
GEODESICS ON QUOTIENT{MANIFOLDS AND THEIRCORRESPONDING LIMIT POINTSTORBJ�ORN LUNDHAbstra
t. The motivation of this paper is twofold.We address the following question left open by the author in [6℄. Is the set on the boundarywhere the so 
alled ar
hipelago of � is not minimally thin equal to the 
oni
al limit set? Wewill show that this is not true in general by 
onstru
ting a 
ounterexample in Se
tion 9.We are also 
onsidering a problem, suggested to the author by Chris Bishop, about gen-eralizing the well known result whi
h gives a 
orresponden
e between returning geodesi
s onRiemann manifolds and 
oni
al limit points.Keywords: Dis
rete group, Fu
hsian group, Kleinian group, horo
y
le, limit set, non-tangentiallimit set, minimal thinness.2000 Mathemati
s Subje
t Classi�
ation. Primary 30F40, 30F45, 20H10, 57S30, 53C22 Se
-ondary 31A15, 31B15. 1. The set upLet B be the unit ball in Rn , or the unit disk if n = 2, and let � be a dis
rete group thatpreserves B. We will denote the elements in � by 
i. Let S = B=� be the (Riemann) quotient{manifold obtained from B by identi�
ation of �{equivalent points. (If n � 3 S is a manifold,for higher dimensions it may not be a manifold, but we will adopt the notion from [1℄ p. 79 and
all it a quotient{manifold nevertheless.)Furthermore, let x0 be the base point on S 
orresponding to the origin in B; and let g(t) be aparameterized geodesi
 on S su
h that g(0) = x0 and su
h that the ar
 length of g(t) for t from0 to � is � . Let '(t) be the distan
e d(g(t); x0) on the manifold. Thus we have that '(t) � t:The geodesi
 from x0 is viewed in B as a straight line from the origin to a boundary point �whi
h thus 
orresponds to a limit point, limt!1 g(t), on S.Date: February 13, 2003.This work was done under the support of a grant from the Swedish Natural S
ien
e Resear
h Coun
il, NFR. Iwant also to express my gratefulness to professor Chris Bishop for stating the initial question about the fun
tion' and all his help in general. I would also like to thank professors Hiroaki Aikawa, Matts Ess�en, and Yair Minskyfor helpful dis
ussions. 1



2 TORBJ�ORN LUNDHIt is a well known fa
t that if '(t) is bounded then the 
orresponding limit point �, for thedis
rete group �, is a non-tangential limit point, or in other words, a 
oni
al limit point. What
an be said in general about the limit point � if '(t) is known?We 
an think of S as the result of taking the Diri
hlet domain in B around 0 and gluingtogether 
orresponding sides a

ording to the generators of �. The \seams" on S will then
orrespond to the set on S where the graph of ' \has a 
orner", i.e. there are at least twodi�erent geodesi
s from x0 to a seam-point; see Figure 2.We will now give some de�nitions taken from [6℄ and [7℄. The following is 
ited from [7, p. 5℄.De�nition 1.1. Let a 2 B and k; � > 0. We de�neI(a : k; �) = fx 2 �B : ����x� ajaj ���� < k(1� jaj)�g:Let us also 
ite page 23 in [7℄ for the following de�nition.De�nition 1.2. Let 
i be the elements of the dis
rete group � and let z be the base point of theorbit. Then L(z : k; �) = 1\m=1 1[i>m I(
i(z) : k; �):Let us 
ite De�nition 3.14 in [6℄ where we take the base point to be the origin.De�nition 1.3. Let us denote the �-limit set byL(�) = [k>0L(0 : k; �)Remark 1.4. The spe
ial 
ase when � = 1 give us the 
oni
al limit set, also 
alled the non{tangential limit set, i.e. L(1) = �
, see for example Lemma 3.13 in [6℄ for a more detailed
omparasion.In De�nition 5.2 in [6℄, a subset of the limit set L(�) was introdu
ed by taking the interse
tioninstead of the union in the following manner.De�nition 1.5. We de�ne the strong �-limit set to beLs(�) = \k>0L(0 : k; �):We have that for any stri
tly positive ��B � L(�) � Ls(�) � L(� + ") for all " > 0:It is well known that the 
oni
al limit set, i.e. L(1), is independent of the 
hoise of base point;see for example p. 29 in [5℄. We will show that the same holds when � 2 (0; 1), telling us thatour restri
tion in De�nitions 1.3 and 1.5 to �x the base point to the origin is not that essential.Lemma 1.6. For any point z in B,[k>0L(z : k; �) = [k>0L(0 : k; �)



