domain intermediate between a John domain
and a uniform domain. We determine the Martin boundary of a uniformly John domain
D as an application of a boundary Harnack principle. We show that a certain self-similar
fractal has its complement as a uniformly John domain. In particular, the complement
of the 3-dimensional Sierpinski gasket is a uniform domain and its Martin boundary is
homeomorphic to the Sierpinski gasket itself.

1. INTRODUCTION

In the previous paper [1] the first author proved a uniform boundary Harnack principle
for a bounded uniform domain. As a result, it is shown that the Martin boundary of a
bounded uniform domain is homeomorphic to the Euclidean boundary. In this paper, we
shall study more general domains, mainly uniformly John domains introduced by Balogh
and Volberg [5, 6]. A uniformly John domain is a domain intermediate between a John
domain and a uniform domain. In the first part we shall establish a certain uniform
boundary Harnack principle for a uniformly John domain. Its Martin boundary will be
determined as a corollary to the boundary Harnack principle. The Martin boundary is
no longer expected to be homeomorphic to the Euclidean boundary. Instead, it will turn
out to be homeomorphic to the ideal boundary with respect to the internal metric (See
below). The second part of the paper deals with more concrete examples of John domains

and uniformly John domains. We shall provide two axioms for a self-similar fractal which
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ensure that the complement of the fractal is a John domain, and two more axioms for
a uniformly John domain. Among the axioms we have a certain nesting aziom which is
similar to Lindstrgm’s ramified condition in [18].

Let us begin with the definitions of a John domain, a uniform domain and a uniformly
John domain. Throughout the paper, let D be a proper subdomain in R?, d > 2, and let
dp(z) = dist(z,0D). We say that D is a John domain if there are xy € D (John center)
and A; > 1 (John constant) such that each x € D can be connected to zq by a rectifiable
curve v C D with

(1.1) Uy(z,2)) < A1dp(z) forall z € 7,

where v(z, 2) is the subarc of v from z to z and ¢(y(z, 2)) is the length of v(z, z). We say
that D is a uniform domain if there exists Ay > 1 (uniform constant) such that each pair

of points x,y € D can be connected by a rectifiable curve v C D for which

(1.2) min{/(y(z, 2)),l(v(z,9))} < Axdp(z) for all z € ~,
(1.3) ((7) < Aslz —yl.
We note that (1.3) is regarded as the bounded turning condition of 7 (cf. [21]). Appar-
ently, a uniform domain is a John domain.
In connection with conformal dynamics, Balogh and Volberg [5, 6] introduced a uni-

formly John domain. It is a domain intermediate between a John domain and a uniform

domain. Let us give the definition. First we define the internal metric Pp(z, y) by
Pp(z,y) = inf{diam(v) : 7 is a curve connecting = and y in D}

for ,y € D. Here diam(y) denotes the diameter of v. Obviously |z — y| < Pp(x,y). We
say that D is a uniformly John domain if there exists a constant A3 > 1 (uniform John

constant) such that each pair of points z,y € D can be connected by a curve v C D for
which

(1.4) min{/(y(z, 2)),0(v(z,9))} < A3dp(z) for all z € ~,
(1.5) U(v) < AsPp(x,y).

By definition

uniform ; uniformly John ; John.
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The difference between a uniform domain and a uniformly John domain arises from the
difference between the right hand sides of (1.3) and (1.5). One may say that a uniform
domain is a uniformly John domain with internal metric satisfying Pp(z,y) < Alz — y|
for x,y € D with positive constant A.

Let us illustrate the above definitions by a Denjoy domain, the complement of a closed
set in a hyperplane. By B(z,r) we denote the open ball with center at x and radius r.
We identify the hyperplane {(zy,...,z4) € R? : 24 = 0} with R?"". By B'(z,r) we denote
the (d — 1)-dimensional ball with center at z and radius r, i.e., B'(z,r) = R N B(x,7),
for z € R, Let E be a closed set in R?"! such that D = B(0,1) \ E is connected, i.e.
B'(0,1)\ E # (. We call D is a (bounded) Denjoy domain. We have the following criteria
for D.

Proposition 1.1. Let F and D be as above. Then we have the following:

(i) D is a John domain.
(i) D is a uniformly John domain if and only if there are a > 0 and ro > 0 such that

(1.6) sup dn(z) >ar for0<r<rg
2€B'(z,r)NB'(0,1)

whenever x € B'(0,1) \ E.
(iii) D is a uniform domain if and only if there are o > 0 and ro > 0 such that (1.6)
holds whenever x € B'(0,1).

It is well-known that a bounded Lipschitz domain, and more generally a bounded NTA
domain, have the Martin compactification homeomorphic to the Euclidean closure (Hunt
and Wheeden [16], Jerison and Kenig [17]). In the previous paper [1], the first author
showed that the Martin compactification of a bounded uniform domain is homeomorphic
to the Euclidean closure. This gives an alternative proof of the results of Hunt-Wheeden
and Jerison-Kenig, since a Lipschitz domain and an NTA domain are uniform domains.

The Martin compactification of a uniformly John domain is more complicated. We
shall show that it is homeomorphic to the completion D* with respect to the internal
metric. That is, D* is the equivalence class of all #-Cauchy sequences with equivalence
relation “~”, where we say {z;} ~ {y,;} if {z;} U {y,} is a Pp-Cauchy sequence. Let
0*D = D*\ D, the boundary with respect to Pp. Take £* € D*. Suppose £* is represented
by a Pp-Cauchy sequence {z;}. Since {z;} is also a usual Cauchy sequence, it follows

that z; converges to some point § € D. The point ¢ is independent of the representative
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{z;} and uniquely determined by £*. We say that £* lies over £ € D. If £ € D, then &
and &£* coincide. We say that £ € 0D is a simple boundary point if there is exactly one
boundary point of 0*D over £. In other words, £ is a simple boundary point if and only if
every sequence {z;} C D converging to £ also converges to the same boundary point with
respect to the internal metric £p. Define the projection 7 : D* — D by 7(£*) = £. Tt is
easy to see that 7 is a continuous contraction mapping, i.e. |7(&5) — (&) < Pp(&5,€5).
If ¢ is a simple point, we identify £ and the point over £ in 0*D and write 7(§) = &.

One of the main results of this paper is the following theorem.

Theorem 1.2. Let D be a bounded uniformly John domain with uniform John constant
Ay. Then the Martin compactification of D is homeomorphic to D* and each boundary
point £ € 0*D is minimal. Moreover, for every boundary point & € 0D, the number of

Martin boundary points over £ is bounded by a constant depending only on A,.

The above theorem will be proved as a corollary to a uniform boundary Harnack prin-
ciple for a uniformly John domain. Balogh and Volberg [6] proved a uniform boundary
Harnack principle for a planar uniformly John domain with uniformly perfect boundary.
Having a uniform perfect boundary is an additional assumption. In the present paper we
assume neither the uniform perfectness of the boundary nor any other exterior conditions.
Balogh and Volberg also demonstrated, in their setting, that the harmonic measure sat-
isfies the doubling condition with respect to the internal metric [6, Theorem 3.1]. In the
present setting, the harmonic measure needs not satisfy the doubling condition, because of
the lack of exterior condition. This is a significant difference between [6] and the present
paper. Moreover, we should remark that our domain may admit an irregular boundary
point. Hence, we always consider a generalized Dirichlet problem, i.e. boundary values
have meaning outside a polar set. For simplicity, we shall say that a property holds q.e.
(quasi everywhere) if it holds outside a polar set.

Our second purpose is to give some axioms for a self-similar fractal such that the
complement of the fractal becomes a John domain, or a uniformly John domain. See
Theorems 4.16 and 5.3 below. One of our conditions is a nesting azxiom which is similar
to Lindstrom’s [18]. A typical example of self-similar fractals satisfying our axioms is
the 3-dimensional Sierpinski gasket. Consider a tetrahedron H and four similarities each
of which is a composition of a translation and a dilation with fixed point at a vertex

of H. The 3-dimensional Sierpinski gasket F' is given as the fixed set of the above four
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similarities. We see that int(F') = () and that H \ F consists of octahedra. See Figure
1.1. Let B be an open ball containing H. We shall show that B\ F' is a uniform domain

Third Step. HAF consists of

FIGURE 1.1. The 3-dimensional Sierpiniski gasket F. D = B\ F is a
uniform domain.

and hence its Martin boundary coincides with F'U 0B (Corollary 6.9). The connectivity
among octahedra will play an important role. For details see Sections 4, 5 and 6 below.
Once we have obtained a uniformly John domain, then we can easily modify it to have

another uniformly John domain. The following offers one of such modifications.

Proposition 1.3. Let D be a bounded uniformly John domain. Then a domain D between
D and int(D) such that D \ D consists of simple boundary points is a uniformly John
domain. In particular, if D 1s a bounded uniform domain, then every domain D between

D and int(D) is a uniform domain.

A portion of boundary is erased.

FIGURE 1.2. D = B\ F' is a uniform domain for any F’ C F.

See Figure 1.2 for an example of the above 3-dimensional Sierpinski gasket F. In

general, if a domain is given as the complement of a self-similar fractal, then its boundary
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enjoys a nice uniform condition because of the homogeneity of the fractal. By the above
proposition we can add some part of the boundary to obtain a uniformly John domain
without uniform exterior or boundary condition. Nevertheless, its Martin compactification
is homeomorphic to D* with the aid of Theorem 1.2.

The plan of the paper is as follows. In the next section we shall give several geometrical
notions and properties of a uniformly John domain. In particular, Propositions 1.1 and
1.3 will be proved. In Section 3 we shall state the boundary Harnack principle (Theorem
3.1) and prove it along a line similar to [1]. Then Theorem 1.2 will be proved as its
corollary. In Section 4 we shall state several notions and terminologies for self-similar
fractals and their complements. Then Theorem 4.16 will give sufficient conditions for the
complement of a self-similar fractal to be a John domain. It is much more difficult to
show that a domain is a uniformly John domain than a John domain. Theorem 5.3 in
Section 5 will give sufficient conditions for the complement of a self-similar fractal to be a
uniformly John domain. As a corollary we shall observe in Section 6 that the complement
of the 3-dimensional Sierpinski gasket is a uniform domain (Corollary 6.9).

We shall use the following notation. By the symbol A we denote an absolute positive
constant whose value is unimportant and may change even in the same line. If necessary,
we use Ag, Ay, ..., to specify them. We shall say that two positive functions f; and f,
are comparable, written f; = fs, if and only if there exists a constant A > 1 such that
A7 < fo < Afy. The constant A will be called the constant of comparison. By B(z,7),
C(z,r) and S(z,r) we denote the open ball, the closed ball and the sphere with center at

x and radius r, respectively.
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2. GEOMETRIC PROPERTIES OF A UNIFORMLY JOHN DOMAIN

In view of [19, Lemma 2.7] and [21, Theorem 2.18], we observe that (1.4) and (1.5)

are equivalent to

(2.1) min{ |z — 2|, |z — y|} < Adp(z) forall z € v,
(2.2) diam(y) < AsPp(z,y)

with another positive constant A, depending only on As. For simplicity we call a curve
satisfying (2.1) a cigar curve or more precisely distance-cigar curve. This terminology

comes from the fact that the union

U Bz A7 min{jz — 2, |2 — yI})
zEy
of cigar like shape is included in D. On the other hand, a curve satisfying (1.1) is said to
be a carrot curve. If a curve satisfies (1.2), then it is said to be a length-cigar curve.
Let us begin with the proof of Proposition 1.1. The proof is straightforward and may

help the reader’s understanding of the different classes of domains studied.

Proof of Proposition 1.1. We can easily show (i). Let us prove (ii). We assume (1.6) for
z € B'(0,1) \ £ and we are going to show that D is a uniformly John domain. Take
arbitrary points x = (z1,...,24) and y = (y1,...,yq) in D. If both x4 and y,4 have the
same sign, then we can easily construct a cigar curve xry connecting x and y in D with
diam(zy) < Alz—y| = APp(x,y). Hence, we may assume that x; and y, have the different
signs. Consider an arbitrary curve v connecting = and y in D and let r = diam(~y). Then
0 < r < 2 and 7 must intersect B'(0,1) \ E at some point z € B'(0,1) \ E. If necessary
taking a > 0 smaller, we may assume that r, > 2. By assumption we find a point
z* € B'(z,r) such that dp(z*) > ar. We can easily construct cigar curves zz* and
z*y connecting z to z* and z* to y such that diam(zz*) < Ar and diam(z*y) < Ar,
respectively. Let 7 = zz* U z*y. Then diam(3) < 2A4r and 7 is a cigar curve in D by
dp(z*) > ar. Since 7 is an arbitrary curve connecting z and y in D, it follows that D is
a uniformly John domain.

