GEODESICS ON QUOTIENT-MANIFOLDS AND THEIR
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ABSTRACT. The motivation of this paper is twofold.

We address the following question left open by the author in [6]. Is the set on the boundary
where the so called archipelago of T' is not minimally thin equal to the conical limit set? We
will show that this is not true in general by constructing a counterexample in Section 9.

We are also considering a problem, suggested to the author by Chris Bishop, about gen-
eralizing the well known result which gives a correspondence between returning geodesics on

Riemann manifolds and conical limit points.
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1. THE SET UP

Let B be the unit ball in R", or the unit disk if n = 2, and let I" be a discrete group that
preserves B. We will denote the elements in I by ;. Let S = B/TI be the (Riemann) quotient
manifold obtained from B by identification of I' equivalent points. (If n < 3 S is a manifold,
for higher dimensions it may not be a manifold, but we will adopt the notion from [1] p. 79 and
call it a quotient manifold nevertheless.)

Furthermore, let zq be the base point on S corresponding to the origin in B; and let g(¢) be a
parameterized geodesic on S such that g(0) = zy and such that the arc length of g(t) for ¢ from
0 to 7 is 7. Let ¢(t) be the distance d(g(t),zo) on the manifold. Thus we have that ¢(t) < ¢.
The geodesic from zq is viewed in B as a straight line from the origin to a boundary point &

which thus corresponds to a limit point, lim;_, g(t), on S.
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It is a well known fact that if ¢(¢) is bounded then the corresponding limit point &, for the
discrete group I', is a non-tangential limit point, or in other words, a conical limit point. What
can be said in general about the limit point & if ¢(t) is known?

We can think of S as the result of taking the Dirichlet domain in B around 0 and gluing
together corresponding sides according to the generators of I'. The “seams” on S will then
correspond to the set on S where the graph of ¢ “has a corner”, i.e. there are at least two
different geodesics from x( to a seam-point; see Figure 2.

We will now give some definitions taken from [6] and [7]. The following is cited from [7, p. 5].
Definition 1.1. Let a € B and k,a > 0. We define

z— i‘ < k(1 —|a])?}.

lal

I(a:k,a)={z € 0B:

Let us also cite page 23 in [7] for the following definition.

Definition 1.2. Let vy; be the elements of the discrete group I and let z be the base point of the

orbit. Then

L(z : k,a) = ﬂ U I(vi(2) : k, ).

m=1i>m

Let us cite Definition 3.14 in [6] where we take the base point to be the origin.

Definition 1.3. Let us denote the a-limit set by

L(a) = | LO: k)

k>0

Remark 1.4. The special case when o = 1 give us the conical limit set, also called the non
tangential limit set, i.e. £(1) = A, see for example Lemma 3.13 in [6] for a more detailed
comparasion.

In Definition 5.2 in [6], a subset of the limit set £(«) was introduced by taking the intersection

instead of the union in the following manner.

Definition 1.5. We define the strong a-limit set to be

Lo() =) LO: k).

k>0

We have that for any strictly positive «
0B D L(a) D Ls(a) D L(a+¢) foralle > 0.

It is well known that the conical limit set, i.e. £(1), is independent of the choise of base point;
see for example p. 29 in [5]. We will show that the same holds when a € (0, 1), telling us that
our restriction in Definitions 1.3 and 1.5 to fix the base point to the origin is not that essential.
Lemma 1.6. For any point z in B,

U L(z: k,a) = U LO:k, )

k>0 k>0
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if a < 1. That is, L(«a) is independent of the base point of the orbit if a < 1. Similarly, Ls()

is independent of the base point of the orbit if a < 1.

Proof. Given an a <1 and a z € B. Suppose x € | ;5o L(2 : k, @), then x € L(z : k, a) for some
k > 0. We want to show that there is a K such that z € L(0: K, a), where K is dependent on
a,z and k.

Let us by ¢ denote the hyperbolic distance from 0 to z, i.e. & = d(0,z). Since a Mdbius
mapping acts as an isometry , we then have § = d(~;(0),v:(2)).

Since x € L(z : k, ), we have that z € I(v;(z), k, @) for infinitely many indices 7. Call that

set of indices J. Let € < 5 and define J. to be the (infinite) subset of J such that
J.={ie J;1—|v(2)] <e}.

Thus if ¢ € J. then

B

\\/
X

FIGURE 1. ~;(0) lies on the hyperbolic sphere C centered at y = 7;(z), v, 8 and
y lies in the unit ball on the ray from the origin through y where v is the point
on the sphere that is closest to the origin and f is point furthest away. a is the

Euclidean distance from y to v, and similarly b is |8 — y|.

We know that ~;(0) lies on the hyperbolic sphere

C = {¢ € B;d(C,7i(z)) = ¢}.

Let us now make an Euclidean estimate how far +;(0) can be from 7;(z) by computing the two
extremal distances to C' from v;(z). Let a be the distance from +;(z) to v, the point closest to
the origin in C, and let b be the distance to the point 8 furthest away from the origin in C. See

Figure 1.
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We have that

3 = d03(2.) = 0, 7(2) - d0.) = tog {0 L E ),

T=Iy(2)] (1+v)

Hence we get the following rough estimate.

