
MARTIN BOUNDARY POINTS OF JOHN DOMAINS AND UNIONSOF CONVEX SETSHIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHDediated to Professor Matts Ess�en on the oasion of his 70th birthdayAbstrat. We show that a John domain has �nitely many minimal Martin boundarypoints at eah Eulidean boundary point. The number of minimal Martin boundarypoints is estimated by the John onstant. In partiular, if the John onstant is biggerthan p3=2, then there are one or two minimal Martin boundary points at eah Eulideanboundary point. For a speial John domain represented as the union of onvex setswe give a suÆient ondition for the Martin boundary and the Eulidean boundary tooinide. 1. IntrodutionLet D be a domain in Rn with n � 2. Let ÆD(x) = dist(x; �D) and x0 2 D. We saythat D is a John domain with John onstant J > 0 and John enter at x0 if eah x 2 Dan be joined to x0 by a reti�able urve  suh that(1) ÆD(y) � J`((x; y)) for all y 2 ;where (x; y) is the subar of  from x to y and `((x; y)) is the length of (x; y). Sinewe are interested in the boundary behavior, we may replae x0 by a ompat subset K0of D. We all suh a domain a general John domain with enter K0 and John onstantJ . A general John domain with John onstant J is a John domain with John onstant0J � J . Several interesting domains studied in onnetion with the Martin boundary fallinto this ategory:(A) Let F be a ompat set on a hyperplane and let B be an open ball ontaining F .Then B n F (a Denjoy domain) is a general John domain with John onstant 1.(See Benediks [?℄).(B) Let � be a Lipshitz surfae and F a ompat set on �. Let B be an openball ontaining F . Then B n F (a Lipshitz Denjoy domain) is a general Johndomain. Moreover, if � is given as the graph of a Lipshitz funtion with Lipshitzonstant k, then the John onstant of B n F is 1=pk2 + 1. (See Anona [?, ?℄and Chevallier [?℄).(C) A planar domain with boundary lying on the union of �nitely many rays leavingthe origin is alled a setorial domain (Cranston-Salisbury [?℄). A setorial domain2000 Mathematis Subjet Classi�ation. 31B05, 31B25, 31C35.Key words and phrases. John domain, onvex set, Martin boundary, quasihyperboli metri, Carlesonestimate, Domar's theorem, trat, weak boundary Harnak priniple.This work was supported in part by Grant-in-Aid for Sienti� Researh (A) (No. 11304008), (B)(No. 12440040) and Exploratory Researh (No. 13874023) Japan Soiety for the Promotion of Siene.1



2 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHis a general John domain with John onstant J = sin(�=2), where � is the smallestangle between two rays. A higher dimensional analogue of a setorial domain isalled a quasi-setorial domain (L�omker [?℄). A quasi-setorial domain is a generalJohn domain.(D) The union of a family of open balls with the same radius is a general John domainwith John onstant 1, provided it is onneted (Anona [?℄).(E) The omplement of a ertain self similar fratal is a general John domain (Aikawa-Lundh-Mizutani [?, Setion 4℄).In [?℄ the �rst author showed that the Martin boundary of a bounded uniform domainonsists of minimal boundary points and it is homeomorphi to the Eulidean boundary;in [?℄ the �rst and the third authors and Mizutani showed that the Martin boundary ofa uniformly John domain onsists of minimal boundary points and it is homeomorphito the ideal boundary with respet to the internal metri. No exterior onditions areassumed both in [?, ?℄. Bonk, Heinonen and Koskela [?℄ alled a uniformly John domainan inner uniform domain. In a very general framework of Gromov hyperboliity, but underthe additional assumption of the existene of a strong barrier, they identi�ed the Martinboundary of an inner uniform domain. The existene of a strong barrier is an exteriorondition. The usage of strong barriers to the Martin boundary was �rst introdued byAnona [?, ?℄. See [?