
MARTIN BOUNDARY OF A FRACTAL DOMAINHIROAKI AIKAWA, TORBJ�ORN LUNDH, AND TOMOHIKO MIZUTANIDedicated to Professors Masayuki Itoh and Hisako Watanabeon the occasion of their 60th birthdaysAbstract. A uniformly John domain is a domain intermediate between a John domainand a uniform domain. We determine the Martin boundary of a uniformly John domainD as an application of a boundary Harnack principle. We show that a certain self-similarfractal has its complement as a uniformly John domain. In particular, the complementof the 3-dimensional Sierpi�nski gasket is a uniform domain and its Martin boundary ishomeomorphic to the Sierpi�nski gasket itself.1. IntroductionIn the previous paper [1] the �rst author proved a uniform boundary Harnack principlefor a bounded uniform domain. As a result, it is shown that the Martin boundary of abounded uniform domain is homeomorphic to the Euclidean boundary. In this paper, weshall study more general domains, mainly uniformly John domains introduced by Baloghand Volberg [5, 6]. A uniformly John domain is a domain intermediate between a Johndomain and a uniform domain. In the �rst part we shall establish a certain uniformboundary Harnack principle for a uniformly John domain. Its Martin boundary will bedetermined as a corollary to the boundary Harnack principle. The Martin boundary isno longer expected to be homeomorphic to the Euclidean boundary. Instead, it will turnout to be homeomorphic to the ideal boundary with respect to the internal metric (Seebelow). The second part of the paper deals with more concrete examples of John domainsand uniformly John domains. We shall provide two axioms for a self-similar fractal which1991 Mathematics Subject Classi�cation. 31B05, 31B25.Key words and phrases. Martin boundary, fractal, boundary Harnack principle, Green function,uniformly John domain, internal metric .The last half of this work was done when the �rst two authors visited the Mittag-Le�er Institute.They acknowledge the supports from the Mittag-Le�er Institute, the Royal Swedish Academy of Sciencesand, for the �rst author, the Japan Society for the Promotion of Science. This work was supported inpart by Grant-in-Aid for Scienti�c Research (A) (No. 11304008) and (B) (No. 12440040) Japan Societyfor the Promotion of Science.{ 1 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



ensure that the complement of the fractal is a John domain, and two more axioms fora uniformly John domain. Among the axioms we have a certain nesting axiom which issimilar to Lindstr�m's rami�ed condition in [18].Let us begin with the de�nitions of a John domain, a uniform domain and a uniformlyJohn domain. Throughout the paper, let D be a proper subdomain in Rd , d � 2, and let�D(x) = dist(x; @D). We say that D is a John domain if there are x0 2 D (John center)and A1 � 1 (John constant) such that each x 2 D can be connected to x0 by a recti�ablecurve  � D with `((x; z)) � A1�D(z) for all z 2 ;(1.1)where (x; z) is the subarc of  from x to z and `((x; z)) is the length of (x; z). We saythat D is a uniform domain if there exists A2 � 1 (uniform constant) such that each pairof points x; y 2 D can be connected by a recti�able curve  � D for whichminf`((x; z)); `((z; y))g � A2�D(z) for all z 2 ;(1.2) `() � A2jx� yj:(1.3)We note that (1.3) is regarded as the bounded turning condition of  (cf. [21]). Appar-ently, a uniform domain is a John domain.In connection with conformal dynamics, Balogh and Volberg [5, 6] introduced a uni-formly John domain. It is a domain intermediate between a John domain and a uniformdomain. Let us give the de�nition. First we de�ne the internal metric �D(x; y) by�D(x; y) = inffdiam() :  is a curve connecting x and y in Dgfor x; y 2 D. Here diam() denotes the diameter of . Obviously jx� yj � �D(x; y). Wesay that D is a uniformly John domain if there exists a constant A3 � 1 (uniform Johnconstant) such that each pair of points x; y 2 D can be connected by a curve  � D forwhich minf`((x; z)); `((z; y))g � A3�D(z) for all z 2 ;(1.4) `() � A3�D(x; y):(1.5)By de�nition uniform $ uniformly John $ John:{ 2 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



The di�erence between a uniform domain and a uniformly John domain arises from thedi�erence between the right hand sides of (1.3) and (1.5). One may say that a uniformdomain is a uniformly John domain with internal metric satisfying �D(x; y) � Ajx � yjfor x; y 2 D with positive constant A.Let us illustrate the above de�nitions by a Denjoy domain, the complement of a closedset in a hyperplane. By B(x; r) we denote the open ball with center at x and radius r.We identify the hyperplane f(x1; : : : ; xd) 2 Rd : xd = 0g with Rd�1 . By B0(x; r) we denotethe (d� 1)-dimensional ball with center at x and radius r, i.e., B0(x; r) = Rd�1 \B(x; r),for x 2 Rd�1 . Let E be a closed set in Rd�1 such that D = B(0; 1) n E is connected, i.e.B0(0; 1)nE 6= ;. We call D is a (bounded) Denjoy domain. We have the following criteriafor D.Proposition 1.1. Let E and D be as above. Then we have the following:(i) D is a John domain.(ii) D is a uniformly John domain if and only if there are � > 0 and r0 > 0 such thatsupz2B0(x;r)\B0(0;1) �D(z) � �r for 0 < r < r0(1.6)whenever x 2 B0(0; 1) n E.(iii) D is a uniform domain if and only if there are � > 0 and r0 > 0 such that (1.6)holds whenever x 2 B0(0; 1).It is well-known that a bounded Lipschitz domain, and more generally a bounded NTAdomain, have the Martin compacti�cation homeomorphic to the Euclidean closure (Huntand Wheeden [16], Jerison and Kenig [17]). In the previous paper [1], the �rst authorshowed that the Martin compacti�cation of a bounded uniform domain is homeomorphicto the Euclidean closure. This gives an alternative proof of the results of Hunt-Wheedenand Jerison-Kenig, since a Lipschitz domain and an NTA domain are uniform domains.The Martin compacti�cation of a uniformly John domain is more complicated. Weshall show that it is homeomorphic to the completion D� with respect to the internalmetric. That is, D� is the equivalence class of all �D-Cauchy sequences with equivalencerelation \�", where we say fxjg � fyjg if fxjg [ fyjg is a �D-Cauchy sequence. Let@�D = D�nD, the boundary with respect to �D. Take �� 2 D�. Suppose �� is representedby a �D-Cauchy sequence fxjg. Since fxjg is also a usual Cauchy sequence, it followsthat xj converges to some point � 2 D. The point � is independent of the representative{ 3 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



fxjg and uniquely determined by ��. We say that �� lies over � 2 D. If � 2 D, then �and �� coincide. We say that � 2 @D is a simple boundary point if there is exactly oneboundary point of @�D over �. In other words, � is a simple boundary point if and only ifevery sequence fxjg � D converging to � also converges to the same boundary point withrespect to the internal metric �D. De�ne the projection � : D� ! D by �(��) = �. It iseasy to see that � is a continuous contraction mapping, i.e. j�(��1)� �(��2)j � �D(��1 ; ��2).If � is a simple point, we identify � and the point over � in @�D and write �(�) = �.One of the main results of this paper is the following theorem.Theorem 1.2. Let D be a bounded uniformly John domain with uniform John constantA4. Then the Martin compacti�cation of D is homeomorphic to D� and each boundarypoint �� 2 @�D is minimal. Moreover, for every boundary point � 2 @D, the number ofMartin boundary points over � is bounded by a constant depending only on A4.The above theorem will be proved as a corollary to a uniform boundary Harnack prin-ciple for a uniformly John domain. Balogh and Volberg [6] proved a uniform boundaryHarnack principle for a planar uniformly John domain with uniformly perfect boundary.Having a uniform perfect boundary is an additional assumption. In the present paper weassume neither the uniform perfectness of the boundary nor any other exterior conditions.Balogh and Volberg also demonstrated, in their setting, that the harmonic measure sat-is�es the doubling condition with respect to the internal metric [6, Theorem 3.1]. In thepresent setting, the harmonic measure needs not satisfy the doubling condition, because ofthe lack of exterior condition. This is a signi�cant di�erence between [6] and the presentpaper. Moreover, we should remark that our domain may admit an irregular boundarypoint. Hence, we always consider a generalized Dirichlet problem, i.e. boundary valueshave meaning outside a polar set. For simplicity, we shall say that a property holds q.e.(quasi everywhere) if it holds outside a polar set.Our second purpose is to give some axioms for a self-similar fractal such that thecomplement of the fractal becomes a John domain, or a uniformly John domain. SeeTheorems 4.16 and 5.3 below. One of our conditions is a nesting axiom which is similarto Lindstr�m's [18]. A typical example of self-similar fractals satisfying our axioms isthe 3-dimensional Sierpi�nski gasket. Consider a tetrahedron H and four similarities eachof which is a composition of a translation and a dilation with �xed point at a vertexof H. The 3-dimensional Sierpi�nski gasket F is given as the �xed set of the above four{ 4 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



similarities. We see that int(F ) = ; and that H n F consists of octahedra. See Figure1.1. Let B be an open ball containing H. We shall show that B n F is a uniform domain
Third Step. H n F consists ofoctahedra.Figure 1.1. The 3-dimensional Sierpi�nski gasket F . D = B n F is auniform domain.and hence its Martin boundary coincides with F [ @B (Corollary 6.9). The connectivityamong octahedra will play an important role. For details see Sections 4, 5 and 6 below.Once we have obtained a uniformly John domain, then we can easily modify it to haveanother uniformly John domain. The following o�ers one of such modi�cations.Proposition 1.3. Let D be a bounded uniformly John domain. Then a domain eD betweenD and int(D) such that eD n D consists of simple boundary points is a uniformly Johndomain. In particular, if D is a bounded uniform domain, then every domain eD betweenD and int(D) is a uniform domain.

PSfrag replacements A portion of boundary is erased.
Figure 1.2. eD = B n F 0 is a uniform domain for any F 0 � F .See Figure 1.2 for an example of the above 3-dimensional Sierpi�nski gasket F . Ingeneral, if a domain is given as the complement of a self-similar fractal, then its boundary{ 5 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



enjoys a nice uniform condition because of the homogeneity of the fractal. By the aboveproposition we can add some part of the boundary to obtain a uniformly John domainwithout uniform exterior or boundary condition. Nevertheless, its Martin compacti�cationis homeomorphic to D� with the aid of Theorem 1.2.The plan of the paper is as follows. In the next section we shall give several geometricalnotions and properties of a uniformly John domain. In particular, Propositions 1.1 and1.3 will be proved. In Section 3 we shall state the boundary Harnack principle (Theorem3.1) and prove it along a line similar to [1]. Then Theorem 1.2 will be proved as itscorollary. In Section 4 we shall state several notions and terminologies for self-similarfractals and their complements. Then Theorem 4.16 will give su�cient conditions for thecomplement of a self-similar fractal to be a John domain. It is much more di�cult toshow that a domain is a uniformly John domain than a John domain. Theorem 5.3 inSection 5 will give su�cient conditions for the complement of a self-similar fractal to be auniformly John domain. As a corollary we shall observe in Section 6 that the complementof the 3-dimensional Sierpi�nski gasket is a uniform domain (Corollary 6.9).We shall use the following notation. By the symbol A we denote an absolute positiveconstant whose value is unimportant and may change even in the same line. If necessary,we use A0; A1; : : : , to specify them. We shall say that two positive functions f1 and f2are comparable, written f1 � f2, if and only if there exists a constant A � 1 such thatA�1f1 � f2 � Af1. The constant A will be called the constant of comparison. By B(x; r),C(x; r) and S(x; r) we denote the open ball, the closed ball and the sphere with center atx and radius r, respectively.Acknowledgment. The last half of this work was done while the �rst two authors stayedat the Mittag-Le�er Institute during the program \Potential Theory and Nonlinear Par-tial Di�erential Equations" (1999/2000). They are grateful to the Mittag-Le�er Instituteand the steering committee of the program. In particular, their sincere thanks goes toMatts Ess�en for constant encouragement. The �rst author acknowledges an interestingconversation with Volker Metz at Bielefeld for the nesting axiom and �nitely rami�edfractals. He also thanks Wolfhard Hansen for the hospitality at Bielefeld University.
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2. Geometric properties of a uniformly John domainIn view of [19, Lemma 2.7] and [21, Theorem 2.18], we observe that (1.4) and (1.5)are equivalent to minfjx� zj; jz � yjg � A4�D(z) for all z 2 ;(2.1) diam() � A4�D(x; y)(2.2)with another positive constant A4 depending only on A3. For simplicity we call a curvesatisfying (2.1) a cigar curve or more precisely distance-cigar curve. This terminologycomes from the fact that the union[z2B(z; A�14 minfjx� zj; jz � yjg)of cigar like shape is included in D. On the other hand, a curve satisfying (1.1) is said tobe a carrot curve. If a curve satis�es (1.2), then it is said to be a length-cigar curve.Let us begin with the proof of Proposition 1.1. The proof is straightforward and mayhelp the reader's understanding of the di�erent classes of domains studied.Proof of Proposition 1.1. We can easily show (i). Let us prove (ii). We assume (1.6) forx 2 B0(0; 1) n E and we are going to show that D is a uniformly John domain. Takearbitrary points x = (x1; : : : ; xd) and y = (y1; : : : ; yd) in D. If both xd and yd have thesame sign, then we can easily construct a cigar curve fxy connecting x and y in D withdiam(fxy) � Ajx�yj = A�D(x; y). Hence, we may assume that xd and yd have the di�erentsigns. Consider an arbitrary curve  connecting x and y in D and let r = diam(). Then0 < r < 2 and  must intersect B0(0; 1) n E at some point z 2 B0(0; 1) n E. If necessarytaking � > 0 smaller, we may assume that r0 > 2. By assumption we �nd a pointz� 2 B0(z; r) such that �D(z�) � �r. We can easily construct cigar curves gxz� andfz�y connecting x to z� and z� to y such that diam(gxz�) � Ar and diam(fz�y) � Ar,respectively. Let e = gxz� [ fz�y. Then diam(e) � 2Ar and e is a cigar curve in D by�D(z�) � �r. Since  is an arbitrary curve connecting x and y in D, it follows that D isa uniformly John domain.Conversely, we suppose D is a uniformly John domain satisfying (2.1) and (2.2) and weare going to show that (1.6) holds for r0 = 1 and � = p3=(8A24) whenever x 2 B0(0; 1)nE,where A4 is the constant in (2.1) and (2.2). Fix x 2 B0(0; 1) n E and 0 < r < 1. By an{ 7 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



