
GEODESICS ON QUOTIENT{MANIFOLDS AND THEIRCORRESPONDING LIMIT POINTSTORBJ�ORN LUNDHAbstrat. The motivation of this paper is twofold.We address the following question left open by the author in [6℄. Is the set on the boundarywhere the so alled arhipelago of � is not minimally thin equal to the onial limit set? Wewill show that this is not true in general by onstruting a ounterexample in Setion 9.We are also onsidering a problem, suggested to the author by Chris Bishop, about gen-eralizing the well known result whih gives a orrespondene between returning geodesis onRiemann manifolds and onial limit points.Keywords: Disrete group, Fuhsian group, Kleinian group, horoyle, limit set, non-tangentiallimit set, minimal thinness.2000 Mathematis Subjet Classi�ation. Primary 30F40, 30F45, 20H10, 57S30, 53C22 Se-ondary 31A15, 31B15. 1. The set upLet B be the unit ball in Rn , or the unit disk if n = 2, and let � be a disrete group thatpreserves B. We will denote the elements in � by i. Let S = B=� be the (Riemann) quotient{manifold obtained from B by identi�ation of �{equivalent points. (If n � 3 S is a manifold,for higher dimensions it may not be a manifold, but we will adopt the notion from [1℄ p. 79 andall it a quotient{manifold nevertheless.)Furthermore, let x0 be the base point on S orresponding to the origin in B; and let g(t) be aparameterized geodesi on S suh that g(0) = x0 and suh that the ar length of g(t) for t from0 to � is � . Let '(t) be the distane d(g(t); x0) on the manifold. Thus we have that '(t) � t:The geodesi from x0 is viewed in B as a straight line from the origin to a boundary point �whih thus orresponds to a limit point, limt!1 g(t), on S.Date: February 13, 2003.This work was done under the support of a grant from the Swedish Natural Siene Researh Counil, NFR. Iwant also to express my gratefulness to professor Chris Bishop for stating the initial question about the funtion' and all his help in general. I would also like to thank professors Hiroaki Aikawa, Matts Ess�en, and Yair Minskyfor helpful disussions. 1



2 TORBJ�ORN LUNDHIt is a well known fat that if '(t) is bounded then the orresponding limit point �, for thedisrete group �, is a non-tangential limit point, or in other words, a onial limit point. Whatan be said in general about the limit point � if '(t) is known?We an think of S as the result of taking the Dirihlet domain in B around 0 and gluingtogether orresponding sides aording to the generators of �. The \seams" on S will thenorrespond to the set on S where the graph of ' \has a orner", i.e. there are at least twodi�erent geodesis from x0 to a seam-point; see Figure 2.We will now give some de�nitions taken from [6℄ and [7℄. The following is ited from [7, p. 5℄.De�nition 1.1. Let a 2 B and k; � > 0. We de�neI(a : k; �) = fx 2 �B : ����x� ajaj ���� < k(1� jaj)�g:Let us also ite page 23 in [7℄ for the following de�nition.De�nition 1.2. Let i be the elements of the disrete group � and let z be the base point of theorbit. Then L(z : k; �) = 1\m=1 1[i>m I(i(z) : k; �):Let us ite De�nition 3.14 in [6℄ where we take the base point to be the origin.De�nition 1.3. Let us denote the �-limit set byL(�) = [k>0L(0 : k; �)Remark 1.4. The speial ase when � = 1 give us the onial limit set, also alled the non{tangential limit set, i.e. L(1) = �, see for example Lemma 3.13 in [6℄ for a more detailedomparasion.In De�nition 5.2 in [6℄, a subset of the limit set L(�) was introdued by taking the intersetioninstead of the union in the following manner.De�nition 1.5. We de�ne the strong �-limit set to beLs(�) = \k>0L(0 : k; �):We have that for any stritly positive ��B � L(�) � Ls(�) � L(� + ") for all " > 0:It is well known that the onial limit set, i.e. L(1), is independent of the hoise of base point;see for example p. 29 in [5℄. We will show that the same holds when � 2 (0; 1), telling us thatour restrition in De�nitions 1.3 and 1.5 to �x the base point to the origin is not that essential.Lemma 1.6. For any point z in B,[k>0L(z : k; �) = [k>0L(0 : k; �)



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 3if � � 1. That is, L(�) is independent of the base point of the orbit if � � 1. Similarly, Ls(�)is independent of the base point of the orbit if � < 1.Proof. Given an � � 1 and a z 2 B. Suppose x 2 Sk>0 L(z : k; �), then x 2 L(z : k; �) for somek > 0. We want to show that there is a K suh that x 2 L(0 : K;�), where K is dependent on�; z and k.Let us by Æ denote the hyperboli distane from 0 to z, i.e. Æ = d(0; z). Sine a M�obiusmapping ats as an isometry , we then have Æ = d(i(0); i(z)).Sine x 2 L(z : k; �), we have that x 2 I(i(z); k; �) for in�nitely many indies i. Call thatset of indies J . Let " < 12eÆ and de�ne J" to be the (in�nite) subset of J suh thatJ" = fi 2 J ; 1� ji(z)j < "g:Thus if i 2 J" then ����x� i(z)ji(z)j ���� < k"�: (1)
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Figure 1. i(0) lies on the hyperboli sphere C entered at y = i(z), �; � andy lies in the unit ball on the ray from the origin through y where � is the pointon the sphere that is losest to the origin and � is point furthest away. a is theEulidean distane from y to �, and similarly b is j� � yj.We know that i(0) lies on the hyperboli sphereC = f� 2 B; d(�; i(z)) = Æg:Let us now make an Eulidean estimate how far i(0) an be from i(z) by omputing the twoextremal distanes to C from i(z). Let a be the distane from i(z) to �, the point losest tothe origin in C, and let b be the distane to the point � furthest away from the origin in C. SeeFigure 1.