℄ for the relationship between a strong barrier and other exterioronditions, suh as the apaity density ondition.The Martin boundary of a John domain is muh more ompliated; it may admit a nonminimal boundary point. Our �rst purpose of this paper is to show that a general Johndomain has �nitely many minimal Martin boundary points at eah Eulidean boundarypoint. Moreover, the number of minimal Martin boundary points is estimated in termsof the John onstant.Theorem 1. Let D be a general John domain with John onstant J and generalized Johnenter K0. Let � 2 �D.(i) The number of minimal Martin boundary points at � is bounded by a onstantdepending only on the John onstant J .(ii) If J > p3=2, then there are one or two minimal Martin boundary points at � .Remark 1. Let D be a setorial domain whose boundary near the origin lies on threeequally distributed rays leaving the origin. Then D is a general John domain with Johnonstant sin(�=3) = p3=2. There may be three di�erent minimal Martin boundary pointsover the origin. This simple example shows that the bound J > p3=2 in Theorem 1 issharp. Note that the same bound J > p3=2 also applies to the higher dimensional ase.Remark 2. Theorem 1 generalizes some parts of [?℄, [?, ?℄, [?℄, [?℄ and [?℄. One of themain interests of these papers was to give a riterion for the number of minimal Martinboundary points at a �xed Eulidean boundary point (via Kelvin transform for [?℄). Suha riterion seems to be very diÆult for a general John domain, sine the boundary maydisperse at every point (See e.g. [?, Figure 4.1 (b)℄).Our seond purpose is to �nd a ertain lass of John domains whose boundary pointshave one minimal Martin boundary point. In view of Benediks' work on a Denjoydomain ([?℄), we observe that the John onstant J is not suÆient to give a ondition



MARTIN BOUNDARY POINTS 3for a boundary point to have one minimal Martin boundary point. We need some otherinformation. Anona [?, Th�eor�eme℄ gave a ondition for the union of a family of openballs with the same radius to have one minimal Martin boundary point at eah Eulideanboundary point. By B(x; r) we denote the open ball with enter at x and radius r. Letx and y be distint points in Rn and � > 0. We denote by ��(x; y) the open irularone fz 2 Rn : \zxy < �g with vertex at x, axis xy and aperture �. Anona says that adomain D is admissible if(A1) D is the union of a family of open balls with the same radius �0.(A2) Let � 2 �D. If D inludes two open balls B1 and B2 with radius �0 tangential toeah other at �, then D inludes a trunated irular one ��(�; y) \ B(�; r) forsome � > 0, r > 0 and y in the hyperplane tangent to Bi at �.Theorem A (Anona). Let D be a bounded admissible domain. Then every Eulideanboundary point of D has one Martin boundary point and it is minimal. Moreover, theMartin boundary of D is homeomorphi to the Eulidean boundary.Let us generalize both (A1) and (A2). As observed previously, (A1) implies that D isa general John domain with John onstant 1. We would like to onsider general onvexsets rather than balls with the same radius. They need not to be ongruent. Observe thatAnona's ondition (A2) implies that two balls B1 and B2 are onneted by a trunatedone ��(�; y)\B(�; r). As a result, the union of trunated ones ��0(�; y)\B(�; r0) inludedin D is onneted for 0 < �0 � �, i.e.,[y2D;��0(�;y)\B(�;r0)�D ��0(�; y) \ B(�; r0) is onneted,provided r0 > 0 is suÆiently small. In view of this observation, we generalize (A1) and(A2) as follows. Let A0 � 1 and �0 > 0. We onsider a bounded domain D suh that(I) D is the union of a family of open onvex sets fC�g�2� suh that B(z�; �0) �C� � B(z�; A0�0):(II) Let � 2 �D. Then there are positive onstants �1 � sin�1(1=A0) and �1 � �0 os �1suh that the union of trunated ones ��1(�; y) \ B(�; 2�1) inluded in D isonneted, i.e., [y2D;��1 (�;y)\B(�;2�1)�D ��1(�; y) \ B(�; 2�1) is onneted.Theorem 2. Let D be a bounded domain satisfying (I) and (II). Then every Eulideanboundary point of D has one Martin boundary point and it is minimal. Moreover theMartin boundary of D is homeomorphi to the Eulidean boundary.Remark 3. Anona's admissible domains satisfy (I) and (II) of Theorem 2. The argumentof Anona depends on the speial properties of a ball. His ruial lemma ([?, Lemme 1℄)relies on the reetion with respet to a hyperplane. His lemma is applied to a ball bythe Kelvin transform ([?, Corollarie 2℄). This approah is not appliable to our domains.Remark 4. A Denjoy domain an be represented as the union of a family of open ballswith the same radius. A Lipshitz Denjoy domain, a setorial domain and a quasi-setorial