elementary geometrical observation we �nd a point y 2 B(0; 1) such thatr4A4 = jy � xj � 2p3 dist(y;Rd�1):Let y be the reection of y with respect to Rd�1 . Then y and y are connected by theunion of the line segments from y to x and from x to y, whose diameter is not greaterthan r=(2A4). Hence �D(y; y) � r=(2A4). In view of (2.1) and (2.2), we �nd a cigar curve � D connecting y and y such that diam() � r=2 andminfjy � zj; jz � yjg � A4�D(z) for all z 2 :This curve  must intersect B0(0; 1) at some point z0, so that�D(z0) � 1A4 minfjy � z0j; jz0 � yjg � 1A4 dist(y;Rd�1) � p3r8A24 :Since z0 2 B0(x; jx � yj + diam()) � B0(x; r), we obtain (1.6). Thus the necessity partof (ii) is proved.Finally we prove (iii). The proof of the su�ciency part is similar to that of (ii). Infact, take two points x and y in D with di�erent signs of xd and yd. Instead of thecurve connecting x and y in D, we simply consider the line segment xy and let z be theintersection of this line segment with Rd�1 . Since we assume that (1.6) holds for everypoint in B0(0; 1), it applies to this z and the same argument as for (ii) yields a requiredcigar curve e connecting x and y in D. For the necessity part we suppose D is a uniformdomain. Then D is a uniformly John domain in particular, and hence by (ii) there are� > 0 and r0 > 0 such that (1.6) holds for every point in B0(0; 1) n E. Since the internalmetric and the Euclidean metric are comparable, E cannot include a relatively open setin Rd�1 . Hence B0(0; 1) is included in the closure of B0(0; 1) n E, so that (1.6) actuallyholds for every point in B0(0; 1). The proof is complete.Balogh and Volberg [5] proved a very deep property of a planar uniformly John domain;a geometric localization. In the course of the proof of Theorem 1.2 we shall not use theirresult. Instead, we shall need some elementary properties of a uniformly John domain.The purpose of this section is to show these properties with purely geometrical proofs.No potential theory will be involved in this section. Let us �rst show that the completionD� is a compact space. This property holds even for a bounded John domain.{ 8 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Proposition 2.1. Let D be a bounded John domain. Then D� is a compact space andeach boundary point �� 2 @�D is accessible from D, i.e., there is an arc  � D convergingto ��. Moreover, for every boundary point � 2 @D, the number of points in @�D over � isbounded by a constant depending only on the John constant A1.Proof. Take a sequence fx�mg in D�. We need to show that there exists a subsequenceof fx�mg converging to some point in D� with respect to �D. Suppose that each x�m isrepresented by a �D-Cauchy sequence fxjmgj � D. Since fxjmgj is also a usual Cauchysequence, it must converge to xm = �(x�m) 2 D with respect to the usual metric. Takinga subsequence, if necessary, we may assume that fxmgm is a Cauchy sequence convergingto some � 2 D with respect to the usual metric. If � 2 D, then it is easy to show that x�mconverges to � with respect to �D. So, we may assume that � 2 @D.Let r > 0 be so small that the John center x0 lies outside B(�; r). Observe thatD \ B(�; r) consists of countably many open connected components Bi(r). Obviously�D(x; y) � 2r for x; y 2 Bi(r):(2.3)Let us count the number �(r) of components Bi(r) having a point xm with jxm��j < r=2.We claim that �(r) � N;(2.4)where the number N depends only on the John constant A1. By de�nition xm is connectedto x0 by a carrot curve  satisfying (1.1). Hence it follows from the de�nition of aJohn domain that the Lebesgue measure of Bi(r) is comparable to rd with constant ofcomparison depending only on the John constant A1. Therefore, (2.4) holds.Now let rk = 2�k # 0. Then we infer from (2.4) that there exists a decreasing sequenceof components Bik(rk) each of which contains in�nitely many xm. We �nd �� 2 @�D suchthat Bi1(r1) � Bi2(r2) � � � � ! �� 2 @�D;and a subsequence of fx�mg converges along fBik(rk)g to �� with respect to �D by (2.3).Obviously �(��) = �. This shows that D� is compact and �� is accessible from D. More-over, the second assertion follows, since every point on @�D has a �D-Cauchy sequenceconverging to it.Finally let � 2 @D and suppose k distinct points ��1 ; : : : ��k 2 @�D lie over �. Thenthere is an " > 0 such that �D(��i ; ��j ) > 2" for i 6= j. By Vi we denote the component of{ 9 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



D \ B(�; ") from which ��i is accessible. Then V1; : : : ; Vk are distinct. In fact, if Vi = Vjfor some i 6= j, then ��i and ��j would be accessible from the same component. Thatis, there would be an arc  in Vi = Vj connecting ��i and ��j . By de�nition, �D(��i ; ��j ) �diam() � 2"; a contradiction would arise. Thus V1; : : : ; Vk are distinct and hence disjointby de�nition. We may assume that the John center x0 lies outside B(�; "). Then each ��ican be connected to x0 by a carrot curve, say i, inD with (1.1). Let xi 2 i\Vi\S(�; "=2).Then B(xi; "=(2A1)) � Vi by (1.1), so that the Lebesgue measure of Vi is comparable to"d. Since V1; : : : ; Vk are disjoint subsets of B(�; "), it follows that the number k is boundedby a constant depending only on the John constant A1. The proof is complete.Remark 2.2. In general, a minimal boundary point of the Martin boundary is accessiblefrom the domain (e.g. [12, Satz 13.3]). Hence, if we have shown Theorem 1.2, the aboveproposition follows automatically. The above argument proves the accessibility withoutpotential theoretic consideration. We also note that there is a bounded John domainhaving non minimal Martin boundary point. Such a domain can be easily constructedas a Denjoy domain. See Ancona [3, 4], Benedicks [8], Chevallier [11], Segawa [20] andreferences therein.Hereafter we let D be a bounded uniformly John domain with uniform John constantA4. We extend �D(x; y) for x; y 2 D� by �D(x; y) = lim�D(xj; yj) if x and y are representedby �D-Cauchy sequences fxjg and fyjg in D. It is easy to see that �D(x; y) is independentof the choice of the �D-Cauchy sequences fxjg and fyjg. The connectivity given by (2.1)and (2.2) also extends to points in D�.Lemma 2.3. Every pair of points x; y 2 D� can be connected by a curve  for which n fx; yg � D andminfj�(x)� zj; jz � �(y)jg � A�D(z) for all z 2 ;(2.5) diam() � A�D(x; y);(2.6)where A is a constant depending only on the uniform John constant A4 for D.Proof. If both x and y are points in D, then there is nothing to prove. Let us assume thatx 2 D and y 2 @�D. In view of Proposition 2.1 we �nd a sequence fyjg � D convergingto y with respect to �D. Each point yj can be connected to the John center x0 by a carrotcurve, on which we �nd points y0j such that �D(y0j; y) ! 0 and jy0j � �(y)j � A�D(y0j).{ 10 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Hence, we may assume, from the beginning, that�D(yj) � jyj � �(y)j � A�D(yj);(2.7)where A > 1 is a constant depending only on A4. Moreover, taking a subsequence, ifnecessary, we may assume that�D(x; y) � 2�D(y; y1) � 22�D(y; y2) � � � �(2.8)By de�nition we �nd cigar curves fxy1 such thatminfjx� zj; jz � y1jg � A4�D(z) for all z 2 fxy1;diam(fxy1) � A4�D(x; y1)(2.9)and ŷjyj+1 such thatminfjyj � zj; jz � yj+1jg � A4�D(z) for all z 2 ŷjyj+1;diam(ŷjyj+1) � A4�D(yj; yj+1)(2.10)for j = 1; 2; : : : . We claim that = fxy1 [ gy1y2 [ � � � [ ŷjyj+1 [ � � �is a required curve connecting x and y. We have from (2.8), (2.9) and (2.10)diam() � A4(�D(x; y1) + 1Xj=1 �D(yj; yj+1))� A4 �D(x; y) + �D(y; y1) + 1Xj=1(�D(y; yj) + �D(y; yj+1))!� 3A4�D(x; y):Thus (2.6) holds.Let us prove (2.5). First examine (2.5) for z 2 fxy1. If jz � y1j � 12�D(y1), then�D(z) � 12�D(y1) andjz � �(y)j � jz � y1j+ jy1 � �(y)j � 12�D(y1) + A�D(y1) � (1 + 2A)�D(z)by (2.7), so that (2.5) holds in this case. If jz � y1j � 12�D(y1), thenjz � �(y)j � jz � y1j+ jy1 � �(y)j � (1 + 2A)jz � y1jby (2.7), so that (2.9) yieldsA4�D(z) � 11 + 2A minfjx� zj; jz � �(y)jg:{ 11 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Thus (2.5) holds for all z 2 fxy1. Now, we examine (2.5) for z 2 ŷjyj+1. If jz � yjj �12�D(yj), then �D(z) � 12�D(yj) and jz � �(y)j � (1 + 2A)�D(z), so that (2.5) holds in thesame way as above. Similarly, (2.5) holds if jz�yj+1j � 12�D(yj+1). If jz�yjj � 12�D(yj) andjz�yj+1j � 12�D(yj+1), then jz��(y)j � (1+2A)jz�yjj and jz��(y)j � (1+2A)jz�yj+1jby (2.7), so that (2.10) yields (2.5). Thus (2.5) holds for all z 2 .Finally, in the case when x; y 2 @�D, we take a sequence fxjg converging to x. Thenthe same argument as above to xj yields a required curve. The proof is complete.We shall de�ne `balls' with respect to the internal metric. For this purpose it isconvenient to modify the internal metric slightly. For x 2 D and  � D we letbr(x; ) = supz2 jz � xj;i.e., the the in�mum of radii r for which  � B(x; r). Observe that br(x; ) � diam() �2br(x; ) for x 2 . Letb�D(x; y) = inffbr(x; ) :  is a curve connecting x and y in Dgfor x; y 2 D. The quantity b�D is not symmetric. It is related to the internal metric �D asfollows: b�D(x; y) � �D(x; y) � 2b�D(x; y):Therefore the convergence with respect to �D is equivalent to the convergence with respectto b�D. We can also show the following inequalitiesb�D(x; z) � b�D(x; y) + b�D(y; z);b�D(x; z) � b�D(x; y) + 2b�D(z; y)for x; y; z 2 D. We extend �D(x; y) and b�D(x; y) for x; y 2 D� by �D(x; y) = lim�D(xj; yj)and b�D(x; y) = lim b�D(xj; yj) if x and y are represented by �D-Cauchy sequences fxjg andfyjg in D. It is easy to see that the quantities �D(x; y) and b�D(x; y) are independent ofthe choice of the �D-Cauchy sequences fxjg and fyjg. Let �� 2 @�D and putB�(��; r) = fx 2 D : b�D(��; x) < rg:Moreover, let S�(��; r) = D \ @B�(��; r) and C�(��; r) = D \ B�(��; r). Here, `@' and` ' mean the boundary and the closure in the Euclidean space, respectively. These setscorrespond to D\B(x; r), D\C(x; r) and D\S(x; r). The following observation enablesus to use many arguments in [1].{ 12 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Lemma 2.4. The set B�(��; r) is the open connected component of D\B(�(��); r) whichcan be connected to �� in itself, i.e. there is an arc  � B�(��; r) converging to ��.Proof. It is su�cient to show the following (i){(iv).(i) B�(��; r) � D \ B(�(��); r).(ii) B�(��; r) is open.(iii) Every point x 2 B�(��; r) is connected to �� by an arc in B�(��; r).(iv) B�(��; r) is the maximal set with the above properties (i){(iii).Let �� be represented by a �D-Cauchy sequence fxjg. First, we prove (i), (ii) and (iii).Suppose x 2 B�(��; r). Then " = r � b�D(��; x) > 0. Since b�D(��; x) = limj!1 b�D(xj; x) <r � ", there exists a positive integer j0 such that b�D(xj; x) < r � "=2 for j � j0. By thede�nition of b�D we �nd a curve gxjx � D connecting xj and x withjxj � xj � br(xj;gxjx) < r � "=2(2.11)for j � j0. Hence j�(��)� xj = limj!1 jxj � xj � r � "=2 < r:Therefore, x 2 D\B(�(��); r) and (i) follows. Now x lies in the open set D\B(�(��); r).We �nd r0, 0 < r0 < "=2, such that B(x; r0) � D\B(�(��); r). For (ii) it su�ces to showthat B(x; r0) � B�(��; r). In fact, every y 2 B(x; r0) can be connected to xj by gxjx [ xyfor j � j0, where xy denotes the line segment between x and y. Hence, (2.11) yieldsb�D(��; y) = limj!1 b�D(xj; y) � lim supj!1 br(xj;gxjx [ xy) � r � "2 + r0 < r;so that B(x; r0) � B�(��; r) and (ii) follows. In order to prove (iii) we may assume that�D(xj; xj+1) < 2�j";(2.12)by taking a subsequence of fxjg. Then each pair of points xj and xj+1 can be connectedby a curve x̂jxj+1 � D with diam(x̂jxj+1) < 2�j". Let = gxxj0 [ 1[j=j0 x̂jxj+1! :Then, by (2.11) and (2.12),  is an arc in D connecting x and �� such thatbr(��; ) � br(xj0;gxxj0) + 1Xj=j0 diam(x̂jxj+1) < r � "2 + 1Xj=j0 2�j":{ 13 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Without loss of generality, we may assume that j0 � 2, so that br(��; ) < r. Hence � B�(��; r) and (iii) follows. We remark that (iii) implies that B�(��; r) is connected.Finally we prove (iv). Suppose that D1 is a subset of D \B(�(��); r) such that everyx 2 D1 is connected to �� by an arc in D1. We have to show that b�D(��; x) < r for x 2 D1.Suppose x 2 D1. Then there is an arc  � D1 connecting �� and x. By the compactnessof  we see that  � B(�(��); r � �) for some � > 0. By the de�nition of brb�D(��; x) = limy!��y2 b�D(y; x) � lim supy!��y2 br(y; ) � lim supy!��y2 jy � �(��)j+ r � � = r � � < r:Hence (iv) follows.As a corollary to Lemma 2.4 we have the following.Lemma 2.5. Let V be a connected open subset of D \B(�(��); r). If V \B�(��; r) 6= ;,then V � B�(��; r). In particular, if ��1 2 @�D is accessible from B�(��; r) and r1+j�(��)��(��1)j < r, then B�(��1 ; r1) � B�(��; r).Now let us prove Proposition 1.3. The following lemma says that the internal metricis invariant by adding simple boundary points.Lemma 2.6. Let eD be a domain between D and int(D) such that eDnD consists of simpleboundary points. Then �D(x; y) = �eD(x; y) for x; y 2 D.Proof. Let x; y 2 D. By de�nition �eD(x; y) � �D(x; y). Let us prove the opposite inequal-ity. It is su�cient to show that if e is a curve in eD connecting x and y, then for each" > 0 there is a curve  � D connecting x and y withdiam() � diam(e) + ":(2.13)Observe from Lemma 2.4 that if � 2 @D is a simple boundary point, then � is accessiblefrom only one connected component V (�) of D \ B(�; "=2). This means that there is�(�) > 0 such thatD\B(�; 2�(�)) � V (�). If � 2 D, then we de�ne �(�) = 14 minf�D(�); "gand V (�) = B(�; 2�(�)). Since e consists of points of D and simple boundary points, wecan �nd �nitely many points �j 2 e and �j = �(�j) > 0 such thate �[j B(�j; �j);D \B(�j; 2�j) � V (�j)(2.14){ 14 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