4 TORBJ�ORN LUNDHWe have thatÆ = d(i(z); �) = d(0; i(z))� d(0; �) = log� (1� j�j)1� ji(z)j 1 + ji(z)j(1 + j�j) �:Hene we get the following rough estimate.12eÆ(1� ji(z)j) < 1� j�j < 2eÆ(1� ji(z)j):We an then estimate a. a = ji(z)j � j�j = (1� j�j)� (1� ji(z)j) << 2eÆ(1� ji(z)j)� (1� ji(z)j) < "(2eÆ � 1): (2)Similarly, we have for b.b = j�j � ji(z)j < (1� ji(z)j)� 12eÆ (1� ji(z)j) < "(1� 12eÆ ): (3)Let us de�ne � to be artan aji(z)j , then we ould estimate����x� i(0)ji(0)j ���� < ����x� i(z)ji(z)j ����+ �:But from equation (2) and sine we have hosen " < 12eÆ , we an estimate �.� = artan aji(z)j � aji(z)j < a1� " < "(2eÆ � 1)1� " < "2eÆ:So for i 2 J" we have, using equation (1),����x� i(0)ji(0)j ���� < k"� + "2eÆ: (4)From equation (3) we have1� ji(0)j > "� b > "� "(1� 12eÆ ) = "2eÆ : (5)We aim to �nd a K suh that x 2 L(0 : K;�), i.e.K > ����x� i(0)ji(0)j �����1� ji(0)j���: (6)Let us therefore study the right hand side of this expression. From equations (4) and (5) wehave ����x� i(0)ji(0)j �����1� ji(0)j��� < �k"� + "2eÆ�� "2eÆ��� = (2eÆ)�(k + 2eÆ"1��): (7)Sine � � 1 we have that "1�� � 1. Therefore by piking K = (2eÆ)�(k +2eÆ) equation (6) willbe satis�ed, and hene x 2 L(0 : K;�). This proves that L(�) is independent of the base pointof the orbit if � � 1, whih ends the �rst part of the proof.To prove the statement about the strong �{limit set, let us suppose thatx 2 \k>0L(z : k; �) and � < 1: (8)



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 5We aim to show that x 2 Tk>0 L(0 : k; �). It is therefore enough to show that for any given� > 0, x 2 L(0 : �; �).Note from (8) that x 2 L(z; k; �) trivially holds with the speial hoie of k = �2�+1e�Æ , whereas above, Æ = d(0; z). Thus, x 2 I(i(z) : k; �) for in�nitely many indies i. Let us denote thisset of indies by J . Now pik " = � k2eÆ� 11�� :Sine L(0 : 1; �) � L(0 : 2; �); if 1 < 2;we an without loss of generality assume that � < 2(2eÆ)2�. That gives us that k < (2eÆ)� and" < 12eÆ , hene we an use the estimate in equation (7). Let i 2 J" then����x� i(0)ji(0)j �����1� ji(0)j��� < (2eÆ)�(k + 2eÆ"1��) = 2k(2eÆ)� = �:Thus as in equation (6), we have that for every i 2 J", whih are in�nitely many, x 2 I(i(0) :�; �). Hene x 2 L(0 : �; �) whih ends the proof. �Remark 1.7. It is easy to see that Ls(1) is not independent of the base point. Let for example �be a Fuhsian group generated by a single hyperboli generator in the unit ball. Then we havethat the limit set onsist only of the two �xed points whih are both in �, however the pointsare in Ls(1) if and only if the base point is taken to be the origin.2. The ase 0 < � � 12If the geodesi immediately runs out on a paraboli usp then '(t) � t. If the geodesis runsout inside the Dirihlet domain to a point on the boundary that is not in the limit set, then wewill also have '(t) � t.Hene the ' funtion will not be of any help for lassifying points in L(�) when 0 < � � 12 .Let us quikly turn to the next ase.3. The ase 12 � � < 1Theorem 3.1. Suppose that � is on the unit sphere. We have the following two equivalenes.� � 2 L(�), for 12 < � � 1, if and only iflim inft!1 (�('(t) + t)� t) <1:� � 2 Ls(�), for 12 � � < 1, if and only iflim inft!1 (�('(t) + t)� t) = �1:



6 TORBJ�ORN LUNDHCorollary 3.2. Let 12 < � < 1.If � 2 L(�) then lim inft!1 '(t)t � 1� �� ;and if lim inft!1 '(t)t < 1� �� then � 2 Ls(�):Before we plunge into the proofs, let us turn our attention to an auxiliary sequene relatedto the funtion '.
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Figure 2. An example of a graph of '.3.1. The sequene of generalized loal minima for '(t). Let the sequene f'(ti)g be thesequene of generalized loal minimas for the funtion ' in the following sense. Let us followthe geodesi mapped to the unit ball, where it will be the ray from the origin to the boundarypoint �, and let Di be the ith fundamental domain that we visit on our way from 0 to �. Di isopy of the Dirihlet domain around the origin mapped by i. Let now 'i be the (hyperboli)distane to the ray from the single orbit point i(0) in Di, and let ti be the distane from theorigin to the point on the ray that is losest to i(0); see Figure 3.When the losest point on the ray lies inside Di, 'i = '(ti) will be a loal minimum, sinewe travel with unit speed along the ray; but in the situation shematially depited in Figure 3we will get a generalized loal minimum point outside the graph of '(t), see Figure 4.Remark 3.3. Note that suh a generalized loal minima 'i will never be smaller than '(ti) sinethe losest orbit point is i�1(0) for every point in Di�1.We will repeatedly use this auxiliary sequene fti; 'ig of generalized loal minimas.Lemma 3.4. If 0 < lim inft!1 '(t)t < 1;then lim inft!1 '(t)t = lim infi!1 'iti :
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Figure 3. A situation where the losest point (on the ray, (t; r(t)), towards �)to i(0) lies outside the fundamental domain Di. Compare to '3 in Figure 4below.
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t 1 t 2 t 3Figure 4. An example of the '(t) graph and the sequene of generalized loalminimas at 'i = '(ti). Note that '1 = '(t1); '2 = '(t2), but '3 > '(t3):Proof. We an assume that f'ig is an in�nite sequene. If not, there exists an integer I suhthat 'I is the last generalized loal minimum. That is, the ray, from the origin in the unit balltowards the point �, would never leave the fundamental domain DI . Let r(t) be the ray towards� 2 �B suh that d(r(t); 0) = t. Let t > tI and onsider the hyperboli triangle in DI withorners in r(t); r(tI ), and I(0). The side lengths are t � tI ; 'I ; and '(t). Note that the angleat r(tI ) is �2 . From the triangle inequality we have thatt� tI � '(t) � t� tI + 'I :Hene, lim inft!1 '(t)t = 1;whih is not allowed. Thus we have that f'ig is an in�nite sequene, and thenlim infi!1 'iti



8 TORBJ�ORN LUNDHexists.Due to Remark 3.3 we have immediately thatlim inft!1 '(t)t � lim infi!1 'iti : (9)Let us �rst assume that '(ti) = 'i for all i, i.e. the generalized loal minimas are true loalminimas for '(�). (At the very end of this proof we will treat the general ase.) In this situationit we have that for a given i, there is a Æi suh that ti + Æi is a gives a loal minimum of thefuntion '(�)� . Note that the line from the origin to the point (ti+ Æi; '(ti+ Æi)) will be a tangentto the graph of '.As above, let us look at a right angled triangle with orners in r(ti + Æi), r(ti), and 'i(0).The side lengths are then Æi, 'i, and  i := '(ti + Æi).We will use the hyperboli version of Pythagoras theorem, .f. [3, p. 146℄.osh i = osh Æi osh'i: (10)From the assumption and (9), we have that0 < lim inft!1 '(t)t � lim infi!1 'iti :Thus 'i !1. Hene osh'i � e'i2if i is large.Sine  i > 'i we have the following approximation of (10) for large index i.e i � osh Æie'i :Hene, lim inft!1 '(t)t = lim infi!1  iti + Æi = lim infi!1 'i + log(osh Æi)ti + Æi : (11)Let us now separately study two ases.(1) If lim supi!1 Æi <1then from (11)lim inft!1 '(t)t = lim infi!1 'iti + log(osh Æi))ti1 + Æiti = lim infi!1 'iti :(2) If lim supi!1 Æi =1;then there are in�nitely many indies i suh thatosh Æi � eÆi2 :



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 9From (11) we have thatlim inft!1 '(t)t = lim infi!1 'i + Æi � log 2ti + Æi = lim infi!1 'i=ti + Æi=ti1 + Æi=ti : (12)To simplify the notation, letk = lim infi!1 'iti ; and f(x) = k + x1 + x :We have then that lim inft!1 '(t)t � lim infi!1 f(Æiti ):We note also that 0 < k � 1, and thatf 0(x) > 0 if and only if k < 1:If k = 1 then f(x) � 1 and thuslim inft!1 '(t)t � 1whih is not allowed. Hene we have that k < 1 whih gives us thatlim inft!1 '(t)t � lim infi!1 f(Æiti ) � f(0) = k = lim infi!1 'iti :We are now done under the assumption that '(ti) = 'i for all i.Finally, let us treat the situation when '(ti) < 'i, shematially depited in Figure 4, fori = 3, above. Let us �rst onentrate on the graph onsisting on the dotted ar ontinuationwhen t is suh that r(t) 2 Di. In other words, let us look at the quotients d(r(t); i(0))=t.By following the arguments above, starting at the point where we made the assumption that'(ti) = 'i, we onlude that lim infi!1 'iti = lim infi!1 inft d(r(t); i(0))t :On the other hand,inft d(r(t); i(0))t � infr(t)2Di d(r(t); i(0))t = infr(t)2Di '(t)t :Thus lim infi!1 'iti � lim infi!1 infr(t)2Di '(t)t = lim inft!1 '(t)t : �We will also need the following variant of the above lemma.Lemma 3.5. Let 12 < � < 1. If lim inft!1 '(t) =1 and iflim inft!1 (�('(t) + t)� t) <1;then lim inft!1 (�('(t) + t)� t) = lim infi!1 (�('i + ti)� ti):



