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Abstract. Recently, all the human genes were identified. But understanding the 

functions coded in the genes is a much harder problem. We are used to view 

DNA as some sort of a computer code, but there are striking differences. For 

example, by using entropy, it has been shown that the DNA code is much clos-

er to random code than written text, which in turn is less ordered than ordinary 

computer code. Instead of saying that the DNA is badly written, using common 

programming standards, we might say that it is written in a different style − an 

evolutionary style. In this paper the coding style of creatures from the artificial 

life platform Avida has been studied. Avida creatures that have evolved under 

different size merit methods and mutation rates have been analysed using the 

notion of stylistic measures. The analysis has shown that the evolutionary cod-

ing style depends on the environment in which the code evolved, and that the 

choice of size merit method and mutation probabilities affect different stylistic 

properties of the genome. A better understanding of Avida’s coding style, 

might eventually lead to insights of evolutionary codes in general. 

1   Introduction 

It was shown, using block entropy, in [1], that the DNA is much closer to random 

code than human written computer code. Furthermore a lot of examples have been 

found where genes have been reused for different purposes during development. As 

an example, take the runt gene in Drosophila, which has been shown [2] to be used 

in sex determination, segmentation and central nervous system creation. These find-

ings suggest that the DNA is coded in a rather different fashion compared to human 

computer code.  

C. Adami made in his survey talk in Stony Brook 10/27/98 on artificial life, a brief 

remark about the quality of the evolved program codes of the digital organisms [3] in 

the artificial life platform Avida [4]:``The codes that are evolved will eventually be 

almost totally unreadable. Things are never used only once, but two or more times. It 

is a kind of a 'madman's' code.''  

How can we capture these comments about the style, or quality, of the computer 

code and the DNA, in a quantified manner? Can we do that in such a general manner 

that we will be able to use analogous quality measure both for carbon − and silicon 

based genetic codes? 



When a population evolves and adapts to an environment, information about what 

traits or chemical reactions that are beneficial in that environment are written into the 

genome. The environment of course influences what information is coded into the 

genome, but what we are interested in is to investigate how the information is coded. 

In this paper we will investigate the different coding styles that the environment en-

forces on the genomes by examining Avida creatures that have evolved under differ-

ent size merit methods and mutation rates. This will be done using the notion of a 

stylistic measure that was introduced in [5].  

2   Codes  

One common way to view functions is as black boxes. Here we are interested of the 

internal structure of such black boxes performing equivalent tasks.  Let us give a 

simple example of two codes that interprets the same simple real valued function: 
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(1) 

The genome of a creature can be thought of as a code that is written in an alphabet 

consisting of a finite numbers of letters, which is read or interpreted by the CPU. The 

genomes found in nature are written with the four letters A, T, G and C, which corre-

sponds to the base pairs in the DNA. In Avida the genomes consists of a combination 

of 24 different CPU instructions, which alter the state of the virtual CPU in some 

manner.  

We will therefore define a code to be a finite string of letters taken from a finite 

alphabet A, such that when the code is interpreted, the code will represent a well-

defined function or process, f.   
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From the above definition it is clear that different codes can have the same func-

tion representation. Let us therefore define a class of codes Cf to be the set of all 

codes that perform the function f when they are interpreted. From a genetic point of 

view one can interpret the function of the code as the phenotype of a creature, and 

thus the code classes as classes of phenotypically equivalent creatures.  

In Avida the interpretation is performed by running a creature through the virtual 

CPU for one generation. If a successful divide occurs the function that the code de-

fines is simply the tasks that the creature performs during one generation. 



3   Styles of a Code 

If we look at two codes from the same class we know that they perform the same 

function, i.e. they have the same phenotype, but their genotype may differ. As the 

evolutionary process is very sensitive to perturbations we cannot expect to find the 

same genotype if evolution occurred two times in the same environment. It’s there-

fore interesting to study the style of the code, as this is more likely to be invariant 

between two instances of the same process. We would therefore like to define the 

style of a code. This is done by introducing measures (3) on the code class Cf, that 

maps each code to a point in [0,1]. 