(1= h(2)) < 1= ] <26 (1 = 7 (2))).

We can then estimate a.

a=uz)] —[v=0-v) -1 -h@)]) <

<2e°(1 - |yi(2)]) — (1~ 12)]) <e(2e’ —1). (2)

Similarly, we have for b.

55 (1 (2)) <1~ 55). g

b= 18] = 17i(2)| < (1= |n(2)]) -

Let us define 8 to be arctan ﬁ, then we could estimate

SETCTRRETE N
17 (0)] |7i(2)]
But from equation (2) and since we have chosen € < 5 sL:, we can estimate 6.
2¢% — 1
f# = arctan a < a < a4 < e(2e ) < e2¢€d.
()] = z)] T 1-e l—¢
So for i € J. we have, using equation (1),
7i(0)
T — < ke® +€2e (4)
7:(0)]
From equation (3) we have
L= O] > e —b>e—e(l - 5) = 5 o)
— | € — e—e(l— —)=—.
7 2¢ed 2¢ed

We aim to find a K such that z € L(0: K, )

K >

0] < ) - )

Let us therefore study the right hand side of this expression. From equations (4) and (5) we

- ggg;' <1 - %(0)|> e <k£“ —|—E2e’5> <%> h = (26" (k + 267 7°).(7)

Since a < 1 we have that ¢!~ < 1. Therefore by picking K = (2¢°)*(k + 2¢°) equation (6) will

have

be satisfied, and hence z € L(0 : K,a). This proves that £(a) is independent of the base point
of the orbit if a < 1, which ends the first part of the proof.

To prove the statement about the strong « limit set, let us suppose that

Cﬂeﬂ (z:k,a) and a < 1. (8)
k>0
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We aim to show that x € (1,5, L(0 : k, ). Tt is therefore enough to show that for any given
k>0,z€L0:k,a).

Note from (8) that = € L(z, k, @) trivially holds with the special choice of k = 57—, where
as above, 6 = d(0,z). Thus, x € I(y;(2) : k,a) for infinitely many indices i. Let us denote this

set of indices by J. Now pick

Since

LO:c1,a) CLO: co,a), if ¢1 < co,

we can without loss of generality assume that & < 2(2¢°)2®. That gives us that k < (2¢°)® and

1
2e8

€< hence we can use the estimate in equation (7). Let i € J. then

‘m - |3ZE8§| ‘ (1 - |%-(0)|> U (2e9)2 (k + 26°2" ) = 2k(2%)* = &.

Thus as in equation (6), we have that for every i € J., which are infinitely many, x € I(v;(0) :

k,a). Hence z € L(0 : k, @) which ends the proof. O

Remark 1.7. Tt is easy to see that £4(1) is not independent of the base point. Let for example T
be a Fuchsian group generated by a single hyperbolic generator in the unit ball. Then we have
that the limit set consist only of the two fixed points which are both in A., however the points
are in L4(1) if and only if the base point is taken to be the origin.

L
2

2. THE CASE 0 < a <

If the geodesic immediately runs out on a parabolic cusp then ¢(t) ~ t. If the geodesics runs

out inside the Dirichlet domain to a point on the boundary that is not in the limit set, then we
will also have ¢(t) ~ t.

1

Hence the ¢ function will not be of any help for classifying points in £(c) when 0 < a < 3.

Let us quickly turn to the next case.

3. THE CASE ; <a <1

Theorem 3.1. Suppose that & is on the unit sphere. We have the following two equivalences.
o £ € L(a), for % < a <1, if and only if
litm inf(a(p(t) +t) —t) < oco.
—00

o £€Ly(a), for 3 < a <1, if and only if

liminf(a(p(t) +t) —t) = —oc.

t—o0
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Corollary 3.2. Let % <a<l

If € € L(«) then liminfM < 1—a;

t—o0 t «

t 1-
and if lim inf 40 <=2 then e Ly(a).
t—oo 1 «

Before we plunge into the proofs, let us turn our attention to an auxiliary sequence related

to the function .

(1)

FIGURE 2. An example of a graph of ¢.

3.1. The sequence of generalized local minima for (t). Let the sequence {¢(#;)} be the
sequence of generalized local minimas for the function ¢ in the following sense. Let us follow
the geodesic mapped to the unit ball, where it will be the ray from the origin to the boundary
point &, and let D; be the ith fundamental domain that we visit on our way from 0 to &. D; is
copy of the Dirichlet domain around the origin mapped by ~;. Let now ; be the (hyperbolic)
distance to the ray from the single orbit point 7;(0) in D;, and let ¢; be the distance from the
origin to the point on the ray that is closest to 7;(0); see Figure 3.

When the closest point on the ray lies inside D;, p; = @(t;) will be a local minimum, since
we travel with unit speed along the ray; but in the situation schematically depicted in Figure 3
we will get a generalized local minimum point outside the graph of (¢), see Figure 4.