Conversely, we suppose D is a uniformly John domain satisfying (2.1) and (2.2) and we
are going to show that (1.6) holds for 7o = 1 and @ = v/3/(8A?%) whenever x € B'(0,1)\ E,
where A4 is the constant in (2.1) and (2.2). Fix z € B'(0,1) \ F and 0 < r < 1. By an
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elementary geometrical observation we find a point y € B(0, 1) such that

4LA4 =ly—x| < %dist(y,R‘ll).
Let § be the reflection of y with respect to R~!'. Then y and 7 are connected by the
union of the line segments from y to x and from x to 7, whose diameter is not greater
than r/(2A4). Hence Pp(y,7) < r/(2A4). In view of (2.1) and (2.2), we find a cigar curve
v C D connecting y and 7 such that diam(vy) < r/2 and

min{|y — z|, |z — 7|} < A4dp(z) forall z € 4.

This curve v must intersect B'(0,1) at some point 2y, so that

1. N I B V3r
6D(ZO) Z A_4m1n{‘y_ Z0|7 |ZO - U‘} Z A_4d18t(y;Rd 1) Z 8—14421

Since zy € B'(x, |z — y| + diam(vy)) C B'(z,r), we obtain (1.6). Thus the necessity part
of (ii) is proved.

Finally we prove (iii). The proof of the sufficiency part is similar to that of (ii). In
fact, take two points x and y in D with different signs of x; and y,;. Instead of the
curve connecting x and y in D, we simply consider the line segment Ty and let z be the
intersection of this line segment with R?"!. Since we assume that (1.6) holds for every
point in B’(0, 1), it applies to this z and the same argument as for (ii) yields a required
cigar curve v connecting x and y in . For the necessity part we suppose D is a uniform
domain. Then D is a uniformly John domain in particular, and hence by (ii) there are
a > 0 and ry > 0 such that (1.6) holds for every point in B'(0,1) \ E. Since the internal
metric and the Euclidean metric are comparable, F cannot include a relatively open set
in RT'. Hence B’(0,1) is included in the closure of B’(0,1) \ E, so that (1.6) actually
holds for every point in B'(0,1). The proof is complete. O

Balogh and Volberg [5] proved a very deep property of a planar uniformly John domain;
a geometric localization. In the course of the proof of Theorem 1.2 we shall not use their
result. Instead, we shall need some elementary properties of a uniformly John domain.
The purpose of this section is to show these properties with purely geometrical proofs.
No potential theory will be involved in this section. Let us first show that the completion

D* is a compact space. This property holds even for a bounded John domain.
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Proposition 2.1. Let D be a bounded John domain. Then D* is a compact space and
each boundary point £ € 0* D is accessible from D, i.e., there is an arc v C D converging
to £*. Moreover, for every boundary point & € 0D, the number of points in 0* D over & is

bounded by a constant depending only on the John constant A;.

Proof. Take a sequence {z} } in D*. We need to show that there exists a subsequence
of {zX } converging to some point in D* with respect to Pp. Suppose that each z? is
represented by a Pp-Cauchy sequence {27 }; C D. Since {27 }; is also a usual Cauchy
sequence, it must converge to z, = m(x},) € D with respect to the usual metric. Taking
a subsequence, if necessary, we may assume that {z,, },, is a Cauchy sequence converging
to some € € D with respect to the usual metric. If £ € D, then it is easy to show that z*,
converges to & with respect to Pp. So, we may assume that & € 9D.

Let 7 > 0 be so small that the John center zy lies outside B(£,r). Observe that

DN B(&,r) consists of countably many open connected components B;(r). Obviously
(2.3) Pp(x,y) < 2r for x,y € B;(r).

Let us count the number v(r) of components B;(r) having a point x,, with |z, —&| < r/2.
We claim that

(2.4) v(r) <N,

where the number N depends only on the John constant A;. By definition z,, is connected
to g by a carrot curve 7 satisfying (1.1). Hence it follows from the definition of a
John domain that the Lebesgue measure of B;(r) is comparable to r? with constant of
comparison depending only on the John constant A;. Therefore, (2.4) holds.

Now let 7, = 27% | 0. Then we infer from (2.4) that there exists a decreasing sequence
of components B; (ry) each of which contains infinitely many x,,,. We find £* € 0*D such
that

B, (r1) D Bi,(ra) D --- = & € 0"D,
and a subsequence of {z},} converges along {B;, (1)} to & with respect to Pp by (2.3).
Obviously 7(£*) = £. This shows that D* is compact and £* is accessible from D. More-
over, the second assertion follows, since every point on 0*D has a Pp-Cauchy sequence
converging to it.

Finally let & € 0D and suppose k distinct points &7, ...& € 0*D lie over {. Then
there is an € > 0 such that Pp(£F,&7) > 2¢ for i # j. By Vi we denote the component of
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DN B(,¢) from which £ is accessible. Then V;,...,V are distinct. In fact, if V; =V
for some i # j, then & and & would be accessible from the same component. That
is, there would be an arc v in V; = V; connecting & and ;. By definition, (£, &) <
diam(v) < 2¢; a contradiction would arise. Thus Vi, ..., V} are distinct and hence disjoint
by definition. We may assume that the John center x, lies outside B(,e). Then each &
can be connected to zq by a carrot curve, say v;, in D with (1.1). Let z; € nNV;NS(&,2/2).
Then B(z;,e/(2A;1)) C V; by (1.1), so that the Lebesgue measure of V; is comparable to
gd. Since Vi, ..., V; are disjoint subsets of B(&, ¢), it follows that the number & is bounded

by a constant depending only on the John constant A;. The proof is complete. U

Remark 2.2. In general, a minimal boundary point of the Martin boundary is accessible
from the domain (e.g. [12, Satz 13.3]). Hence, if we have shown Theorem 1.2, the above
proposition follows automatically. The above argument proves the accessibility without
potential theoretic consideration. We also note that there is a bounded John domain
having non minimal Martin boundary point. Such a domain can be easily constructed
as a Denjoy domain. See Ancona [3, 4], Benedicks [8], Chevallier [11], Segawa [20] and

references therein.

Hereafter we let D be a bounded uniformly John domain with uniform John constant
Ay. We extend Pp(x, y) for z,y € D* by Pp(x,y) = lim Pp(z;,y;) if © and y are represented
by Pp-Cauchy sequences {z;} and {y;} in D. It is easy to see that Pp(z,y) is independent
of the choice of the Pp-Cauchy sequences {z;} and {y;}. The connectivity given by (2.1)
and (2.2) also extends to points in D*.

Lemma 2.3. Fvery pair of points x,y € D* can be connected by a curve 7y for which
y\{z,y} € D and

(2.5) min{|r(z) — z|, |z — 7(y)|} < Adp(z) for all z € 7,

(2.6) diam(y) < APp(z,y),

where A is a constant depending only on the uniform John constant Ay for D.

Proof. If both x and y are points in D, then there is nothing to prove. Let us assume that
z € D and y € 9*D. In view of Proposition 2.1 we find a sequence {y;} C D converging

to y with respect to Pp. Each point y; can be connected to the John center z, by a carrot

curve, on which we find points 3’ such that Pp(yj,y) — 0 and |y; — 7(y)| < Adp(y;).
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Hence, we may assume, from the beginning, that

(2.7) 0p(y;) < ly; — m(y)| < Adp(y;),

where A > 1 is a constant depending only on A;. Moreover, taking a subsequence, if

necessary, we may assume that

(2.8) Pp(z,y) > 2Pp(y, y1) > 2°Pp(y, yo) >

By definition we find cigar curves zy; such that

29) min{|z — z|, |z —y1|} < Asdp(z) for all z € zy,
2.9 -

diam(zy,) < AsPp(z, y1)
and 1;1/\]:1 such that

(2.10) min{|y; — z|, |z — yj41|} < Asdp(z) forall z € 1@:1,

diam(y;y;41) < AaPp(y;, yj+1)
for 7 =1,2,.... We claim that

y=a Ugiga U U gy U

is a required curve connecting x and y. We have from (2.8), (2.9) and (2.10)

dlam(V) < A4(pD(.'T,', y1) + an(y7ay7+]))
J=1
< Ay (pD(l" y) + Po(y, v +Z Pp(y, y;) + Pp(y, Ug+1))>
7=1

S 3A4p])(37, y)

Thus (2.6) holds.
Let us prove (2.5). First examine (2.5) for z € zy;. If |z — y1| < 36p(y1), then
dn(z) > %5D(y]) and

2wy < 2wl + oy 7()] < 50n() + Adp(yr) < (1+24)55(2)
by (2.7), so that (2.5) holds in this case. If |z — y;| > 1dp(y1), then
z=m() <z =yl +ly —7(y) < (1+24)]2 =y
by (2.7), so that (2.9) yields

A4(5]) (Z) 2

1
Y min{|z — 2|, |z — 7(y)|}.
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Thus (2.5) holds for all z € zy;. Now, we examine (2.5) for z € gy;1. If |2 — y;| <
50n(y;), then dp(z) > 30p(y;) and |z — 7w (y)| < (1 + 2A4)dp(z), so that (2.5) holds in the
same way as above. Similarly, (2.5) holds if |[z—y;41| < 30p(yj41). If |z—y;| > 16p(y;) and
2= gy1] > W), then [2—(y)| < (1+24) 2 —y; and |2 —m(y)| < (1+24)|2— gy
by (2.7), so that (2.10) yields (2.5). Thus (2.5) holds for all z € ~.

Finally, in the case when z,y € 0*D, we take a sequence {z;} converging to x. Then

the same argument as above to z; yields a required curve. The proof is complete. O

We shall define ‘balls’ with respect to the internal metric. For this purpose it is

convenient to modify the internal metric slightly. For z € D and v C D we let

?(Ta/)/) = sup ‘Z o ﬂ?‘,
zZEy

i.e., the the infimum of radii r for which v C B(x,r). Observe that 7(z,v) < diam(y) <
27 (z,y) for x € . Let

Pp(x,y) = inf{F(z,7) : 7 is a curve connecting x and y in D}

for z,y € D. The quantity P is not symmetric. It is related to the internal metric £p as

follows:

Pp(z,y) < Pp(z,y) < 2Pp(z,y).

Therefore the convergence with respect to Pp is equivalent to the convergence with respect

to Pp. We can also show the following inequalities

ﬁn(m,z) S /p\D(Tay) + Z)\D(yaz)a
/p\D('Z‘JZ) S /p\D('Z‘JU) + QﬁD(ZJU)

for z,y,z € D. We extend Pp(z,y) and Pp(z,y) for z,y € D* by Pp(x,y) = lim Pp (2, y;)
and Pp (x,y) = lim D (z;,y;) if x and y are represented by Pp-Cauchy sequences {z,} and
{y;} in D. It is easy to see that the quantities Pp(x,y) and ﬁD(a:, y) are independent of
the choice of the Pp-Cauchy sequences {z,} and {y;}. Let £ € 0*D and put

B,(&,r)={z e D: Pp(E*,z) <1}

Moreover, let S,(£*,7) = D N OB,(&,r) and C,(*,r) = D N B,(&*, 7). Here, ‘0" and
‘ "mean the boundary and the closure in the Euclidean space, respectively. These sets
correspond to DN B(xz,r), DNC(z,r) and DNS(x,r). The following observation enables

us to use many arguments in [1].
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Lemma 2.4. The set B,(£%,r) is the open connected component of DN B(w(£%),r) which

can be connected to £ in itself, i.e. there is an arc v C B,(£*,r) converging to £*.

Proof. Tt is sufficient to show the following (i)—(iv).

§) B(€',r) € DA Br(e), ).

(ii) B,(&*,r) is open.

(iii) Every point x € B,(£*, ) is connected to £* by an arc in B,(£*,r).

(iv) B,(&*,r) is the maximal set with the above properties (i)—(iii).
Let & be represented by a Pp-Cauchy sequence {z;}. First, we prove (i), (ii) and (iii).
Suppose x € B,(£*,r). Then ¢ =r — ﬁD(f*,x) > (. Since ﬁD(f*,aj) = lim;_, ﬁD(ajj,x) <
r — £, there exists a positive integer j; such that ﬁn(mj,m) <r—¢/2for j > jo. By the

definition of 7, we find a curve z;x C D connecting z; and = with
211) o — | < Fay, 77) <7 — 22
for 7 > jo. Hence
(&) — x| = lim |z; —z| <r—g/2 <.
j—00
Therefore, x € DN B(w(£*),r) and (i) follows. Now « lies in the open set DN B(7(£*), 7).
We find rg, 0 < 1o < £/2, such that B(xz,ry) C DN B(w(£),r). For (ii) it suffices to show

that B(x,ry) C B,(¢*,r). In fact, every y € B(z,19) can be connected to z; by z;2 U Ty

for j > jo, where Ty denotes the line segment between = and y. Hence, (2.11) yields
PO —— £
Pr(E,y) = hm PD(T” y) < limsup7(z;, z;z UTy) < r — 3 +ry <,
j—00
so that B(z,ry) C B,(£*,r) and (ii) follows. In order to prove (iii) we may assume that

(2.12) Pp(zj, wi01) < 277g,

by taking a subsequence of {z;}. Then each pair of points z; and z,4; can be connected

by a curve 72,41 C D with diam(z;2,41) < 2 7¢. Let

o
y =z, u | |z )

Jj=Jjo

Then, by (2.11) and (2.12), v is an arc in D connecting x and £* such that

(&) < (T,O,TTm + Zdlam T T7+] _Z + Z 97 g

J=Jjo J=jo
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Without loss of generality, we may assume that j, > 2, so that 7(£*,7) < r. Hence
v C B,(&*,r) and (iii) follows. We remark that (iii) implies that B,(£*, r) is connected.
Finally we prove (iv). Suppose that D; is a subset of D N B(7(£*),r) such that every
x € Dy is connected to £ by an arc in D;. We have to show that ﬁp(f*, z) < rforz € Dy.
Suppose x € D;. Then there is an arc v C D; connecting £* and z. By the compactness

of v we see that v C B(mw(£*),r — n) for some 7 > 0. By the definition of 7

Pp(&,x) = lim Pp(y,z) < limsup7(y,y) < limsup|y — 7(&)|+r—n=r—n<r

y—E&* * *
= = e
Hence (iv) follows. 0

As a corollary to Lemma 2.4 we have the following.