4 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHdomain an be represented as the union of a family of open onvex sets C� satisfying (I).However, they are not represented as the union of a family of open balls with the sameradius. Thus our Theorem 2 is appliable to these domains, whereas Theorem A is not.Remark 5. Condition (II) is loal in the following sense: Suppose D is the union of afamily of open onvex sets fC�g�2� satisfying (I). If a partiular point � 2 �D satis�es(II), then there is one Martin boundary point at � and it is minimal.Remark 6. Note that 0 < �1 < �=2 by 0 < �1 � �0 os �1. The bounds �1 � sin�1(1=A0)and �1 � �0 os �1 are sharp. See Hirata [?℄. Under these assumptions, there existsa trunated irular one ��1(�; y) \ B(�; 2�1) inluded in D; the union of suh onesontains a neighborhood of � in some sense. See Lemma 2 below.Both Theorems 1 and 2 are based on a ommon geometrial notion, a system of loalreferene points. In Setion 2, we shall introdue a quasihyperboli metri and de�nea system of loal referene points. Then we shall observe that Theorems 1 and 2 aredeomposed into three propositions, namely, Propositions 1, 2 and 3. The �rst twopropositions are purely geometri and will be proved in the same setion. Proposition3 involves many potential theoreti arguments. Among them, a Carleson type estimate(Lemma 7 in Setion 5) for bounded positive harmoni funtions vanishing on a portion ofthe boundary will be useful. This estimate will be dedued from a Domar's type theorem(Domar [?℄) for positive subharmoni funtions, as was employed by Benediks [?℄ andChevallier [?℄.Beause of the intriay of the boundary of a John domain, we shall give a re�nementof Domar's theorem in Setion 3 and prepare an integrability of the negative power ofthe distane funtion in Setion 4. These arguments are neessary to prove a Carlesontype estimate sine the so-alled geometri loalization is not available for a general Johndomain. Even for an NTA domain a geometri loalization is diÆult. It takes thefollowing form: If D is an NTA domain, then for any x0 2 �D and r < r0 there exists anNTA domain 
 � D suh that B(x0; r=M) \D � 
 � B(x0;Mr) \D: Furthermore, theonstant M > 1 in the NTA de�nition for 
 is independent of x0 and r. The problem isthat the intersetion B(x0; r)\D is no longer onneted; so, ompliated modi�ation ofthe intersetion is needed to onstrut a nie subdomain. See Jones [?℄ and Jerison andKenig [?℄. For a uniformly John domain see Balogh and Volberg [?℄. The approah of thispaper is to show potential theoreti estimates diretly avoiding a geometri loalization.This seems easier than showing a geometri loalization for a John domain.Setion 5 will be devoted to the proof of Proposition 3 in the ase orresponding toTheorem 1 (i). We shall give a growth estimate of kernel funtions at �; then we shallapply the trat argument due to Friedland and Hayman [?℄, as was employed by Benediks[?℄. The trat argument gives a rather oarse estimate of the number of minimal boundarypoints. In Setion 6 we shall show Proposition 3 in the ase orresponding to Theorem1 (ii) and Theorem 2 by establishing a weak boundary Harnak priniple (Anona [?,Th�eor�eme 7.3℄). The main tool will be the box argument for the estimate of a harmonimeasure in terms of the Green funtion (Bass and Burdzy [?℄ and Aikawa [?, Lemma 2℄for the present form). We shall use a subtle estimate (21) of the Green funtion, whoseproof will be given in Setion 7.