Remark 3.3. Note that such a generalized local minima ¢; will never be smaller than ¢(t;) since

the closest orbit point is v;_;(0) for every point in D;_;.

We will repeatedly use this auxiliary sequence {t;, p;} of generalized local minimas.

Lemma 3.4. If
(t)

t
0 < liminf 2 <1,
t— o0 t

then

t i
timint 2% — fimint 2.
t—o00 1—00 i
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r(t)

e

3

FIGURE 3. A situation where the closest point (on the ray, (¢,7(t)), towards &)
to 7;(0) lies outside the fundamental domain D;. Compare to @3 in Figure 4

below.

1 t2 t3
FIGURE 4. An example of the () graph and the sequence of generalized local

minimas at ; = p(t;). Note that 1 = @(t1), p2 = @(t2), but p3 > ¢(t3).

Proof. We can assume that {p;} is an infinite sequence. If not, there exists an integer I such
that ¢y is the last generalized local minimum. That is, the ray, from the origin in the unit ball
towards the point £, would never leave the fundamental domain D;. Let r(¢) be the ray towards
¢ € JB such that d(r(t),0) = t. Let ¢ > ¢; and consider the hyperbolic triangle in Dy with
corners in r(t), r(t7), and 7(0). The side lengths are t — t1, 5, and ¢(¢). Note that the angle

at r(tr) is 5. From the triangle inequality we have that
t—tr <o) <t—tr+or5.

Hence,

lim inf @ =1,
t— o0

which is not allowed. Thus we have that {¢;} is an infinite sequence, and then

PR 41
lim inf —
i—00 i
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exists.

Due to Remark 3.3 we have immediately that

lim inf &0} < liminf gi 9)

t—oo 1—»00 i
Let us first assume that ¢(t;) = ¢; for all i, i.e. the generalized local minimas are true local
minimas for ¢(-). (At the very end of this proof we will treat the general case.) In this situation
it we have that for a given 4, there is a §; such that ¢; + d; is a gives a local minimum of the
function £, Note that the line from the origin to the point (; + &;, ¢(t; + 6;)) will be a tangent
to the graph of .
As above, let us look at a right angled triangle with corners in r(¢; + d;), 7(¢;), and ;(0).
The side lengths are then §;, o;, and ¢; := p(t; + §;).
We will use the hyperbolic version of Pythagoras theorem, c.f. [3, p. 146].
cosh ¢p; = cosh §; cosh ;. (10)
From the assumption and (9), we have that
t .
0 < liminf £ < Jiming £
t— 00 t i—00 i

Thus ¢; — co. Hence

cosh p; = 5

if ¢ is large.
Since ; > p; we have the following approximation of (10) for large index i.
e¥ = cosh §;e%".
Hence,
o(t)

liminf —= = lim inf
t—o0 i—00

¥; .. .w;+log(coshd;)
= llm lnf R

Let us now separately study two cases.
(1) 1f
lim sup §; < oo
i— 00
then from (11)

i log(cosh §;))

t T - i
lim inf & = lim inf % = lim inf ﬂ
t—oo i—00 14+ &% i—00 i

(2) If
limsup d; = oo,
i—00
then there are infinitely many indices ¢ such that

el

cosh §; ~ .
2
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From (11) we have that

t i+ 0; —log2 i/ti + 8;/t;
lim inf m = lim inf pitoi—ogs = lim inf w

To simplify the notation, let

e Pi _k+z
k —hirggjlf 7 and f(z) = e
We have then that
lim inf 20} > liminff(ﬁ).
t—oo i—00 t;

3

We note also that 0 < £ < 1, and that
f'(z) > 0if and only if k < 1.

If k=1 then f(x) =1 and thus

which is not allowed. Hence we have that k < 1 which gives us that

lim inf 28 > 1iminff(5—f) > f(0) = k = liminf 2*.

t—oo t T i—oo t; i—oo 1
We are now done under the assumption that ¢(t;) = ¢; for all 4.
Finally, let us treat the situation when ¢(t;) < ;, schematically depicted in Figure 4, for
i = 3, above. Let us first concentrate on the graph consisting on the dotted arc continuation
when ¢ is such that r(¢t) € D;. In other words, let us look at the quotients d(r(t),v;(0))/t.
By following the arguments above, starting at the point where we made the assumption that

p(t;) = @i, we conclude that

liminf £ = lim inf inf W 7i(0)

i—00 i i—oo  t t
On the other hand,

d(r(1),7%(0)) |
t t ~ r(t)eD; t r(t)eD; t

Thus

lim inf vi <liminf inf M = liminf @

isoo I i—oo r(t)eD; t t—o0

We will also need the following variant of the above lemma.