Lemma 2.5. Let V be a connected open subset of DN B(w(§*),r). If VN B,(,r) # 0,
then V. C B,(&*,r). In particular, if § € 0*D is accessible from B,(*, 1) and r+ |7 (§*) —
(&) < r, then B,(&, 1) C B,(£%,r).

Now let us prove Proposition 1.3. The following lemma says that the internal metric

is invariant by adding simple boundary points.

Lemma 2.6. Let D be a domain between D and int(D) such that D\ D consists of simple
boundary points. Then Pp(z,y) = Py(x,y) for x,y € D.

Proof. Let x,y € D. By definition P5(x,y) < Pp(x,y). Let us prove the opposite inequal-
ity. It is sufficient to show that if 7 is a curve in D connecting x and y, then for each

£ > 0 there is a curve v C D connecting x and y with
(2.13) diam(y) < diam(7y) +e.

Observe from Lemma 2.4 that if £ € 0D is a simple boundary point, then £ is accessible
from only one connected component V(§) of D N B(&,¢/2). This means that there is
n(€) > 0such that DNB(E, 2n(€)) C V(€). If € € D, then we define n(€) = 1 min{dp(£), e}
and V(&) = B(&,2n(&)). Since 7 consists of points of D and simple boundary points, we

can find finitely many points & € ¥ and n; = n(&;) > 0 such that
(2.14) j
DN B(&;, 2n;) € V(&)
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by the compactness of 7. Changing the number j, we may assume that x € B(&;, ;). Let
x1 be the last point of the curve 5 in C'(&,my). If 27 = y, then we stop. Otherwise, z; lies
in some B(&;,n;), say B(&2,m2) by (2.14). Let x5 be the last point of 7 in C(&;,72) and
continue in the same fashion. Then we obtain a finite sequence of points x1,..., 2, =y
such that each z; is the last point of 7 in C(§;,n;) and x; € B(&j11,nj41) for j =
1,...,n — 1. Observe that either x; € D or z; is accessible from V(;) by (2.14) and
Lemma 2.4. Hence we find 2, € D N B(&j,2n;) N B(&j41,2n41) for j =1,...,n — 1. Let
zy = x and 7;, = y for convention. Then z% |, 2 € V(;) by (2.14) and we find a curve

al yal C V(&) C DN B(E,e/2) connecting 2 | and 2 for j =1,...,n. Then z and y

are connected by the curve

n
y=xpri Uiz, U Ul xl C DN (U B(@,e/?)) .

j=1

Since each &; € 7, we have (2.13). The proof is complete. O
Now we can prove Proposition 1.3.

Proof of Proposition 1.3. By Lemma 2.6 we have Pp(z,y) = Py(z,y) for z,y € D, and
hence for 2,y € D by extending Pp. By definition 6, (z) < d5(2) for z € D. Now let
z,y € D. Note that 7(z) = z and 7(y) = y since z and y are points of D or simple
boundary points. By Lemma 2.3 we find a curve v C D connecting x and y with
min{|z — z|, |z — y|} < Adp(z) < Ady(z) forall z € 7,
diam(y) < APp(z,y) = APp(z,y),

where A depends only on A,. Thus Disa uniformly John domain. O

For a moment let D be a general proper subdomain of RY. We define the quasi-
hyperbolic metric kp(x,y) by

, ds(z)

kp(z,y) = 11£/1f./7 m;

where the infimum is taken over all rectifiable curves v connecting x to y in D. Observe

that kp(z,y) is monotone decreasing with respect to D, i.e., if z,y € D; C D, then

kp,(xz,y) > kp(z,y). The converse estimate will be needed in the sequel. Observe that if

z € D, then

(2.15) kp(r,y) < kp\ay(7,y) < kp(z,y) + A forz,y € D\ B(z,2 '6p(2)).
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This observation will be useful to estimate the Green function with pole at z.
Now let D be a bounded uniformly John domain. Then the following uniform quasi

hyperbolic boundary condition holds.

Lemma 2.7. Let D be a bounded uniformly John domain. Then

Pp(x,y)
min{dp(z),0p(y)}

where A and A’ depend only on the uniform John constant Ay.

kp(x,y) < Alog + A,

Proof. It y € B(x,0p(x)/2) or x € B(y,0p(y)/2), then the lemma is obvious. Hence,
suppose |z — y| > smax{dp(z),dp(y)}. Let v be a curve connecting = to y with (2.1)
and (2.2). Then

/ds(z) _ /51)(%)/2 ds N /13(7)/2 Ayds N /5(7)51)(?/)/2 Ayds N /5n(y)/2 ds
Jyon(2) ~ Jo op()/2 " Jspwye S Jer))2 s Jo op(y)/2

AyPp(2,y)
min{dp(x),op(y)}
Thus the lemma follows. O

§;2 +-214410g

Let g € D be fixed. Then every point © € D can be connected to xy by v along
which the distance to the boundary increases as in (2.2). Hence, there is A5, 0 < A5 < 1
such that

AsR < sup  dp(z) <R
z€S,(€*,R)
for sufficiently small R, say 0 < R < dp(xg)/2. Let us take £ € S,(£*,4R) with
4A5R < 6p(€r) < 4R. Then, we have the following.

Lemma 2.8. Let D be a bounded uniformly John domain. Then there exists a constant

Ag > 9 depending only on D such that

pD(xay)
min{dp(z),dp(y)}
where £ € 0*D, R > 0 s sufficiently small and A depends only on D. In particular,

18R
(2.17) kl%(fﬂAﬁR)crafR) S;/410g;5——C;5 forix € l3p(§*’9f%%
D

where A is independent of the choice of £Eg. In the sequel, estimates will be independent

of the choice of &i.

(2.16) kB, (e aer) (7, y) < Alog for x,y € B,(£",9R).
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Proof. Let x,y € B,(£*,9R). Suppose v is a curve connecting x to y with (2.1) and (2.2).
Then

Pp(€*,2) < Pp(€*,x) + Pp(x, 2) < 9R 4 diam(y) < AR for z € 7.

Let Ag be the twice of the above A. Then v C B,(£*,346R) and 0p, e+, a,r)(2) = 0p(2)
for z € 7. Hence the proof of the preceding lemma yields (2.16). Since Pp(x,&p) < 18R
and 0p(&p) > 4A5R, we have (2.17) from (2.16). O

3. BOUNDARY HARNACK PRINCIPLE
The main aim of this section is to show the following boundary Harnack principle.

Theorem 3.1. Let D be a bounded uniformly John domain. Then there exists a constant
A; > 1 depending only on D with the following property: Let & € 0*D and let R >
0 be sufficiently small. Suppose u and v are positive bounded harmonic functions on
B, (&, A7R) vanishing g.e. on 0D N B,(€*, A7R). Then
u(z)  u(z)
v() " u(a)

where the constant of comparison depends on D.

uniformly for x,x' € B,(§*, R),

Theorem 3.1 can be proved in a way similar to that of [1, Theorem 1] with the aid of
Lemma 2.4. However, we must be careful about the fact that D* is the completion of D
with respect to the internal metric. It is, in general, different from the Euclidean closure.
The proof is inspired by the probabilistic work of Bass and Burdzy [7]. See Ferrari [14] for
an analytic proof. It should be noted that Bass-Burdzy and Ferrari gave a non-uniform
boundary Harnack principle. To determine the Martin boundary, we need a uniform or
scale invariant boundary Harnack principle. Our boundary Harnack principle is uniform
with respect to the internal metric.

We say that x,y € D is connected by a Harnack chain {B(z;, 50p(z;))}i_, if 2 €
B(z1,50p(z1)), y € B(yk, 50n(yx)), and B(z;, 50p(z5)) N B(xj11, 50p(z41)) # 0 for
j=1,...,k — 1. The number k is called the length of the Harnack chain. We observe
that the shortest length of the Harnack chain connecting x and y is comparable to kp(z, y).
Therefore, the Harnack inequality yields that there is a positive constant A depending

only on d such that

exp(—Akp(z,y)) < Z(—z; < exp(Akp(z,y))
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for every positive harmonic function h on D.

Our proof of Theorem 3.1 will be based on a certain estimate of harmonic measure.
By w(z, E,U) we denote the harmonic measure of E for an open set U evaluated at x.
For r > 0let U(r) ={z € D : dp(xz) < r}. Since every point z € U(r) can be connected
to xo by a curve 7 along which the distance to the boundary increases as in (2.2), it
follows that if r > 0 is sufficiently small, then there is a point z € D N S(x, Agr) with
dp(z) > 2r, where Ag > 1 is a constant depending only on D. Hence there is a ball
B(z,r) C B(x, Agr) \ U(r). This implies that

w(z,U(r)N S(x, Agr), U(r) N B(x, Agr)) <1 —¢g¢ for x € U(r)

with 0 < £y < 1 depending only on Ag and the dimension. Let R > r and repeat this
argument with the maximum principle. Then there exist positive constants Ag and A;q
such that

(3.1) w(z,U(r)N S(z,R),U(r) N B(x, R)) < exp(Ag — A1gR/T).

See [1, Lemma 1] for details.
Let us compare the Green function and the harmonic measure. For simplicity we let
Dr = B,(&*, (A¢ + 7)R) and Dy = B,(£*, AgR) with Ag as in Lemma 2.8. By Gz and

G';, we denote the Green functions for Dy and DY, respectively.

Lemma 3.2. If R > 0 is sufficiently small, then
w('a Sp(é-*a 2R>> Bp(f*a 2R>) S ARdiQGIR('a 51?) S ARdiQGR('a 51?) on Bp(f*a R)a

where A depends only on D.

Proof. 1t is sufficient to show the first inequality. We follow the idea of [7] and [1]. We
find A;; > 0 depending only on D such that Ay, R 2G%(-,&r) < 1/e on B,(£*,2R). Then

32 By(e2m) - | D,0 By 2R),
Jj>0
where
Dj={x € D :exp(—2/*") < ARG (1, €R) < exp(—27)}.
Let Uj = (UijDk) N Bp(f*,QR) = {T S Bp(f*,QR) : A]]RdiQGIR(.’I),gR) < exp(—2j)}.

First we observe

(3.3) U C{z € D:ép(r) < ARexp(—27/\)}

- 18 - Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TgXed at October 12, 2000 9:15



with some A > 0 depending only on D. For a moment fix z € S(&g, 50p(€g)). Then
G'o(z,&r) =~ R*4 and
18R
kprgeny(t,2) < kpr(0,6r) + A < Alogm
for x € B,(¢*,9R) \ B(Er, 56p(Er)) by (2.15) and (2.17). We see from the Harnack

inequality that there is A > 0 such that
exp(—27) > ARGl (x,€R) > ARV G, (2, ER) exp(—Akp\ (e} (7, 2))

1 5p(z)\ "
> Aexp (—)\log 5:(];)) _ A ( 1”8(;)>

for z € U;. Thus (3.3) follows.
Let r; = ARexp(—27/)) with A in (3.3). We take a slowly decreasing sequence {R;}
converging to R such that

(3.4) Zexp (2j+1 _ Aro(Rj1 — Rj)) < o0,

T

j=1
where the value of the summation is independent of R. In fact, if we let Ry = 2R
and R; = (2 -5 > k< 1%2) R for j > 1, then (3.4) holds. For simplicity we let wy =
w('a Sﬂ(£*= 2R)7 Bﬂ(f*: 2}?)) and

wo(x)

sup - if D; N B,(&*, R;) # 0,
z€D;NB,(£*,R;) RdiQGR(fL"SR) ] p( '])
d; =
! if DjﬁBp(f*;Rj) = (.
In view of (3.2) it is sufficient to show that
(3:5) supd; < A < oo,
J>0

where A is independent of R.