by the compactness of e. Changing the number j, we may assume that x 2 B(�1; �1). Letx1 be the last point of the curve e in C(�1; �1). If x1 = y, then we stop. Otherwise, x1 liesin some B(�j; �j), say B(�2; �2) by (2.14). Let x2 be the last point of e in C(�2; �2) andcontinue in the same fashion. Then we obtain a �nite sequence of points x1; : : : ; xn = ysuch that each xj is the last point of e in C(�j; �j) and xj 2 B(�j+1; �j+1) for j =1; : : : ; n � 1. Observe that either xj 2 D or xj is accessible from V (�j) by (2.14) andLemma 2.4. Hence we �nd x0j 2 D \ B(�j; 2�j) \ B(�j+1; 2�j+1) for j = 1; : : : ; n� 1. Letx00 = x and x0n = y for convention. Then x0j�1; x0j 2 V (�j) by (2.14) and we �nd a curvex̂0j�1x0j � V (�j) � D \ B(�j; "=2) connecting x0j�1 and x0j for j = 1; : : : ; n. Then x and yare connected by the curve = gx00x01 [ gx01x02 [ � � � [ x̂0n�1x0n � D \ n[j=1B(�j; "=2)! :Since each �j 2 e, we have (2.13). The proof is complete.Now we can prove Proposition 1.3.Proof of Proposition 1.3. By Lemma 2.6 we have �D(x; y) = �eD(x; y) for x; y 2 D, andhence for x; y 2 eD by extending �D. By de�nition �D(z) � � eD(z) for z 2 D. Now letx; y 2 eD. Note that �(x) = x and �(y) = y since x and y are points of D or simpleboundary points. By Lemma 2.3 we �nd a curve  � eD connecting x and y withminfjx� zj; jz � yjg � A�D(z) � A� eD(z) for all z 2 ;diam() � A�D(x; y) = A�eD(x; y);where A depends only on A4. Thus eD is a uniformly John domain.For a moment let D be a general proper subdomain of Rd . We de�ne the quasi-hyperbolic metric kD(x; y) by kD(x; y) = inf Z ds(z)�D(z) ;where the in�mum is taken over all recti�able curves  connecting x to y in D. Observethat kD(x; y) is monotone decreasing with respect to D, i.e., if x; y 2 D1 � D, thenkD1(x; y) � kD(x; y). The converse estimate will be needed in the sequel. Observe that ifz 2 D, then kD(x; y) � kDnfzg(x; y) � kD(x; y) + A for x; y 2 D nB(z; 2�1�D(z)):(2.15){ 15 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



This observation will be useful to estimate the Green function with pole at z.Now let D be a bounded uniformly John domain. Then the following uniform quasihyperbolic boundary condition holds.Lemma 2.7. Let D be a bounded uniformly John domain. ThenkD(x; y) � A log �D(x; y)minf�D(x); �D(y)g + A0;where A and A0 depend only on the uniform John constant A4.Proof. If y 2 B(x; �D(x)=2) or x 2 B(y; �D(y)=2), then the lemma is obvious. Hence,suppose jx � yj � 12 maxf�D(x); �D(y)g. Let  be a curve connecting x to y with (2.1)and (2.2). ThenZ ds(z)�D(z) � Z �D(x)=20 ds�D(x)=2 + Z `()=2�D(x)=2 A4dss + Z `()��D(y)=2`()=2 A4dss + Z �D(y)=20 ds�D(y)=2� 2 + 2A4 log A4�D(x; y)minf�D(x); �D(y)g:Thus the lemma follows.Let x0 2 D be �xed. Then every point x 2 D can be connected to x0 by  alongwhich the distance to the boundary increases as in (2.2). Hence, there is A5, 0 < A5 < 1such that A5R � supx2S�(��;R) �D(x) � Rfor su�ciently small R, say 0 < R < �D(x0)=2. Let us take �R 2 S�(��; 4R) with4A5R � �D(�R) � 4R. Then, we have the following.Lemma 2.8. Let D be a bounded uniformly John domain. Then there exists a constantA6 > 9 depending only on D such thatkB�(��;A6R)(x; y) � A log �D(x; y)minf�D(x); �D(y)g for x; y 2 B�(��; 9R):(2.16)where �� 2 @�D, R > 0 is su�ciently small and A depends only on D. In particular,kB�(��;A6R)(x; �R) � A log 18R�D(x) for x 2 B�(��; 9R);(2.17)where A is independent of the choice of �R. In the sequel, estimates will be independentof the choice of �R.{ 16 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Proof. Let x; y 2 B�(��; 9R). Suppose  is a curve connecting x to y with (2.1) and (2.2).Then b�D(��; z) � b�D(��; x) + b�D(x; z) < 9R + diam() � AR for z 2 :Let A6 be the twice of the above A. Then  � B�(��; 12A6R) and �B�(��;A6R)(z) = �D(z)for z 2 . Hence the proof of the preceding lemma yields (2.16). Since �D(x; �R) < 18Rand �D(�R) � 4A5R, we have (2.17) from (2.16).3. Boundary Harnack PrincipleThe main aim of this section is to show the following boundary Harnack principle.Theorem 3.1. Let D be a bounded uniformly John domain. Then there exists a constantA7 > 1 depending only on D with the following property: Let �� 2 @�D and let R >0 be su�ciently small. Suppose u and v are positive bounded harmonic functions onB�(��; A7R) vanishing q.e. on @D \ B�(��; A7R). Thenu(x)v(x) � u(x0)v(x0) uniformly for x; x0 2 B�(��; R);where the constant of comparison depends on D.Theorem 3.1 can be proved in a way similar to that of [1, Theorem 1] with the aid ofLemma 2.4. However, we must be careful about the fact that D� is the completion of Dwith respect to the internal metric. It is, in general, di�erent from the Euclidean closure.The proof is inspired by the probabilistic work of Bass and Burdzy [7]. See Ferrari [14] foran analytic proof. It should be noted that Bass-Burdzy and Ferrari gave a non-uniformboundary Harnack principle. To determine the Martin boundary, we need a uniform orscale invariant boundary Harnack principle. Our boundary Harnack principle is uniformwith respect to the internal metric.We say that x; y 2 D is connected by a Harnack chain fB(xj; 12�D(xj))gkj=1 if x 2B(x1; 12�D(x1)), y 2 B(yk; 12�D(yk)), and B(xj; 12�D(xj)) \ B(xj+1; 12�D(xj+1)) 6= ; forj = 1; : : : ; k � 1. The number k is called the length of the Harnack chain. We observethat the shortest length of the Harnack chain connecting x and y is comparable to kD(x; y).Therefore, the Harnack inequality yields that there is a positive constant A dependingonly on d such that exp(�AkD(x; y)) � h(x)h(y) � exp(AkD(x; y)){ 17 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



for every positive harmonic function h on D.Our proof of Theorem 3.1 will be based on a certain estimate of harmonic measure.By !(x; E; U) we denote the harmonic measure of E for an open set U evaluated at x.For r > 0 let U(r) = fx 2 D : �D(x) < rg. Since every point x 2 U(r) can be connectedto x0 by a curve  along which the distance to the boundary increases as in (2.2), itfollows that if r > 0 is su�ciently small, then there is a point z 2 D \ S(x;A8r) with�D(z) > 2r, where A8 > 1 is a constant depending only on D. Hence there is a ballB(z; r) � B(x;A8r) n U(r). This implies that!(x; U(r) \ S(x;A8r); U(r) \B(x;A8r)) � 1� "0 for x 2 U(r)with 0 < "0 < 1 depending only on A8 and the dimension. Let R � r and repeat thisargument with the maximum principle. Then there exist positive constants A9 and A10such that !(x; U(r) \ S(x;R); U(r) \B(x;R)) � exp(A9 � A10R=r):(3.1)See [1, Lemma 1] for details.Let us compare the Green function and the harmonic measure. For simplicity we letDR = B�(��; (A6 + 7)R) and D0R = B�(��; A6R) with A6 as in Lemma 2.8. By GR andG0R we denote the Green functions for DR and D0R, respectively.Lemma 3.2. If R > 0 is su�ciently small, then!(�; S�(��; 2R); B�(��; 2R)) � ARd�2G0R(�; �R) � ARd�2GR(�; �R) on B�(��; R);where A depends only on D.Proof. It is su�cient to show the �rst inequality. We follow the idea of [7] and [1]. We�nd A11 > 0 depending only on D such that A11Rd�2G0R(�; �R) < 1=e on B�(��; 2R). ThenB�(��; 2R) =[j�0Dj \B�(��; 2R);(3.2)where Dj = fx 2 D : exp(�2j+1) � A11Rd�2G0R(x; �R) < exp(�2j)g:Let Uj = ([k�jDk) \ B�(��; 2R) = fx 2 B�(��; 2R) : A11Rd�2G0R(x; �R) < exp(�2j)g.First we observe Uj � fx 2 D : �D(x) < AR exp(�2j=�)g(3.3){ 18 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