10 TORBJ�ORN LUNDHProof. Sine the proof is ompletely analogous to the proof of Lemma 3.4 above, we just give ashort outline.Let us for simpliity de�ne �(t) := �('(t)+t)�t. With the same triangle argument as above,we see that if f'ig is �nite, then�(2t� tI)� t � �(t) � �(2t� tI + 'I)� t;and sine � > 12 we have that lim inft!1 �(t) =1so we an safely assume that the sequene f'ig is in�nite.Next we assume that �(t) has a loal minimum at ti + Æi. Similarly to (11) we have thatlim inft!1 �(t) = lim infi!1 �('i + log(osh Æi) + ti + Æi)� ti � Æi:Now we treat the two ases.(1) If lim sup Æi <1 thenlim inft!1 �(t) = lim infi!1 �('i + ti)� ti:(2) If lim sup Æi =1 thenlim inft!1 �(t) = lim infi!1 �('i + ti)� ti + Æi(2�� 1) � lim infi!1 �('i + ti)� ti;sine � > 12 . �3.2. The proof of Theorem 3.1.Proof. For the �rst result, note that we already know that � 2 L(1) = � if and only iflim inft!1 '(t) < 1. That takes are of the ase � = 1. From now on in the proof, wewill assume that � < 1 and that lim inft!1 '(t) =1.We have that � 2 L(�) if and only if there is a k > 0 suh that � 2 L(0 : k; �). That isequivalent to say that for in�nitely many i in � we have����� � ijij ���� < k(1� jij)�:This an be expressed using the notion in Figure 5 as Ri < kh�i or asri sin(�i) < k(ri os(�i))� (13)for in�nitely many i.We note from Figure 5 that 'i is small if and only if the angle �i is small. Therefore � 2 Ls(�)if and only if (13) holds for in�nitely many suh loal minima points in ftig.
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Figure 5. The geometri relations in the upper half spae between �i, 'i and ti,where 'i is the shortest hyperboli distane from the orbit point to the vertialline, i.e. the hyperboli distane along the irular ar from the orbit point tor(ti) on the vertial line. The hyperboli distane from r(ti) to the image of theorigin in the upper half plane is ti. (The shaded tone of 'i and ti indiates thatthey are the only hyperboli distanes in the �gure.)Let us now give estimates for the omponents in (13). From a standard alulation, we havethat ti = log�2� riri �:Sine ri � 1 we have the following estimate.ri � 2 exp(�ti): (14)On page 162 in [3℄, relations between 'i and the angle �i in Figure 5 an be found.sin(�i) = tanh('i); (15)os(�i) = 1osh('i) and (16)tan(�i) = sinh('i): (17)Sine we assumed that � is not a onial limit point, we know that lim inf i!1 'i =1 and thuswe an make the following two estimates of (15) and (16).sin(�i) � 1: (18)os(�i) � 2exp('i) : (19)Using the estimates in equations (14), (18) and (19) in the ondition (13), we obtain the followingrelation. � 2 L(�) if and only if �2 exp(�ti)�1�� < K�2 exp(�'i)��;



12 TORBJ�ORN LUNDHfor in�nitely many indies i and for some onstant K. Let C = log(K) + (2�� 1) log 2. We anwrite the above inequality as �ti(1� �) < ��'i + C:Hene � 2 L(�) if and only if there is a C suh that�('i + ti)� ti < Cfor in�nitely many indies i. Thus,� 2 L(�) if and only if lim infi!1 (�('i + ti)� ti) <1: (20)Whih is, thanks to Lemma 3.5, equivalent to the following statement.� 2 L(�) if and only if lim inft!1 (�('(t) + t)� t) <1:(Reall that we ould make the assumption that lim inf t!1 '(t) = 1 after treating the ase� = 1 separately in the beginning. Hene all the assumptions in Lemma 3.5 are ful�lled.) Weare done with the proof of the �rst statement.To prove the seond statement let us treat the ase � = 12 separately at the end.We note that � 2 Ls(�) if and only if � 2 L(0 : k; �) for all k > 0. Using the above argumentswe will in this situation have the analogue to ondition (13) as � 2 Ls(�) if and only ifri sin(�i) < k(ri os(�i))� (21)for in�nitely many i and for all k > 0. Using equations (14), (18) and (19) the above inequalityis equivalent to the following. �ti(1� �) < ��'i � C;for in�nitely many indies i and for all C <1. Thus, � 2 Ls(�) if and only iflim infi!1 (�('i + ti)� ti) = �1: (22)whih is by Lemma 3.5 equivalent to� 2 L(�) if and only if lim inft!1 (�('(t) + t)� t) = �1:For the ase � = 12 , we note that the assumption � > 12 in Lemma 3.5 is used only to makesure that we have an in�nite sequene f'ig.Suppose now that � = 12 and that � 2 Ls( 12 ), then we will show that f'ig has to be in�nite.The idea of that argument is taken from the proof of Theorem 2.4.10 in [7℄ whih says that aonial limit point an not appear on the boundary on a Dirihlet domain.Let us study the unit ball tessellated by images of the Dirihlet domain around the origin.We know that the ray to � visits suh a domain only one. Sine the number of loal minimas is�nite, we onlude that there is a domain, Fi, where the ray �nally enters and then never leaves