Let j > 0. Let us apply the maximum principle over U; N B,(£*, R;_1). Observe
that D N A(U; N B,(£, R;1)) is included in the union of U; N S,(£*, R; 1) and {z €
B,(&*,R; 1) : AnRT72G%(x,&r) = exp(—27)}. By definition the last set is included
in D; 1 N B,(§,R;—1), on which wy < d; 1R 2G'(-,&r) holds. Hence the maximum
principle yields that

(3.6) wi(2) < wla, T; N Sp(€", Rj). Uy N By(€", Bjv)) + dj 1 BTGy, ).
for x € U; N B,(§*, Rj_1).
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Now let z € U; N B,(&*, R;). We apply the maximum principle over the connected
component V, of U; N B(z, R;_; — R;) containing x. In view of Lemma 2.4 we have
lz — w(£*)] < R;, so that V,, C B(n({*),Rj_1). Hence Lemma 2.5 yields that V, C

B,(¢*, R;_1). Moreover, we have
(3.7) DNoV, c(DNV,NS(z,Rj_1 — Rj)) U (B,(£, R;j_1) N oU,).
In fact, suppose y € DNV, and |y — z| < R;_; — R;. Then there is ¢ > 0 such that
B(y,e) ¢ DN B(w(£*), Rj_1). By definition V, N B(y,e) # 0, and hence y € B(y,e) C
B,(&*, Rj_1) by Lemma 2.5. It is easy to see that y € 0U,, so that (3.7) follows.

Since w(-,U; N S,(€*, R; 1), U; N B,(£*, R;_1)) vanishes q.e. on 0D U (B,(¢*,R; 1) N
dU;), it is less than or equal to

w(@, Vo S(w, Rjy — Ry),Vy) < w(w,U;N Sz, Ry — By),U; N Bz, iy — Ry))
by the maximum principle and (3.7). The last harmonic measure is less than or equal to
eXp(Ag — AIO(ijl — Rj)/rj) bY (31) and (33) Since AHRd72G’R(l‘,£R) Z exp(—2j+1)
for # € D; by definition, (3.6) now becomes
A (R —

Tj

wo(z) < {AH exp (2j+1 + Ag — Rj)> + djl} Rd72G’R(37; €r)

for z € D; N B,(£*, R;). Dividing both sides by R*?G,(z,g) and taking the supremum
over x € D; N B,(£*, R;), we obtain

| Aw(Ry1 — R
dj < Aqyexp (2'7+] + Ay — LR 7)> +dj1.

T

Hence (3.5) follows from (3.4). O

Lemma 3.3. If R > 0 is sufficiently small, then
GR(',I;’ y) —~ GR(ma y,)
Gr(2',y)  Ggr(a',y")

with constant comparison depending only on D.

for z,2" € B,(§*,R) and y,y' € S,(£",6R)

Proof. Let us take zp € S,(£*, R) and yg € S,(£*,6R) such that A;R < dp(zg) < R and
6A5R < dp(yr) < 6R. It is sufficient to show

GR('TRa y)

(3-8) GR(JT; U) ~ )GR(JT; ?JR)

- Gr(Tr,Yr
for x € B,(§*,R) and y € S,(£*,6R). For simplicity we fix y € S,(£*,6R) and let u(z)
(resp. v(z)) be the left (resp. right) hand side of (3.8).
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First we show that u > Av on B,(£*, R) with A independent of y. Observe that

(i) w is a positive harmonic function on Dy \ {y} with vanishing q.e. on dDg;

(i) v is a positive harmonic function on Dg \ {yg} with vanishing q.e. on 0Dk.

Since u is superharmonic on Dy and B,(£*, R) C Dg\ B(ygr, AsR), it is sufficient to show
that v > Av on S(ygr, AsR) by the maximum principle. Take z € S(yg, AsR). Then
Epp\yr) (2, 2r) < A by (2.15), and hence

_ Gr(zry)
(3.9) v(z) ~ Grlrnon)
If y € B(yr,2A5R), then u(z) = Ggr(z,y) > AR % so that u(z) > Av(z). If y €
D\ B(ygr,2A5R), then (2.15) and Lemma 2.8 yield

Gr(rr,yr) = Gr(rr,y) < AR* %,

ket (2 2R) < kpg(z,75) + A < A,

so that v(z) ~ Ggr(zg,y) = Ggr(z,y) = u(z) by (3.9). Hence we have u > Av on
S(yr, AsR) in any case.

In order to show that u(z) < Av(z), we make use of Lemma 3.2. It is clear that
Gr(r,2) < AR> % ~ Gr(wg,yr) for v € C,(£*,2R) and z € B,(£*,9R) \ B(&,3R), where
¢ =m(&*). Since S,(£*,2R) C C,(¢%,2R), it follows from the maximum principle that

Gr(-,2) < AGr(zr, yr)w(-, S,(€7,2R), B,(§*,2R)) on B,(£",2R).

Since Gr(rr,yr) =~ B> % and Gr(x,£R) ~ Gr(z, ygr), it follows from Lemma 3.2 and the
Harnack inequality that

(3.10) Gr(z,2) < AGr(zr,yr) R *Gr(x,&R) < AGR(z,yr)

for z € B,(§*,R) and z € B,(£*,9R) \ B(&,3R).

Now fix x € B,(¢*,R) and y € S,(¢*,6R). If dp(y) > 27 'AsR, then kp,(y,yr) < A
by Lemma 2.8, so that Gg(z,y) ~ Gg(z,yr) and Gr(zr,y) = Gr(rr, yr) by the Harnack
inequality. Hence (3.8) follows. Therefore, we may assume that dp(y) < 27 'AsR. Then
there is & € ID such that |y — &| = dp(y) < 27'45R. In view of Lemma 2.4, we
find & € 0*D such that 7(&) = & and y € B,(£f,2 'A5R) since B(y,dp(y)) C D.
Since 5R < 6R — 27 '"AsR < | — & | < 6R+ 27 "A5R < TR, it follows from Lemmas 2.4
and 2.5 that B,(&,2R) C B,(£*,9R) \ B(&,3R), and hence from (3.10) that Gg(z,z) <
AGgr(z,yg) for z € B,(&,2R). Hence the maximum principle yields that

(3.11) Grlr,y) < AGr(r.yr)w(y. S, (6. 2R), B, (&, 2R)).
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Using Lemma 3.2 with replacing £* by £}, we obtain

w(ya Sp(é-;ka 2R)7 Bp(fika QR)) S ARdiQGBp(fT,AaR) (ya g;{)

with & € S,(&5,4R) such that 445 R < 6p(&) < 4R. Since | — & | < TR, it follows from
Lemma 2.5 that B,(&}, AgR) C B,(£*, (A + 7)R) = Dg, so that

w(y, Sp(&7,2R), B, (€], 2R)) < AR *Gr(y, &) = ARG r(Ep, ).
Hence (3.11) becomes
GR(',E; U) S AGR(:Ea yR)Rd72GR(£;?,> U) S AGR('Z‘J yR)Rd72GR(‘Z‘R7 U)

by the Harnack inequality. Since Gg(xr,yr) ~ R* %, we have u(z) < Av(x). Thus (3.8)
is proved. The proof is complete. O
Proof of Theorem 3.1. We prove the theorem with A; = Ag + 7. Since u is a positive
harmonic function on Dg, we can consider the regularized reduced function ]%;f"(ﬁ*’ﬁR) of

u to S,(&*, 6R) with respect to Dg. This regularized reduced function is a superharmonic

function on Dy such that RBy’“ % = 4 qe. on S,(&*,6R) and harmonic on Dpg \
S,(&*,6R). Moreover, RIESH g.e. on 0Dy by assumption. Since u is bounded on

Dp, it follows from the maximum principle that u = A;f”(g*’GR) on B,(£*,6R). It is easy

to see that Efp(f*’ﬁR) is a Green potential of a measure p supported on S,(£*,6R), i.e.

u(z) —/ Gr(z,y)du(y) for € B,(£",6R).
J8,(¢* 6R)

Let z,2’ € B,({*, R) and y,y' € S,(¢*,6R). Then

Gr(z,y'
Gr(z,y) ~ %G}z(mlay)
by Lemma 3.3. Hence
GR("I;a y’) / / GR(ma y’) !
u(r) 8 ——= Gr(x',y)duly) = =——u(x).
(@) Gr(z',y') . S,(¢*,6R) 2 Jau(y) Gr(z',y") )
Therefore,
u(@) _ Grley) *
u() ~ Gl ) uniformly for y' € S,(¢*,6R).
Similarly,
v(z)  Grlz,y
v(z')  Gg(e,y
Hence the theorem follows. O
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Remark 3.4. In view of the above proof, the assertion of Theorem 3.1 holds for an un-

bounded uniformly John domain if £* lies over a finite boundary point £ of D.

Let .7Z;- be the family of all positive harmonic functions i on D vanishing q.e. on 0D,
bounded on D\ B,(£*,r) for each 7 > 0 and taking value h(zy) = 1. A function h in .7%-

is called a kernel function at & normalized at x;.

Lemma 3.5. There is a constant A > 1 depending only on D such that

u
A< =< A foruwve S
v

Proof. Let u,v € # and let r > 0. Then u and v be bounded on B,(¢f,27'r) for

& €0DNS,(&*, r). Hence Theorem 3.1 yields
u(z) _ u(a)

o(z) "~ u(a)

where A; is as in Theorem 3.1. This, together with the Harnack inequality, shows that
u(r) u(z)

v(@) " (@)

where the constant of comparison is independent of . Then the same comparison holds

for z, 2’ € B,(&,27'r/Aq),

for z,2" € S,(&*, 1),

for z,2' € D\ B,(£*,r) by the maximum principle. Since u(x) = v(zo) = 1, it follows
that

ZE:; ~1 forzeD\B,( ).

Since r > 0 is arbitrary small and the constant of comparison is independent of r, the

lemma follows. 0

Proof of Theorem 1.2. Lemma 3.5 actually shows that .7 is a singleton and that the
function v € 7. is minimal. This is proved by Ancona [2, Lemma 6.2]. For a short
proof see [1, Theorem 3]. Let G(x,y) be the Green function for D. Put K(z,y) =
G(z,y)/G(xg,y) for x € D and y € D \ {xy}. The Martin kernel is given as the limit
of K(z,y) when y tends to a ideal boundary point. If y — &* € 9*D, then some sub-
sequence of {K(-,y)} converges to a positive harmonic function in .7%.. However, since
S+ 1s a singleton, it follows that all sequences {K(-,y)} must converge to the same
positive harmonic function, the Martin kernel K(-,&*) at £*. Therefore K(z,-) extends
continuously to D* \ {z}. The kernel function K(-,&*) should be minimal. It is easy

to see that distinct ideal boundary points on 9* D have different kernel functions. Hence
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the Martin compactification of D is homeomorphic to D*. The last assertion now follows

from Proposition 2.1. The theorem is proved. ]

Using Theorem 3.1, we can show the following theorems in the same way as in [I,
Section 4]. We omit the details.

Theorem 3.6. Let D be a uniformly John domain and let V be an open set and K a
compact subset of V' intersecting 0D. Then there are A > 0 and € > 0 depending on D,
V and K such that

u(zr)/v(x)

g

u(y)/v(y)

whenever u and v are positive harmonic functions on D, bounded on DNV and vanishing
g.e. on 0D NV. Moreover, the ratio u/v extends to D* N7 (K) as a Hélder continuous

SAPD(.Z',y)E fora:,yEDﬁK,

function with respect to Pp.
This theorem is deduced from the following local version.

Theorem 3.7. Let D be a uniformly John domain. Then there exist positive constants
A and € depending only on D with the following property: Let £ € 0*D and R > 0 be suf-
ficiently small. Suppose u and v are positive bounded harmonic functions on B,(§*, A7R)
vanishing q.e. on dD N B,(£*, A;R). Then

U LT\ U
0sC —SA(—) osc — forO0<r<R.
Bp(€*r) U B,(& /) v

Similarly, the Martin kernel K (x,&*) for D is Holder continuous function with respect
to pD-

Theorem 3.8. Let D be a bounded uniformly John domain. If £, € 0*D and R >
4Pp(&7, &), then
K(- &* p * ¢k €
0SC (761) §A< D(£1=€2)> .
D\B, (&) K (-, &3) R
Moreover, if v € D\ B,(&f, R), then

Ty =)
K(,) k)
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4. FRACTAL JOHN DOMAIN

The main aim of this section is to show that the complement of a certain self-similar
fractal is a John domain. Let W = {¢4,...,1,} be a finite union of contractive similarities
Vi, ie., | i(w) — Yi(y)] = Nijz — y| for any x,y € R? with 0 < )\; < 1. We note that each
1; is homeomorphism from R? to itself, so that set operations and topological operations,
such as taking boundary, closure and interior, commute ;. We let U(E) = UZ_,¢;(E). It

is known that there is a unique compact set F' invariant under ¥, i.e.,
v
F=w(F) = ().
i=1

Moreover, U™ (K) converges to F' in the Hausdorff metric for any nonempty compact set
K. The set F is the self-similar fractal constructed from ¥ = {¢4,...,4,}. Let B be a
sufficiently large open ball containing F'. We are interested in the conditions for D = B\ F’
to be a John domain.