Lemma 3.5. Let % < a< 1. Ifliminf; o @(t) = oo and if

liminf(a(p(t) +t) —t) < oo,

t—o0
then

liminf(a(p(t) +t) —t) = liminf(a(p; +t;) — t;).

t—o00 i—00
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Proof. Since the proof is completely analogous to the proof of Lemma 3.4 above, we just give a
short outline.
Let us for simplicity define ®(t) := a(p(t) +t) —t. With the same triangle argument as above,

we see that if {¢;} is finite, then
a2t —t;) —t < ®(t) < a2t —t; + 1) — ¢,

and since o > % we have that

lim inf ®(¢) = o0
t—oo

so we can safely assume that the sequence {(;} is infinite.

Next we assume that ®(¢) has a local minimum at #; + ¢;. Similarly to (11) we have that
— 00 71— 00

Now we treat the two cases.

(1) If limsupd; < oo then
liminf ®(¢) = lim inf a(p; + t;) — ;.
t—o0 i—00
(2) If limsup d; = oo then

liminf ®(¢) = liminf a(p; + t;) — t; + 0;(2a — 1) > liminf a(y; + t;) — &,

t— o0 i—00 i—00

since a > %

3.2. The proof of Theorem 3.1.

Proof. For the first result, note that we already know that £ € £(1) = A. if and only if
liminf; o ¢(t) < oo. That takes care of the case @« = 1. From now on in the proof, we
will assume that @ < 1 and that liminf;_, ., ¢(t) = co.

We have that ¢ € L(a) if and only if there is a k > 0 such that £ € L(0 : k,«). That is

equivalent to say that for infinitely many 7; in I' we have

‘s— Tl < k1= e,

|%’

This can be expressed using the notion in Figure 5 as R; < kh$ or as
Tr; sm(Gl) < k(’[’l COS(Gi))a (13)

for infinitely many 3.
We note from Figure 5 that ; is small if and only if the angle 6; is small. Therefore £ € L;(«)

if and only if (13) holds for infinitely many such local minima points in {#;}.
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r()
Y 0

R
FIGURE 5. The geometric relations in the upper half space between 6;, ; and t;,
where ¢; is the shortest hyperbolic distance from the orbit point to the vertical
line, i.e. the hyperbolic distance along the circular arc from the orbit point to
r(¢;) on the vertical line. The hyperbolic distance from 7(¢;) to the image of the
origin in the upper half plane is ¢;. (The shaded tone of ¢; and ¢; indicates that

they are the only hyperbolic distances in the figure.)

Let us now give estimates for the components in (13). From a standard calculation, we have

2.
ti:10g< 7“2)-
T

Since r; <€ 1 we have the following estimate.

that

r; & 2exp(—t;). (14)

On page 162 in [3], relations between ¢; and the angle 6; in Figure 5 can be found.

sin(6;) = tanh(y;), (15)

1
cos(f;) = cosh (7] and (16)
tan(f;) = sinh(p;). (17)

Since we assumed that £ is not a conical limit point, we know that liminf; ., ¢; = oc and thus

we can make the following two estimates of (15) and (16).

sin(6;) ~ 1. (18)
2
cos(6;) = e (19)

Using the estimates in equations (14), (18) and (19) in the condition (13), we obtain the following

relation.

1o o
¢ € L(a) if and only if (2 exp(ti)> < K<2 exp(tpi)> ,
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for infinitely many indices i and for some constant K. Let C = log(K) + (2a — 1) log 2. We can
write the above inequality as

—t;(1 —a) < —ap; + C.

Hence £ € L(a) if and only if there is a C such that
alp; +t;) —ti < C
for infinitely many indices ¢. Thus,
¢ € L(a) if and only if Tim inf(a(e; +1;) — i) < oc. (20)
Which is, thanks to Lemma 3.5, equivalent to the following statement.
€ € L(«) if and only if liﬂiﬂf(a(‘p(t) +1) —t) < oc.

(Recall that we could make the assumption that liminf;_, . ¢(t) = oo after treating the case
a = 1 separately in the beginning. Hence all the assumptions in Lemma 3.5 are fulfilled.) We
are done with the proof of the first statement.

To prove the second statement let us treat the case a = % separately at the end.

We note that £ € L;(a) if and only if € € L(0 : k, a) for all kK > 0. Using the above arguments

we will in this situation have the analogue to condition (13) as & € Ls(a) if and only if
r; sm(Gl) < k(’[’l COS(Gi))a (21)

for infinitely many ¢ and for all £ > 0. Using equations (14), (18) and (19) the above inequality
is equivalent to the following.
—ti(1 —a) < —ap; = C,

for infinitely many indices ¢ and for all C' < oo. Thus, £ € Ls(a) if and only if

liminf(a(p; + t;) — ¢;) = —o0. (22)

71— 00

which is by Lemma 3.5 equivalent to
¢ € L(a) if and only if litm inf(a(p(t) +t) —t) = —o0.
—00

For the case a = % we note that the assumption a > % in Lemma 3.5 is used only to make
sure that we have an infinite sequence {y;}.

Suppose now that a = % and that £ € Es(%), then we will show that {(;} has to be infinite.
The idea of that argument is taken from the proof of Theorem 2.4.10 in [7] which says that a
conical limit point can not appear on the boundary on a Dirichlet domain.

