
The Genetic Coding Style of Digital Organisms

Philip Gerlee, Torbjörn Lundh 1

1 Department of Mathematical Sciences, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

http://www.math.chalmers.se/~torbjrn/coding_style

Abstract. Recently, all the human genes were identified. But understanding the

functions coded in the genes is a much harder problem. We are used to view

DNA as some sort of a computer code, but there are striking differences. For

example, by using entropy, it has been shown that the DNA code is much clos-

er to random code than written text, which in turn is less ordered than ordinary

computer code. Instead of saying that the DNA is badly written, using common

programming standards, we might say that it is written in a different style − an

evolutionary style. In this paper the coding style of creatures from the artificial

life platform Avida has been studied. Avida creatures that have evolved under

different size merit methods and mutation rates have been analysed using the

notion of stylistic measures. The analysis has shown that the evolutionary cod-

ing style depends on the environment in which the code evolved, and that the

choice of size merit method and mutation probabilities affect different stylistic

properties of the genome. A better understanding of Avida’s coding style,

might eventually lead to insights of evolutionary codes in general.

1 Introduction

It was shown, using block entropy, in [1], that the DNA is much closer to random

code than human written computer code. Furthermore a lot of examples have been

found where genes have been reused for different purposes during development. As

an example, take the runt gene in Drosophila, which has been shown [2] to be used

in sex determination, segmentation and central nervous system creation. These find-

ings suggest that the DNA is coded in a rather different fashion compared to human

computer code.

C. Adami made in his survey talk in Stony Brook 10/27/98 on artificial life, a brief

remark about the quality of the evolved program codes of the digital organisms [3] in

the artificial life platform Avida [4]:``The codes that are evolved will eventually be

almost totally unreadable. Things are never used only once, but two or more times. It

is a kind of a 'madman's' code.''

How can we capture these comments about the style, or quality, of the computer

code and the DNA, in a quantified manner? Can we do that in such a general manner

that we will be able to use analogous quality measure both for carbon − and silicon

based genetic codes?

When a population evolves and adapts to an environment, information about what

traits or chemical reactions that are beneficial in that environment are written into the

genome. The environment of course influences what information is coded into the

genome, but what we are interested in is to investigate how the information is coded.

In this paper we will investigate the different coding styles that the environment en-

forces on the genomes by examining Avida creatures that have evolved under differ-

ent size merit methods and mutation rates. This will be done using the notion of a

stylistic measure that was introduced in [5].

2 Codes

One common way to view functions is as black boxes. Here we are interested of the

internal structure of such black boxes performing equivalent tasks. Let us give a

simple example of two codes that interprets the same simple real valued function:

2

2
 if 2

1 4
() ()

2 1
 if 2.

4

x
x

x
f x g x

x
x


 


 


  







(1)

The genome of a creature can be thought of as a code that is written in an alphabet

consisting of a finite numbers of letters, which is read or interpreted by the CPU. The

genomes found in nature are written with the four letters A, T, G and C, which corre-

sponds to the base pairs in the DNA. In Avida the genomes consists of a combination

of 24 different CPU instructions, which alter the state of the virtual CPU in some

manner.

We will therefore define a code to be a finite string of letters taken from a finite

alphabet A, such that when the code is interpreted, the code will represent a well-

defined function or process, f.

1{ } , where .
k

i i iCode A   (2)

From the above definition it is clear that different codes can have the same func-

tion representation. Let us therefore define a class of codes Cf to be the set of all

codes that perform the function f when they are interpreted. From a genetic point of

view one can interpret the function of the code as the phenotype of a creature, and

thus the code classes as classes of phenotypically equivalent creatures.

In Avida the interpretation is performed by running a creature through the virtual

CPU for one generation. If a successful divide occurs the function that the code de-

fines is simply the tasks that the creature performs during one generation.

3 Styles of a Code

If we look at two codes from the same class we know that they perform the same

function, i.e. they have the same phenotype, but their genotype may differ. As the

evolutionary process is very sensitive to perturbations we cannot expect to find the

same genotype if evolution occurred two times in the same environment. It’s there-

fore interesting to study the style of the code, as this is more likely to be invariant

between two instances of the same process. We would therefore like to define the

style of a code. This is done by introducing measures (3) on the code class Cf, that

maps each code to a point in [0,1].

: [0,1].i fC  (3)

Putting together several of these measures we can create a profile measure

μ = (μ1, μ2, μ3,…..), which might serve as a ‘fingerprint’ of the code.