One might think that B\ F is a John domain whenever it is connected. This is not
the case. The following filled Cantor set has a connected complement and yet it is not a
John domain. Let d = 2 and S a unit square. We divide S into 9 small squares with side
1/3. We remove 3 small squares in the middle column and repeat the same procedure to
the remaining 6 squares. This is equivalent to consider 6 similarities with similitude 1/3;
4 of them have a vertex of S as a fixed point; the other two shrink and translate S to the
midst small squares in the left and right columns. Then D = B\ F has arbitrary narrow

vertical corridor with length 1, so that it can not be a John domain. See Figure 4.1.

First Step. Third Step.

FI1GURE 4.1. The complement of the filled Cantor set is not a John domain.

Hence, it is worthwhile to find conditions which guarantee that D = B\ F' is a John

domain. In what follows we assume that int(F) = @ to exclude the trivial case. It is
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convenient to start with a compact set H whose image under ¥ is included in itself. Then

the iteration of ¥ gives a decreasing sequence of compact sets converging to F', i.e.,
o
HD>U(H)D - DU(H)D---— (| ¥"(H) =F.
n=0

To make it precise, let us start with a compact convex polyhedron H with int(H) # ()
and W(H) C H. Here a set is called a closed convex polyhedron if it is given by a
finite intersection of closed half spaces. For fundamental geometrical notions of convex
polyhedra we refer to Berger [9, 10] and Griinbaum [15]. If int(H) # 0, then there is a
unique minimal family of closed half spaces 1_[]-+ whose intersection is H. The boundary
OH consists of (d—1)-dimensional compact convex polyhedra L; whose (d—1)-dimensional
interiors inty_;(L;) are nonempty. Each compact convex polyhedron L; is given as the
intersection of H and II;, the boundary of the half space Hj+. Thus OH = U;L; and
inty 1(L;) # 0. We call L; and inty 1 (L;) a closed face and an open face of H, respectively.
A subset M of L; is said to be a subface of L;. If int, (M) = M, then M is said to
be an open subface. Observe that open faces of one convex polyhedron are mutually
disjoint. We say that II is a supporting hyperplane to H at x € OH if x € II and II is the
boundary of the closed half space II" including H. We say that € OH has order « if the
intersection of all supporting hyperplanes to H at z is an affine subspace of dimension
a (Berger [9, Chapter 11]). We observe that x € inty (L;) has order d — 1. This is
equivalent to say that there is a small € > 0 such that B(x,e) N H is a half ball. We
have the same supporting hyperplane II at every point of the open face inty_;(L;). For
simplicity we call II the supporting hyperplane of the open face int,_1(L;). We also say
that II is the supporting hyperplane of the face L;. Moreover, if M is a nonempty open
subface of L;, then we say that II is the supporting hyperplane of the open subface M.
We need an assumption which ensures iterative arguments. By I, J, K and so on
we denote the multiindices like (iq,...,14,) taken from {1,...,v}. By I|; we denote the
truncated index (41, ..., imin{k,n}) and by I'oJ the composition (i, ..., %n, j1, ..., jm) with
J = (J1,---,Jm). Moreover, I o j stands for (iy,...,i,,j). Let |I| = n be the length of
I and write ¢; = ¢;, o---0); . By I C J we mean that |I| < |J| and the truncated
J| 1| coincides with I. By definition I = J if and only if I C J and I O J. Hereafter, we

assume the following nesting axiom which rules out the above filled Cantor set.
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Axiom 1. (Nesting Axiom) If i # j, then
i(H) Napi(H) = i (F) N1 (F).
In fact, this axiom is equivalent to the following stronger statement..

Lemma 4.1. (Indefinite Nesting) If |I| = |.J| and I # J, then

Yi(H) Ny (H) = (F) Ny (F),
and in particular ;(H) Ny (H) C F.

Proof. First, we claim

(4.1) Vi(H) N E = ¢i(F).
It is easy to see that ¢;(F) C ¢;(H) N F. Let us prove the opposite inclusion. We have
F =Y(F) =U;¥;(F), so that

w(H) 0 F = [ (H) sy ()

If i = j, then o (H) N (F) = oi(F). i # 7, then oi(H) N ;(F) C ;(F) Ny (F) C
Y;(F) by Axiom 1. Hence (4.1) holds.

Second, we show that (4.1) has a generalization
(4.2) Ur(H) N F =1 (F).
Let us prove (4.2) by induction on n = |I|. If n =1, then (4.2) is nothing but (4.1). Let
n > 1 and write [ = (iy,...,4,) =iy 0 I' with I' = (4y,...,4,). Then

i(H) N F =i, (Y (H)) OV F C iy (H) N F = i, (F)
by (4.1), so that vy (H)N¢; ' (F) C F. By the induction assumption 1y (H)NF = ¢y (F),
which, together with the previous inclusion, implies that
Yr(H) Ny, (F) = F 0 gp(H) N4y, (F) = ¥ (F) Ny, (F).

Hence ¢ (H)NF = (F)NF = ¢;(F). Thus (4.2) follows.

Finally, we prove the assertion of the lemma by induction on n = |I| = |J|. If n = 1,
then it is nothing but Axiom 1. Let n > 1 and write [ = i; 0 I’ and J = j; o J' in the
same way as in the preceding paragraph. If iy = j;, then I' # J', so that the induction

assumption yields
Yr(H) N (H) = i, (Y (H) Ny (H)) = i, (Y (F) O (F)) = ¢ (F) Ny (F).

- 27 - Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TgXed at October 12, 2000 9:15



If i, # jy, then
bi(H) N py (H) C iy (H) N iy, (H) = i, (F) Ny, (F) € F
by Axiom 1, so that
i(H) Ny (H) = oy (H) N py (H) OVE = oy (F) N, (F)
by (4.2). The proof is complete. 0

Remark 4.2. We have from Axiom 1
Vi (int(H)) N (int(H)) = int(¢;(H) N (H)) C int(F) =0 for i # j.

Thus the open set condition follows from our nesting axiom.

Remark 4.3. Lindstrgm [18] defined a similar nesting axiom. Namely, if |/| = |J| and
I # J, then he assumes that

i (F) Ny (F) = ¢r(Fo) Ny (Fo),
where Fj is the set of the essential fixed points of W. Thus, ¢;(F) N, (F) is a finite set
in his setting. (Note that he used the letter F' for the set of the essential fixed points
and the letter £ for the fractal.) On the other hand our nesting axiom allows for the
intersection to be an infinite set. The usual 3-dimensional Sierpinski gasket (depicted
in Figure 1.1) fulfills our Axiom 1 and the above Lindstrgm’s axiom. There are fractals

which satisfy Axiom 1 and fail to satisfy Lindstrem’s axiom. A typical example is a base-
the fist step intersects each other with a line segment. For the precise definition see the
explanation before Proposition 6.5.

We observe that the family of ¢;(H) has an inclusion property similar to Whitney

cubes.

Lemma 4.4. Let ;(H)N;(H)\ F # 0. Then one of the following holds:

(i) I =J and ¢1(H) = ¢;(H).
(i) TG J and ¢;(H) 2 o, (H).
(iii) 7 2 J and ¢ (H) G ¢, (H).

Proof. We assume that I # J and show either (ii) or (iii) holds. If |I| = |J|, then
Y (H) N, (H) C F by Lemma 4.1. This contradicts the assumption. Hence we have
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First Step. Second Step.

FI1GURE 4.2. Base-covered 3-dimensional Sierpinski gasket.

only to consider the case when |I| # |J|. Without loss of generality, we may assume
1| < |J|. Let J' = J| ;. Suppose J' # I. Then v (H) Ny (H) C o;(H) Nhyp(H) C F
by Lemma 4.1 again. This is a contradiction. Hence J|; = I. This means [ ; J and
¢r(H) 2 ¢;(H). The lemma is proved. O

As a result we have the following.

Corollary 4.5. Let I and J be multiindices. Then

(i) I =J <= yi(H)=1v,;(H).
(i) I GJ <= ¢i(H) 2¢,(H).
(i) 12 J <= ¢;(H) S ¢y (H).

Proof. For every statement “ = " is trivial. For the opposite implication we observe that
the condition in the right hand side for each statement implies ¢;(H) N, (H) \ F # 0,
since int(F') = () and int(H) # (). Hence the above lemma yields “ < ". O

Let
H\V(H)=P'U---UPH*

where P is a connected component of H \ W(H). We call P’ a pocket (of generation
0). The following lemma says that the complement of the fractal is decomposed into the

union of images of P!,..., P* under combinations of {,...,1,}.
Lemma 4.6. Let n > 0. Then
UT(H)\ OH(H) = 9" (H \ W(H)).
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Moreover, 1;(P") is a connected component of O™ (H)\ O"*Y(H), i.e. if |[I| = |J| = n and
(I,1) # (J,7), then ¢;(P") and ¢ ;(P?) are disconnected. The domain D = B\ F has the

following decomposition

1
(4.3) D=0uU U U V(P disjoint union,

[1]>0i=1

where we recall O = B\ H and ¢;(P") = P' if |I| = 0.

Proof. Observe
v (E)\ U H) = | o)\ Y s (OH) € | i (H\W(H)) = O"(H \ W(H)).
[T|=n [J|=n |I|=n
For the opposite we need the nesting axiom. Suppose to the contrary, there is a point z
in
(A W)\ (U () T () = (| 6 9E) A (| ().
[T|=n [J|=n

Then there are I, .J with [I| = |.J| = n such that 2 € ¢/ (H\V(H))Ny,(¥(H)). f I = J,
then ¢, '(z) € (H\W(H))NY(H) = 0, a contradiction. If I # .J, then Lemma 4.1 implies
that

x € (H\V(H)) Ny, (V(H)) C oy (H)Nipy(H) = r(F) Ny (F) C 1y (V(H)),
a contradiction.

We claim that ;(P") and ;(P?) are disconnected if (I,7) # (J,7). If I = J, then
i # j. By definition P’ and P are disconnected, so that ¢;(P?) and 1 ;(P?) = ¢;(P7?) are

disconnected and the claim follows in this case. Suppose I # .J. Then Lemma 4.1 implies

(4.4) Ur(PY) Ny (P7) Cypr(H) Ny (H) C F C O™ (H).
On the other hand both t;(P?) and t;(P?) are subsets of U"(H) \ $"*!(H), so that

Y (PN, (P7) = () by (4.4). Thus they are disjoint. Moreover, we have 1, (P")N,;(P7) =
Yr(PY) Ny (P?) = 0. Thus ¢;(P") and t,;(P?) are distinct connected components of
U (H) \ U"*1(H). In particular, ¢;(P") and +;(P’) are disconnected and the claim

follows in this case too. Since W™ (H) | F as n T 0o, the decomposition of D holds. O
Let #Z = {0} U {¢;(P?): |I| > 0,1 <i< pu}. Then
(4.5) p=Je

QeF
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We call Q = ;(P?) a pocket (of generation |I|). Each pocket  has a unique expression
Yr(P?). We let g(Q) = |I|, the generation of Q. We put g(O) = —1 and call O a pocket
of generation —1 for convention. By an elementary geometrical observation we see that
the interior int(P?) is a uniformly John domain. Since each pocket @ # O is one of the

images of P!, ..., P* under similarities, we have the following.

Lemma 4.7. For each pocket Q) the interior int(Q) is a uniformly John domain with

universal uniformly John constant.

In view of (4.5) and the above lemma we can conclude D is a John domain if pockets
are well connected. To describe the connection among pockets we divide their boundaries

into two parts:

Definition 4.8. Let ) be a pocket of generation g(Q) = n. We let
O\ U(H) ifQ+0, 80 N U (H) ifQ+#O,
0 if Q =0, oH it @ =0.
We say that e(Q) (resp. i(Q) ) is the exterior (resp. interior) part of the boundary of Q.

We assume the following.

Axiom 2. (Pocket Axiom) For each pocket P’ of generation 0 we assume:

(i) e(P") # 0 and it consists of finitely many open subfaces of H.
(ii) i(P?) consists of finitely many faces of some polyhedra appearing in W(H).
(ii) i(P) N OH C F.

As an example we give a picture for Example 9.7 of Falconer [13]. See Figure 4.3.
This is a fractal constructed from a generator of five line segments. We start with the
convex hull H of these five line segments. We have five similarities corresponding to five
line segments of the generator. The difference H \ W(H) consists of four pockets P!, P?,
P? and P* of generation 0. The pockets P! and P? are congruent; the pockets P? and
P* are congruent. Each pocket P' has e(P?) of one open line segment. The pocket P!
has i(P') of five line segments and the pocket P? has i(P?) of three line segments. We
observe that Axioms 1 and 2 hold.

Remark 4.9. Tt is easy to see that the 3-dimensional Sierpinski gasket and the base-covered

gasket both fulfill Axiom 2. See Section 6 for details on these examples.
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(a) Generator of fractal. (b) Fifth step.

6(101

¢) H\V¥(H)= P'UP>uU P3U P".

FIGURE 4.3. Example 9.7 of Falconer [13]. See also Figure 4.4 below for a
part of the next generation.