with some � > 0 depending only on D. For a moment �x z 2 S(�R; 12�D(�R)). ThenG0R(z; �R) � R2�d andkD0Rnf�Rg(x; z) � kD0R(x; �R) + A � A log 18R�D(x)for x 2 B�(��; 9R) n B(�R; 12�D(�R)) by (2.15) and (2.17). We see from the Harnackinequality that there is � > 0 such thatexp(�2j) > A11Rd�2G0R(x; �R) � ARd�2G0R(z; �R) exp(�AkD0Rnf�Rg(x; z))� A exp��� log 18R�D(x)� = A��D(x)18R ��for x 2 Uj. Thus (3.3) follows.Let rj = AR exp(�2j=�) with A in (3.3). We take a slowly decreasing sequence fRjgconverging to R such that1Xj=1 exp�2j+1 � A10(Rj�1 �Rj)rj � <1;(3.4)where the value of the summation is independent of R. In fact, if we let R0 = 2Rand Rj = �2� 6�2 Pk�j 1k2�R for j � 1, then (3.4) holds. For simplicity we let !0 =!(�; S�(��; 2R); B�(��; 2R)) anddj = 8>>><>>>: supx2Dj\B�(��;Rj) !0(x)Rd�2G0R(x; �R) if Dj \B�(��; Rj) 6= ;;0 if Dj \B�(��; Rj) = ;:In view of (3.2) it is su�cient to show thatsupj�0 dj � A <1;(3.5)where A is independent of R.Let j > 0. Let us apply the maximum principle over Uj \ B�(��; Rj�1). Observethat D \ @(Uj \ B�(��; Rj�1)) is included in the union of Uj \ S�(��; Rj�1) and fx 2B�(��; Rj�1) : A11Rd�2G0R(x; �R) = exp(�2j)g. By de�nition the last set is includedin Dj�1 \ B�(��; Rj�1), on which !0 � dj�1Rd�2G0R(�; �R) holds. Hence the maximumprinciple yields that!0(x) � !(x; Uj \ S�(��; Rj�1); Uj \B�(��; Rj�1)) + dj�1Rd�2G0R(x; �R):(3.6)for x 2 Uj \ B�(��; Rj�1).{ 19 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Now let x 2 Uj \ B�(��; Rj). We apply the maximum principle over the connectedcomponent Vx of Uj \ B(x;Rj�1 � Rj) containing x. In view of Lemma 2.4 we havejx � �(��)j < Rj, so that Vx � B(�(��); Rj�1). Hence Lemma 2.5 yields that Vx �B�(��; Rj�1). Moreover, we haveD \ @Vx � (D \ Vx \ S(x;Rj�1 � Rj)) [ (B�(��; Rj�1) \ @Uj):(3.7)In fact, suppose y 2 D \ @Vx and jy � xj < Rj�1 � Rj. Then there is " > 0 such thatB(y; ") � D \ B(�(��); Rj�1). By de�nition Vx \ B(y; ") 6= ;, and hence y 2 B(y; ") �B�(��; Rj�1) by Lemma 2.5. It is easy to see that y 2 @Uj , so that (3.7) follows.Since !(�; Uj \ S�(��; Rj�1); Uj \ B�(��; Rj�1)) vanishes q.e. on @D [ (B�(��; Rj�1) \@Uj), it is less than or equal to!(x; Vx \ S(x;Rj�1 �Rj); Vx) � !(x; Uj \ S(x;Rj�1 � Rj); Uj \ B(x;Rj�1 �Rj))by the maximum principle and (3.7). The last harmonic measure is less than or equal toexp(A9 � A10(Rj�1 � Rj)=rj) by (3.1) and (3.3). Since A11Rd�2G0R(x; �R) � exp(�2j+1)for x 2 Dj by de�nition, (3.6) now becomes!0(x) � �A11 exp�2j+1 + A9 � A10(Rj�1 �Rj)rj �+ dj�1�Rd�2G0R(x; �R)for x 2 Dj \B�(��; Rj). Dividing both sides by Rd�2G0R(x; �R) and taking the supremumover x 2 Dj \B�(��; Rj), we obtaindj � A11 exp�2j+1 + A9 � A10(Rj�1 � Rj)rj � + dj�1:Hence (3.5) follows from (3.4).Lemma 3.3. If R > 0 is su�ciently small, thenGR(x; y)GR(x0; y) � GR(x; y0)GR(x0; y0) for x; x0 2 B�(��; R) and y; y0 2 S�(��; 6R)with constant comparison depending only on D.Proof. Let us take xR 2 S�(��; R) and yR 2 S�(��; 6R) such that A5R � �D(xR) � R and6A5R � �D(yR) � 6R. It is su�cient to showGR(x; y) � GR(xR; y)GR(xR; yR)GR(x; yR)(3.8)for x 2 B�(��; R) and y 2 S�(��; 6R). For simplicity we �x y 2 S�(��; 6R) and let u(x)(resp. v(x)) be the left (resp. right) hand side of (3.8).{ 20 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



First we show that u � Av on B�(��; R) with A independent of y. Observe that(i) u is a positive harmonic function on DR n fyg with vanishing q.e. on @DR;(ii) v is a positive harmonic function on DR n fyRg with vanishing q.e. on @DR.Since u is superharmonic on DR and B�(��; R) � DR nB(yR; A5R), it is su�cient to showthat u � Av on S(yR; A5R) by the maximum principle. Take z 2 S(yR; A5R). ThenkDRnfyRg(z; xR) � A by (2.15), and hencev(z) � GR(xR; y)GR(xR; yR)GR(xR; yR) = GR(xR; y) � AR2�d:(3.9)If y 2 B(yR; 2A5R), then u(z) = GR(z; y) � AR2�d, so that u(z) � Av(z). If y 2D nB(yR; 2A5R), then (2.15) and Lemma 2.8 yieldkDRnfyg(z; xR) � kDR(z; xR) + A � A;so that v(z) � GR(xR; y) � GR(z; y) = u(z) by (3.9). Hence we have u � Av onS(yR; A5R) in any case.In order to show that u(x) � Av(x), we make use of Lemma 3.2. It is clear thatGR(x; z) � AR2�d � GR(xR; yR) for x 2 C�(��; 2R) and z 2 B�(��; 9R) nB(�; 3R), where� = �(��). Since S�(��; 2R) � C�(��; 2R), it follows from the maximum principle thatGR(�; z) � AGR(xR; yR)!(�; S�(��; 2R); B�(��; 2R)) on B�(��; 2R):Since GR(xR; yR) � R2�d and GR(x; �R) � GR(x; yR), it follows from Lemma 3.2 and theHarnack inequality thatGR(x; z) � AGR(xR; yR)Rd�2GR(x; �R) � AGR(x; yR)(3.10)for x 2 B�(��; R) and z 2 B�(��; 9R) nB(�; 3R).Now �x x 2 B�(��; R) and y 2 S�(��; 6R). If �D(y) � 2�1A5R, then kDR(y; yR) � Aby Lemma 2.8, so that GR(x; y) � GR(x; yR) and GR(xR; y) � GR(xR; yR) by the Harnackinequality. Hence (3.8) follows. Therefore, we may assume that �D(y) < 2�1A5R. Thenthere is �1 2 @D such that jy � �1j = �D(y) < 2�1A5R. In view of Lemma 2.4, we�nd ��1 2 @�D such that �(��1) = �1 and y 2 B�(��1; 2�1A5R) since B(y; �D(y)) � D.Since 5R < 6R � 2�1A5R � j� � �1j � 6R + 2�1A5R < 7R, it follows from Lemmas 2.4and 2.5 that B�(��1 ; 2R) � B�(��; 9R) n B(�; 3R), and hence from (3.10) that GR(x; z) �AGR(x; yR) for z 2 B�(��1 ; 2R). Hence the maximum principle yields thatGR(x; y) � AGR(x; yR)!(y; S�(��1 ; 2R); B�(��1 ; 2R)):(3.11){ 21 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Using Lemma 3.2 with replacing �� by ��1 , we obtain!(y; S�(��1 ; 2R); B�(��1 ; 2R)) � ARd�2GB�(��1 ;A6R)(y; �0R)with �0R 2 S�(��1 ; 4R) such that 4A5R � �D(�0R) � 4R. Since j�� �1j < 7R, it follows fromLemma 2.5 that B�(��1 ; A6R) � B�(��; (A6 + 7)R) = DR, so that!(y; S�(��1 ; 2R); B�(��1 ; 2R)) � ARd�2GR(y; �0R) = ARd�2GR(�0R; y):Hence (3.11) becomesGR(x; y) � AGR(x; yR)Rd�2GR(�0R; y) � AGR(x; yR)Rd�2GR(xR; y)by the Harnack inequality. Since GR(xR; yR) � R2�d, we have u(x) � Av(x). Thus (3.8)is proved. The proof is complete.Proof of Theorem 3.1. We prove the theorem with A7 = A6 + 7. Since u is a positiveharmonic function on DR, we can consider the regularized reduced function bRS�(��;6R)u ofu to S�(��; 6R) with respect to DR. This regularized reduced function is a superharmonicfunction on DR such that bRS�(��;6R)u = u q.e. on S�(��; 6R) and harmonic on DR nS�(��; 6R). Moreover, bRS�(��;6R)u = 0 q.e. on @DR by assumption. Since u is bounded onDR, it follows from the maximum principle that u = bRS�(��;6R)u on B�(��; 6R). It is easyto see that bRS�(��;6R)u is a Green potential of a measure � supported on S�(��; 6R), i.e.u(x) = ZS�(��;6R)GR(x; y)d�(y) for 2 B�(��; 6R):Let x; x0 2 B�(��; R) and y; y0 2 S�(��; 6R). ThenGR(x; y) � GR(x; y0)GR(x0; y0)GR(x0; y)by Lemma 3.3. Henceu(x) � GR(x; y0)GR(x0; y0) ZS�(��;6R)GR(x0; y)d�(y) = GR(x; y0)GR(x0; y0)u(x0):Therefore, u(x)u(x0) � GR(x; y0)GR(x0; y0) uniformly for y0 2 S�(��; 6R):Similarly, v(x)v(x0) � GR(x; y0)GR(x0; y0) :Hence the theorem follows.{ 22 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Remark 3.4. In view of the above proof, the assertion of Theorem 3.1 holds for an un-bounded uniformly John domain if �� lies over a �nite boundary point � of D.LetH�� be the family of all positive harmonic functions h on D vanishing q.e. on @D,bounded on D nB�(��; r) for each r > 0 and taking value h(x0) = 1. A function h in H��is called a kernel function at � normalized at x0.Lemma 3.5. There is a constant A � 1 depending only on D such thatA�1 � uv � A for u; v 2H��:Proof. Let u; v 2 H�� and let r > 0. Then u and v be bounded on B�(��1; 2�1r) for��1 2 @D \ S�(��; r). Hence Theorem 3.1 yieldsu(x)v(x) � u(x0)v(x0) for x; x0 2 B�(��1 ; 2�1r=A7);where A7 is as in Theorem 3.1. This, together with the Harnack inequality, shows thatu(x)v(x) � u(x0)v(x0) for x; x0 2 S�(��; r);where the constant of comparison is independent of r. Then the same comparison holdsfor x; x0 2 D n B�(��; r) by the maximum principle. Since u(x0) = v(x0) = 1, it followsthat u(x)v(x) � 1 for x 2 D nB�(��; r):Since r > 0 is arbitrary small and the constant of comparison is independent of r, thelemma follows.Proof of Theorem 1.2. Lemma 3.5 actually shows that H�� is a singleton and that thefunction u 2 H�� is minimal. This is proved by Ancona [2, Lemma 6.2]. For a shortproof see [1, Theorem 3]. Let G(x; y) be the Green function for D. Put K(x; y) =G(x; y)=G(x0; y) for x 2 D and y 2 D n fx0g. The Martin kernel is given as the limitof K(x; y) when y tends to a ideal boundary point. If y ! �� 2 @�D, then some sub-sequence of fK(�; y)g converges to a positive harmonic function in H��. However, sinceH�� is a singleton, it follows that all sequences fK(�; y)g must converge to the samepositive harmonic function, the Martin kernel K(�; ��) at ��. Therefore K(x; �) extendscontinuously to D� n fx0g. The kernel function K(�; ��) should be minimal. It is easyto see that distinct ideal boundary points on @�D have di�erent kernel functions. Hence{ 23 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



the Martin compacti�cation of D is homeomorphic to D�. The last assertion now followsfrom Proposition 2.1. The theorem is proved.Using Theorem 3.1, we can show the following theorems in the same way as in [1,Section 4]. We omit the details.Theorem 3.6. Let D be a uniformly John domain and let V be an open set and K acompact subset of V intersecting @D. Then there are A > 0 and " > 0 depending on D,V and K such that ����u(x)=v(x)u(y)=v(y) � 1���� � A�D(x; y)" for x; y 2 D \K;whenever u and v are positive harmonic functions on D, bounded on D\V and vanishingq.e. on @D \ V . Moreover, the ratio u=v extends to D� \ ��1(K) as a H�older continuousfunction with respect to �D.This theorem is deduced from the following local version.Theorem 3.7. Let D be a uniformly John domain. Then there exist positive constantsA and " depending only on D with the following property: Let �� 2 @�D and R > 0 be suf-�ciently small. Suppose u and v are positive bounded harmonic functions on B�(��; A7R)vanishing q.e. on @D \ B�(��; A7R). ThenoscB�(��;r) uv � A0 � rR�" oscB�(��;R) uv for 0 < r � R.Similarly, the Martin kernel K(x; ��) for D is H�older continuous function with respectto �D.Theorem 3.8. Let D be a bounded uniformly John domain. If ��1 ; ��2 2 @�D and R �4�D(��1 ; ��2), then oscDnB�(��;R) K(�; ��1)K(�; ��2) � A��D(��1 ; ��2)R �" :Moreover, if x 2 D nB�(��1 ; R), then����K(x; ��1)K(x; ��2) � 1���� � A��D(��1 ; ��2)R �" :
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4. Fractal John domainThe main aim of this section is to show that the complement of a certain self-similarfractal is a John domain. Let 	 = f 1; : : : ;  �g be a �nite union of contractive similarities i, i.e., j i(x)�  i(y)j = �ijx� yj for any x; y 2 Rd with 0 < �i < 1. We note that each i is homeomorphism from Rd to itself, so that set operations and topological operations,such as taking boundary, closure and interior, commute  i. We let 	(E) = [�i=1 i(E). Itis known that there is a unique compact set F invariant under 	, i.e.,F = 	(F ) = �[i=1 i(F ):Moreover, 	n(K) converges to F in the Hausdor� metric for any nonempty compact setK. The set F is the self-similar fractal constructed from 	 = f 1; : : : ;  �g. Let B be asu�ciently large open ball containing F . We are interested in the conditions forD = BnFto be a John domain.One might think that B n F is a John domain whenever it is connected. This is notthe case. The following �lled Cantor set has a connected complement and yet it is not aJohn domain. Let d = 2 and S a unit square. We divide S into 9 small squares with side1=3. We remove 3 small squares in the middle column and repeat the same procedure tothe remaining 6 squares. This is equivalent to consider 6 similarities with similitude 1=3;4 of them have a vertex of S as a �xed point; the other two shrink and translate S to themidst small squares in the left and right columns. Then D = B n F has arbitrary narrowvertical corridor with length 1, so that it can not be a John domain. See Figure 4.1.
First Step. Third Step.Figure 4.1. The complement of the �lled Cantor set is not a John domain.Hence, it is worthwhile to �nd conditions which guarantee that D = B n F is a Johndomain. In what follows we assume that int(F ) = ; to exclude the trivial case. It is{ 25 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