4 Measures

As we are interested in distinguishing between different coding styles of creatures

from Avida we have constructed four different measures that measure different prop-

erties of the genome. Three of the measures are calculated from the functional ge-

nomic array (FGA) of the genome, a representation which reveals the genetic struc-

ture and the localisation of genes [6]. The FGA is a N×M binary matrix, where N is

length of the genome and M is the number of tasks the creature manages including

replication. The entry at position (i,j) is 1 if instruction number i is involved in the

calculation of task number j and 0 otherwise.

4.2 Gene Correlation

This measure shows how correlated different genes are and is constructed in the fol-

lowing manner. Sum the functional genomic array along the rows, and remove all

zero entries in the resulting vector. Sum up all entries that are larger than one and

divide by the number of tasks plus one (for replication) and by the number of non-

zero entries in the vector.

If we let T be the row sum of the FGA, N be the number of tasks the creature man-

ages plus one (for replication), LE, the number of non-zero entries in T (the number of

essential instructions), then the gene correlation is given by (4), where the sum runs

over all indices for which Ti > 1.

.
i

i
c

E

g
NL





T

 (4)

 The gene correlation is a number between 0 and 1, where 0 means that all tasks

including replication are coded disjoint in the genome, and 1 means that they all de-

pend on the same instructions. Note that this measure also can be interpreted as the

compression of information in the genome.

4.3 Redundancy

This measure gives the fraction of instructions that don’t affect the tasks and replica-

tion of a creature. As above the FGA is summed along the rows, but this time we

count how many zero entries the vector holds, this number is then normalised by the

length of the creature.

4.4 Introns

This measure simply gives the fraction of instructions that never are executed when

the creature is executed for one life-cycle. Under the default size merit method 4, the

fraction of introns is rather low (see table 1), as they are punished. Note that the in-

trons are a subset of the redundant instructions.

4.5 Fragility

This measure gives the number of instructions that are essential for replication, and is

constructed from the FGA by simply summing the replication column. This measure

isn’t normalised with the length of the creature because the number of instructions

needed to replicate are independent of the length of the creature, as the creatures use

copy loops. But as we want a measure to lie in [0,1] this measure is normalised using

the map (5).

() , 0
x

f x c
x c

 


(5)

From preliminary data we know that the number of instructions essential for repli-

cation in most cases lie between 5 and 50. The c in (5) is therefore optimised so that

the image of the interval f ([5,50]) is maximised. The optimisation is straight forward

and gives the value c = √(50∙5) ≈ 15.8, which gives f(50) ≈ 0.76 and f(5) ≈ 0.24. In

an environment that doesn’t reward computational efforts it is only the fragility that is

minimised [7], which results in a minimised genome length.

5 Comparison of Different Styles

5.1 Size Merit Methods

The different size merit methods in Avida generate qualitatively different styles of

coding, for example size merit method 1, which gives merit proportional to copied

size, tends to produce introns and does not put any pressure on the lengths of the

creatures, while size merit method 0 does quite the opposite, because merit is inde-

pendent of size. The third size merit method, 4, takes the minimum of copied and

executed size as merit.

The merit is a very important property as it is used in the calculation of the fitness.

This implies that the size merit method has a direct impact on how selection is per-

formed in Avida [4].

The question is if these differences in merit calculation can show in a stylistic

analysis of the different methods. To investigate this we created three sets of creatures

each containing approximately 60 creatures, from the three size merit methods 0, 1, 4,

the full settings for these runs can be found in the appendix.

The optimal comparison would be to compare creatures from the same code class

(phenotype), but as evolution in Avida proceeds with different pace each run one has

no guarantee that a certain phenotype has evolved after a fixed number of updates.

One way to accomplish this would be to reward only those functions that we want the

phenotype to perform and use a large number of fixed updates, but this approach also

has its drawbacks. If the required phenotype appears early in evolution, then the code

is optimised during the rest of the run as no new functions are rewarded. If a creature

from the above run is compared to a creature from a run where the required pheno-

type appeared just before the maximal number of updates their coding styles would

certainly differ, as one creature has optimised its coding while the other has not. In-

stead we decided to compare creatures with approximately the same complexity. This

was done by extracting a creature from the dominant genotype after 40 000 updates in

each run and if it had reached a certain degree of complexity (it managed at least

three boolean functions) it was kept for analysis.