Remark 4.10. Observe from Lemma 4.6 that e(Q) = ¢;(e(P")) and i(Q) = ¢r(i(P?)) for
Q = 7 (P?), and that the above properties are inherited:

(i) e(Q) # 0 consists of finitely many open subfaces Lg of ;(H).
(ii) i(Q) consists of finitely many faces Mg of some polyhedra appearing in ¢, (V(H)).
(iii) {(Q)NOH C i(Q)NoY,;(H) C F.

Here the first inclusion of (iii) follows from i(Q) C ¢;(H) C H. We call Ly and M
a face of e(Q) and a face of i(Q), respectively. Since P’ is a connected component of
H\ W(H), it follows that e(P?) C P, so that e(Q) C @ by Lemma 4.6. On the other
hand, i(P") N P = (), and hence i(Q) N Q = 0.

The following lemma gives fundamental relationship among e(Q) and i(Q) for pockets

Q.
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Lemma 4.11. Let Q and R be distinct pockets. Then e(Q)Ne(R) =0 and i(Q)Ni(R) C

F. Moreover,
QNR\F = (e(Q)Ni(R) U (i(Q) Ne(R))

and either the set e(Q) Ni(R) or the set i(Q) Ne(R) is empty.

Proof. Since (@) C @ by Remark 4.10, it follows from Lemma 4.6 that e(Q) Ne(R) = (.

Let us prove the second assertion. We claim

(4.6) i(PYNi(P) C F ifi#j.

In view of Axiom 2 (iii) we have i(P") Ni(P?) N OH C F. Hence, it is sufficient to show
(4.7) OP'NOP Nint(H) C F.

Let z be a point of the set in the left hand side and take ¢ > 0 such that B(z,e) C int(H).
Since x is a limit point of distinct connected components P¢ and P? of H\ W(H), it follows
from the connectedness of B(x,¢) \ ¥, (H) and Axiom 1 that there exist distinct o and
such that

€0, (H)NOYs(H) C ¢o(H)Ntps(H) C F.

This implies (4.7) and hence (4.6).
Now we prove i(Q) Ni(R) C F for the general case. If one pocket, say R, is O, then

i(Q)Ni(R) =i(Q)NOH C F

by Remark 4.10 (iii). Let @ = ¢;(P") and R = v;(P?). Suppose |I| = |J|. If I # J, then

Lemma 4.1 implies
i(Q) Ni(R) C vy (H) N4y (H) C F.
If I = J, then i # j, so that
HQ) N i(R) = oy (i(P') Ni(P7)) C 4(F) C F

by (4.6). To complete the proof we let || # |.J|. We may assume that || > |.J| and hence
WI(H) c WWI+(H). We have from Remark 4.10 (iii)
((Q) Ni(R) = (9y;(H) ni(Q) Ni(R)) U (int(e; (H)) Ni(Q) Ni(R))
C F U (int(¥,(H)) now’ ™ (H)) = F.
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Moreover, Lemma 4.6 yields
QNR\F = (int(Q) Ue(Q) Ui(Q)) N (int(R) U e(R) Ui(R)) \ F
= (e(Q) Ni(R)) U (i(Q) Ne(R)).

Finally, the last assertion follows from Lemma 4.4. The lemma is proved. 0

Now we introduce a relationship among pockets Q).

Definition 4.12. Let @ and R be pockets. If e(Q) Ni(R) # 0, then we write Q 3 R and
say that @) is a child of R and that R is a mother of Q). If either Q = R or ) 77 R holds,
then we write () ~ R and say that () and R are linked. (Note that ) Z Q).) Moreover,

we put

Q) nNe(R) QTR

and call [@Q), R] the door between @Q and R. If there is a chain @1 2 Qs = -+ 3 Qy, then
we write Q1 < Q.

0.7 - {e(@) Ni(R) QIR

FIGURE 4.4. Example 9.7 of Falconer [13]: @ X R 2 O, the doors [Q, R]
and [R, O].

We readily have the following lemma from Lemmas 4.4 and 4.11.

Lemma 4.13. Let () and R be distinct pockets. Then the following statements holds:

(i) Q ~ R if and only if QN R\ F # 0.
(ii) If Q ~ R and a curve v C QU R connects a point in Q to a point in R, then v goes
through the door [Q, R], i.e., yN[Q, R] # 0.
(i) I Q = Gr(P') 3 R = vy (P9), then T 2 and vy (H) G ts(H).
(iv) If g(Q) > 0, then Q < O, i.e., there is a chain Q = Q1 3 -+ 3 Qr = O.
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(v) If Q1 2 -+ 2 Qy, then diam(Q,) < AN diam(Q},), where A = max{\;,...,\,} <1
with \; being the similitude for 1;. In particular, for every pocket )
diam( U Q') < Adiam(Q),
Q'<Q
where A > 1 is independent of ().

In Remark 4.10 we have observed that e(Q) consists of open subfaces of ¢; (H), where
Q = ¥7(P"). Now we use Axiom 2 (i) and (ii) to show that if @ X R, then e(Q) consists
of open subfaces disjoint from i(R) and open subfaces included in some face of i(R). More

precisely, we have the following lemma.

Lemma 4.14. Let Q 3 R. Let Lg be an open face of e(Q) such that Lg Ni(R) # 0.
Then there ezists a face Mg of i(R) such that Lo C Mpg.

Proof. By definition there is a face Mg of i(R) such that Lo N Mg # (). We, in fact, show
that Lg C Mg. Let Q = ¢;(P") and R = ¢;(P?). In view of Remark 4.10 we see that
Mp is a face of 1) j0q(H) for some o € {1,...,v}. Since

0 # LoN Mg Cr(H)Nthrea(H)\ F,

it follows from Lemma 4.4 that either I = Joa«a or | 2 J o a. Suppose first I = .J o .
Then Lg and My are an open subface and a face of the same convex polyhedron v (H).
Hence, Lo N Mg # 0 implies Ly C Mg. Suppose next [ 2 J o a. Since L intersects
the face Mg of 1.0 (H), it follows that Lo N 0 ., (H) # 0. Let II be the supporting
hyperplane of Lg. If IT N int(¢) 0 (H)) # 0, then 1N 9(¢ 00 (H)) would be the (d — 2)-
dimensional boundary of the (d — 1)-dimensional convex polyhedron TT N ., (H). Since
Lo C ¢i(H) C ¢joa(H), a point of Ly N 0 ,,,(H) could not be a (d — 1)-dimensional
interior point of L. This would contradict the fact that Lg is an open subface. Hence,
INint (100 (H)) = 0 and so Lo C 09 ;,,(H). Now, Lg and My are an open subface and a
face of the same convex polyhedron ., (H). Hence, Lo N Mg # 0 implies Lg C Mp. O

Let L' be a face of either e(P") or i(P") for a pocket P’ of generation 0. It is easy to
see that

dist(z,0P"\ L") > v dist(z, 041 (L") for z € L,

where d;_1(L}) = L\ I’ stands for the the boundary of the face L’ in the supporting
hyperplane of L*. We note that the constant A can be taken independent of P’ and L’
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since there are only finitely many polyhedra and faces. In view of Lemma 4.1, the above

properties are inherited by each pocket Q): If Lg is a face of either e(Q) or i(Q), then
1
(48) dlSt(’I‘, 8@ \ LQ) > Z dlSt(T, Bd,] (LQ)) for x € LQ,

where A is independent of ) and Lg. Moreover, diam(Lg) is comparable to diam(Q).

This observation, together with Lemma 4.14, yields the following lemma.

Lemma 4.15. Let Q 3 R and let Ly be a face of e(Q) included in the door [Q, R] =
e(Q) Ni(R). Then there is a point & € Lg such that

Squn(€) > — diam(Q).
Moreover, the door [Q), R] consists of such Lg and [Q, R] C int(Q U R).
Proof. We infer from Lemma 4.14 that Ly C int(Q U R) and
QU R) C (0Q \ Lq) U (OR\ Lq).
With the aid of (4.8) we find a point £ € L, such that
dist(€,00 \ Lo) > %dist(f, u1(Lo)) > %diam(Q).

By Lemma 4.14 there is a face My of i(R) such that Lg C Mg. Then
dist(§, OR \ Lg) > min{dist(§, OR \ Mg), dist(§, Mg\ Lg)}
1 . ) .
> me{dmt(f, a1 (Mpg)),dist(&,04-1(Lg)) }

1
by (4.8). The last assertion follows from Lemma 4.14. The proof is complete. O

Now we are in a position to prove the Johnness under Axioms 1 and 2.
Theorem 4.16. Assume Azxioms 1 and 2. Then D is a John domain.

Proof. Let xy € O be fixed. It is sufficient to show that each point € D can be connected
to xy by a cigar curve. In view of (4.5) it is sufficient to show that an arbitrary point x
in an arbitrary pocket ) can be connected to zy by a cigar curve. If ) = O, then this is

trivial. Hence we assume ¢(@) > 0. By Lemma 4.13 we obtain a chain
Q=i 3Q=0.
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By Lemma 4.15 we find points §; € [Q;, Q;11] such that

(4.9) 0(6) > da,a.,, (€) > & diam(@)

for 1 < i< k—1. Let § = x and & = z( as a convention. Since each int(Q);) is a
uniformly John domain with universal John constant by Lemma 4.7, we find cigar curves
giff@ connecting & 1 and &; in Q; for 1 <1 < k. We claim that

Y=&GG U UG &

is a distance-carrot curve connecting r = &, and xg = &, i.e.,
1
(4.10) dp(z) > Z\x — 2|

for all z € . Then the equivalence among the length-cigar-condition, the diameter-cigar-
condition and the distance-cigar-condition ([19, Lemma 2.7] and [21, Theorem 2.18])
proves that D is a John domain.

Now let us prove (4.10). Since 5/0\5/1 U-- Uéi\rfz is covered by the chain @ = --- 3 @,
it follows from Lemma 4.13 (v) and (4.9) that

(4.11) 2 — & < diam (&, U -+ U &_1&) < Adiam(Q;) < Adp(&).

This means that (4.10) holds at z = &; for i = 0,..., k. Let us consider other z € ~. If
Z € B(gl, %5,)(52)), then (5])(2) 2 %5,)(52) and by (411),

o= 20 < Jo = 6] + 16— 21 < o — &1 + 300(6) < (4+ 3)60(&).

Hence (4.10) holds for z € v N B(&;, 36p(&)) and hence for z € v N (UL B(&, 56p(&))).
On the other hand, if z ¢ B(&;, %5,)(@)), then

=2 <z =Gl + 16— 2] < Adp(&) + & — 2] < A+ 1)[€ - 2|

by (4.11). Since & _1&; is a cigar curve in @);, it follows that
1 . 1
nl2) > Fg,(2) > T min{ly — 2|, |z~ &1} >l - 2]

for z € & 16 \ (B(&,360(&)) U B(& 1,26p(& 1))). Hence (4.10) holds for z € 7\

ST}

(UE_yB(&, 50n(&))). Thus (4.10) holds for all z € . The proof is complete. O
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5. FRACTAL UNIFORMLY JOHN DOMAIN

It is much more difficult to show that D is a uniformly John domain than a John
domain, because we have to treat arbitrary two points in D and to connect them by a
cigar curve with diameter bounded by the internal metric between the points up to a
multiplicative constant. To this end we shall, from now on, assume further two axioms,
viz. Axioms 3 and 4. These axioms look rather technical. We do not know whether they

are sharp or not. One of them is the following.

Axiom 3. (Linkage Axiom) Suppose distinct pockets R and S have a common child @,
ie, Q@ 3 Rand @ 2 S. Then R and S are linked, R ~ S, i.e., either R 2 Sor R 7 S
holds.

Remark 5.1. We can view the structure of pockets as a graph where the pockets are nodes,
and the connections are given by the linkage, ~. The linkage axiom above guarantees
that this graph is a chordal graph. If each pocket has a unique mother, then we have a

tree (with infinite degree).

Recall the definition of the internal metric in the introduction. We use the same

definition for a general arcwise connected set F, i.e.,
Pp(z,y) = inf{diam(y) : ~ is a curve connecting = and y in F'}

for x,y € E. As before Lemma 2.3, we extend Pg(x,y) up to the closure of E with respect
to Pr. By definition Pf is decreasing with respect to E, i.e., if E' C F, then

Pe(z,y) < Ppi(z,y) forxz,y € E'
We assume the following axiom, which gives a reverse inequality in some sense.
Axiom 4. (Stability of the Internal Metric Axiom) We assume that
(5.1) Po(x,y) < APp(x,y) forxz,y € Q.
Moreover, we assume that if () = R, then
(5.2) Pour(z,y) < APp(z,y) forz,y € QU R.

Here A is a universal constant independent of () and R.
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Remark 5.2. We note that Axiom 4 is equivalent to the following: If z,y € @ (resp.
z,y € QU R) are connected by a curve v C D, then they are connected by a curve 7 C Q)
(resp. 7 C @ U R) with diam(y) < Adiam(y). In view of Lemma 4.13, if z € @ and
y € R, then 5 goes through the door [Q, R], i.e., ¥ N [Q, R] # (.