Let us study the unit ball tessellated by images of the Dirichlet domain around the origin.

We know that the ray to £ visits such a domain only once. Since the number of local minimas is

finite, we conclude that there is a domain, F;, where the ray finally enters and then never leaves
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on its way to &, i.e. there is a C' such that ¢ € F; for every ¢ > C. Recall that every point
in this open domain F; has the property that it is closer to the orbit point v;(0) in it than to
any other orbit point. Let us for simplicity map the whole picture by the mapping fy;l so that
Fy = 7;1(Fi) is a Dirichlet domain centered at the origin. Let us now study the ray from the
origin to & = 7y, ' (£). We see that this ray is in Fy and we parameterize it by c&, for ¢ € (0, 1).
Let us now construct an open hyperbolic ball centered at c¢&, with radius d(c€,~;(0)). That is

let
B. ={z:d(z,c&) < d(c&,0)}.

We note that B. does not contain any orbit points and the same is true for the union

B= U B..
c€(0,1)
We note that B is a horo ball with Euclidean radius % and tangent to the unit ball at &.
Finally, let us map B back to 'yZ(B) which is tangent to £ has a radius greater than or equal to
% and contains no orbit points. We conclude then from the Definition 1.5 that £ & £,(3).
Hence we conclude that the sequence {¢;} is infinite.

Furthermore, since £ € £,(1) we have that

liminf(p; — t;) = —00 < o0
11— 00

from the above reasoning leading to Equation (22) which is still valid. We can now use the proof

for Lemma 3.5, since {;} is infinite, to obtain that

liminf(p(t) — t) = —oc.

t—o0

On the other hand, assume that

liminf(p(t) — t) = —oc.

t—o0

If {¢;} is finite, then from the beginning of the proof of Lemma 3.5 we have (since o = 1) that
5(p(t) — t) = ®(t) > —5t; which contradicts the assumption. Hence we conclude that {¢;} is
infinite. As above we can use the proof of Lemma 3.5 to see that

liminf(p; — ¢;) = —oc,
71— 00

which is equivalent to & € £,(3). O
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3.3. The proof of Corollary 3.2.

Proof. Suppose £ € L(a) then we have from the first part in Theorem 3.1 that

liminf(a(p(t) +t) —t) < oco.

t—o00

Hence there is a K < oo such that

1—
liminf (p(t) — ——t) = K.
t—o0 (6]
Thus
t 1-—
lim inf w < @
t— 00 t - «
For the second part, suppose that
t 1-—
a := liminf M < —a.
t—00 t (0]
From Lemma 3.4 we have that a = £*. Let § := fT‘I —a.

We have that for every € > 0, there is an infinite set of indices J = {j} such that

#lt;)

—a<ceforall jeJ
tj

This will especially be valid for our choice of € = g. (Note that 6 > 0 by the assumption above.)

Hence we have that
p(t;) < tjla+e) forall j € J.

Thus

1—«

1-a
olty) - ——t; <tjlate-
We conclude, using Lemma 3.5 that

liminf a(p(t) +t) —t) = —oo0,

t— o0

which is equivalent to £ € L(«) by the latter part of Theorem 3.1. O

3.4. A global result. By using Theorem 3.1 together with a Borel-Cantelli type lemma in [7]

we can get a global result for the limit sets £s(«) and their corresponding Poincaré series.

Corollary 3.6. Let vy be a geodesic on B/T starting at the reference point xqo in the 0 direction,
where 6 is on the unit sphere and let g be the ¢ distance function for ~vg. Let | -| be the

(n — 1)—-dimensionally Lebesgue measure on the unit sphere, and let % <a<l. If
{6 : litminf(a(gog(t) +1t)—t) <oo}| >0
—00

then the Poincaré type series

Y A=) = .

v €T
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Proof. If liminf,_, . (a(pe(t) +t) —t) < oo then we have from Theorem 3.1 that when 7 is

transformed into the unit ball, it ends at a point in £(a). Hence if
|{6 : litrginf(a(gog(t) +1t)—t) <oo} >0
then |£()| > 0. Now Theorem 2.1.1 in [7] tells us then that if |£(«)| > 0, then

YA h" T = .

vi€l

O

Remark 3.7. In [4] it was showed, in the Kleinian case (n=3), that the Hausdorff-dimension of
{6: htrgloglf wo(t) < oo}
equals the critical exponent d(I'). Recall that the critical exponent can be defined in the following

way:

O(I) =inffs: Y (1 |7(0)])* < oco}.

vi €l
4. AN LADDER-LIKE EXAMPLE

Let us study a Riemann surface that looks like a ladder or a “one dimensional jungle gym”.

Our surface is an infinitely long body with evenly distributed “holes”. See Figure 6.

FIGURE 6. A one dimensional jungle gym.

Let us for simplicity assume that the distance between the centers of two consecutive holes
are 1 and that the shortest closed arc around in such a hole also has unit length.
Let us use this jungle gym construction together with Corollary 3.2 to give simple examples

of £ € L(a)\ L(a'), where 2 < a <a' < 1.