: [0,1].i fC   (3) 

Putting together several of these measures we can create a profile measure  

μ = (μ1, μ2, μ3,…..), which might serve as a ‘fingerprint’ of the code. 

4   Measures 

As we are interested in distinguishing between different coding styles of creatures 

from Avida we have constructed four different measures that measure different prop-

erties of the genome. Three of the measures are calculated from the functional ge-

nomic array (FGA) of the genome, a representation which reveals the genetic struc-

ture and the localisation of genes [6]. The FGA is a N×M binary matrix, where N is 

length of the genome and M is the number of tasks the creature manages including 

replication. The entry at position (i,j) is 1 if instruction number i is involved in the 

calculation of task number j and 0 otherwise. 

4.2 Gene Correlation 

This measure shows how correlated different genes are and is constructed in the fol-

lowing manner. Sum the functional genomic array along the rows, and remove all 

zero entries in the resulting vector. Sum up all entries that are larger than one and 

divide by the number of tasks plus one (for replication) and by the number of non-

zero entries in the vector.  

If we let T be the row sum of the FGA, N be the number of tasks the creature man-

ages plus one (for replication), LE, the number of non-zero entries in T (the number of 

essential instructions), then the gene correlation is given by (4), where the sum runs 

over all indices for which Ti > 1. 
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     The gene correlation is a number between 0 and 1, where 0 means that all tasks 

including replication are coded disjoint in the genome, and 1 means that they all de-



pend on the same instructions. Note that this measure also can be interpreted as the 

compression of information in the genome.  

4.3 Redundancy 

This measure gives the fraction of instructions that don’t affect the tasks and replica-

tion of a creature. As above the FGA is summed along the rows, but this time we 

count how many zero entries the vector holds, this number is then normalised by the 

length of the creature. 

4.4 Introns 

This measure simply gives the fraction of instructions that never are executed when 

the creature is executed for one life-cycle. Under the default size merit method 4, the 

fraction of introns is rather low (see table 1), as they are punished. Note that the in-

trons are a subset of the redundant instructions. 

4.5 Fragility 

This measure gives the number of instructions that are essential for replication, and is 

constructed from the FGA by simply summing the replication column. This measure 

isn’t normalised with the length of the creature because the number of instructions 

needed to replicate are independent of the length of the creature, as the creatures use 

copy loops. But as we want a measure to lie in [0,1] this measure is normalised using 

the map (5). 
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From preliminary data we know that the number of instructions essential for repli-

cation in most cases lie between 5 and 50. The c in (5) is therefore optimised so that 

the image of the interval f ([5,50]) is maximised. The optimisation is straight forward 

and gives the value c = √(50∙5) ≈ 15.8, which gives f(50) ≈ 0.76 and f(5) ≈ 0.24.  In 

an environment that doesn’t reward computational efforts it is only the fragility that is 

minimised [7], which results in a minimised genome length. 



5   Comparison of Different Styles 

5.1 Size Merit Methods 

The different size merit methods in Avida generate qualitatively different styles of 

coding, for example size merit method 1, which gives merit proportional to copied 

size, tends to produce introns and does not put any pressure on the lengths of the 

creatures, while size merit method 0 does quite the opposite, because merit is inde-

pendent of size. The third size merit method, 4, takes the minimum of copied and 

executed size as merit.  

The merit is a very important property as it is used in the calculation of the fitness. 

This implies that the size merit method has a direct impact on how selection is per-

formed in Avida [4]. 

The question is if these differences in merit calculation can show in a stylistic 

analysis of the different methods. To investigate this we created three sets of creatures 

each containing approximately 60 creatures, from the three size merit methods 0, 1, 4, 

the full settings for these runs can be found in the appendix.  

The optimal comparison would be to compare creatures from the same code class 

(phenotype), but as evolution in Avida proceeds with different pace each run one has 

no guarantee that a certain phenotype has evolved after a fixed number of updates. 