convenient to start with a compact set H whose image under 	 is included in itself. Thenthe iteration of 	 gives a decreasing sequence of compact sets converging to F , i.e.,H � 	(H) � � � � � 	n(H) � � � � ! 1\n=0	n(H) = F:To make it precise, let us start with a compact convex polyhedron H with int(H) 6= ;and 	(H) � H. Here a set is called a closed convex polyhedron if it is given by a�nite intersection of closed half spaces. For fundamental geometrical notions of convexpolyhedra we refer to Berger [9, 10] and Gr�unbaum [15]. If int(H) 6= ;, then there is aunique minimal family of closed half spaces �+j whose intersection is H. The boundary@H consists of (d�1)-dimensional compact convex polyhedra Lj whose (d�1)-dimensionalinteriors intd�1(Lj) are nonempty. Each compact convex polyhedron Lj is given as theintersection of H and �j, the boundary of the half space �+j . Thus @H = [jLj andintd�1(Lj) 6= ;. We call Lj and intd�1(Lj) a closed face and an open face ofH, respectively.A subset M of Lj is said to be a subface of Lj. If intd�1(M) = M , then M is said tobe an open subface. Observe that open faces of one convex polyhedron are mutuallydisjoint. We say that � is a supporting hyperplane to H at x 2 @H if x 2 � and � is theboundary of the closed half space �+ including H. We say that x 2 @H has order � if theintersection of all supporting hyperplanes to H at x is an a�ne subspace of dimension� (Berger [9, Chapter 11]). We observe that x 2 intd�1(Lj) has order d � 1. This isequivalent to say that there is a small " > 0 such that B(x; ") \ H is a half ball. Wehave the same supporting hyperplane � at every point of the open face intd�1(Lj). Forsimplicity we call � the supporting hyperplane of the open face intd�1(Lj). We also saythat � is the supporting hyperplane of the face Lj. Moreover, if M is a nonempty opensubface of Lj, then we say that � is the supporting hyperplane of the open subface M .We need an assumption which ensures iterative arguments. By I, J, K and so onwe denote the multiindices like (i1; : : : ; in) taken from f1; : : : ; �g. By Ijk we denote thetruncated index (i1; : : : ; iminfk;ng) and by I �J the composition (i1; : : : ; in; j1; : : : ; jm) withJ = (j1; : : : ; jm). Moreover, I � j stands for (i1; : : : ; in; j). Let jIj = n be the length ofI and write  I =  i1 � � � � �  in . By I � J we mean that jIj � jJ j and the truncatedJ jjIj coincides with I. By de�nition I = J if and only if I � J and I � J . Hereafter, weassume the following nesting axiom which rules out the above �lled Cantor set.{ 26 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Axiom 1. (Nesting Axiom) If i 6= j, then i(H) \  j(H) =  i(F ) \  j(F ):In fact, this axiom is equivalent to the following stronger statement..Lemma 4.1. (Inde�nite Nesting) If jIj = jJ j and I 6= J, then I(H) \  J(H) =  I(F ) \  J(F );and in particular  I(H) \  J(H) � F .Proof. First, we claim  i(H) \ F =  i(F ):(4.1)It is easy to see that  i(F ) �  i(H) \ F . Let us prove the opposite inclusion. We haveF = 	(F ) = [j j(F ), so that i(H) \ F =[j  i(H) \  j(F ):If i = j, then  i(H) \  j(F ) =  i(F ). If i 6= j, then  i(H) \  j(F ) �  i(F ) \  j(F ) � i(F ) by Axiom 1. Hence (4.1) holds.Second, we show that (4.1) has a generalization I(H) \ F =  I(F ):(4.2)Let us prove (4.2) by induction on n = jIj. If n = 1, then (4.2) is nothing but (4.1). Letn > 1 and write I = (i1; : : : ; in) = i1 � I 0 with I 0 = (i2; : : : ; in). Then I(H) \ F =  i1( I0(H)) \ F �  i1(H) \ F =  i1(F )by (4.1), so that  I0(H)\ �1i1 (F ) � F . By the induction assumption  I0(H)\F =  I0(F ),which, together with the previous inclusion, implies that I0(H) \  �1i1 (F ) = F \  I0(H) \  �1i1 (F ) =  I0(F ) \  �1i1 (F ):Hence  I(H) \ F =  I(F ) \ F =  I(F ): Thus (4.2) follows.Finally, we prove the assertion of the lemma by induction on n = jIj = jJ j. If n = 1,then it is nothing but Axiom 1. Let n > 1 and write I = i1 � I 0 and J = j1 � J 0 in thesame way as in the preceding paragraph. If i1 = j1, then I 0 6= J 0, so that the inductionassumption yields I(H) \  J(H) =  i1( I0(H) \  J 0(H)) =  i1( I0(F ) \  J 0(F )) =  I(F ) \  J(F ):{ 27 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



If i1 6= j1, then I(H) \  J(H) �  i1(H) \  j1(H) =  i1(F ) \  j1(F ) � Fby Axiom 1, so that I(H) \  J(H) =  I(H) \  J(H) \ F =  I(F ) \  J(F )by (4.2). The proof is complete.Remark 4.2. We have from Axiom 1 i(int(H)) \  j(int(H)) = int( i(H) \  j(H)) � int(F ) = ; for i 6= j.Thus the open set condition follows from our nesting axiom.Remark 4.3. Lindstr�m [18] de�ned a similar nesting axiom. Namely, if jIj = jJ j andI 6= J , then he assumes that I(F ) \  J(F ) =  I(F0) \  J(F0);where F0 is the set of the essential �xed points of 	. Thus,  I(F ) \  J(F ) is a �nite setin his setting. (Note that he used the letter F for the set of the essential �xed pointsand the letter E for the fractal.) On the other hand our nesting axiom allows for theintersection to be an in�nite set. The usual 3-dimensional Sierpi�nski gasket (depictedin Figure 1.1) ful�lls our Axiom 1 and the above Lindstr�m's axiom. There are fractalswhich satisfy Axiom 1 and fail to satisfy Lindstr�m's axiom. A typical example is a base-covered 3-dimensional Sierpi�nski gasket. See Figure 4.2. The bottom three tetrahedra inthe �st step intersects each other with a line segment. For the precise de�nition see theexplanation before Proposition 6.5.We observe that the family of  I(H) has an inclusion property similar to Whitneycubes.Lemma 4.4. Let  I(H) \  J(H) n F 6= ;. Then one of the following holds:(i) I = J and  I(H) =  J(H).(ii) I $ J and  I(H) %  J(H).(iii) I % J and  I(H) $  J(H).Proof. We assume that I 6= J and show either (ii) or (iii) holds. If jIj = jJ j, then I(H) \  J(H) � F by Lemma 4.1. This contradicts the assumption. Hence we have{ 28 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



First Step. Second Step.Figure 4.2. Base-covered 3-dimensional Sierpi�nski gasket.only to consider the case when jIj 6= jJ j. Without loss of generality, we may assumejIj < jJ j. Let J 0 = J jjIj. Suppose J 0 6= I. Then  I(H) \  J(H) �  I(H) \  J 0(H) � Fby Lemma 4.1 again. This is a contradiction. Hence J jjIj = I. This means I $ J and I(H) %  J(H). The lemma is proved.As a result we have the following.Corollary 4.5. Let I and J be multiindices. Then(i) I = J ()  I(H) =  J(H).(ii) I $ J ()  I(H) %  J(H).(iii) I % J ()  I(H) $  J(H).Proof. For every statement \ =) " is trivial. For the opposite implication we observe thatthe condition in the right hand side for each statement implies  I(H) \  J(H) n F 6= ;,since int(F ) = ; and int(H) 6= ;. Hence the above lemma yields \(= ".Let H n	(H) = P 1 [ � � � [ P �;where P i is a connected component of H n 	(H). We call P i a pocket (of generation0). The following lemma says that the complement of the fractal is decomposed into theunion of images of P 1; : : : ; P � under combinations of f 1; : : : ;  �g.Lemma 4.6. Let n � 0. Then	n(H) n	n+1(H) = 	n(H n	(H)):{ 29 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Moreover,  I(P i) is a connected component of 	n(H)n	n+1(H), i.e. if jIj = jJ j = n and(I; i) 6= (J; j), then  I(P i) and  J(P j) are disconnected. The domain D = B n F has thefollowing decompositionD = O [ [jIj�0 �[i=1 I(P i) disjoint union,(4.3)where we recall O = B nH and  I(P i) = P i if jIj = 0.Proof. Observe	n(H) n	n+1(H) = [jIj=n I(H) n [jJj=n J(	(H)) � [jIj=n I(H n	(H)) = 	n(H n	(H)):For the opposite we need the nesting axiom. Suppose to the contrary, there is a point xin 	n(H n	(H)) n (	n(H) n	n+1(H)) = ([jIj=n I(H n	(H))) \ ( [jJj=n J(	(H)):Then there are I; J with jIj = jJ j = n such that x 2  I(H n	(H))\ J(	(H)). If I = J ,then  �1I (x) 2 (H n	(H))\	(H) = ;, a contradiction. If I 6= J , then Lemma 4.1 impliesthatx 2  I(H n	(H)) \  J(	(H)) �  I(H) \  J(H) =  I(F ) \  J(F ) �  I(	(H));a contradiction.We claim that  I(P i) and  J(P j) are disconnected if (I; i) 6= (J; j). If I = J , theni 6= j. By de�nition P i and P j are disconnected, so that  I(P i) and  J(P j) =  I(P j) aredisconnected and the claim follows in this case. Suppose I 6= J . Then Lemma 4.1 implies I(P i) \  J(P j) �  I(H) \  J(H) � F � 	n+1(H):(4.4)On the other hand both  I(P i) and  J(P j) are subsets of 	n(H) n 	n+1(H), so that I(P i)\ J(P j) = ; by (4.4). Thus they are disjoint. Moreover, we have  I(P i)\ J(P j) = I(P i) \  J(P j) = ;. Thus  I(P i) and  J(P j) are distinct connected components of	n(H) n 	n+1(H). In particular,  I(P i) and  J(P j) are disconnected and the claimfollows in this case too. Since 	n(H) # F as n " 1, the decomposition of D holds.Let F = fOg [ f I(P i) : jIj � 0; 1 � i � �g. ThenD = [Q2F Q:(4.5){ 30 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



We call Q =  I(P i) a pocket (of generation jIj). Each pocket Q has a unique expression I(P i). We let g(Q) = jIj, the generation of Q. We put g(O) = �1 and call O a pocketof generation �1 for convention. By an elementary geometrical observation we see thatthe interior int(P i) is a uniformly John domain. Since each pocket Q 6= O is one of theimages of P 1; : : : ; P � under similarities, we have the following.Lemma 4.7. For each pocket Q the interior int(Q) is a uniformly John domain withuniversal uniformly John constant.In view of (4.5) and the above lemma we can conclude D is a John domain if pocketsare well connected. To describe the connection among pockets we divide their boundariesinto two parts:De�nition 4.8. Let Q be a pocket of generation g(Q) = n. We lete(Q) = (@Q n	n+1(H) if Q 6= O;; if Q = O; i(Q) = (@Q \	n+1(H) if Q 6= O;@H if Q = O:We say that e(Q) (resp. i(Q) ) is the exterior (resp. interior) part of the boundary of Q.We assume the following.Axiom 2. (Pocket Axiom) For each pocket P i of generation 0 we assume:(i) e(P i) 6= ; and it consists of �nitely many open subfaces of H.(ii) i(P i) consists of �nitely many faces of some polyhedra appearing in 	(H).(iii) i(P i) \ @H � F .As an example we give a picture for Example 9.7 of Falconer [13]. See Figure 4.3.This is a fractal constructed from a generator of �ve line segments. We start with theconvex hull H of these �ve line segments. We have �ve similarities corresponding to �veline segments of the generator. The di�erence H n	(H) consists of four pockets P 1, P 2,P 3 and P 4 of generation 0. The pockets P 1 and P 3 are congruent; the pockets P 2 andP 4 are congruent. Each pocket P i has e(P i) of one open line segment. The pocket P 1has i(P 1) of �ve line segments and the pocket P 2 has i(P 2) of three line segments. Weobserve that Axioms 1 and 2 hold.Remark 4.9. It is easy to see that the 3-dimensional Sierpi�nski gasket and the base-coveredgasket both ful�ll Axiom 2. See Section 6 for details on these examples.{ 31 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