Table 1 shows the average and standard deviation for each measure under the three

size merit methods. Another way to analyse the data is to perform a principal compo-

nent analysis on the data, which reduces the dimensionality to 2, and gives a better

graphical representation. The result of the PCA can be seen in fig. 2. The vectors that

span the plane in fig. 1, are the 1st and 2nd principal components (6).

Table 1. The average and standard deviation of the stylistic measures for creatures from three

different size merit method.

Size-Merit

Method

Gene

correlation

Redundancy Introns Fragility

0 0.2655

(0.1221)

0.1666

(0.1102)

0.0249

(0.0496)

0.4860

(0.0402)

1 0.2647

(0.1161)

0.6443

(0.1836)

0.3581

(0.1767)

0.5639

(0.0706)

4 0.2288

(0.0990)

0.5230

(0.1905)

0.0708

(0.0911)

0.5565

(0.0705)

 

 

1

2

-0.0132 -0.6263 -0.5723 0.1700 -0.5011

0.7861 -0.1275 0.0156 -0.5990 -0.0825

P

P





 (6)

-4 -3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

1st Principal Component

2
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

Merit 0

Merit 1

Merit 4

Fig. 1. Principal component analysis of the profile measure of creatures that have evolved

under different size merit methods.

5.2 Mutation Rates

The mutation rates in Avida play an important role in the adaptive process. If the

mutation rates are low evolution tends to proceed very slow as the fitness landscape is

explored at a low pace and if they are high the population will have trouble sustaining

information in the genomes [8,9].

To investigate how the mutation rates influence the coding style we created three

sets of creatures that had evolved under different copy mutation probabilities each

containing approximately 60 creatures. The point mutation rates were set to zero, the

insert/delete mutation probabilities were kept constant at 0.05 per divide and the size

merit method was set to 4 (the default value in Avida). The copy mutation probability

was set to one low value (pc = 0.001), one intermediate value (pc = 0.005) and one

high value (pc = 0.025).

As in the experiment above the populations evolved for 40 000 updates after which

the dominant genotype was extracted, but it was only kept for analysis if it managed

three or more boolean functions. A detailed description of the settings can be found in

the appendix. The three sets of creatures where then analysed using the stylistic

measures and the results can be found in table 2 and a PCA-plot in fig. 2. The 1st and

2nd principal components are given by (7).

Table 2. The average and standard deviation of the stylistic measures for three sets of creatures

that have evolved under different copy mutation rates

pc Gene cor-

relation

Redundancy Introns Fragility

0.001 0.2263

(0.1093)

0.6076

(0.2006)

0.0487

(0.0883)

0.5877

(0.0811)

0.005 0.2288

(0.0990)

0.5230

(0.1905)

0.0708

(0.0911)

0.5565

(0.0705)

0.025 0.3037

(0.1372)

0.2847

(0.1558)

0.0372

(0.0985)

0.4872

(0.0465)

 

 

1

2

-0.2087 0.6374 0.4462 0.2359 0.5435

-0.7657 -0.0693 -0.5643 0.2695 0.1337

P

P





(7)

-4 -3 -2 -1 0 1 2 3 4
-5

-4

-3

-2

-1

0

1

2

1st Principal Component

2
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

P
c
 = 0.001

P
c
 = 0.005

P
c
 = 0.025

Fig. 2. Principal component analysis of the profile measure of creatures that have

evolved under different copy mutation probabilities.

6 Discussion

6.1 Size Merit Methods

In fig. 2 one can see a separation between the different size merit methods, which

clearly indicates that there are differences in their coding style enforced by the size

merit method. One way of analysing these differences is to look at the composition of

the 1st principle component (6). The measures with the larger weights show where the

styles differs the most. This shows that the coding styles differ most with respect to

the redundancy, intron and fragility measures. What can also be seen in the PCA plot

is that the coding style within each size merit methods varies quite much, a thing that

also can be seen in the standard deviations in table 1. The reason for this is that the

evolutionary process in Avida takes different paths each run due to the randomness in

the process, and thus giving rise to a unique coding each run. The large standard

deviations makes it impossible to draw any conclusions about how the gene correla-

tion is affected by the size merit method, but the other measures show separation

between the different size merit methods.

The results of this experiment are intuitive and can be explained directly from how

the merit is calculated. Size merit method 1 for example has a high fraction of introns

as the method gives merit proportional to copied size and therefore does not punish

introns and method 0, which gives merit independent of size, gives a efficient coding

with a low fraction of both introns and redundant instructions.