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 3if � � 1. That is, L(�) is independent of the base point of the orbit if � � 1. Similarly, Ls(�)is independent of the base point of the orbit if � < 1.Proof. Given an � � 1 and a z 2 B. Suppose x 2 Sk>0 L(z : k; �), then x 2 L(z : k; �) for somek > 0. We want to show that there is a K su
h that x 2 L(0 : K;�), where K is dependent on�; z and k.Let us by Æ denote the hyperboli
 distan
e from 0 to z, i.e. Æ = d(0; z). Sin
e a M�obiusmapping a
ts as an isometry , we then have Æ = d(
i(0); 
i(z)).Sin
e x 2 L(z : k; �), we have that x 2 I(
i(z); k; �) for in�nitely many indi
es i. Call thatset of indi
es J . Let " < 12eÆ and de�ne J" to be the (in�nite) subset of J su
h thatJ" = fi 2 J ; 1� j
i(z)j < "g:Thus if i 2 J" then ����x� 
i(z)j
i(z)j ���� < k"�: (1)
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Figure 1. 
i(0) lies on the hyperboli
 sphere C 
entered at y = 
i(z), �; � andy lies in the unit ball on the ray from the origin through y where � is the pointon the sphere that is 
losest to the origin and � is point furthest away. a is theEu
lidean distan
e from y to �, and similarly b is j� � yj.We know that 
i(0) lies on the hyperboli
 sphereC = f� 2 B; d(�; 
i(z)) = Æg:Let us now make an Eu
lidean estimate how far 
i(0) 
an be from 
i(z) by 
omputing the twoextremal distan
es to C from 
i(z). Let a be the distan
e from 
i(z) to �, the point 
losest tothe origin in C, and let b be the distan
e to the point � furthest away from the origin in C. SeeFigure 1.



4 TORBJ�ORN LUNDHWe have thatÆ = d(
i(z); �) = d(0; 
i(z))� d(0; �) = log� (1� j�j)1� j
i(z)j 1 + j
i(z)j(1 + j�j) �:Hen
e we get the following rough estimate.12eÆ(1� j
i(z)j) < 1� j�j < 2eÆ(1� j
i(z)j):We 
an then estimate a. a = j
i(z)j � j�j = (1� j�j)� (1� j
i(z)j) << 2eÆ(1� j
i(z)j)� (1� j
i(z)j) < "(2eÆ � 1): (2)Similarly, we have for b.b = j�j � j
i(z)j < (1� j
i(z)j)� 12eÆ (1� j
i(z)j) < "(1� 12eÆ ): (3)Let us de�ne � to be ar
tan aj
i(z)j , then we 
ould estimate����x� 
i(0)j
i(0)j ���� < ����x� 
i(z)j
i(z)j ����+ �:But from equation (2) and sin
e we have 
hosen " < 12eÆ , we 
an estimate �.� = ar
tan aj
i(z)j � aj
i(z)j < a1� " < "(2eÆ � 1)1� " < "2eÆ:So for i 2 J" we have, using equation (1),����x� 
i(0)j
i(0)j ���� < k"� + "2eÆ: (4)From equation (3) we have1� j
i(0)j > "� b > "� "(1� 12eÆ ) = "2eÆ : (5)We aim to �nd a K su
h that x 2 L(0 : K;�), i.e.K > ����x� 
i(0)j
i(0)j �����1� j
i(0)j���: (6)Let us therefore study the right hand side of this expression. From equations (4) and (5) wehave ����x� 
i(0)j
i(0)j �����1� j
i(0)j��� < �k"� + "2eÆ�� "2eÆ��� = (2eÆ)�(k + 2eÆ"1��): (7)Sin
e � � 1 we have that "1�� � 1. Therefore by pi
king K = (2eÆ)�(k +2eÆ) equation (6) willbe satis�ed, and hen
e x 2 L(0 : K;�). This proves that L(�) is independent of the base pointof the orbit if � � 1, whi
h ends the �rst part of the proof.To prove the statement about the strong �{limit set, let us suppose thatx 2 \k>0L(z : k; �) and � < 1: (8)



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 5We aim to show that x 2 Tk>0 L(0 : k; �). It is therefore enough to show that for any given� > 0, x 2 L(0 : �; �).Note from (8) that x 2 L(z; k; �) trivially holds with the spe
ial 
hoi
e of k = �2�+1e�Æ , whereas above, Æ = d(0; z). Thus, x 2 I(
i(z) : k; �) for in�nitely many indi
es i. Let us denote thisset of indi
es by J . Now pi
k " = � k2eÆ� 11�� :Sin
e L(0 : 
1; �) � L(0 : 
2; �); if 
1 < 
2;we 
an without loss of generality assume that � < 2(2eÆ)2�. That gives us that k < (2eÆ)� and" < 12eÆ , hen
e we 
an use the estimate in equation (7). Let i 2 J" then����x� 
i(0)j
i(0)j �����1� j
i(0)j��� < (2eÆ)�(k + 2eÆ"1��) = 2k(2eÆ)� = �:Thus as in equation (6), we have that for every i 2 J", whi
h are in�nitely many, x 2 I(
i(0) :�; �). Hen
e x 2 L(0 : �; �) whi
h ends the proof. �Remark 1.7. It is easy to see that Ls(1) is not independent of the base point. Let for example �be a Fu
hsian group generated by a single hyperboli
 generator in the unit ball. Then we havethat the limit set 
onsist only of the two �xed points whi
h are both in �
, however the pointsare in Ls(1) if and only if the base point is taken to be the origin.2. The 
ase 0 < � � 12If the geodesi
 immediately runs out on a paraboli
 
usp then '(t) � t. If the geodesi
s runsout inside the Diri
hlet domain to a point on the boundary that is not in the limit set, then wewill also have '(t) � t.Hen
e the ' fun
tion will not be of any help for 
lassifying points in L(�) when 0 < � � 12 .Let us qui
kly turn to the next 
ase.3. The 
ase 12 � � < 1Theorem 3.1. Suppose that � is on the unit sphere. We have the following two equivalen
es.� � 2 L(�), for 12 < � � 1, if and only iflim inft!1 (�('(t) + t)� t) <1:� � 2 Ls(�), for 12 � � < 1, if and only iflim inft!1 (�('(t) + t)� t) = �1:



6 TORBJ�ORN LUNDHCorollary 3.2. Let 12 < � < 1.If � 2 L(�) then lim inft!1 '(t)t � 1� �� ;and if lim inft!1 '(t)t < 1� �� then � 2 Ls(�):Before we plunge into the proofs, let us turn our attention to an auxiliary sequen
e relatedto the fun
tion '.

t

(t)ϕ

Figure 2. An example of a graph of '.3.1. The sequen
e of generalized lo
al minima for '(t). Let the sequen
e f'(ti)g be thesequen
e of generalized lo
al minimas for the fun
tion ' in the following sense. Let us followthe geodesi
 mapped to the unit ball, where it will be the ray from the origin to the boundarypoint �, and let Di be the ith fundamental domain that we visit on our way from 0 to �. Di is
opy of the Diri
hlet domain around the origin mapped by 
i. Let now 'i be the (hyperboli
)distan
e to the ray from the single orbit point 
i(0) in Di, and let ti be the distan
e from theorigin to the point on the ray that is 
losest to 
i(0); see Figure 3.When the 
losest point on the ray lies inside Di, 'i = '(ti) will be a lo
al minimum, sin
ewe travel with unit speed along the ray; but in the situation s
hemati
ally depi
ted in Figure 3we will get a generalized lo
al minimum point outside the graph of '(t), see Figure 4.Remark 3.3. Note that su
h a generalized lo
al minima 'i will never be smaller than '(ti) sin
ethe 
losest orbit point is 
i�1(0) for every point in Di�1.We will repeatedly use this auxiliary sequen
e fti; 'ig of generalized lo
al minimas.Lemma 3.4. If 0 < lim inft!1 '(t)t < 1;then lim inft!1 '(t)t = lim infi!1 'iti :
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Figure 3. A situation where the 
losest point (on the ray, (t; r(t)), towards �)to 
i(0) lies outside the fundamental domain Di. Compare to '3 in Figure 4below.
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t 1 t 2 t 3Figure 4. An example of the '(t) graph and the sequen
e of generalized lo
alminimas at 'i = '(ti). Note that '1 = '(t1); '2 = '(t2), but '3 > '(t3):Proof. We 
an assume that f'ig is an in�nite sequen
e. If not, there exists an integer I su
hthat 'I is the last generalized lo
al minimum. That is, the ray, from the origin in the unit balltowards the point �, would never leave the fundamental domain DI . Let r(t) be the ray towards� 2 �B su
h that d(r(t); 0) = t. Let t > tI and 
onsider the hyperboli
 triangle in DI with
orners in r(t); r(tI ), and 
I(0). The side lengths are t � tI ; 'I ; and '(t). Note that the angleat r(tI ) is �2 . From the triangle inequality we have thatt� tI � '(t) � t� tI + 'I :Hen
e, lim inft!1 '(t)t = 1;whi
h is not allowed. Thus we have that f'ig is an in�nite sequen
e, and thenlim infi!1 'iti



8 TORBJ�ORN LUNDHexists.Due to Remark 3.3 we have immediately thatlim inft!1 '(t)t � lim infi!1 'iti : (9)Let us �rst assume that '(ti) = 'i for all i, i.e. the generalized lo
al minimas are true lo
alminimas for '(�). (At the very end of this proof we will treat the general 
ase.) In this situationit we have that for a given i, there is a Æi su
h that ti + Æi is a gives a lo
al minimum of thefun
tion '(�)� . Note that the line from the origin to the point (ti+ Æi; '(ti+ Æi)) will be a tangentto the graph of '.As above, let us look at a right angled triangle with 
orners in r(ti + Æi), r(ti), and 'i(0).The side lengths are then Æi, 'i, and  i := '(ti + Æi).We will use the hyperboli
 version of Pythagoras theorem, 
.f. [3, p. 146℄.
osh i = 
osh Æi 
osh'i: (10)From the assumption and (9), we have that0 < lim inft!1 '(t)t � lim infi!1 'iti :Thus 'i !1. Hen
e 
osh'i � e'i2if i is large.Sin
e  i > 'i we have the following approximation of (10) for large index i.e i � 
osh Æie'i :Hen
e, lim inft!1 '(t)t = lim infi!1  iti + Æi = lim infi!1 'i + log(
osh Æi)ti + Æi : (11)Let us now separately study two 
ases.(1) If lim supi!1 Æi <1then from (11)lim inft!1 '(t)t = lim infi!1 'iti + log(
osh Æi))ti1 + Æiti = lim infi!1 'iti :(2) If lim supi!1 Æi =1;then there are in�nitely many indi
es i su
h that
osh Æi � eÆi2 :