2
Corollary 4.1. Let T be given by the above jungle gym construction and & by the geodesic making
N (j) turns in hole j twisting out in a consecutive way. Let us assume that N(j) > 1 and that

the limit average of the number of turns is bounded, i.e.

i—woco U

_ 1
N = limsup—,ZN(j) < oo.
j=1

Then we have that
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Proof. We have that £ ¢ L£(1) since the geodesic does not return at all.
Let us give estimates of the local minimum of ¢(t) about where the geodesic has made N ()
turns in hole 7. Let us denote that “ending” local minimum by ¢;, = ¢(t;,). By the use of the

“little ordo” o(-) function we can immediately give the following estimate:
ie —0(ie) < i, <1+ 0(ie).
Note that we have the following approximation of ¢;_.
i
ti. & V2 + Y (N(j) = 1).
j=1
We will use the following rather rough estimate.

ie + Y _(N() —1) = olic) < ti, <ic+ Y N(j)+ olic).
j=1 j=1
We see from the construction that

.. P .. oY
liminf — = liminf —=.
i—00 i i—00 ie

Hence we have from the estimates above that

1 ; 1
lim inf i — < liminf Zi <liminf —F——.
isoo 1 4 72],:1 N(j) i—oo t; i—00 721‘:1 N(j)
Thus we see that
1 e 1
— <1 f— < —=.
1+N - Be s SN
Now, if z = 177"‘, then a = zlﬁ We can then use Corollary 3.2 and conclude that
N N+1
€ Ls(= L(—= ,
¢ (N + 1) \ (N + 2)
which is the sought after expression. O

5. THE CASE o = 1

It is well known that if the geodesic g(¢) returns infinitely often to a compact neighborhood
of xg, then the limit point £ is in the non-tangentially limit set A.. Let us try to be a little more

precise about this.

Proposition 5.1. Let the set L(-: -,-) be as in Definition 1.2.
&€ € L(0 : sinh(K),1) if and only if litm inf p(t) < K.
—o0

Furthermore,

&€ Ls(1) if and only if litm inf p(¢) = 0.
— 00
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Proof. Suppose that £ € L(0 : sinh(K), 1). Using the notation from Figure 5 we know that there
are infinitely many orbit points 7;(0) such that R; < sinh(K)h;. We can reformulate this as

there are infinitely many ~;(0) such that
tan(d;) < sinh(K).

Using equation (17) we end up with that for infinitely many indices i, sinh(yp;) < sinh(K) and

thus ¢; < K for infinitely many i. Thus

& € L(0: sinh(K), 1) if and only if liirggjlf v < K,
which by Lemma 5.2 below, gives us the first equivalence:

&€ L(0:sinh(K),1) if and only if litrggf p(t) < K.

(Note that we can use Lemma 5.2 since we safely can assume that {¢;} is infinite.)
To get the second statement, we argue as above and conclude that £ € £4(1) if and only if for

every K > 0 there are infinitely many indices ¢ such that ¢; < K. Hence by using Lemma 5.2,

&£ € L(1) if and only if litm inf ¢(t) = 0.
—00

Lemma 5.2. If the sequence {p;} is infinite, then

liminf ¢; = liminf (¢).
i—00 t—00

Proof. We have from Remark 3.3 that,

liminf ; > liminf ¢(¢;) > liminf ¢(t).
i—00 t—oo

i—00

On the other hand, we can use a similar argument as we did in the latter part of the proof of

Lemma 3.4 above to obtain the following inequality.

pi = infd(r(t),7:(0) < if d(r(t),(0)) = inf ()

Hence,

liminf p; <liminf inf () = litm inf (¢).
—00

i—00 i—00 ’f’(t)EDi
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6. THE CASE o > 1

When ¢ € L(a) for @ > 1 we have immediately that £ € A, and thus that there exists a

bounded subsequence of {y;}. But we can say more than this.
Proposition 6.1. Suppose that a > 1 then we have the following two equivalences.

e ¢ € L(a) if and only if there exists a K < oo such that
liminf o(t)el* V< K.
t—oo

o £ € Li(a) if and only if

s (a—1)t _
hggggf(p(t)e =0.

Proof. We have that £ € L(a) if and only if there is a k& < oc such that £ is in infinitely many
L(0 : k, ). With the notion from Figure 5 that translates into R; < kh$ for infinitely many i,
or

risin(6;) < k (ri cos(&i)) for infinitely many i.

If we now use equations (14), (15) and (16) we have that £ € L(«) if and only if there is a k

such that for infinitely many 4

2e " tanh(yp;) < k <26t" (23)

1 [e3
COSM%)) '
Since we know that a > 1 we have that every cone with vertex at ¢ has infinitely many orbit

points inside even if the opening angle is very small. Thus we have that

liminf6; — 0
1—0oQ

and hence using equation (15)

0 = liminfsin(f;) = lim inf tanh(y;).