(a) Generator of fractal. (b) Fifth step.PSfrag replacements e(P 1)i(P 1)P 1P 2 P 3 P 4(c) H n	(H) = P 1 [ P 2 [ P 3 [ P 4.Figure 4.3. Example 9.7 of Falconer [13]. See also Figure 4.4 below for apart of the next generation.Remark 4.10. Observe from Lemma 4.6 that e(Q) =  I(e(P i)) and i(Q) =  I(i(P i)) forQ =  I(P i), and that the above properties are inherited:(i) e(Q) 6= ; consists of �nitely many open subfaces LQ of  I(H).(ii) i(Q) consists of �nitely many faces MQ of some polyhedra appearing in  I(	(H)).(iii) i(Q) \ @H � i(Q) \ @ I(H) � F .Here the �rst inclusion of (iii) follows from i(Q) �  I(H) � H. We call LQ and MQa face of e(Q) and a face of i(Q), respectively. Since P i is a connected component ofH n 	(H), it follows that e(P i) � P i, so that e(Q) � Q by Lemma 4.6. On the otherhand, i(P i) \ P i = ;, and hence i(Q) \Q = ;.The following lemma gives fundamental relationship among e(Q) and i(Q) for pocketsQ. { 32 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Lemma 4.11. Let Q and R be distinct pockets. Then e(Q)\ e(R) = ; and i(Q)\ i(R) �F . Moreover, Q \ R n F = (e(Q) \ i(R)) [ (i(Q) \ e(R))and either the set e(Q) \ i(R) or the set i(Q) \ e(R) is empty.Proof. Since e(Q) � Q by Remark 4.10, it follows from Lemma 4.6 that e(Q)\ e(R) = ;.Let us prove the second assertion. We claimi(P i) \ i(P j) � F if i 6= j:(4.6)In view of Axiom 2 (iii) we have i(P i) \ i(P j) \ @H � F . Hence, it is su�cient to show@P i \ @P j \ int(H) � F:(4.7)Let x be a point of the set in the left hand side and take " > 0 such that B(x; ") � int(H).Since x is a limit point of distinct connected components P i and P j of H n	(H), it followsfrom the connectedness of B(x; ") n �(H) and Axiom 1 that there exist distinct � and �such that x 2 @ �(H) \ @ �(H) �  �(H) \  �(H) � F:This implies (4.7) and hence (4.6).Now we prove i(Q) \ i(R) � F for the general case. If one pocket, say R, is O, theni(Q) \ i(R) = i(Q) \ @H � Fby Remark 4.10 (iii). Let Q =  I(P i) and R =  J(P j). Suppose jIj = jJ j. If I 6= J , thenLemma 4.1 implies i(Q) \ i(R) �  I(H) \  J(H) � F:If I = J , then i 6= j, so thati(Q) \ i(R) =  I(i(P i) \ i(P j)) �  I(F ) � Fby (4.6). To complete the proof we let jIj 6= jJ j. We may assume that jIj > jJ j and hence	jIj(H) � 	jJj+1(H). We have from Remark 4.10 (iii)i(Q) \ i(R) = (@ I(H) \ i(Q) \ i(R)) [ (int( I(H)) \ i(Q) \ i(R))� F [ (int(	jIj(H)) \ @	jJj+1(H)) = F:{ 33 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Moreover, Lemma 4.6 yieldsQ \R n F = (int(Q) [ e(Q) [ i(Q)) \ (int(R) [ e(R) [ i(R)) n F= (e(Q) \ i(R)) [ (i(Q) \ e(R)):Finally, the last assertion follows from Lemma 4.4. The lemma is proved.Now we introduce a relationship among pockets Q.De�nition 4.12. Let Q and R be pockets. If e(Q)\ i(R) 6= ;, then we write Q - R andsay that Q is a child of R and that R is a mother of Q. If either Q - R or Q % R holds,then we write Q � R and say that Q and R are linked. (Note that Q 6- Q.) Moreover,we put [Q;R] = (e(Q) \ i(R) if Q - R;i(Q) \ e(R) if Q % Rand call [Q;R] the door between Q and R. If there is a chain Q1 - Q2 - � � � - Qk, thenwe write Q1 � Qk.PSfrag replacements [Q;R][R;O]QR O
Figure 4.4. Example 9.7 of Falconer [13]: Q - R - O, the doors [Q;R]and [R;O].We readily have the following lemma from Lemmas 4.4 and 4.11.Lemma 4.13. Let Q and R be distinct pockets. Then the following statements holds:(i) Q � R if and only if Q \ R n F 6= ;.(ii) If Q � R and a curve  � Q [R connects a point in Q to a point in R, then  goesthrough the door [Q;R], i.e.,  \ [Q;R] 6= ;.(iii) If Q =  I(P i) - R =  J(P j), then I % J and  I(H) $  J(H).(iv) If g(Q) � 0, then Q � O, i.e., there is a chain Q = Q1 - � � � - Qk = O.{ 34 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



(v) If Q1 - � � � - Qk, then diam(Q1) � A�k diam(Qk), where � = maxf�1; : : : ; ��g < 1with �j being the similitude for  i. In particular, for every pocket Qdiam( [Q0�QQ0) � A diam(Q);where A > 1 is independent of Q.In Remark 4.10 we have observed that e(Q) consists of open subfaces of  I(H), whereQ =  I(P i). Now we use Axiom 2 (i) and (ii) to show that if Q - R, then e(Q) consistsof open subfaces disjoint from i(R) and open subfaces included in some face of i(R). Moreprecisely, we have the following lemma.Lemma 4.14. Let Q - R. Let LQ be an open face of e(Q) such that LQ \ i(R) 6= ;.Then there exists a face MR of i(R) such that LQ �MR.Proof. By de�nition there is a face MR of i(R) such that LQ \MR 6= ;. We, in fact, showthat LQ � MR. Let Q =  I(P i) and R =  J(P j). In view of Remark 4.10 we see thatMR is a face of  J��(H) for some � 2 f1; : : : ; �g. Since; 6= LQ \MR �  I(H) \  J��(H) n F;it follows from Lemma 4.4 that either I = J � � or I % J � �. Suppose �rst I = J � �.Then LQ and MR are an open subface and a face of the same convex polyhedron  I(H).Hence, LQ \MR 6= ; implies LQ � MR. Suppose next I % J � �. Since LQ intersectsthe face MR of  J��(H), it follows that LQ \ @ J��(H) 6= ;. Let � be the supportinghyperplane of LQ. If � \ int( J��(H)) 6= ;, then � \ @( J��(H)) would be the (d � 2)-dimensional boundary of the (d� 1)-dimensional convex polyhedron � \  J��(H). SinceLQ �  I(H) �  J��(H), a point of LQ \ @ J��(H) could not be a (d � 1)-dimensionalinterior point of LQ. This would contradict the fact that LQ is an open subface. Hence,�\int( J��(H)) = ; and so LQ � @ J��(H). Now, LQ andMR are an open subface and aface of the same convex polyhedron  J��(H). Hence, LQ\MR 6= ; implies LQ �MR.Let Li be a face of either e(P i) or i(P i) for a pocket P i of generation 0. It is easy tosee that dist(x; @P i n Li) � 1A dist(x; @d�1(Li)) for x 2 Lij;where @d�1(Li) = Li n Li stands for the the boundary of the face Li in the supportinghyperplane of Li. We note that the constant A can be taken independent of P i and Li{ 35 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



since there are only �nitely many polyhedra and faces. In view of Lemma 4.1, the aboveproperties are inherited by each pocket Q: If LQ is a face of either e(Q) or i(Q), thendist(x; @Q n LQ) � 1A dist(x; @d�1(LQ)) for x 2 LQ;(4.8)where A is independent of Q and LQ. Moreover, diam(LQ) is comparable to diam(Q).This observation, together with Lemma 4.14, yields the following lemma.Lemma 4.15. Let Q - R and let LQ be a face of e(Q) included in the door [Q;R] =e(Q) \ i(R). Then there is a point � 2 LQ such that�Q[R(�) � 1A diam(Q):Moreover, the door [Q;R] consists of such LQ and [Q;R] � int(Q [R).Proof. We infer from Lemma 4.14 that LQ � int(Q [R) and@(Q [ R) � (@Q n LQ) [ (@R n LQ):With the aid of (4.8) we �nd a point � 2 LQ such thatdist(�; @Q n LQ) � 1A dist(�; @d�1(LQ)) � 1A diam(Q):By Lemma 4.14 there is a face MR of i(R) such that LQ � MR. Thendist(�; @R n LQ) � minfdist(�; @R nMR); dist(�;MR n LQ)g� 1A minfdist(�; @d�1(MR)); dist(�; @d�1(LQ))g� 1A diam(Q)by (4.8). The last assertion follows from Lemma 4.14. The proof is complete.Now we are in a position to prove the Johnness under Axioms 1 and 2.Theorem 4.16. Assume Axioms 1 and 2. Then D is a John domain.Proof. Let x0 2 O be �xed. It is su�cient to show that each point x 2 D can be connectedto x0 by a cigar curve. In view of (4.5) it is su�cient to show that an arbitrary point xin an arbitrary pocket Q can be connected to x0 by a cigar curve. If Q = O, then this istrivial. Hence we assume g(Q) � 0. By Lemma 4.13 we obtain a chainQ = Q1 - � � � - Qk = O:{ 36 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



By Lemma 4.15 we �nd points �i 2 [Qi; Qi+1] such that�D(�i) � �Qi[Qi+1(�i) � 1A diam(Qi)(4.9)for 1 � i � k � 1. Let �0 = x and �k = x0 as a convention. Since each int(Qi) is auniformly John domain with universal John constant by Lemma 4.7, we �nd cigar curves]�i�1�i connecting �i�1 and �i in Qi for 1 � i � k. We claim that = g�0�1 [ � � � [ �̂k�1�kis a distance-carrot curve connecting x = �0 and x0 = �k, i.e.,�D(z) � 1A jx� zj(4.10)for all z 2 . Then the equivalence among the length-cigar-condition, the diameter-cigar-condition and the distance-cigar-condition ([19, Lemma 2.7] and [21, Theorem 2.18])proves that D is a John domain.Now let us prove (4.10). Since g�0�1[� � �[]�i�1�i is covered by the chain Q1 - � � � - Qi,it follows from Lemma 4.13 (v) and (4.9) thatjx� �ij � diam(g�0�1 [ � � � []�i�1�i) � A diam(Qi) � A�D(�i):(4.11)This means that (4.10) holds at z = �i for i = 0; : : : ; k. Let us consider other z 2 . Ifz 2 B(�i; 12�D(�i)), then �D(z) � 12�D(�i) and by (4.11),jx� zj � jx� �ij+ j�i � zj < jx� �ij+ 12�D(�i) � (A+ 12)�D(�i):Hence (4.10) holds for z 2  \ B(�i; 12�D(�i)) and hence for z 2  \ ([ki=0B(�i; 12�D(�i))).On the other hand, if z 62 B(�i; 12�D(�i)), thenjx� zj � jx� �ij+ j�i � zj � A�D(�i) + j�i � zj � (2A+ 1)j�i � zjby (4.11). Since ]�i�1�i is a cigar curve in Qi, it follows that�D(z) � �Qi(z) � 1A minfj�i�1 � zj; jz � �ijg � 1A jx� zjfor z 2 ]�i�1�i n (B(�i; 12�D(�i)) [ B(�i�1; 12�D(�i�1))): Hence (4.10) holds for z 2  n([ki=0B(�i; 12�D(�i))). Thus (4.10) holds for all z 2 . The proof is complete.{ 37 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