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 9From (11) we have thatlim inft!1 '(t)t = lim infi!1 'i + Æi � log 2ti + Æi = lim infi!1 'i=ti + Æi=ti1 + Æi=ti : (12)To simplify the notation, letk = lim infi!1 'iti ; and f(x) = k + x1 + x :We have then that lim inft!1 '(t)t � lim infi!1 f(Æiti ):We note also that 0 < k � 1, and thatf 0(x) > 0 if and only if k < 1:If k = 1 then f(x) � 1 and thuslim inft!1 '(t)t � 1whi
h is not allowed. Hen
e we have that k < 1 whi
h gives us thatlim inft!1 '(t)t � lim infi!1 f(Æiti ) � f(0) = k = lim infi!1 'iti :We are now done under the assumption that '(ti) = 'i for all i.Finally, let us treat the situation when '(ti) < 'i, s
hemati
ally depi
ted in Figure 4, fori = 3, above. Let us �rst 
on
entrate on the graph 
onsisting on the dotted ar
 
ontinuationwhen t is su
h that r(t) 2 Di. In other words, let us look at the quotients d(r(t); 
i(0))=t.By following the arguments above, starting at the point where we made the assumption that'(ti) = 'i, we 
on
lude that lim infi!1 'iti = lim infi!1 inft d(r(t); 
i(0))t :On the other hand,inft d(r(t); 
i(0))t � infr(t)2Di d(r(t); 
i(0))t = infr(t)2Di '(t)t :Thus lim infi!1 'iti � lim infi!1 infr(t)2Di '(t)t = lim inft!1 '(t)t : �We will also need the following variant of the above lemma.Lemma 3.5. Let 12 < � < 1. If lim inft!1 '(t) =1 and iflim inft!1 (�('(t) + t)� t) <1;then lim inft!1 (�('(t) + t)� t) = lim infi!1 (�('i + ti)� ti):



10 TORBJ�ORN LUNDHProof. Sin
e the proof is 
ompletely analogous to the proof of Lemma 3.4 above, we just give ashort outline.Let us for simpli
ity de�ne �(t) := �('(t)+t)�t. With the same triangle argument as above,we see that if f'ig is �nite, then�(2t� tI)� t � �(t) � �(2t� tI + 'I)� t;and sin
e � > 12 we have that lim inft!1 �(t) =1so we 
an safely assume that the sequen
e f'ig is in�nite.Next we assume that �(t) has a lo
al minimum at ti + Æi. Similarly to (11) we have thatlim inft!1 �(t) = lim infi!1 �('i + log(
osh Æi) + ti + Æi)� ti � Æi:Now we treat the two 
ases.(1) If lim sup Æi <1 thenlim inft!1 �(t) = lim infi!1 �('i + ti)� ti:(2) If lim sup Æi =1 thenlim inft!1 �(t) = lim infi!1 �('i + ti)� ti + Æi(2�� 1) � lim infi!1 �('i + ti)� ti;sin
e � > 12 . �3.2. The proof of Theorem 3.1.Proof. For the �rst result, note that we already know that � 2 L(1) = �
 if and only iflim inft!1 '(t) < 1. That takes 
are of the 
ase � = 1. From now on in the proof, wewill assume that � < 1 and that lim inft!1 '(t) =1.We have that � 2 L(�) if and only if there is a k > 0 su
h that � 2 L(0 : k; �). That isequivalent to say that for in�nitely many 
i in � we have����� � 
ij
ij ���� < k(1� j
ij)�:This 
an be expressed using the notion in Figure 5 as Ri < kh�i or asri sin(�i) < k(ri 
os(�i))� (13)for in�nitely many i.We note from Figure 5 that 'i is small if and only if the angle �i is small. Therefore � 2 Ls(�)if and only if (13) holds for in�nitely many su
h lo
al minima points in ftig.
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Figure 5. The geometri
 relations in the upper half spa
e between �i, 'i and ti,where 'i is the shortest hyperboli
 distan
e from the orbit point to the verti
alline, i.e. the hyperboli
 distan
e along the 
ir
ular ar
 from the orbit point tor(ti) on the verti
al line. The hyperboli
 distan
e from r(ti) to the image of theorigin in the upper half plane is ti. (The shaded tone of 'i and ti indi
ates thatthey are the only hyperboli
 distan
es in the �gure.)Let us now give estimates for the 
omponents in (13). From a standard 
al
ulation, we havethat ti = log�2� riri �:Sin
e ri � 1 we have the following estimate.ri � 2 exp(�ti): (14)On page 162 in [3℄, relations between 'i and the angle �i in Figure 5 
an be found.sin(�i) = tanh('i); (15)
os(�i) = 1
osh('i) and (16)tan(�i) = sinh('i): (17)Sin
e we assumed that � is not a 
oni
al limit point, we know that lim inf i!1 'i =1 and thuswe 
an make the following two estimates of (15) and (16).sin(�i) � 1: (18)
os(�i) � 2exp('i) : (19)Using the estimates in equations (14), (18) and (19) in the 
ondition (13), we obtain the followingrelation. � 2 L(�) if and only if �2 exp(�ti)�1�� < K�2 exp(�'i)��;