With the aid of Lemma 4.6, it is sufficient to verify (5.1) only for the pockets P!, ..., P*
of generation 0. On the other hand, (5.2) is not so obvious, since there are infinitely many
essentially different possibilities of a pair Q = R. However, it can be verified for particular
examples, including the 3-dimensional Sierpinski gasket, the base-covered 3-dimensional

Sierpinski gasket and the 2-dimensional Sierpinski gasket with gap. See Section 6.
Theorem 5.3. Assume Azxioms 1, 2, 8 and 4. Then D is a uniformly John domain.
We prepare the proof of Theorem 5.3 with the following two lemmas.

Lemma 5.4. There exists an integer N > 3 such that every chain Q1 3 -+ 2 Qn of
pockets of length N has a pocket QQ;, 3 < j < N, with

diSt(Ql, Q]) > dlam(Ql)

Proof. Suppose Q1 = -+ 2 Qn. Let U = {z € R? : dist(z,Q,) < diam(Q;)} and
V = {z € R? : dist(z, Q) < 2diam(Q,)}. Then |V| < Adiam(Q;)? On the other hand
Lemmas 4.7 and 4.13 imply

Q)] >  diam(Q,)* >  diam(Q))"

Hence, the number of j such that @); C V is bounded. Suppose Q;\V # 0 and Q;NU # 0.
Then the uniform Johnness implies that there is a ball lying in @; N (V' \ U) with radius
comparable to diam((Q);). Hence, the number of such j is bounded. Thus there is a pocket
Qj, 3 < j < N, with @;NU = 0, and hence dist(Q;,Q;) > diam(Q), provided N is
sufficiently large. O

The following lemma asserts that every curve 7 connecting two points z and y in D
can be modified so as to be covered by a chain with a certain property. Axioms 3 and 4

are used only in this lemma.

Lemma 5.5. Suppose two points x,y € D are connected by a curve v C D. Then

there are a curve 7 C D connecting x and y with diam(y) < Adiam(vy), and a chain
Qi ~ -~ Qp such that 7 C QU -+ UQy, YNI[Qi,Qiya] # 0 for 1 <i < k—1 and
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Q12 2Qm - Qp with 1 <m < k. Here the constant A is independent of x, y
and .

Proof. Since B\ W"(H) is an increasing sequence of open sets converging to D = B\ F, it
follows from the compactness that v C B\¥"(H) for some n. Hence, we find finitely many
mutually disjoint pockets {@,..., R} whose union covers 7. Without loss of generality,
we may assume that each pocket intersects 7. By induction on the number of {Q, ..., R}
we claim that there exist Qq,...,Qr € {Q,..., R} such that Q; ~ -+ ~ Qy, z € @
and y € Q. If both x and y belong to the same pocket in {@Q, ..., R}, then the claim
trivially holds. Now we assume that {Q,..., R} has at least two pockets and = and
y belong to different pockets. (From {@Q,..., R} we find a pocket, say ()1, such that
z € Q1. Then y & Q1. Let t; = sup{t : z(t) € @1}, where z = z(¢), 0 < t < 1,
is a parameterization of v such that z(0) = x and 2(1) = y. Then 0 < #; < 1 and
z1 = z(t1) € 0Q, = e(Q1) Ui(Q1). Hence, from {Q,..., R} we find a pocket, say Qo,
such that @1 ~ Q9 and z; € YN [Q1,Qs]. If t; = 1, then z; = y and Q1 ~ Qs is the
required chain. Suppose ¢; < 1. Since [Q1, Q2] C int(Q; U (Q)3) by Lemma 4.15, we find 7,
such that #; < ty < 1 and z9 = z(t3) € Q2. Then the subcurve z = 2(t), to, <t < 1, is
covered by {Q,..., R} \ {@1}. By induction we can extract a chain Qs ~ --- ~ Q) from
{Q, ..., R} \ {Q1} such that x5 € Qs and y € Q. Now Q1 ~ Q3 ~ - -+ ~ @y, is a required
chain. Thus the claim is proved by induction. Note that yN @Q; # @ for s = 1,...,k and
yet the union )y U - - - U @)x may no longer cover 7.

Next, we remove small pockets from the chain ()1 ~ --- ~ ). We say that @), is
removable if 2 < i <k —1and Q; 1 = Q; 2 Q1. If there is a removable @Q);, then
we remove it from the chain @)1 ~ -+ ~ @Jy. By Axiom 3 we have either @)1 ~ --- ~
Qi1 ~ Qiyr ~ - ~QrorQp ~ -~ Qi1 = Qi1 ~ - ~ Q Hence we may
assume that there is no removable (); in the chain ¢); ~ --- ~ @Q; in other words,
Q2 3Qm - Q. Note that yNQ; #0 fori=1,... k.

Finally we construct a modified curve v C Q; U - - - U @}, with the required properties.
At this stage Axiom 4 plays an important role. Let & € yNQ; fori = 1,...,k. In
particular, we may let & = x and &, = y. By Axiom 4 we find a curve fszz C QiUQit
such that

diam(@:l) < APp (&, &) < Adiam(y)
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fori=1,...,k —1. Since & € v, it follows that SZQ“/; C B(z, (1 + A)diam(y)), so that

—_

F=6& U U& 16 C Bz, (14 A) diam(v)).

Hence diam(y) < 2(1 + A)diam(y). Of course the curve ¥ connects x to y and 7 C

Q1 U---UQy. In view or Lemma 4.13 we see that the curve ;&1 goes through the door
(Qi, Qix1] and so does 7, i.e., 7N [Q;, Qir1] # 0. The lemma is proved. a

Now we are in a position to prove the main theorem.

Proof of Theorem 5.3. Let x,y € D and suppose 7y connects x and y in D. It is sufficient
to show that there is a cigar curve 4 connecting = and y with diam(y) < Adiam(y),
where A is independent of z, y and 7. In view of Lemma 5.5, we may assume that v is
covered by a chain Q1 ~ -+ ~ Qp with z € Q1, ¥y € Qp, Q1 23 - 2 Qm = -+ 7= Qk
and v N [Qi, Qis1] # 0 for 1 <i <k —1. Take z; € v N [Qi, Qiy1]. The point x; may be
close to the boundary. In order to construct a cigar curve, we shall choose another point

z} € [Q;, Qit1] which is far from the boundary and yet close to z;. To this end let

(= max diam(y N Q).

We claim
(5.3) ¢ < diam(y) < AL,

The first inequality is obvious. Let N > 3 be as in Lemma 5.4. We have

m+N—2 m+N-—2
diam (ww( U @)) < Y diam(yN@;) < (2N - 3)¢,

i=m—N+2 i=m—N+2

where Q; = () for 7 < 1 and for ¢ > k as a convention.

Now let us estimate diam(yN (U™, V™' Q;)) in case m > N. Since m may be arbitrarily

large, the above summation estimate does not work. Instead, by Lemmas 4.13 and 5.4 we

have

m—N+1
diam (’Y N U @)) < Adiam(Qp-vy1) < Adist(Qm-n11, Q)
i=1

for some j, m — N + 3 < j < m. Recall we have x; € yN [Q;, Q;;1]. Since both z; ; and
z; belong to v N Q;, it follows that |z;_; — x;| < ¢, so that

dist(Qm-n+1, Qj) < [Tm-nt1 — Tj| < |Tmoni1 — Tmento| + -+ |20 — x5 < (N = 1)L
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Hence diam(y N (U, V1'Q;)) < AL If k > m + N — 1, then similarly

diam (’yﬁ( U @)) < Al

i=m+N-—-1

Collecting the above inequalities, we obtain the second inequality of (5.3). Now we
construct a cigar curve 7 in U, B(z, A¢) by modifying -, where A > 1 is independent of
z, y and 7. In view of Lemma 4.15 we find points z} in the door [Q;, Q1] such that

T . : :
0p (T;k) > 5QiUQi+1 (T;k) > Z mln{é, dlam(Qi)’ dlam(Qi+1)}’

IOD(J?;, x?) < inUQiH(x;: 377) < Al

(5.4)

for 1 <i <k —1. See Figure 5.1. As a convention we let 2j = 2 and 2} = y. Observe

F1GURE 5.1. An illustration of the proof of Theorem 5.3 for the example
in Figure 6.5 in Section 6. The case v is covered by Q1 2 Q2 = Qs 7~ Q4.
Note dist(Q,Q3) > diam(Q;). The maximum ¢ of diam(y N Q;) is taken
by (2 not by the biggest pocket ().

from Axiom 4 that

Po,(x; 1, 27) < APp(ai_y,2f) < A(Pp(x] 1, 1) + Pp(wi1, x3) + Pp(xi, 7)) < Al
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for i = 1,... k. Since each int(Q);) is a uniformly John domain by Lemma 4.7, we can

find, by Lemma 2.3, a cigar curve z;_,x; such that

1 —_
dp(z) > dg,(z) > Zmin{|x;‘4 —z|, |z —z}|} forall z €z} |z},

(5.5)

e~

diam(x} jz}) < AL

Finally, we show that ¥ = x§23 U --- U} 2} is a required cigar curve connecting z and
y. The second assertions of (5.4) and (5.5) show that ¥ C U,e,B(z, Af), so that by (5.3),

(5.6) diam(7) < A/.

We claim

L —ay if0<i<m-—1,
(5.7) dp(z}) >

Ly —at| ifm<i<k

Let us prove (5.7) for 0 < i < m — 1. Since x5 = z, (5.7) is obvious for i = 0. Suppose

1 <i<m—1. Since zfaj U Uzl ;2! is covered by the chain ); X --- 2 @, it follows
from Lemma 4.13 that |z — z]| = |zj — 2| < Adiam(Q;) < Adiam(Q;;1). It also follows
from (5.6) that |z — 2| < diam(¥y) < Af. Hence the first assertion of (5.4) yields (5.7)
for 1 <4 < m — 1. Similarly, we can prove (5.7) for m < i < k. Now in the same way as

in the proof of Theorem 4.16 we can prove
1 ~
dp(z) > Zmin{|x—z|,|z—?/‘} for all z € 7.

This, together with (5.6), shows that 7 is a required cigar curve connecting x and y. The

proof is complete. ]

6. EXAMPLES OF FRACTAL UNIFORMLY JOHN DOMAINS

In this section we verify the axioms stated in the previous sections for particular
examples, including Example 9.7 of Falconer [13], the 3-dimensional Sierpinski gasket,
the base-covered 3-dimensional Sierpinski gasket and the 2-dimensional Sierpinski gasket
with gap. Main technical difficulty arises for Axioms 3 and 4. We first give sufficient
conditions for Axiom 3, which can be verified for particular examples. The following is

an obvious one.

Proposition 6.1. Suppose each pocket QQ with g(Q)) > 0 has just one mother. Then
Azxiom 8 holds.
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Example 9.7 of Falconer [13] satisfies the assumption of this proposition. Unfortu-
nately, the Sierpinski gasket does not satisfies the assumption. To see this and to show
Axiom 4, let us illustrate the relationship Q < R for the 3-dimensional Sierpinski gasket.
See Figure 6.1. Let H be a regular tetrahedron with vertices vy, vy, v3 and vy. Let 1);
be the similarity composed of translation and dilation of factor 1/2 with fixed point at
v; fori =1,...,4. We call i € {1,2,3,4} a label. Observe that if i # j, then two small
tetrahedra ;(H) and v;(H) have the common point v;(v;) = 1;(v;). More generally, we
write ©;,..q, = Y7 and (§; 41, ..., 0,) = Yi,.i, (v;) if T = (31, ...,4,). We observe that

(F3d1, - vin) = (013 5y iz, - - -y 0n)

and this is the common point of ¢;,..;, (H) and ;;, ;. (H). This observation determines
the combinatorial relationship for the Sierpinski gasket, which has been studied by many

authors, particularly in probabilistic context.

Vg

FI1GURE 6.1. Relationship for the Sierpinski gasket. Each ; has the fixed
point v;.

In this paper, we are interested in the complement of the Sierpinski gasket. Let
U = {41, 19, V3, 14} be the set valued mapping and observe that H\W(H) consists of a reg-
ular octahedron, called a pocket P. We see that i(P) consists of four regular triangles with
vertices {(1;2), (1;3), (1;4)},...,{(4;1),(4;2), (4; 3) }, respectively. Similarly, e(P) con-
sists of four regular triangles with vertices {(1;2),(2;3),(3;1)},...,{(2;3),(3;4), (4;2)},

respectively. In particular, e(P) has a subface in each face of H. Our relationship ‘=’
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among pockets up to the second generation is as follows:
P, ¢i(P),¢ij(P) 30 =B\ H,
Vi(P), ¢y (P) I P fori # j,
Vi (P) Z P.

Relationship for pockets of general order can be obtained by the following considera-
tion. Let {7, j, k,¢} be an enumeration of the labels {1,2,3,4}. By A(i, j, k) we denote
the triangle with vertices v;, v; and v. Since 1); is the composition of translation and
dilation, it follows that ¢;(A(i, , k)) is a triangle lying in A(7, j, k). On the other hand,
e (A(i, 7, k)) is a triangle parallel to A(i, 7, k) with

Aist (0415, K)), (1,5 ) = = dinm(77),

so that

dist (4 (H), A (i, 7,k:)):%diam(H).