1—> 00 71— 00
Thus we have that

lim inf ¢; = 0.

71— 00

Using that fact in equation (23) we obtain the following asymptotic relation. ¢ € L(a) if and
only if there is a k such that
liminf @; < k20 e~ tila=1),

1— 00
We conclude that £ € L£(«) if and only if there is a K < oo such that
lim inf et (™Y < K. (24)
1—> 00
We will now show that the above inequality is equivalent to

lim inf o(t)ele ™t < K, (25)

for some K'.
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In order to simplify the notation, let
F(8) = @)’V gi(t) = d(r(t),7(0)), and fi(t) = gi(t)e" >V,
Note that
fi(t) = f(t) when r(t) € D;, (26)

and that g;(t;) = ¢; is a local minimum for g;.
On the other hand, f; has not a local minimum at ¢; but at ¢; — §; for some positive d;. Hence,

after differentiation, we get that
gi(ti = 6i) = —(a — 1)gi(ti — 3;). (27)
So again by Pythagoras’ Theorem we have that
cosh(g;(t; — d;)) = cosh(d;) cosh(ip;).
And by differentiation with respect to §; we get that
— sinh(g;(t; — 8;))g;(t; — &;) = sinh(d;) cosh(p;). (28)
Combining (27) and (28) gives us
sinh(g;(t; — 9:))gi(t; — 6;)(a — 1) = sinh(;) cosh(g;). (29)

From (28) we see that -Lg(t; — z) decreases from 0 to — cosh(y;) as = goes from 0 to oo.

Thus,
— gi'(t; — ;) < cosh(ip;). (30)

That estimate together with (27) gives us that

cosh(yp;)
() < — v
gi(ti — 6;) < o (31)
We have from (28) that
: — sinh(gi(ti — 0:))g;(ti — 0i) _ .
< ) = < St — 5:)).
0; < sinh(4;) cosh (1) < sinh(g; (t; — 0;))
Using (31) we get
h(pi
§; < sinh(£2 f‘pl)) (32)
Since
filti = 6;) = gilti — 6;)elti 001 = gilhs = 6z)fz(ti)€76"(a71)

we have the following estimate for the function f;.

filti = 6;) < filt)e ol (33)
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We have that
liminf f(¢) < liminf f;(¢;).
t—o0 i—00

We show now an inverse inequality to prove the equivalence between (24)and (25).

liminf f(¢) = liminf inf f(¢) = (26) =liminf inf f;(¢) > liminf f;(¢; — ;) > (33) >
t—o00 i— 00 r(t)eDl- i—00 T(t)GDi i—00

> liminf f,(t) exp(~di(a — 1) > (32) > limnf £,(t) exp(— sinh (2 1)) >

i—00 a—1 -

> (H;Einf fl(tl)> exp < sinh( cosh(lim inf oo i) ) — 1)) .

[e%e} a—1

We can assume that liminf;_, o, p; = 0, since otherwise we have, from Proposition 5.1 and Lemma

5.2, that
& L(1) D L(a) for all @ > 1.
Hence
- - . 1
hggégf ft) > hglogf fi(ts) exp< s1nh(m)(a - 1)>
So if we let

K' =K exp ( sinh(ﬁ)(a - 1)),

we have that (24)and (25) are equivalent. This ends the proof of the first part.
To prove the second part we only have to note that £ € £L(«) if and only if for every k& > 0, £
is in infinitely many L(0 : k, o). Following the same arguments as above we obtain that £ € £L(«)

if and only if

lim inf el (@1 =0, (34)

1— 00

where last expression is equivalent, with the same reasoning as above (with K = 0), to
lim inf o (t)e! (=Y = 0.
t— o0
O

6.1. The point— and line— transitive sets. Note from Remark 1.7 that the results in Propo-
sition 6.1 depends on the choice of base point zy € B/T'. Let us now allow ourself to vary the
base point letting p,(t) be as p(t) above, except that we replace xq, the image of the origin, by
Zq, the image of a € B. Then it is easy to see, using the definitions on pp. 26, 27 in [7] together
with Figure 5, that € is a point transitive limit point (§ € T}) if and only if

litn_l)gjlf wa(t) =0, for all a € B,

and that £ is a line transitive limit point, 7, if and only if

litm inf (. (t) + @(t)) =0, for all pairs a,b € B.
—00
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Remark 6.2. We have trivially that T; C T},. Furthermore, T} # (0 if T is of the first kind, and

T, = 0 if T is of the second kind. See for example Theorems 2.2.2 and 2.3.3 in [7].

7. A QUESTION ABOUT THE ARCHIPELAGO OF T’

On page 300 in [6], the archipelago of a discrete group I' is defined. Let B; := {z €
B;d(z,v;(0)) < rr,v; € '\ {I}}. By the fact that I" is discrete it is possible to find an rr > 0
such that the balls B; do not intersect each other. Let us fix such an rr and let E := U]. B;.

That is, F is the “fattened” orbit of I' and we call it the archipelago of I'.