12 TORBJ�ORN LUNDHfor in�nitely many indi
es i and for some 
onstant K. Let C = log(K) + (2�� 1) log 2. We 
anwrite the above inequality as �ti(1� �) < ��'i + C:Hen
e � 2 L(�) if and only if there is a C su
h that�('i + ti)� ti < Cfor in�nitely many indi
es i. Thus,� 2 L(�) if and only if lim infi!1 (�('i + ti)� ti) <1: (20)Whi
h is, thanks to Lemma 3.5, equivalent to the following statement.� 2 L(�) if and only if lim inft!1 (�('(t) + t)� t) <1:(Re
all that we 
ould make the assumption that lim inf t!1 '(t) = 1 after treating the 
ase� = 1 separately in the beginning. Hen
e all the assumptions in Lemma 3.5 are ful�lled.) Weare done with the proof of the �rst statement.To prove the se
ond statement let us treat the 
ase � = 12 separately at the end.We note that � 2 Ls(�) if and only if � 2 L(0 : k; �) for all k > 0. Using the above argumentswe will in this situation have the analogue to 
ondition (13) as � 2 Ls(�) if and only ifri sin(�i) < k(ri 
os(�i))� (21)for in�nitely many i and for all k > 0. Using equations (14), (18) and (19) the above inequalityis equivalent to the following. �ti(1� �) < ��'i � C;for in�nitely many indi
es i and for all C <1. Thus, � 2 Ls(�) if and only iflim infi!1 (�('i + ti)� ti) = �1: (22)whi
h is by Lemma 3.5 equivalent to� 2 L(�) if and only if lim inft!1 (�('(t) + t)� t) = �1:For the 
ase � = 12 , we note that the assumption � > 12 in Lemma 3.5 is used only to makesure that we have an in�nite sequen
e f'ig.Suppose now that � = 12 and that � 2 Ls( 12 ), then we will show that f'ig has to be in�nite.The idea of that argument is taken from the proof of Theorem 2.4.10 in [7℄ whi
h says that a
oni
al limit point 
an not appear on the boundary on a Diri
hlet domain.Let us study the unit ball tessellated by images of the Diri
hlet domain around the origin.We know that the ray to � visits su
h a domain only on
e. Sin
e the number of lo
al minimas is�nite, we 
on
lude that there is a domain, Fi, where the ray �nally enters and then never leaves



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 13on its way to �, i.e. there is a C su
h that 
� 2 Fi for every 
 > C. Re
all that every pointin this open domain Fi has the property that it is 
loser to the orbit point 
i(0) in it than toany other orbit point. Let us for simpli
ity map the whole pi
ture by the mapping 
�1i so thatF0 = 
�1i (Fi) is a Diri
hlet domain 
entered at the origin. Let us now study the ray from theorigin to �0 = 
�1i (�). We see that this ray is in F0 and we parameterize it by 
�0 for 
 2 (0; 1).Let us now 
onstru
t an open hyperboli
 ball 
entered at 
�0 with radius d(
�; 
i(0)). That islet B
 = fz : d(z; 
�0) < d(
�0; 0)g:We note that B
 does not 
ontain any orbit points and the same is true for the unionB̂ = [
2(0;1)B
:We note that B̂ is a horo ball with Eu
lidean radius 12 and tangent to the unit ball at �0.Finally, let us map B̂ ba
k to 
i(B̂) whi
h is tangent to � has a radius greater than or equal to1�j
i(0)j2 and 
ontains no orbit points. We 
on
lude then from the De�nition 1.5 that � 62 Ls( 12 ).Hen
e we 
on
lude that the sequen
e f'ig is in�nite.Furthermore, sin
e � 2 Ls( 12 ) we have thatlim infi!1 ('i � ti) = �1 <1from the above reasoning leading to Equation (22) whi
h is still valid. We 
an now use the prooffor Lemma 3.5, sin
e f'ig is in�nite, to obtain thatlim inft!1 ('(t)� t) = �1:On the other hand, assume that lim inft!1 ('(t)� t) = �1:If f'ig is �nite, then from the beginning of the proof of Lemma 3.5 we have (sin
e � = 12 ) that12 ('(t) � t) = �(t) � � 12 tI whi
h 
ontradi
ts the assumption. Hen
e we 
on
lude that f'ig isin�nite. As above we 
an use the proof of Lemma 3.5 to see thatlim infi!1 ('i � ti) = �1;whi
h is equivalent to � 2 Ls( 12 ). �



14 TORBJ�ORN LUNDH3.3. The proof of Corollary 3.2.Proof. Suppose � 2 L(�) then we have from the �rst part in Theorem 3.1 thatlim inft!1 (�('(t) + t)� t) <1:Hen
e there is a K <1 su
h thatlim inft!1 ('(t) � 1� �� t) = K:Thus lim inft!1 '(t)t � 1� �� :For the se
ond part, suppose thata := lim inft!1 '(t)t < 1� �� :From Lemma 3.4 we have that a = 'iti . Let Æ := 1��� � a.We have that for every " > 0, there is an in�nite set of indi
es J = fjg su
h that'(tj)tj � a < " for all j 2 J:This will espe
ially be valid for our 
hoi
e of " = Æ2 . (Note that Æ > 0 by the assumption above.)Hen
e we have that '(tj) < tj(a+ ") for all j 2 J:Thus '(tj)� 1� �� tj < tj(a+ "� 1� �� ) = tj("� Æ) = �Æ2 tj :We 
on
lude, using Lemma 3.5 thatlim inft!1 �('(t) + t)� t) = �1;whi
h is equivalent to � 2 Ls(�) by the latter part of Theorem 3.1. �3.4. A global result. By using Theorem 3.1 together with a Borel{Cantelli type lemma in [7℄we 
an get a global result for the limit sets Ls(�) and their 
orresponding Poin
ar�e series.Corollary 3.6. Let 
� be a geodesi
 on B=� starting at the referen
e point x0 in the � dire
tion,where � is on the unit sphere and let '� be the ' distan
e fun
tion for 
�. Let j � j be the(n� 1){dimensionally Lebesgue measure on the unit sphere, and let 12 < � � 1. Ifjf� : lim inft!1 (�('�(t) + t)� t) <1gj > 0then the Poin
ar�e type series X
i2�(1� j
i(0)j)(n�1)� =1:



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 15Proof. If lim inf t!1(�('�(t) + t) � t) < 1 then we have from Theorem 3.1 that when 
� istransformed into the unit ball, it ends at a point in L(�). Hen
e ifjf� : lim inft!1 (�('�(t) + t)� t) <1gj > 0then jL(�)j > 0. Now Theorem 2.1.1 in [7℄ tells us then that if jL(�)j > 0, thenX
i2�(1� j
i(0)j)(n�1)� =1: �Remark 3.7. In [4℄ it was showed, in the Kleinian 
ase (n=3), that the Hausdor�-dimension off� : lim inft!1 '�(t) <1gequals the 
riti
al exponent Æ(�). Re
all that the 
riti
al exponent 
an be de�ned in the followingway: Æ(�) = inffs : X
i2�(1� j
i(0)j)s <1g:4. An ladder-like exampleLet us study a Riemann surfa
e that looks like a ladder or a \one dimensional jungle gym".Our surfa
e is an in�nitely long body with evenly distributed \holes". See Figure 6.
1

43c2c1c c

c
x0

�
�
�

�
�
�Figure 6. A one dimensional jungle gym.Let us for simpli
ity assume that the distan
e between the 
enters of two 
onse
utive holesare 1 and that the shortest 
losed ar
 around in su
h a hole also has unit length.Let us use this jungle gym 
onstru
tion together with Corollary 3.2 to give simple examplesof � 2 L(�) n L(�0), where 12 < � < �0 < 1.Corollary 4.1. Let � be given by the above jungle gym 
onstru
tion and � by the geodesi
 makingN(j) turns in hole j twisting out in a 
onse
utive way. Let us assume that N(j) � 1 and thatthe limit{average of the number of turns is bounded, i.e.�N := lim supi!1 1i iXj=1N(j) <1:Then we have that � 2 Ls( �N�N + 1) n L( �N + 1�N + 2):



16 TORBJ�ORN LUNDHProof. We have that � 62 L(1) sin
e the geodesi
 does not return at all.Let us give estimates of the lo
al minimum of '(t) about where the geodesi
 has made N(i)turns in hole i. Let us denote that \ending" lo
al minimum by 'ie = '(tie). By the use of the\little ordo" o(�) fun
tion we 
an immediately give the following estimate:ie � o(ie) < 'ie < i+ o(ie):Note that we have the following approximation of tie .tie � p2ie + iXj=1(N(j)� 1):We will use the following rather rough estimate.ie + iXj=1(N(j)� 1)� o(ie) < tie < ie + iXj=1N(j) + o(ie):We see from the 
onstru
tion that lim infi!1 'iti = lim infi!1 'ietie :Hen
e we have from the estimates above thatlim infi!1 11 + 1i Pij=1N(j) < lim infi!1 'iti < lim infi!1 11i Pij=1N(j) :Thus we see that 11 + �N < lim infi!1 'iti < 1�N :Now, if x = 1��� , then � = 1x+1 . We 
an then use Corollary 3.2 and 
on
lude that� 2 Ls( �N�N + 1) n L( �N + 1�N + 2);whi
h is the sought after expression. �5. The 
ase � = 1It is well known that if the geodesi
 g(t) returns in�nitely often to a 
ompa
t neighborhoodof x0, then the limit point � is in the non-tangentially limit set �
. Let us try to be a little morepre
ise about this.Proposition 5.1. Let the set L(� : �; �) be as in De�nition 1.2.� 2 L(0 : sinh(K); 1) if and only if lim inft!1 '(t) < K:Furthermore, � 2 Ls(1) if and only if lim inft!1 '(t) = 0:



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 17Proof. Suppose that � 2 L(0 : sinh(K); 1). Using the notation from Figure 5 we know that thereare in�nitely many orbit points 
i(0) su
h that Ri < sinh(K)hi. We 
an reformulate this asthere are in�nitely many 
i(0) su
h thattan(�i) < sinh(K):Using equation (17) we end up with that for in�nitely many indi
es i, sinh('i) < sinh(K) andthus 'i < K for in�nitely many i. Thus� 2 L(0 : sinh(K); 1) if and only if lim infi!1 'i < K;whi
h by Lemma 5.2 below, gives us the �rst equivalen
e:� 2 L(0 : sinh(K); 1) if and only if lim inft!1 '(t) < K:(Note that we 
an use Lemma 5.2 sin
e we safely 
an assume that f'ig is in�nite.)To get the se
ond statement, we argue as above and 
on
lude that � 2 Ls(1) if and only if forevery K > 0 there are in�nitely many indi
es i su
h that 'i < K. Hen
e by using Lemma 5.2,� 2 Ls(1) if and only if lim inft!1 '(t) = 0: �Lemma 5.2. If the sequen
e f'ig is in�nite, thenlim infi!1 'i = lim inft!1 '(t):Proof. We have from Remark 3.3 that,lim infi!1 'i � lim infi!1 '(ti) � lim inft!1 '(t):On the other hand, we 
an use a similar argument as we did in the latter part of the proof ofLemma 3.4 above to obtain the following inequality.'i = inft d(r(t); 
i(0)) � infr(t)2Di d(r(t); 
i(0)) = infr(t)2Di '(t):Hen
e, lim infi!1 'i � lim infi!1 infr(t)2Di '(t) = lim inft!1 '(t): �



18 TORBJ�ORN LUNDH6. The 
ase � > 1When � 2 L(�) for � > 1 we have immediately that � 2 �
 and thus that there exists abounded subsequen
e of f'ig. But we 
an say more than this.Proposition 6.1. Suppose that � > 1 then we have the following two equivalen
es.� � 2 L(�) if and only if there exists a K <1 su
h thatlim inft!1 '(t)e(��1)t < K:� � 2 Ls(�) if and only if lim inft!1 '(t)e(��1)t = 0:Proof. We have that � 2 L(�) if and only if there is a k < 1 su
h that � is in in�nitely manyL(0 : k; �). With the notion from Figure 5 that translates into Ri < kh�i for in�nitely many i,or ri sin(�i) < k�ri 
os(�i)�� for in�nitely many i:If we now use equations (14), (15) and (16) we have that � 2 L(�) if and only if there is a ksu
h that for in�nitely many i2e�ti tanh('i) < k�2e�ti 1
osh('i)��: (23)Sin
e we know that � > 1 we have that every 
one with vertex at � has in�nitely many orbitpoints inside even if the opening angle is very small. Thus we have thatlim infi!1 �i ! 0and hen
e using equation (15)0 = lim infi!1 sin(�i) = lim infi!1 tanh('i):Thus we have that lim infi!1 'i = 0:Using that fa
t in equation (23) we obtain the following asymptoti
 relation. � 2 L(�) if andonly if there is a k su
h that lim infi!1 'i < k2��1e�ti(��1):We 
on
lude that � 2 L(�) if and only if there is a K <1 su
h thatlim infi!1 'ieti(��1) < K: (24)We will now show that the above inequality is equivalent tolim inft!1 '(t)et(��1) < K 0; (25)for some K 0.



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 19In order to simplify the notation, letf(t) = '(t)et(��1); gi(t) = d(r(t); 
i(0)); and fi(t) = gi(t)et(��1):Note that fi(t) = f(t) when r(t) 2 Di; (26)and that gi(ti) = 'i is a lo
al minimum for gi.On the other hand, fi has not a lo
al minimum at ti but at ti�Æi for some positive Æi. Hen
e,after di�erentiation, we get thatg0i(ti � Æi) = �(�� 1)gi(ti � Æi): (27)So again by Pythagoras' Theorem we have that
osh(gi(ti � Æi)) = 
osh(Æi) 
osh('i):And by di�erentiation with respe
t to Æi we get that� sinh(gi(ti � Æi))g0i(ti � Æi) = sinh(Æi) 
osh('i): (28)Combining (27) and (28) gives ussinh(gi(ti � Æi))gi(ti � Æi)(� � 1) = sinh(Æi) 
osh('i): (29)From (28) we see that ddxg(ti � x) de
reases from 0 to � 
osh('i) as x goes from 0 to 1.Thus, � gi0(ti � Æi) � 
osh('i): (30)That estimate together with (27) gives us thatgi(ti � Æi) � 
osh('i)�� 1 : (31)We have from (28) thatÆi � sinh(Æi) = � sinh(gi(ti � Æi))g0i(ti � Æi)
osh('i) � sinh(gi(ti � Æi)):Using (31) we get Æi � sinh(
osh('i)�� 1 ): (32)Sin
e fi(ti � Æi) = gi(ti � Æi)e(ti�Æi)(��1) = gi(ti � Æi)'i fi(ti)e�Æi(��1);we have the following estimate for the fun
tion fi.fi(ti � Æi) � fi(ti)e�Æi(��1): (33)



20 TORBJ�ORN LUNDHWe have that lim inft!1 f(t) � lim infi!1 fi(ti):We show now an inverse inequality to prove the equivalen
e between (24)and (25).lim inft!1 f(t) = lim infi!1 infr(t)2Di f(t) = (26) = lim infi!1 infr(t)2Di fi(t) � lim infi!1 fi(ti � Æi) � (33) �� lim infi!1 fi(ti) exp(�Æi(�� 1)) � (32) � lim infi!1 fi(ti) exp�� sinh(
osh('i)�� 1 )(�� 1)� �� �lim infi!1 fi(ti)� exp�� sinh(
osh(lim inf i!1 'i)�� 1 )(�� 1)�:We 
an assume that lim inf i!1 'i = 0, sin
e otherwise we have, from Proposition 5.1 and Lemma5.2, that � 62 Ls(1) � L(�) for all � > 1:Hen
e lim inft!1 f(t) � lim infi!1 fi(ti) exp�� sinh( 1�� 1)(�� 1)�:So if we let K 0 = K exp�� sinh( 1�� 1)(� � 1)�;we have that (24)and (25) are equivalent. This ends the proof of the �rst part.To prove the se
ond part we only have to note that � 2 L(�) if and only if for every k > 0, �is in in�nitely many L(0 : k; �). Following the same arguments as above we obtain that � 2 L(�)if and only if lim infi!1 'ieti(��1) = 0; (34)where last expression is equivalent, with the same reasoning as above (with K = 0), tolim inft!1 '(t)et(��1) = 0: �6.1. The point{ and line{ transitive sets. Note from Remark 1.7 that the results in Propo-sition 6.1 depends on the 
hoi
e of base point x0 2 B=�. Let us now allow ourself to vary thebase point letting 'a(t) be as '(t) above, ex
ept that we repla
e x0, the image of the origin, byxa, the image of a 2 B. Then it is easy to see, using the de�nitions on pp. 26, 27 in [7℄ togetherwith Figure 5, that � is a point transitive limit point (� 2 Tp) if and only iflim inft!1 'a(t) = 0; for all a 2 B;and that � is a line transitive limit point, Tl, if and only iflim inft!1 ('a(t) + 'b(t)) = 0; for all pairs a; b 2 B:



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 21Remark 6.2. We have trivially that Tl � Tp. Furthermore, Tl 6= ; if � is of the �rst kind, andTp = ; if � is of the se
ond kind. See for example Theorems 2.2.2 and 2.3.3 in [7℄.7. A question about the ar
hipelago of �On page 300 in [6℄, the ar
hipelago of a dis
rete group � is de�ned. Let Bj := fz 2B; d(z; 
j(0)) < r�; 
j 2 � n fIgg: By the fa
t that � is dis
rete it is possible to �nd an r� > 0su
h that the balls Bj do not interse
t ea
h other. Let us �x su
h an r� and let E := Sj Bj .That is, E is the \fattened" orbit of � and we 
all it the ar
hipelago of �.De�nition 7.1. We de�ne the set N to beN = fx 2 �B : the ar
hipelago is not minimally thin at xg:From [6, Se
tion 5 and 6℄ we have that�
 � N � Ls(�);when � < 1. We have also Ls(1) � L(1) = �
. Furthermore N and �
 have the same Hausdor�dimension and in the 
ase where � is geometri
ally �nite, N = �
, see Theorem 5.4, and Corollary6.1 in [6℄.The following question was raised at the end of Se
tion 5 in [6℄ p 310: Is in fa
t N = �
? Wewill answer this question negatively in Se
tion 9 below.8. A generalized version of thinnessDe�nition 8.1. The set E is �{thin at y if there is a measure � su
h thatlim infx!y;x2E k� � �(x) > k� � �(y);where k�(x) is the Riesz kernel jxj��n. To �nd out more about this type of thinness, seefor example [2, pp. 155{158℄. (Note that we here used � instead of � as the parameter in anattempt to avoid 
onfusion.)Now let the set E be the ar
hipelago �. What 
an be said about the �{thinness of E if thesequen
e f'ig is known? We have immediately that if there is a bounded subsequen
e of f'igthen � 2 �
 and thus in N due to Proposition 4.14 in [6℄ whi
h then would imply that E isnot �{thin at � (sin
e minimal thinness is 0{thinness). The follwing result gives a more pre
isestatement.Proposition 8.2. Let f'ig and � be as above and let � 2 [0; 1). The ar
hipelago of � is not�{thin at � if X e�(n��)'i =1:



22 TORBJ�ORN LUNDHProof. Let E be the ar
hipelago of �. Let fQkg be a Whitney de
omposition of the unit ball.Using the estimates in Lemma 4.11 in [6℄ and Corollary 7.4.3 on p. 155 in [2℄ we obtain that Eis �{thin at � if and only if [Qk\E 6=;Qk is �{thin at �.Corollary 7.4.3 (iv) in [2℄ tells us then that E is �{thin at � if and only ifXQk\E 6=;� diam(Qk)dist(Qk; �)�n�� <1:Thus from Lemma 4.11 in [6℄ and (7) and (8) in its proof we have thatXQk\E 6=;� diam(Qk)dist(Qk; �)�n�� � C Xf
j2�g� j1� j
j(0)jj� � 
j(0)j �n�� � CXf'ig� hiRi�n��;with the notation from Figure 5 above. Sin
ehiRi = 
os(�i) = 1
osh('i) ;we 
on
lude that E is not �{thin at � ifXf'ig e�(n��)'i =1: �Corollary 8.3. If X e�n'i =1 then � 2 N.The 
orollary follows immediately from the above proposition sin
e 0{thinness is minimalthinness. We will use Corollary 8.3 to give a 
on
rete example in Se
tion 9 below, of a Fu
hsiangroup with a limit point � 2 N n �
.What 
an we say about rare�edness? Nothing in general is the negative answer. In Lemma6.3 in [6℄ we see that if � is a �xed point for a paraboli
 element in the Fu
hsian group � thenthe ar
hipelago is not rare�ed at � although f'ig 
ould even be empty.9. A 
ounter exampleLet us again study the \jungle gym" in �gure 6. Where we assumed that the distan
e betweenthe 
enters of two 
onse
utive holes are 1 and that the shortest 
losed ar
 around in su
h a holealso has unit length.Given a starting point, x0, we 
an 
ompletely determine the geodesi
, and thus the relatedlimit point � on the unit sphere for the underlying dis
rete group �, by the number of turns g(t)makes in ea
h hole. Let us suppose that the holes are visited in stri
t order going to the \right"for example. Thus ' is in
reasing. Let us denote the number of turns in the j-th hole by Nj .We will show that if we 
hoose Nj to be the upper integer part of exp(2j)=j then will � be in Nbut not in �
.



GEODESICS ON QUOTIENT{MANIFOLDS AND THEIR CORRESPONDING LIMIT POINTS 23Note that in this set up 'j � j and thus 'j !1 and hen
e � 62 �
. From Corollary 8.3 it issuÆ
ient to show that with the 
hoi
e of Nj as abovePf'ig e�2'i =1:Xf'ig e�2'i � Xf holejgNje�2'j � Xf holejgNje�2j �� Xf holejg e2jj e�2j = Xf holejg 1j =1:Hen
e we 
on
lude that �
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