One way to accomplish this would be to reward only those functions that we want the 

phenotype to perform and use a large number of fixed updates, but this approach also 

has its drawbacks. If the required phenotype appears early in evolution, then the code 

is optimised during the rest of the run as no new functions are rewarded. If a creature 

from the above run is compared to a creature from a run where the required pheno-

type appeared just before the maximal number of updates their coding styles would 

certainly differ, as one creature has optimised its coding while the other has not. In-

stead we decided to compare creatures with approximately the same complexity. This 

was done by extracting a creature from the dominant genotype after 40 000 updates in 

each run and if it had reached a certain degree of complexity (it managed at least 

three boolean functions) it was kept for analysis.  

Table 1 shows the average and standard deviation for each measure under the three 

size merit methods. Another way to analyse the data is to perform a principal compo-

nent analysis on the data, which reduces the dimensionality to 2, and gives a better 

graphical representation. The result of the PCA can be seen in fig. 2. The vectors that 

span the plane in fig. 1, are the 1st and 2nd principal components (6). 

 

 

Table 1. The average and standard deviation of the stylistic measures for creatures from three 

different size merit method. 

Size-Merit 

Method 

Gene      

correlation  

Redundancy Introns Fragility 



0 0.2655       

(0.1221) 

0.1666 

(0.1102) 

0.0249      

(0.0496) 

0.4860 

(0.0402) 

1 0.2647 

(0.1161) 

0.6443 

(0.1836) 

0.3581 

(0.1767) 

0.5639 

(0.0706) 

4 0.2288 

(0.0990) 

0.5230 

(0.1905) 

0.0708  

(0.0911) 

0.5565 

(0.0705) 
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Fig. 1. Principal component analysis of the profile measure of creatures that have evolved 

under different size merit methods. 

5.2 Mutation Rates 

The mutation rates in Avida play an important role in the adaptive process. If the 

mutation rates are low evolution tends to proceed very slow as the fitness landscape is 

explored at a low pace and if they are high the population will have trouble sustaining 

information in the genomes [8,9].  

To investigate how the mutation rates influence the coding style we created three 

sets of creatures that had evolved under different copy mutation probabilities each 



containing approximately 60 creatures. The point mutation rates were set to zero, the 

insert/delete mutation probabilities were kept constant at 0.05 per divide and the size 

merit method was set to 4 (the default value in Avida). The copy mutation probability 

was set to one low value (pc = 0.001), one intermediate value (pc = 0.005) and one 

high value (pc = 0.025).  

As in the experiment above the populations evolved for 40 000 updates after which 

the dominant genotype was extracted, but it was only kept for analysis if it managed 

three or more boolean functions. A detailed description of the settings can be found in 

the appendix. The three sets of creatures where then analysed using the stylistic 

measures and the results can be found in table 2 and a PCA-plot in fig. 2. The 1st and 

2nd principal components are given by (7). 

Table 2. The average and standard deviation of the stylistic measures for three sets of creatures 

that have evolved under different copy mutation rates 

pc Gene     cor-

relation 

Redundancy Introns Fragility 

0.001 0.2263 

(0.1093) 

0.6076 

(0.2006) 

0.0487 

(0.0883) 

0.5877 

(0.0811) 

0.005 0.2288 

(0.0990) 

0.5230 

(0.1905) 

0.0708  

(0.0911) 

0.5565 

(0.0705) 

0.025 0.3037 

(0.1372) 

0.2847 

(0.1558) 

0.0372 

(0.0985) 

0.4872 

(0.0465) 
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Fig. 2. Principal component analysis of the profile measure of creatures that have 

evolved under different copy mutation probabilities.  