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 13on its way to �, i.e. there is a C suh that � 2 Fi for every  > C. Reall that every pointin this open domain Fi has the property that it is loser to the orbit point i(0) in it than toany other orbit point. Let us for simpliity map the whole piture by the mapping �1i so thatF0 = �1i (Fi) is a Dirihlet domain entered at the origin. Let us now study the ray from theorigin to �0 = �1i (�). We see that this ray is in F0 and we parameterize it by �0 for  2 (0; 1).Let us now onstrut an open hyperboli ball entered at �0 with radius d(�; i(0)). That islet B = fz : d(z; �0) < d(�0; 0)g:We note that B does not ontain any orbit points and the same is true for the unionB̂ = [2(0;1)B:We note that B̂ is a horo ball with Eulidean radius 12 and tangent to the unit ball at �0.Finally, let us map B̂ bak to i(B̂) whih is tangent to � has a radius greater than or equal to1�ji(0)j2 and ontains no orbit points. We onlude then from the De�nition 1.5 that � 62 Ls( 12 ).Hene we onlude that the sequene f'ig is in�nite.Furthermore, sine � 2 Ls( 12 ) we have thatlim infi!1 ('i � ti) = �1 <1from the above reasoning leading to Equation (22) whih is still valid. We an now use the prooffor Lemma 3.5, sine f'ig is in�nite, to obtain thatlim inft!1 ('(t)� t) = �1:On the other hand, assume that lim inft!1 ('(t)� t) = �1:If f'ig is �nite, then from the beginning of the proof of Lemma 3.5 we have (sine � = 12 ) that12 ('(t) � t) = �(t) � � 12 tI whih ontradits the assumption. Hene we onlude that f'ig isin�nite. As above we an use the proof of Lemma 3.5 to see thatlim infi!1 ('i � ti) = �1;whih is equivalent to � 2 Ls( 12 ). �



14 TORBJ�ORN LUNDH3.3. The proof of Corollary 3.2.Proof. Suppose � 2 L(�) then we have from the �rst part in Theorem 3.1 thatlim inft!1 (�('(t) + t)� t) <1:Hene there is a K <1 suh thatlim inft!1 ('(t) � 1� �� t) = K:Thus lim inft!1 '(t)t � 1� �� :For the seond part, suppose thata := lim inft!1 '(t)t < 1� �� :From Lemma 3.4 we have that a = 'iti . Let Æ := 1��� � a.We have that for every " > 0, there is an in�nite set of indies J = fjg suh that'(tj)tj � a < " for all j 2 J:This will espeially be valid for our hoie of " = Æ2 . (Note that Æ > 0 by the assumption above.)Hene we have that '(tj) < tj(a+ ") for all j 2 J:Thus '(tj)� 1� �� tj < tj(a+ "� 1� �� ) = tj("� Æ) = �Æ2 tj :We onlude, using Lemma 3.5 thatlim inft!1 �('(t) + t)� t) = �1;whih is equivalent to � 2 Ls(�) by the latter part of Theorem 3.1. �3.4. A global result. By using Theorem 3.1 together with a Borel{Cantelli type lemma in [7℄we an get a global result for the limit sets Ls(�) and their orresponding Poinar�e series.Corollary 3.6. Let � be a geodesi on B=� starting at the referene point x0 in the � diretion,where � is on the unit sphere and let '� be the ' distane funtion for �. Let j � j be the(n� 1){dimensionally Lebesgue measure on the unit sphere, and let 12 < � � 1. Ifjf� : lim inft!1 (�('�(t) + t)� t) <1gj > 0then the Poinar�e type series Xi2�(1� ji(0)j)(n�1)� =1:



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 15Proof. If lim inf t!1(�('�(t) + t) � t) < 1 then we have from Theorem 3.1 that when � istransformed into the unit ball, it ends at a point in L(�). Hene ifjf� : lim inft!1 (�('�(t) + t)� t) <1gj > 0then jL(�)j > 0. Now Theorem 2.1.1 in [7℄ tells us then that if jL(�)j > 0, thenXi2�(1� ji(0)j)(n�1)� =1: �Remark 3.7. In [4℄ it was showed, in the Kleinian ase (n=3), that the Hausdor�-dimension off� : lim inft!1 '�(t) <1gequals the ritial exponent Æ(�). Reall that the ritial exponent an be de�ned in the followingway: Æ(�) = inffs : Xi2�(1� ji(0)j)s <1g:4. An ladder-like exampleLet us study a Riemann surfae that looks like a ladder or a \one dimensional jungle gym".Our surfae is an in�nitely long body with evenly distributed \holes". See Figure 6.
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�Figure 6. A one dimensional jungle gym.Let us for simpliity assume that the distane between the enters of two onseutive holesare 1 and that the shortest losed ar around in suh a hole also has unit length.Let us use this jungle gym onstrution together with Corollary 3.2 to give simple examplesof � 2 L(�) n L(�0), where 12 < � < �0 < 1.Corollary 4.1. Let � be given by the above jungle gym onstrution and � by the geodesi makingN(j) turns in hole j twisting out in a onseutive way. Let us assume that N(j) � 1 and thatthe limit{average of the number of turns is bounded, i.e.�N := lim supi!1 1i iXj=1N(j) <1:Then we have that � 2 Ls( �N�N + 1) n L( �N + 1�N + 2):



16 TORBJ�ORN LUNDHProof. We have that � 62 L(1) sine the geodesi does not return at all.Let us give estimates of the loal minimum of '(t) about where the geodesi has made N(i)turns in hole i. Let us denote that \ending" loal minimum by 'ie = '(tie). By the use of the\little ordo" o(�) funtion we an immediately give the following estimate:ie � o(ie) < 'ie < i+ o(ie):Note that we have the following approximation of tie .tie � p2ie + iXj=1(N(j)� 1):We will use the following rather rough estimate.ie + iXj=1(N(j)� 1)� o(ie) < tie < ie + iXj=1N(j) + o(ie):We see from the onstrution that lim infi!1 'iti = lim infi!1 'ietie :Hene we have from the estimates above thatlim infi!1 11 + 1i Pij=1N(j) < lim infi!1 'iti < lim infi!1 11i Pij=1N(j) :Thus we see that 11 + �N < lim infi!1 'iti < 1�N :Now, if x = 1��� , then � = 1x+1 . We an then use Corollary 3.2 and onlude that� 2 Ls( �N�N + 1) n L( �N + 1�N + 2);whih is the sought after expression. �5. The ase � = 1It is well known that if the geodesi g(t) returns in�nitely often to a ompat neighborhoodof x0, then the limit point � is in the non-tangentially limit set �. Let us try to be a little morepreise about this.Proposition 5.1. Let the set L(� : �; �) be as in De�nition 1.2.� 2 L(0 : sinh(K); 1) if and only if lim inft!1 '(t) < K:Furthermore, � 2 Ls(1) if and only if lim inft!1 '(t) = 0:



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 17Proof. Suppose that � 2 L(0 : sinh(K); 1). Using the notation from Figure 5 we know that thereare in�nitely many orbit points i(0) suh that Ri < sinh(K)hi. We an reformulate this asthere are in�nitely many i(0) suh thattan(�i) < sinh(K):Using equation (17) we end up with that for in�nitely many indies i, sinh('i) < sinh(K) andthus 'i < K for in�nitely many i. Thus� 2 L(0 : sinh(K); 1) if and only if lim infi!1 'i < K;whih by Lemma 5.2 below, gives us the �rst equivalene:� 2 L(0 : sinh(K); 1) if and only if lim inft!1 '(t) < K:(Note that we an use Lemma 5.2 sine we safely an assume that f'ig is in�nite.)To get the seond statement, we argue as above and onlude that � 2 Ls(1) if and only if forevery K > 0 there are in�nitely many indies i suh that 'i < K. Hene by using Lemma 5.2,� 2 Ls(1) if and only if lim inft!1 '(t) = 0: �Lemma 5.2. If the sequene f'ig is in�nite, thenlim infi!1 'i = lim inft!1 '(t):Proof. We have from Remark 3.3 that,lim infi!1 'i � lim infi!1 '(ti) � lim inft!1 '(t):On the other hand, we an use a similar argument as we did in the latter part of the proof ofLemma 3.4 above to obtain the following inequality.'i = inft d(r(t); i(0)) � infr(t)2Di d(r(t); i(0)) = infr(t)2Di '(t):Hene, lim infi!1 'i � lim infi!1 infr(t)2Di '(t) = lim inft!1 '(t): �



18 TORBJ�ORN LUNDH6. The ase � > 1When � 2 L(�) for � > 1 we have immediately that � 2 � and thus that there exists abounded subsequene of f'ig. But we an say more than this.Proposition 6.1. Suppose that � > 1 then we have the following two equivalenes.� � 2 L(�) if and only if there exists a K <1 suh thatlim inft!1 '(t)e(��1)t < K:� � 2 Ls(�) if and only if lim inft!1 '(t)e(��1)t = 0:Proof. We have that � 2 L(�) if and only if there is a k < 1 suh that � is in in�nitely manyL(0 : k; �). With the notion from Figure 5 that translates into Ri < kh�i for in�nitely many i,or ri sin(�i) < k�ri os(�i)�� for in�nitely many i:If we now use equations (14), (15) and (16) we have that � 2 L(�) if and only if there is a ksuh that for in�nitely many i2e�ti tanh('i) < k�2e�ti 1osh('i)��: (23)Sine we know that � > 1 we have that every one with vertex at � has in�nitely many orbitpoints inside even if the opening angle is very small. Thus we have thatlim infi!1 �i ! 0and hene using equation (15)0 = lim infi!1 sin(�i) = lim infi!1 tanh('i):Thus we have that lim infi!1 'i = 0:Using that fat in equation (23) we obtain the following asymptoti relation. � 2 L(�) if andonly if there is a k suh that lim infi!1 'i < k2��1e�ti(��1):We onlude that � 2 L(�) if and only if there is a K <1 suh thatlim infi!1 'ieti(��1) < K: (24)We will now show that the above inequality is equivalent tolim inft!1 '(t)et(��1) < K 0; (25)for some K 0.