6.2 Mutation Rates

The principal component analysis plot (fig. 2) in this case does not show the same

separation between the coding styles as in the case with size merit method. The cod-

ing style of the creatures from the low and intermediate mutation probabilities seem

clustered together, but the coding style of the high mutation probability show at least

some separation from the other two. The 1st principal component (7) shows that the

largest differences between the coding styles lie in the redundancy, fragility and gene

correlation measures.

The averages of the stylistic measures (table 2) shows the same tendency as the

PCA plot, the low and intermediate mutation probabilities give approximately the

same values while the high probability differs in the gene correlation, redundancy and

fragility measures.

The fragility decreases when the mutation probability increases. The reason for

this is that a high mutation probability requires a more efficient coding of the self-

replication. A creature that uses too many instructions for self-replication would be

less likely to produce a viable offspring when the copy mutation probability is high.

The gene correlation on the other hand increases when the mutation probability in-

creases. The high mutation probability forces the creatures to compress the infor-

mation in the genome, in order to make it less likely to be struck by a deleterious

mutation. This compression corresponds to that the genes share instructions which

gives a higher gene correlation.

The reason why the redundancy decreases when the mutation probability increases

is because a redundant instruction that is copied incorrectly may alter the execution in

the offspring which may lead to the loss of a gene or even the capability to self-

replicate. It is therefore disadvantageous to have a high redundancy when the muta-

tion probability is high.

7 Conclusion

The results of the experiments clearly show that settings in Avida produce different

coding styles. Most of the differences that appear are intuitive and can be explained

directly from for example how the merit is calculated. While some results, like the

change in gene correlation in the experiments with mutation probabilities, requires an

understanding of the evolutionary process in Avida.

What these experiments show is that different environmental settings affect differ-

ent stylistic properties of the genome. The gene correlation does not seem to depend

much on the size merit method but rather on the mutation probabilities and the frac-

tion of introns seems independent of the mutation probabilities but depends strongly

on the size merit method. The fragility measure on the other hand seems to depend on

both mutation probabilities and size merit method. But the main result is that we can

distinguish between different coding styles from different environments using a sty-

listic profile measure. It would be very interesting if one could study other evolution-

ary driven systems using this stylistic approach in order to look for universal features

of evolutionary driven code in general and DNA in particular.

References

1. Schmitt, A.O., Herzel H.: Estimating the entropy of DNA sequences, Journal of Theoretical

Biology, 188: 3, (1997), 369-377

2. Duffy, J., Gergen, P.: Sex, Segments, and the Central Nervous System: Common genetic

mechanisms of cell fate determination, Adv. in Genetics, Vol. 31, (1994) 1-28

3. Wilke, C.O., Adami, C.: The biology of digital organisms. Trends. Ecol. Evol., 17, (2002),

528-532

4. Ofria C., Wilke, C.O.: Avida: A Software Platform for Research in Computational Evolu-

tionary Biology. Artificial Life, 10, (2004), 191-229

5. Lundh, T.: In search of an evolutionary coding style, SUNY Stony Brook IMS preprint 3,

(2000)

6. Lenski, R.E., Ofria C., Penncock, R.T., Adami, C.: The evolutionary origin of complex

features, Nature 423, (2003) , 139 - 144

7. Lenski, R.E., Ofria C., Collier, T.C., Adami, C.: Genome complexity, robustness and gene

interactions in digital organisms, Nature 400, (1999), 661 – 664

8. Adami, C., Edlund, J.A.: Evolution of robustness in digital organisms. Artificial Life 10,

(2004), 167-179

9. Wilke, C.O, Wang, J.L., Ofria, C., Lenski, R.E., Adami, C.: Evolution of digital organisms

at high mutation rate leads to survival of the flattest. Nature, 412, (2001), 331-333

Appendix

All experiments for this paper were performed with Avida 1.3.0 for Windows. The

settings used for the experiments were the default settings in Avida, except for the

changes in size merit method and copy mutation rates. The task bonuses were set to

the default value except for the fact that the rewards for 3-input boolean functions

were removed. In the runs with size merit 0 the task bonuses were raised slightly in

order to prevent the evolution from going in to a size minimising state. Each run was

started with a time based random seed and the ancestor used in all experiments was

creature.base, which is supplied with Avida. The ancestor, genesis and

task_set files for all experiments can be downloaded from

http://www.math.chalmers.se/~torbjrn/coding_style.

http://www.math.chalmers.se/~torbjrn/coding_style