6   Discussion 

6.1 Size Merit Methods 

In fig. 2 one can see a separation between the different size merit methods, which 

clearly indicates that there are differences in their coding style enforced by the size 

merit method. One way of analysing these differences is to look at the composition of 

the 1st principle component (6). The measures with the larger weights show where the 

styles differs the most. This shows that the coding styles differ most with respect to 

the redundancy, intron and fragility measures. What can also be seen in the PCA plot 

is that the coding style within each size merit methods varies quite much, a thing that 

also can be seen in the standard deviations in table 1. The reason for this is that the 

evolutionary process in Avida takes different paths each run due to the randomness in 

the process, and thus giving rise to a unique coding each run. The large standard 

deviations makes it impossible to draw any conclusions about how the gene correla-

tion is affected by the size merit method, but the other measures show separation 

between the different size merit methods. 



The results of this experiment are intuitive and can be explained directly from how 

the merit is calculated. Size merit method 1 for example has a high fraction of introns 

as the method gives merit proportional to copied size and therefore does not punish 

introns and method 0, which gives merit independent of size, gives a efficient coding 

with a low fraction of both introns and redundant instructions. 

6.2 Mutation Rates 

The principal component analysis plot (fig. 2) in this case does not show the same 

separation between the coding styles as in the case with size merit method. The cod-

ing style of the creatures from the low and intermediate mutation probabilities seem 

clustered together, but the coding style of the high mutation probability show at least 

some separation from the other two. The 1st principal component (7) shows that the 

largest differences between the coding styles lie in the redundancy, fragility and gene 

correlation measures.  

The averages of the stylistic measures (table 2) shows the same tendency as the 

PCA plot, the low and intermediate mutation probabilities give approximately the 

same values while the high probability differs in the gene correlation, redundancy and 

fragility measures. 

The fragility decreases when the mutation probability increases. The reason for 

this is that a high mutation probability requires a more efficient coding of the self-

replication. A creature that uses too many instructions for self-replication would be 

less likely to produce a viable offspring when the copy mutation probability is high. 

The gene correlation on the other hand increases when the mutation probability in-

creases.  The high mutation probability forces the creatures to compress the infor-

mation in the genome, in order to make it less likely to be struck by a deleterious 

mutation. This compression corresponds to that the genes share instructions which 

gives a higher gene correlation. 

The reason why the redundancy decreases when the mutation probability increases 

is because a redundant instruction that is copied incorrectly may alter the execution in 

the offspring which may lead to the loss of a gene or even the capability to self-

replicate. It is therefore disadvantageous to have a high redundancy when the muta-

tion probability is high.  

7   Conclusion 

The results of the experiments clearly show that settings in Avida produce different 

coding styles. Most of the differences that appear are intuitive and can be explained 

directly from for example how the merit is calculated. While some results, like the 

change in gene correlation in the experiments with mutation probabilities, requires an 

understanding of the evolutionary process in Avida.  

What these experiments show is that different environmental settings affect differ-

ent stylistic properties of the genome. The gene correlation does not seem to depend 

much on the size merit method but rather on the mutation probabilities and the frac-



tion of introns seems independent of the mutation probabilities but depends strongly 

on the size merit method. The fragility measure on the other hand seems to depend on 

both mutation probabilities and size merit method. But the main result is that we can 

distinguish between different coding styles from different environments using a sty-

listic profile measure.  It would be very interesting if one could study other evolution-

ary driven systems using this stylistic approach in order to look for universal features 

of evolutionary driven code in general and DNA in particular. 
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Appendix 

All experiments for this paper were performed with Avida 1.3.0 for Windows.  The 

settings used for the experiments were the default settings in Avida, except for the 

changes in size merit method and copy mutation rates. The task bonuses were set to 

the default value except for the fact that the rewards for 3-input boolean functions 

were removed. In the runs with size merit 0 the task bonuses were raised slightly in 

order to prevent the evolution from going in to a size minimising state. Each run was 

started with a time based random seed and the ancestor used in all experiments was 

creature.base, which is supplied with Avida. The ancestor, genesis and 

task_set files for all experiments can be downloaded from 

http://www.math.chalmers.se/~torbjrn/coding_style. 
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