Definition 7.1. We define the set N to be
M= {x € OB : the archipelago is not minimally thin at x}.
From [6, Section 5 and 6] we have that
A CNC Ls(a),

when a < 1. We have also £4(1) C £(1) = A.. Furthermore 9 and A, have the same Hausdorff
dimension and in the case where I is geometrically finite, 9t = A, see Theorem 5.4, and Corollary
6.1 in [6].

The following question was raised at the end of Section 5 in [6] p 310: Is in fact M = A.? We

will answer this question negatively in Section 9 below.

8. A GENERALIZED VERSION OF THINNESS

Definition 8.1. The set E is B—thin at y if there is a measure u such that

liminf kg * p(z) > kg * u(y),
rz—y,c€R

where kg(x) is the Riesz kernel |z|?~". To find out more about this type of thinness, see
for example [2, pp. 155 158]. (Note that we here used § instead of « as the parameter in an
attempt to avoid confusion.)

Now let the set E be the archipelago I'. What can be said about the S—thinness of F if the
sequence {¢;} is known? We have immediately that if there is a bounded subsequence of {p;}
then ¢ € A, and thus in 91 due to Proposition 4.14 in [6] which then would imply that E is
not S—thin at ¢ (since minimal thinness is 0—thinness). The follwing result gives a more precise

statement.

Proposition 8.2. Let {¢;} and & be as above and let B € [0,1). The archipelago of T is not

B thin at & if

S e (B0 = oo,
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Proof. Let E be the archipelago of I'. Let {Q;} be a Whitney decomposition of the unit ball.
Using the estimates in Lemma 4.11 in [6] and Corollary 7.4.3 on p. 155 in [2] we obtain that E
is # thin at £ if and only if

U @y is f—thin at &.

QrNE#D
Corollary 7.4.3 (iv) in [2] tells us then that E is 8 thin at £ if and only if

M)“ﬁ
ngqém(dis’“(@k,f) < 00

Thus from Lemma 4.11 in [6] and (7) and (8) in its proof we have that

diam(m)) S ¢ ( w>|>”>c (g)“ﬂ
Qk%@(dist@m {Zer} [EEACIV A {Z} R)

with the notation from Figure 5 above. Since

Corollary 8.3.
If Ze*"“"" = oo then & € MN.

The corollary follows immediately from the above proposition since 0 thinness is minimal
thinness. We will use Corollary 8.3 to give a concrete example in Section 9 below, of a Fuchsian
group with a limit point £ € 9\ A..

What can we say about rarefiedness? Nothing in general is the negative answer. In Lemma
6.3 in [6] we see that if £ is a fixed point for a parabolic element in the Fuchsian group I' then

the archipelago is not rarefied at ¢ although {¢;} could even be empty.

9. A COUNTER EXAMPLE

Let us again study the “jungle gym” in figure 6. Where we assumed that the distance between
the centers of two consecutive holes are 1 and that the shortest closed arc around in such a hole
also has unit length.

Given a starting point, zg, we can completely determine the geodesic, and thus the related
limit point £ on the unit sphere for the underlying discrete group I, by the number of turns g(t)
makes in each hole. Let us suppose that the holes are visited in strict order going to the “right”
for example. Thus ¢ is increasing. Let us denote the number of turns in the j-th hole by Nj.
We will show that if we choose N; to be the upper integer part of exp(2j)/j then will £ be in M

but not in A..
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Note that in this set up ¢; ~ j and thus ¢; — oc and hence £ ¢ A.. From Corollary 8.3 it is

sufficient to show that with the choice of N; as above Z{w} e 2¢i = o,

2672%'2 Z Nje *%i x Z Nje %1 >

{oi} { hole;} { hole;1
e . 1
> —.672‘7 = - = OQ.
> ). > s
{ hole;} { hole;}

Hence we conclude that A, # 9.

REFERENCES

[1] L. Ahlfors Mébius Transformations in Several Dimensions. University of Minnesota. (1981).

[2] H. Aikawa and M. Essén Potential Theory Selected Topics. Lecture Notes in Mathematics 1633, Springer-
Verlag, Heidelberg, (1996).

[3] A. F. Beardon The Geometry of Discrete Groups. Springer-Verlag, New York Inc. (1983).

[4] C. Bishop and P. Jones Hausdorff dimension and Kleinian groups, Acta Mathematica, Vol. 179 (1997), 1-39.

[5] J. B. Garnett. Applications of Harmonic Measure. The University of Arkansas lecture notes in the mathe-
matical sciences; v.8. (1986).

[6] T. Lundh Discrete groups and thin sets Ann. Acad. Sci. Fenn. A. 1. Vol. 23, 291-315, (1998).

[7] P. Nicholls The Ergodic Theory of Discrete Groups. London Mathematical Society Note Series. 143 (1989).

DEPARTMENT OF MATHEMATICS, CHALMERS UNIVERSITY OF TECHNOLOGY, SE 412 96 GOTEBORG, SWEDEN

E-mail address: torbjrn@math.chalmers.se