5. Fractal uniformly John domainIt is much more di�cult to show that D is a uniformly John domain than a Johndomain, because we have to treat arbitrary two points in D and to connect them by acigar curve with diameter bounded by the internal metric between the points up to amultiplicative constant. To this end we shall, from now on, assume further two axioms,viz. Axioms 3 and 4. These axioms look rather technical. We do not know whether theyare sharp or not. One of them is the following.Axiom 3. (Linkage Axiom) Suppose distinct pockets R and S have a common child Q,i.e., Q - R and Q - S. Then R and S are linked, R � S, i.e., either R - S or R % Sholds.Remark 5.1. We can view the structure of pockets as a graph where the pockets are nodes,and the connections are given by the linkage, �. The linkage axiom above guaranteesthat this graph is a chordal graph. If each pocket has a unique mother, then we have atree (with in�nite degree).Recall the de�nition of the internal metric in the introduction. We use the samede�nition for a general arcwise connected set E, i.e.,�E(x; y) = inffdiam() :  is a curve connecting x and y in Egfor x; y 2 E. As before Lemma 2.3, we extend �E(x; y) up to the closure of E with respectto �E. By de�nition �E is decreasing with respect to E, i.e., if E 0 � E, then�E(x; y) � �E0(x; y) for x; y 2 E 0:We assume the following axiom, which gives a reverse inequality in some sense.Axiom 4. (Stability of the Internal Metric Axiom) We assume that�Q(x; y) � A�D(x; y) for x; y 2 Q:(5.1)Moreover, we assume that if Q - R, then�Q[R(x; y) � A�D(x; y) for x; y 2 Q [ R:(5.2)Here A is a universal constant independent of Q and R.{ 38 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Remark 5.2. We note that Axiom 4 is equivalent to the following: If x; y 2 Q (resp.x; y 2 Q[R) are connected by a curve  � D, then they are connected by a curve e � Q(resp. e � Q [ R) with diam(e) � A diam(). In view of Lemma 4.13, if x 2 Q andy 2 R, then e goes through the door [Q;R], i.e., e \ [Q;R] 6= ;.With the aid of Lemma 4.6, it is su�cient to verify (5.1) only for the pockets P 1; : : : ; P �of generation 0. On the other hand, (5.2) is not so obvious, since there are in�nitely manyessentially di�erent possibilities of a pair Q - R. However, it can be veri�ed for particularexamples, including the 3-dimensional Sierpi�nski gasket, the base-covered 3-dimensionalSierpi�nski gasket and the 2-dimensional Sierpi�nski gasket with gap. See Section 6.Theorem 5.3. Assume Axioms 1, 2, 3 and 4. Then D is a uniformly John domain.We prepare the proof of Theorem 5.3 with the following two lemmas.Lemma 5.4. There exists an integer N � 3 such that every chain Q1 - � � � - QN ofpockets of length N has a pocket Qj, 3 � j � N , withdist(Q1; Qj) � diam(Q1):Proof. Suppose Q1 - � � � - QN . Let U = fx 2 Rd : dist(x;Q1) � diam(Q1)g andV = fx 2 Rd : dist(x;Q1) � 2 diam(Q1)g. Then jV j � A diam(Q1)d. On the other handLemmas 4.7 and 4.13 implyjQjj � 1A diam(Qj)d � 1A diam(Q1)d:Hence, the number of j such that Qj � V is bounded. Suppose QjnV 6= ; and Qj\U 6= ;.Then the uniform Johnness implies that there is a ball lying in Qj \ (V n U) with radiuscomparable to diam(Q1). Hence, the number of such j is bounded. Thus there is a pocketQj, 3 � j � N , with Qj \ U = ;, and hence dist(Q1; Qj) � diam(Q1), provided N issu�ciently large.The following lemma asserts that every curve  connecting two points x and y in Dcan be modi�ed so as to be covered by a chain with a certain property. Axioms 3 and 4are used only in this lemma.Lemma 5.5. Suppose two points x; y 2 D are connected by a curve  � D. Thenthere are a curve e � D connecting x and y with diam(e) � A diam(), and a chainQ1 � � � � � Qk such that e � Q1 [ � � � [ Qk, e \ [Qi; Qi+1] 6= ; for 1 � i � k � 1 and{ 39 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Q1 - � � � - Qm % � � � % Qk with 1 � m � k. Here the constant A is independent of x, yand .Proof. Since B n	n(H) is an increasing sequence of open sets converging to D = B nF , itfollows from the compactness that  � Bn	n(H) for some n. Hence, we �nd �nitely manymutually disjoint pockets fQ; : : : ; Rg whose union covers . Without loss of generality,we may assume that each pocket intersects . By induction on the number of fQ; : : : ; Rgwe claim that there exist Q1; : : : ; Qk 2 fQ; : : : ; Rg such that Q1 � � � � � Qk, x 2 Q1and y 2 Qk. If both x and y belong to the same pocket in fQ; : : : ; Rg, then the claimtrivially holds. Now we assume that fQ; : : : ; Rg has at least two pockets and x andy belong to di�erent pockets. >From fQ; : : : ; Rg we �nd a pocket, say Q1, such thatx 2 Q1. Then y 62 Q1. Let t1 = supft : z(t) 2 Q1g, where z = z(t), 0 � t � 1,is a parameterization of  such that z(0) = x and z(1) = y. Then 0 � t1 � 1 andx1 = z(t1) 2 @Q1 = e(Q1) [ i(Q1). Hence, from fQ; : : : ; Rg we �nd a pocket, say Q2,such that Q1 � Q2 and x1 2  \ [Q1; Q2]. If t1 = 1, then x1 = y and Q1 � Q2 is therequired chain. Suppose t1 < 1. Since [Q1; Q2] � int(Q1 [Q2) by Lemma 4.15, we �nd t2such that t1 < t2 < 1 and x2 = z(t2) 2 Q2. Then the subcurve z = z(t), t2 � t � 1, iscovered by fQ; : : : ; Rg n fQ1g. By induction we can extract a chain Q2 � � � � � Qk fromfQ; : : : ; Rg n fQ1g such that x2 2 Q2 and y 2 Qk. Now Q1 � Q2 � � � � � Qk is a requiredchain. Thus the claim is proved by induction. Note that  \ Qi 6= ; for i = 1; : : : ; k andyet the union Q1 [ � � � [Qk may no longer cover .Next, we remove small pockets from the chain Q1 � � � � � Qk. We say that Qi isremovable if 2 � i � k � 1 and Qi�1 % Qi - Qi+1. If there is a removable Qi, thenwe remove it from the chain Q1 � � � � � Qk. By Axiom 3 we have either Q1 � � � � �Qi�1 � Qi+1 � � � � � Qk or Q1 � � � � � Qi�1 = Qi+1 � � � � � Qk. Hence we mayassume that there is no removable Qi in the chain Q1 � � � � � Qk; in other words,Q1 - � � � - Qm % � � � % Qk. Note that  \Qi 6= ; for i = 1; : : : ; k.Finally we construct a modi�ed curve e � Q1 [ � � � [Qk with the required properties.At this stage Axiom 4 plays an important role. Let �i 2  \ Qi for i = 1; : : : ; k. Inparticular, we may let �1 = x and �k = y. By Axiom 4 we �nd a curve ]�i�i+1 � Qi [Qi+1such that diam(]�i�i+1) < A�D(�i; �i+1) � A diam(){ 40 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



for i = 1; : : : ; k � 1. Since �i 2 , it follows that ]�i�i+1 � B(x; (1 + A) diam()); so thate = g�1�2 [ � � � [ �̂k�1�k � B(x; (1 + A) diam()):Hence diam(e) � 2(1 + A) diam(). Of course the curve e connects x to y and e �Q1 [ � � � [Qk. In view or Lemma 4.13 we see that the curve ]�i�i+1 goes through the door[Qi; Qi+1] and so does e, i.e., e \ [Qi; Qi+1] 6= ;. The lemma is proved.Now we are in a position to prove the main theorem.Proof of Theorem 5.3. Let x; y 2 D and suppose  connects x and y in D. It is su�cientto show that there is a cigar curve b connecting x and y with diam(b) � A diam(),where A is independent of x, y and . In view of Lemma 5.5, we may assume that  iscovered by a chain Q1 � � � � � Qk with x 2 Q1, y 2 Qk, Q1 - � � � - Qm % � � � % Qkand  \ [Qi; Qi+1] 6= ; for 1 � i � k � 1. Take xi 2  \ [Qi; Qi+1]. The point xi may beclose to the boundary. In order to construct a cigar curve, we shall choose another pointx�i 2 [Qi; Qi+1] which is far from the boundary and yet close to xi. To this end let` = max1�i�k diam( \Qi):We claim ` � diam() � A`:(5.3)The �rst inequality is obvious. Let N � 3 be as in Lemma 5.4. We havediam  \ ( m+N�2[i=m�N+2Qi)! � m+N�2Xi=m�N+2 diam( \Qi) � (2N � 3)`;where Qi = ; for i < 1 and for i > k as a convention.Now let us estimate diam(\([m�N+1i=1 Qi)) in case m � N . Since m may be arbitrarilylarge, the above summation estimate does not work. Instead, by Lemmas 4.13 and 5.4 wehave diam  \ (m�N+1[i=1 Qi)! � A diam(Qm�N+1) � A dist(Qm�N+1; Qj)for some j, m�N + 3 � j � m. Recall we have xi 2  \ [Qi; Qi+1]. Since both xi�1 andxi belong to  \Qi, it follows that jxi�1 � xij � `, so thatdist(Qm�N+1; Qj) � jxm�N+1 � xjj � jxm�N+1 � xm�N+2j+ � � �+ jxj�1 � xjj � (N � 1)`:{ 41 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Hence diam( \ ([m�N+1i=1 Qi)) � A`. If k � m +N � 1, then similarlydiam  \ ( k[i=m+N�1Qi)! � A`:Collecting the above inequalities, we obtain the second inequality of (5.3). Now weconstruct a cigar curve b in [z2B(z; A`) by modifying , where A � 1 is independent ofx, y and . In view of Lemma 4.15 we �nd points x�i in the door [Qi; Qi+1] such that�D(x�i ) � �Qi[Qi+1(x�i ) � 1A minf`; diam(Qi); diam(Qi+1)g;�D(x�i ; xi) � �Qi[Qi+1(x�i ; xi) � A`(5.4)for 1 � i � k � 1. See Figure 5.1. As a convention we let x�0 = x and x�k = y. Observe
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Figure 5.1. An illustration of the proof of Theorem 5.3 for the examplein Figure 6.5 in Section 6. The case  is covered by Q1 - Q2 - Q3 % Q4.Note dist(Q1; Q3) � diam(Q1). The maximum ` of diam( \ Qi) is takenby Q2 not by the biggest pocket Q3.from Axiom 4 that�Qi(x�i�1; x�i ) � A�D(x�i�1; x�i ) � A(�D(x�i�1; xi�1) + �D(xi�1; xi) + �D(xi; x�i )) � A`{ 42 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



for i = 1; : : : ; k. Since each int(Qi) is a uniformly John domain by Lemma 4.7, we can�nd, by Lemma 2.3, a cigar curve x̂�i�1x�i such that�D(z) � �Qi(z) � 1A minfjx�i�1 � zj; jz � x�i jg for all z 2 x̂�i�1x�i ;diam(x̂�i�1x�i ) � A`:(5.5)Finally, we show that b = gx�0x�1 [ � � � [ x̂�k�1x�k is a required cigar curve connecting x andy. The second assertions of (5.4) and (5.5) show that b � [z2B(z; A`), so that by (5.3),diam(b) � A`:(5.6)We claim �D(x�i ) � 8><>: 1A jx� x�i j if 0 � i � m� 1;1A jy � x�i j if m � i � k:(5.7)Let us prove (5.7) for 0 � i � m � 1. Since x�0 = x, (5.7) is obvious for i = 0. Suppose1 � i � m� 1. Since gx�0x�1 [ � � � [ x̂�i�1x�i is covered by the chain Q1 - � � � - Qi, it followsfrom Lemma 4.13 that jx� x�i j = jx�0 � x�i j � A diam(Qi) � A diam(Qi+1). It also followsfrom (5.6) that jx � x�i j � diam(b) � A`. Hence the �rst assertion of (5.4) yields (5.7)for 1 � i � m� 1. Similarly, we can prove (5.7) for m � i � k. Now in the same way asin the proof of Theorem 4.16 we can prove�D(z) � 1A minfjx� zj; jz � yjg for all z 2 b.This, together with (5.6), shows that b is a required cigar curve connecting x and y. Theproof is complete.6. Examples of fractal uniformly John domainsIn this section we verify the axioms stated in the previous sections for particularexamples, including Example 9.7 of Falconer [13], the 3-dimensional Sierpi�nski gasket,the base-covered 3-dimensional Sierpi�nski gasket and the 2-dimensional Sierpi�nski gasketwith gap. Main technical di�culty arises for Axioms 3 and 4. We �rst give su�cientconditions for Axiom 3, which can be veri�ed for particular examples. The following isan obvious one.Proposition 6.1. Suppose each pocket Q with g(Q) � 0 has just one mother. ThenAxiom 3 holds.{ 43 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Example 9.7 of Falconer [13] satis�es the assumption of this proposition. Unfortu-nately, the Sierpi�nski gasket does not satis�es the assumption. To see this and to showAxiom 4, let us illustrate the relationship Q - R for the 3-dimensional Sierpi�nski gasket.See Figure 6.1. Let H be a regular tetrahedron with vertices v1, v2, v3 and v4. Let  ibe the similarity composed of translation and dilation of factor 1=2 with �xed point atvi for i = 1; : : : ; 4. We call i 2 f1; 2; 3; 4g a label. Observe that if i 6= j, then two smalltetrahedra  i(H) and  j(H) have the common point  i(vj) =  j(vi). More generally, wewrite  i1���in =  I and (j; i1; : : : ; in) =  i1���in(vj) if I = (i1; : : : ; in). We observe that(j; i1; : : : ; in) = (i1; j; i2; : : : ; in)and this is the common point of  i1���in(H) and  j;i2;:::;in(H). This observation determinesthe combinatorial relationship for the Sierpi�nski gasket, which has been studied by manyauthors, particularly in probabilistic context.PSfrag replacements (1; 2) (1; 3)(1; 4)
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Figure 6.1. Relationship for the Sierpi�nski gasket. Each  i has the �xedpoint vi.In this paper, we are interested in the complement of the Sierpi�nski gasket. Let	 = f 1;  2;  3;  4g be the set valued mapping and observe thatHn	(H) consists of a reg-ular octahedron, called a pocket P . We see that i(P ) consists of four regular triangles withvertices f(1; 2); (1; 3); (1; 4)g; : : : ; f(4; 1); (4; 2); (4; 3)g, respectively. Similarly, e(P ) con-sists of four regular triangles with vertices f(1; 2); (2; 3); (3; 1)g; : : : ; f(2; 3); (3; 4); (4; 2)g,respectively. In particular, e(P ) has a subface in each face of H. Our relationship `-'{ 44 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