More generally, we have

1/)’( (7 ]a ))CA(7a]ak) lf/QI,
(6.1)

dist(v; (H), A(4, j, k) > % diam(¢; (H)) iftel.
Since i(O) (resp. i(P)) is the union of four triangles of the form A(7, j, k) (resp. ¥o(A(i, 4, k))),

we obtain the following proposition from the above observation.

Proposition 6.2. The relationship ‘2’ for the 3-dimensional Sierpinski gasket is char-

acterized as follows:

(i) ¥r(P) 2 O if and only if there is a label not appearing in I.
(i) Y1 (P) 2 ¥y (P) with I = (i1,...,i,) and J = (j1, ..., jm) if and only if n > m and

imy1 does not appear in {imia,. .., in}.

Now we observe that the Sierpinski gasket satisfies the assumption of the following

lemma.

Lemma 6.3. Assume that

(6.2) e(Q) C e(R) Uint(y,(H))
for every pair of pockets Q@ = ;(P") and R = v;(P?) with Q 3 R, where ¢(R) is the
union of all open faces of 0y ;(H) intersecting e(R). Then Axiom 3 holds.
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Remark 6.4. Suppose e(R) intersects every open face of 0¢ ;(H). Then e(R) = 0¢,(H)
and (6.2) holds for every Q = R. A typical example is the 3-dimensional Sierpinski gasket.

Proof. Suppose distinct pockets R = 1;(P7) and S = v (P¥) satisfy Q T Rand Q 2 S
with @ = ¢;(P’). By Lemma 4.4 we have J G I, K G I and Q C ;(H) C 9;(H) N
Vi (H). Moreover, either J ; KorJ 2 K holds. Without loss of generality, we may
assume that J 2 K. Then

i(S) A int (5 (H)) = 0.
since i(S) C 0¥ k41 (H) and int(¢;(H)) C int(V);(H)) C int(¥ x4 (H)). By definition
e(Q)Ni(S) # 0, so that e(R)Ni(S) # 0 by (6.2). Observe that €(R) consists of open faces
Ly of 0y ,(H) and that i(S) consists of faces Mg of Ok +1(H). Since e(R) Ni(S) # 0,
we find [f:;g and Mg such that Eg N Mg # (), which automatically implies that [f:;z C Ms.
By definition there is an open face Ly C e(R) which is included in Lp. Hence Ly C Mg,

which means R 2 S. The lemma is proved. O

The base-covered 3-dimensional Sierpinski gasket provides an example satisfying (6.2)
and yet e(R) # 0¢;(H). See Figures 4.2 and 6.2. Let us give the precise definition.
We use the same notation as before Proposition 6.2. Besides the similarities vy, ..., 9y,
we consider one more similarity 15 which maps H to the small tetrahedron with base
A((2;3)(3;4)(4;2)). Observe that the base M = A(234) of H is covered by the bases of
Yo(H), ..., ¢¥s(H). We note that 15 involves a rotation. We assume that the rotation
axis goes thorough v; and is perpendicular to M. The set of labels for the base-covered
3-dimensional Sierpinski gasket is {1,...,5} and ¥ = {¢y,...,¥5}. We see that H \
U(H) = P with P the octahedron minus v¢5(H). Observe that M and its image ¢;(M)
lie in the fractal F'. Hence e(P) consists of three regular triangles A((1;2)(2;3)(3;1)),
A((152)(2;4)(4; 1)) and A((1;3)(3;4)(4;1)). Moreover, e(P) = 0H \ M consists of three
regular triangles A(123), A(124) and A(134). Observe that 15(P) C ¢5(H) C int(H) U
M, so that 15(P) Z O. From this observation as well as Lemma 4.6 and Proposition 6.2,

we obtain the following proposition.

Proposition 6.5. The relationship ‘3’ for the base-covered 3-dimensional Sierpinski gas-

ket is characterized as follows:

(i) ¥ (P) = O if and only if the label 5 does not appear in I and one of the labels in
{2,3,4} does not appear in I.
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(ii) Yr(P) 2 s (P) with I = (in,...,1,) and J = (j1,...,Jm) if and only if n > m,
imi1 7 1 and the label 5 and i1 do not appear in {ipio, ... in}.

In particular, (6.2) and hence Aziom 8 hold.

V2

(W M M

FIGURE 6.3. Sierpinski gasket with
gap.

FIGURE 6.2. Base-covered
Sierpinski gasket.

Remark 6.6. A similar situation occurs for a 2-dimensional Sierpinski gasket with gap.
We start with the regular triangle H and similarities 1, 15 and ¥3 composed of translation
and dilation each of which has a fixed point at the corresponding vertex of H. Let us
suppose ¢, corresponds to the top of H and its dilation factor is less than 1/2. Both
and 13 have dilation factor 1/2. Then the bottom line segment M of H is covered by
o(H) and ¢3(H). We have one pocket P of generation 0 with e(P) = 0H \ M. It is

again easy to show (6.2) and Axiom 3 for this example. See Figure 6.3.
Now let us consider Axiom 4. First we prepare the following lemma.

Lemma 6.7. Suppose every pocket P of generation 0 is conver. Then (5.2) holds for
Q 2 R with g(R) > 0.

Proof. By assumption and Lemma 4.6 every pocket of nonnegative generation is convex.
Suppose @ 2 R with g(R) > 0. Then there is a face L of e(Q) lying in i(R) by Lemma
4.14. Let I1 be the supporting hyperplane of L. Since () and R are convex, it follows that
IT separates them. Take x € () and y € R. Observe that

dist(z, L) < Adist(z, 1) < Alz — y/.
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Hence we find z € L with |z — 2| < A|z — y|. By convexity the line segments 7z and zy

lie in @) and R, respectively. This implies
Paun(e,y) < |3 — 2|+ |2~y < 2o — 2 +]o — yl < 24+ D]z —y).
Since |z — y| < Pp(z,y), this proves (5.2) for g(R) > 0. O

Proposition 6.8. The 3-dimensional Sierpinski gasket satisfies Aziom 4.

Proof. Since the unique pocket P of generation 0 is an octahedron, a convex polyhedron,
it follows that Pp(x,y) = |z — y|, so that (5.1) holds. Lemma 6.7 shows (5.2) for @ X R
with g(R) > 0. Hence, it is sufficient to show (5.2) for @ 2 O. Let z € @ and y € O.
Since y € H, there is a face M of H whose supporting hyperplane II separates H and y.

If e(Q) has a face lying in II, then the same argument as in Lemma 6.7 shows that
pQUO(may) S A‘T o y| S APD(m,y),

so that (5.2) follows in this case. Suppose e(Q) has no face lying in II. Then, it follows

from (6.1) that

2~y > dist(Quy) > —= diam(uss (H)) = % diam(Q),

S

where Q = ¢;(H). Now we take Z € e(Q) C i(O). Then
Paco(y) < Pl 7) + PolF,y) < o — 7 + AT — y| < (1L+ Az — 7| + Al — y]
< (14 A)diam(Q) + Alz —y| < A'|lz —y| < A'Pp(z,y)

with A’ = /3(1 4+ A) + A. Thus (5.2) holds in this case too. O

Corollary 6.9. Let F' be the 3-dimensional Sierpiniski gasket. Then D = B\ F is a

uniform domain.

Proof. ;From Remarks 4.3 and 4.9 we have Axioms 1 and 2. Axioms 3 and 4 follow from
Remark 6.4 and Proposition 6.8. Hence Theorem 5.3 implies that D is a uniformly John
domain. It is easy to see that the internal metric Pp(z,y) and the Euclidean metric are

comparable, so that D is a uniform domain. ]
Proposition 6.10. The 3-dimensional base-covered Sierpinski gasket satisfies Azxiom 4.

Proof. 1t is easy to show (5.1). Let us prove (5.2). We use the same notation as in
Proposition 6.5. First we prove (5.2) for ¢;(P) = Q = O. In view of Proposition 6.5,
the label 5 does not appear in I. Let x € @) and y € O. Let I, be the supporting
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hyperplane of the base M = /\(234) and let II}, be the half space bounded by Iy, and
including H. Suppose y € H?\—// \ H. Then there is a supporting hyperplane II # II; of a
face of H separating x and y. Since the label 5 does not appear in I, the same argument
as in Proposition 6.8 yields (5.2) in this case. Suppose y ¢ I1;,. Then every curve Ty

connecting = and y in D must intersect II,;. Hence we find y € II,; N O such that

pD('TJ?j)SpD(:EJy)_FS and PD(ﬂ,y)SPD(x,U)—FS

for ¢ > 0. We also observe that |y —y| = Pp(y,y) = Pouo (Y, y). We have

Pouo(z,y) < Pouo(x,y) + Pouo (Y, y) < APp(x,y) + |y — y| < 2A(Pp(z,y) +€),

where the second inequality follows from the first case applied to x and 3. Since £ > 0 is
arbitrary, we have (5.2) in this case, too. Second we prove (5.2) for @ = ¢;(P) 2 R =
1 (P). If the label 5 does not appear in I\ .J, the same argument as in Proposition 6.8
shows (5.2). If the label 5 appears in I\ J, then it must appear at the first place and
the same argument as above can be made by the pull back w;l. Hence (5.2) holds in any

case. ]

Corollary 6.11. Let F' be the 3-dimensional base-covered Sierpiniski gasket. Then D =

B\ F is a uniformly John domain.

Proof. ;From Remarks 4.3 and 4.9 we have Axioms 1 and 2. Propositions 6.5 and 6.10

prove Axioms 3 and 4. Hence Theorem 5.3 completes the proof. O

Remark 6.12. In contrast the usual the 3-dimensional Sierpinski gasket, the base-covered

Sierpinski gasket is not a uniform domain since Pp(x,y) and |z — y| are not comparable.

If the domain D is simply connected in the following sense, then Axiom 4 can be

verified rather easily.

Proposition 6.13. Suppose each pocket Q with g(Q) > 0 has just one direct predecessor.
If (5.1) holds, then Aziom 4 holds.

Proof. Let Q@ X Rand let x € Q and y € R. Let v C D be a curve connecting x to y with
parameterization: z = z(t), 0 <t < 1, 2(0) = = and 2(1) = y. Put t = sup{t : z(t) € Q}.

Then 7 = z(t) € ¢(Q) Ni(R) by assumption. Observe that

Pp(x,z) < diam(y) and Pp(z,y) < diam(y),

- 49 — Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TgXed at October 12, 2000 9:15



so that by (5.1)
Pour(z,y) < Po(z,z) + Pr(z,y) < A(Pp(z, ) + Pp(T,y)) < 2A diam(y).
Taking the infimum with respect to v, we obtain (5.2). O

The hypotheses of Proposition 6.13 hold for many simply connected fractal domains.
For example the complement of the fractal of Example 9.7 of Falconer [13] (see Figure
4.3) satisfies the hypotheses.

Another example of a simply connected fractal is given as the closure of the union of
horizontal and vertical line segments as follows: We identify R? and C and write z = x+iy
for a generic point. By [z, w] we denote the closed line segment connecting z and w. We
start with four line segments [0, 1], [0, 2], [0, —1] and [0, —%]. At the second stage we add
four line segments [ — 2 L+ 4] [—1+ % L4 2] [—2 -4 —L4i]and [ — £ 4 — 4] each
of which perpendicularly bisects the first line segment in this order. We repeat the same

procedure and take the closure of the union of the resulting line segments. See Figure 6.4.
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— P
(a) Second step. (b) Fifth step.

FIGURE 6.4. Fractal given as the closure of line segments.

This fractal is actually given as the self-similar fractal of W = {4, 19, 13,14}, where
P1(2) = 324+ 5. a(z) =2z + L 4hy(2) = 12— 5 and ¢y (2) = Lz — L. The system U has
two different scaling factors % and i. We observe that the rhombus with vertices at 1

s %a
—1 and —2% satisfies W(H) C H and the difference H \ U(H) consists of four pockets P,
P?, P and P? of generation 0. All of them are congruent to each other. Each pocket
P’ has e(P?) of one line segment. Every pocket @ of nonnegative generation has just one

mother. See Figure 6.5.

Corollary 6.14. Assume Azioms 1 and 2. Suppose each pocket QQ with g(Q) > 0 has

just one direct predecessor and
Po(z,y) < Alz —y| foraz,y€Q

- 50 - Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TgXed at October 12, 2000 9:15



(a) H\V(H) =P'uP?uP*u P (b) Third step.

FIGURE 6.5. D is given as the union of pockets with unique mother.

with A independent of a pocket Q). Then D = B\ F is a uniformly John domain. In
particular, if F is the fractal of Example 9.7 of Falconer [13] or the fractal explained above,
then D = B\ F is a uniformly John domain.

Proof. Propositions 6.1 and 6.13 prove Axioms 3 and 4. Hence Theorem 5.3 completes

the proof. O
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