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 19In order to simplify the notation, letf(t) = '(t)et(��1); gi(t) = d(r(t); i(0)); and fi(t) = gi(t)et(��1):Note that fi(t) = f(t) when r(t) 2 Di; (26)and that gi(ti) = 'i is a loal minimum for gi.On the other hand, fi has not a loal minimum at ti but at ti�Æi for some positive Æi. Hene,after di�erentiation, we get thatg0i(ti � Æi) = �(�� 1)gi(ti � Æi): (27)So again by Pythagoras' Theorem we have thatosh(gi(ti � Æi)) = osh(Æi) osh('i):And by di�erentiation with respet to Æi we get that� sinh(gi(ti � Æi))g0i(ti � Æi) = sinh(Æi) osh('i): (28)Combining (27) and (28) gives ussinh(gi(ti � Æi))gi(ti � Æi)(� � 1) = sinh(Æi) osh('i): (29)From (28) we see that ddxg(ti � x) dereases from 0 to � osh('i) as x goes from 0 to 1.Thus, � gi0(ti � Æi) � osh('i): (30)That estimate together with (27) gives us thatgi(ti � Æi) � osh('i)�� 1 : (31)We have from (28) thatÆi � sinh(Æi) = � sinh(gi(ti � Æi))g0i(ti � Æi)osh('i) � sinh(gi(ti � Æi)):Using (31) we get Æi � sinh(osh('i)�� 1 ): (32)Sine fi(ti � Æi) = gi(ti � Æi)e(ti�Æi)(��1) = gi(ti � Æi)'i fi(ti)e�Æi(��1);we have the following estimate for the funtion fi.fi(ti � Æi) � fi(ti)e�Æi(��1): (33)



20 TORBJ�ORN LUNDHWe have that lim inft!1 f(t) � lim infi!1 fi(ti):We show now an inverse inequality to prove the equivalene between (24)and (25).lim inft!1 f(t) = lim infi!1 infr(t)2Di f(t) = (26) = lim infi!1 infr(t)2Di fi(t) � lim infi!1 fi(ti � Æi) � (33) �� lim infi!1 fi(ti) exp(�Æi(�� 1)) � (32) � lim infi!1 fi(ti) exp�� sinh(osh('i)�� 1 )(�� 1)� �� �lim infi!1 fi(ti)� exp�� sinh(osh(lim inf i!1 'i)�� 1 )(�� 1)�:We an assume that lim inf i!1 'i = 0, sine otherwise we have, from Proposition 5.1 and Lemma5.2, that � 62 Ls(1) � L(�) for all � > 1:Hene lim inft!1 f(t) � lim infi!1 fi(ti) exp�� sinh( 1�� 1)(�� 1)�:So if we let K 0 = K exp�� sinh( 1�� 1)(� � 1)�;we have that (24)and (25) are equivalent. This ends the proof of the �rst part.To prove the seond part we only have to note that � 2 L(�) if and only if for every k > 0, �is in in�nitely many L(0 : k; �). Following the same arguments as above we obtain that � 2 L(�)if and only if lim infi!1 'ieti(��1) = 0; (34)where last expression is equivalent, with the same reasoning as above (with K = 0), tolim inft!1 '(t)et(��1) = 0: �6.1. The point{ and line{ transitive sets. Note from Remark 1.7 that the results in Propo-sition 6.1 depends on the hoie of base point x0 2 B=�. Let us now allow ourself to vary thebase point letting 'a(t) be as '(t) above, exept that we replae x0, the image of the origin, byxa, the image of a 2 B. Then it is easy to see, using the de�nitions on pp. 26, 27 in [7℄ togetherwith Figure 5, that � is a point transitive limit point (� 2 Tp) if and only iflim inft!1 'a(t) = 0; for all a 2 B;and that � is a line transitive limit point, Tl, if and only iflim inft!1 ('a(t) + 'b(t)) = 0; for all pairs a; b 2 B:



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 21Remark 6.2. We have trivially that Tl � Tp. Furthermore, Tl 6= ; if � is of the �rst kind, andTp = ; if � is of the seond kind. See for example Theorems 2.2.2 and 2.3.3 in [7℄.7. A question about the arhipelago of �On page 300 in [6℄, the arhipelago of a disrete group � is de�ned. Let Bj := fz 2B; d(z; j(0)) < r�; j 2 � n fIgg: By the fat that � is disrete it is possible to �nd an r� > 0suh that the balls Bj do not interset eah other. Let us �x suh an r� and let E := Sj Bj .That is, E is the \fattened" orbit of � and we all it the arhipelago of �.De�nition 7.1. We de�ne the set N to beN = fx 2 �B : the arhipelago is not minimally thin at xg:From [6, Setion 5 and 6℄ we have that� � N � Ls(�);when � < 1. We have also Ls(1) � L(1) = �. Furthermore N and � have the same Hausdor�dimension and in the ase where � is geometrially �nite, N = �, see Theorem 5.4, and Corollary6.1 in [6℄.The following question was raised at the end of Setion 5 in [6℄ p 310: Is in fat N = �? Wewill answer this question negatively in Setion 9 below.8. A generalized version of thinnessDe�nition 8.1. The set E is �{thin at y if there is a measure � suh thatlim infx!y;x2E k� � �(x) > k� � �(y);where k�(x) is the Riesz kernel jxj��n. To �nd out more about this type of thinness, seefor example [2, pp. 155{158℄. (Note that we here used � instead of � as the parameter in anattempt to avoid onfusion.)Now let the set E be the arhipelago �. What an be said about the �{thinness of E if thesequene f'ig is known? We have immediately that if there is a bounded subsequene of f'igthen � 2 � and thus in N due to Proposition 4.14 in [6℄ whih then would imply that E isnot �{thin at � (sine minimal thinness is 0{thinness). The follwing result gives a more preisestatement.Proposition 8.2. Let f'ig and � be as above and let � 2 [0; 1). The arhipelago of � is not�{thin at � if X e�(n��)'i =1:



22 TORBJ�ORN LUNDHProof. Let E be the arhipelago of �. Let fQkg be a Whitney deomposition of the unit ball.Using the estimates in Lemma 4.11 in [6℄ and Corollary 7.4.3 on p. 155 in [2℄ we obtain that Eis �{thin at � if and only if [Qk\E 6=;Qk is �{thin at �.Corollary 7.4.3 (iv) in [2℄ tells us then that E is �{thin at � if and only ifXQk\E 6=;� diam(Qk)dist(Qk; �)�n�� <1:Thus from Lemma 4.11 in [6℄ and (7) and (8) in its proof we have thatXQk\E 6=;� diam(Qk)dist(Qk; �)�n�� � C Xfj2�g� j1� jj(0)jj� � j(0)j �n�� � CXf'ig� hiRi�n��;with the notation from Figure 5 above. SinehiRi = os(�i) = 1osh('i) ;we onlude that E is not �{thin at � ifXf'ig e�(n��)'i =1: �Corollary 8.3. If X e�n'i =1 then � 2 N.The orollary follows immediately from the above proposition sine 0{thinness is minimalthinness. We will use Corollary 8.3 to give a onrete example in Setion 9 below, of a Fuhsiangroup with a limit point � 2 N n �.What an we say about rare�edness? Nothing in general is the negative answer. In Lemma6.3 in [6℄ we see that if � is a �xed point for a paraboli element in the Fuhsian group � thenthe arhipelago is not rare�ed at � although f'ig ould even be empty.9. A ounter exampleLet us again study the \jungle gym" in �gure 6. Where we assumed that the distane betweenthe enters of two onseutive holes are 1 and that the shortest losed ar around in suh a holealso has unit length.Given a starting point, x0, we an ompletely determine the geodesi, and thus the relatedlimit point � on the unit sphere for the underlying disrete group �, by the number of turns g(t)makes in eah hole. Let us suppose that the holes are visited in strit order going to the \right"for example. Thus ' is inreasing. Let us denote the number of turns in the j-th hole by Nj .We will show that if we hoose Nj to be the upper integer part of exp(2j)=j then will � be in Nbut not in �.



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 23Note that in this set up 'j � j and thus 'j !1 and hene � 62 �. From Corollary 8.3 it issuÆient to show that with the hoie of Nj as abovePf'ig e�2'i =1:Xf'ig e�2'i � Xf holejgNje�2'j � Xf holejgNje�2j �� Xf holejg e2jj e�2j = Xf holejg 1j =1:Hene we onlude that � 6= N. Referenes[1℄ L. Ahlfors M�obius Transformations in Several Dimensions. University of Minnesota. (1981).[2℄ H. Aikawa and M. Ess�en Potential Theory { Seleted Topis. Leture Notes in Mathematis 1633, Springer-Verlag, Heidelberg, (1996).[3℄ A. F. Beardon The Geometry of Disrete Groups. Springer-Verlag, New York In. (1983).[4℄ C. Bishop and P. Jones Hausdor� dimension and Kleinian groups, Ata Mathematia, Vol. 179 (1997), 1{39.[5℄ J. B. Garnett. Appliations of Harmoni Measure. The University of Arkansas leture notes in the mathe-matial sienes; v.8. (1986).[6℄ T. Lundh Disrete groups and thin sets Ann. Aad. Si. Fenn. A. I. Vol. 23, 291{315, (1998).[7℄ P. Niholls The Ergodi Theory of Disrete Groups. London Mathematial Soiety Note Series. 143 (1989).Department of Mathematis, Chalmers University of Tehnology, SE{412 96 G�oteborg, SwedenE-mail address: torbjrn�math.halmers.se