among pockets up to the second generation is as follows:P;  i(P );  ij(P ) - O = B nH; i(P );  ij(P ) - P for i 6= j; ii(P ) 6- P:Relationship for pockets of general order can be obtained by the following considera-tion. Let fi; j; k; `g be an enumeration of the labels f1; 2; 3; 4g. By 4(i; j; k) we denotethe triangle with vertices vi, vj and vk. Since  i is the composition of translation anddilation, it follows that  i(4(i; j; k)) is a triangle lying in 4(i; j; k). On the other hand, `(4(i; j; k)) is a triangle parallel to 4(i; j; k) withdist( `(4(i; j; k));4(i; j; k)) = 1p6 diam(H);so that dist( `(H);4(i; j; k)) = 1p6 diam(H):More generally, we have I(4(i; j; k)) � 4(i; j; k) if ` 62 I;dist( I(H);4(i; j; k)) � 1p6 diam( I(H)) if ` 2 I:(6.1)Since i(O) (resp. i(P )) is the union of four triangles of the form4(i; j; k) (resp.  `(4(i; j; k))),we obtain the following proposition from the above observation.Proposition 6.2. The relationship `-' for the 3-dimensional Sierpi�nski gasket is char-acterized as follows:(i)  I(P ) - O if and only if there is a label not appearing in I.(ii)  I(P ) -  J(P ) with I = (i1; : : : ; in) and J = (j1; : : : ; jm) if and only if n > m andim+1 does not appear in fim+2; : : : ; ing.Now we observe that the Sierpi�nski gasket satis�es the assumption of the followinglemma.Lemma 6.3. Assume that e(Q) � ee(R) [ int( J(H))(6.2)for every pair of pockets Q =  I(P i) and R =  J(P j) with Q - R, where ee(R) is theunion of all open faces of @ J(H) intersecting e(R). Then Axiom 3 holds.{ 45 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Remark 6.4. Suppose e(R) intersects every open face of @ J(H). Then ee(R) = @ J(H)and (6.2) holds for every Q - R. A typical example is the 3-dimensional Sierpi�nski gasket.Proof. Suppose distinct pockets R =  J(P j) and S =  K(P k) satisfy Q - R and Q - Swith Q =  I(P i). By Lemma 4.4 we have J $ I, K $ I and Q �  I(H) �  J(H) \ K(H). Moreover, either J $ K or J % K holds. Without loss of generality, we mayassume that J % K. Then i(S) \ int( J(H)) = ;;since i(S) � @	jKj+1(H) and int( J(H)) � int(	jJj(H)) � int(	jKj+1(H)). By de�nitione(Q)\ i(S) 6= ;; so that ee(R)\ i(S) 6= ; by (6.2). Observe that ee(R) consists of open facesfLR of @ J(H) and that i(S) consists of faces MS of @	jKj+1(H). Since ee(R) \ i(S) 6= ;,we �nd fLR and MS such that fLR \MS 6= ;, which automatically implies that fLR � MS.By de�nition there is an open face LR � e(R) which is included in fLR. Hence LR � MS,which means R - S. The lemma is proved.The base-covered 3-dimensional Sierpi�nski gasket provides an example satisfying (6.2)and yet ee(R) 6= @ J(H). See Figures 4.2 and 6.2. Let us give the precise de�nition.We use the same notation as before Proposition 6.2. Besides the similarities  1; : : : ;  4,we consider one more similarity  5 which maps H to the small tetrahedron with base4((2; 3)(3; 4)(4; 2)). Observe that the base M = 4(234) of H is covered by the bases of 2(H), : : : ,  5(H). We note that  5 involves a rotation. We assume that the rotation{axis goes thorough v1 and is perpendicular to M . The set of labels for the base-covered3-dimensional Sierpi�nski gasket is f1; : : : ; 5g and 	 = f 1; : : : ;  5g. We see that H n	(H) = P with P the octahedron minus  5(H). Observe that M and its image  I(M)lie in the fractal F . Hence e(P ) consists of three regular triangles 4((1; 2)(2; 3)(3; 1)),4((1; 2)(2; 4)(4; 1)) and 4((1; 3)(3; 4)(4; 1)). Moreover, ee(P ) = @H nM consists of threeregular triangles 4(123), 4(124) and 4(134). Observe that  5(P ) �  5(H) � int(H) [M , so that  5(P ) 6- O. From this observation as well as Lemma 4.6 and Proposition 6.2,we obtain the following proposition.Proposition 6.5. The relationship `-' for the base-covered 3-dimensional Sierpi�nski gas-ket is characterized as follows:(i)  I(P ) - O if and only if the label 5 does not appear in I and one of the labels inf2; 3; 4g does not appear in I.{ 46 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



(ii)  I(P ) -  J(P ) with I = (i1; : : : ; in) and J = (j1; : : : ; jm) if and only if n > m,im+1 6= 1 and the label 5 and im+1 do not appear in fim+2; : : : ; ing.In particular, (6.2) and hence Axiom 3 hold.PSfrag replacements
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MFigure 6.2. Base-coveredSierpi�nski gasket.

PSfrag replacements  1(H)
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MFigure 6.3. Sierpi�nski gasket withgap.Remark 6.6. A similar situation occurs for a 2-dimensional Sierpi�nski gasket with gap.We start with the regular triangleH and similarities 1,  2 and  3 composed of translationand dilation each of which has a �xed point at the corresponding vertex of H. Let ussuppose  1 corresponds to the top of H and its dilation factor is less than 1=2. Both  2and  3 have dilation factor 1=2. Then the bottom line segment M of H is covered by 2(H) and  3(H). We have one pocket P of generation 0 with ee(P ) = @H nM . It isagain easy to show (6.2) and Axiom 3 for this example. See Figure 6.3.Now let us consider Axiom 4. First we prepare the following lemma.Lemma 6.7. Suppose every pocket P i of generation 0 is convex. Then (5.2) holds forQ - R with g(R) � 0.Proof. By assumption and Lemma 4.6 every pocket of nonnegative generation is convex.Suppose Q - R with g(R) � 0. Then there is a face L of e(Q) lying in i(R) by Lemma4.14. Let � be the supporting hyperplane of L. Since Q and R are convex, it follows that� separates them. Take x 2 Q and y 2 R. Observe thatdist(x; L) � A dist(x;�) � Ajx� yj:{ 47 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



Hence we �nd z 2 L with jx� zj � Ajx � yj. By convexity the line segments xz and zylie in Q and R, respectively. This implies�Q[R(x; y) � jx� zj+ jz � yj � 2jx� zj+ jx� yj � (2A+ 1)jx� yj:Since jx� yj � �D(x; y), this proves (5.2) for g(R) � 0.Proposition 6.8. The 3-dimensional Sierpi�nski gasket satis�es Axiom 4.Proof. Since the unique pocket P of generation 0 is an octahedron, a convex polyhedron,it follows that �P (x; y) = jx� yj, so that (5.1) holds. Lemma 6.7 shows (5.2) for Q - Rwith g(R) � 0. Hence, it is su�cient to show (5.2) for Q - O. Let x 2 Q and y 2 O.Since y 62 H, there is a face M of H whose supporting hyperplane � separates H and y.If e(Q) has a face lying in �, then the same argument as in Lemma 6.7 shows that�Q[O(x; y) � Ajx� yj � A�D(x; y);so that (5.2) follows in this case. Suppose e(Q) has no face lying in �. Then, it followsfrom (6.1) that jx� yj � dist(Q; y) � 1p6 diam( I(H)) = 1p3 diam(Q);where Q =  I(H). Now we take ex 2 e(Q) � i(O). Then�Q[O(x; y) � �Q(x; ex) + �O(ex; y) � jx� exj+ Ajex� yj � (1 + A)jx� exj+ Ajx� yj� (1 + A) diam(Q) + Ajx� yj � A0jx� yj � A0�D(x; y)with A0 = p3(1 + A) + A. Thus (5.2) holds in this case too.Corollary 6.9. Let F be the 3-dimensional Sierpi�nski gasket. Then D = B n F is auniform domain.Proof. >From Remarks 4.3 and 4.9 we have Axioms 1 and 2. Axioms 3 and 4 follow fromRemark 6.4 and Proposition 6.8. Hence Theorem 5.3 implies that D is a uniformly Johndomain. It is easy to see that the internal metric �D(x; y) and the Euclidean metric arecomparable, so that D is a uniform domain.Proposition 6.10. The 3-dimensional base-covered Sierpi�nski gasket satis�es Axiom 4.Proof. It is easy to show (5.1). Let us prove (5.2). We use the same notation as inProposition 6.5. First we prove (5.2) for  I(P ) = Q - O. In view of Proposition 6.5,the label 5 does not appear in I. Let x 2 Q and y 2 O. Let �M be the supporting{ 48 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



hyperplane of the base M = 4(234) and let �+M be the half space bounded by �M andincluding H. Suppose y 2 �+M nH. Then there is a supporting hyperplane � 6= �M of aface of H separating x and y. Since the label 5 does not appear in I, the same argumentas in Proposition 6.8 yields (5.2) in this case. Suppose y 62 �+M . Then every curve fxyconnecting x and y in D must intersect �M . Hence we �nd ey 2 �M \O such that�D(x; ey) � �D(x; y) + " and �D(ey; y) � �D(x; y) + "for " > 0. We also observe that jey � yj = �D(ey; y) = �Q[O(ey; y). We have�Q[O(x; y) � �Q[O(x; ey) + �Q[O(ey; y) � A�D(x; ey) + jey � yj � 2A(�D(x; y) + ");where the second inequality follows from the �rst case applied to x and ey. Since " > 0 isarbitrary, we have (5.2) in this case, too. Second we prove (5.2) for Q =  I(P ) - R = J(P ). If the label 5 does not appear in I n J , the same argument as in Proposition 6.8shows (5.2). If the label 5 appears in I n J , then it must appear at the �rst place andthe same argument as above can be made by the pull back  �1J . Hence (5.2) holds in anycase.Corollary 6.11. Let F be the 3-dimensional base-covered Sierpi�nski gasket. Then D =B n F is a uniformly John domain.Proof. >From Remarks 4.3 and 4.9 we have Axioms 1 and 2. Propositions 6.5 and 6.10prove Axioms 3 and 4. Hence Theorem 5.3 completes the proof.Remark 6.12. In contrast the usual the 3-dimensional Sierpi�nski gasket, the base-coveredSierpi�nski gasket is not a uniform domain since �D(x; y) and jx� yj are not comparable.If the domain D is simply connected in the following sense, then Axiom 4 can beveri�ed rather easily.Proposition 6.13. Suppose each pocket Q with g(Q) � 0 has just one direct predecessor.If (5.1) holds, then Axiom 4 holds.Proof. Let Q - R and let x 2 Q and y 2 R. Let  � D be a curve connecting x to y withparameterization: z = z(t), 0 � t � 1, z(0) = x and z(1) = y. Put et = supft : z(t) 2 Qg.Then ex = z(et) 2 e(Q) \ i(R) by assumption. Observe that�D(x; ex) � diam() and �D(ex; y) � diam();{ 49 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15



so that by (5.1)�Q[R(x; y) � �Q(x; ex) + �R(ex; y) � A(�D(x; ex) + �D(ex; y)) � 2A diam():Taking the in�mum with respect to , we obtain (5.2).The hypotheses of Proposition 6.13 hold for many simply connected fractal domains.For example the complement of the fractal of Example 9.7 of Falconer [13] (see Figure4.3) satis�es the hypotheses.Another example of a simply connected fractal is given as the closure of the union ofhorizontal and vertical line segments as follows: We identify R2 and C and write z = x+iyfor a generic point. By [z; w] we denote the closed line segment connecting z and w. Westart with four line segments [0; 1], [0; i2 ], [0;�1] and [0;� i2 ]. At the second stage we addfour line segments [12 � i4 ; 12 + i4 ], [�18 + i4 ; 18 + i4 ], [�12 � i4 ;�12 + i4 ] and [�18 � i4 ; 18 � i4 ], eachof which perpendicularly bisects the �rst line segment in this order. We repeat the sameprocedure and take the closure of the union of the resulting line segments. See Figure 6.4.
(a) Second step. (b) Fifth step.Figure 6.4. Fractal given as the closure of line segments.This fractal is actually given as the self-similar fractal of 	 = f 1;  2;  3;  4g, where 1(z) = 12z + 12 ,  2(z) = i4z + i4 ,  3(z) = 12z � 12 and  4(z) = i4z � i4 . The system 	 hastwo di�erent scaling factors 12 and 14 . We observe that the rhombus with vertices at 1, i2 ,�1 and � i2 satis�es 	(H) � H and the di�erence H n	(H) consists of four pockets P 1,P 2, P 3 and P 4 of generation 0. All of them are congruent to each other. Each pocketP i has e(P i) of one line segment. Every pocket Q of nonnegative generation has just onemother. See Figure 6.5.Corollary 6.14. Assume Axioms 1 and 2. Suppose each pocket Q with g(Q) � 0 hasjust one direct predecessor and�Q(x; y) � Ajx� yj for x; y 2 Q{ 50 { Id: mbfd.tex,v 2.40 2000/09/29 08:41:12 haikawa Exp haikawa TEXed at October 12, 2000 9:15
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