MARTIN BOUNDARY POINTS 5By the symbol A we denote an absolute positive onstant whose value is unimportantand may hange from line to line. If neessary, we use A0; A1; : : : , to speify them. Weshall say that two positive funtions f1 and f2 are omparable, written f1 � f2, if andonly if there exists a onstant A � 1 suh that A�1f1 � f2 � Af1. The onstant A willbe alled the onstant of omparison. We write B(x; r) and S(x; r) for the open ball andthe sphere of enter at x and radius r, respetively.2. Loal referene points2.1. Restatements of Theorems 1 and 2. We de�ne the quasihyperboli metri kD(x; y)by kD(x; y) = inf Z ds(z)ÆD(z) ;where the in�mum is taken over all reti�able urves  onneting x to y in D. We saythat D satis�es a quasihyperboli boundary ondition if(2) kD(x; x0) � A log ÆD(x0)ÆD(x) + A0 for all x 2 D:A domain satisfying the quasihyperboli boundary ondition is alled a H�older domain bySmith-Stegenga [?, ?℄. It is easy to see that a John domain satis�es the quasihyperboliboundary ondition (see [?, Lemma 3.11℄). We need more preise estimates.De�nition 1. Let N be a positive integer and 0 < � < 1. We say that � 2 �Dhas a system of loal referene points of order N with fator � if there exist R� > 0and A� > 1 with the following property: for eah positive R < R� there are N pointsy1; : : : ; yN 2 D \ S(�; R) suh that A�1� R � ÆD(yi) � R for i = 1; : : : ; N andmini=1;:::;NfkDR(x; yi)g � A� log RÆD(x) + A� for x 2 D \B(�; �R);where DR = D \ B(�; ��3R). If � is not so important, we simply say that � 2 �D has asystem of loal referene points of order N .Remark 7. The quasihyperboli metri is a useful tool to study the Martin boundary. See[?℄, [?℄ and [?℄. Note that no exterior ondition is assumed in the �rst two artiles; whileBonk, Heinonen and Koskela [?℄ study a Gromov hyperboli domain with strong barrier,an exterior ondition.The proofs of Theorems 1 and 2 an be deomposed into the following three proposi-tions. The �rst and the seond are purely geometri; the third is potential theoreti.Proposition 1. Let D be a general John domain with John onstant J . Then every� 2 �D has a system of loal referene points of order N with N � N(J ; n) < 1.Moreover, if the John onstant J > p3=2, then we an let N � 2 by hoosing a suitablefator 0 < � < 1.Proposition 2. Let D be a bounded domain satisfying (I) and (II). Then every � 2 �Dhas a system of loal referene points of order 1.



6 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHRemark 8. In Proposition 1, the onstants R� and A� in De�nition 1 an be taken uni-formly for � 2 �D, whereas they may depend on � in Proposition 2.By H� we denote the family of all kernel funtions at � normalized at the John enterx0, i.e., the set of all positive harmoni funtions h on D suh that h(x0) = 1, h = 0 q.e.on �D and h is bounded on D nB(�; r) for eah r > 0. Here we say that a property holdsq.e. (quasi everywhere) if it holds outside a polar set. A Martin kernel at � (with referenepoint x0) is a limit of the ratioG(x; yj)=G(x0; yj) of Green funtions with yj ! �. Supposeyj � D \ B(�; r=2). Then the (global) boundary Harnak priniple for a John domain(Bass and Burdzy [?℄) implies that the G(�; yj)=G(x0; yj) is bounded on D n B(�; r), andso is a Martin kernel at �. Obviously, a Martin kernel at � is a positive harmoni funtionvanishing q.e on �D with value 1 at x0, so that it belongs to H�. Thus Theorems 1 and2 will follow from Propositions 1, 2 and the following:Proposition 3. Let D be a general John domain. Suppose � 2 �D has a system of loalreferene points of order N .(i) The number of minimal funtions in H� is bounded by a onstant depending onlyon N .(ii) If N � 2, then there are at most N minimal funtions inH�. Moreover, if N = 1,then H� itself is a singleton.2.2. Proof of Proposition 1. For the proof of the seond assertion in Proposition 1, weprepare an elementary geometrial observation.Lemma 1. Let e1, e2 and e3 be points on the unit sphere S(0; 1). Thenmaxmini6=j jei � ejj = p3;where the maximum is taken over all positions of e1, e2 and e3.Proof. This is a well-known fat (Fejes [?℄). For the onveniene sake of the reader weprovide a proof. We an easily prove the lemma for n = 2. Let n � 3. We observe fromthe ompatness of S(0; 1) that the maximum d is taken by some points e1, e2 and e3on S(0; 1). There is a unique 2-dimensional plane � ontaining e1, e2 and e3, sine threedistint points on S(0; 1) annot be ollinear by onvexity. Observe that S(0; 1) \ � is airle with radius at most 1. Sine e1, e2 and e3 are points on this irle, it follows fromthe ase n = 2 that d � p3. The lemma follows. �Proof of Proposition 1. We prove the proposition with R� = ÆD(K0). Let � 2 �D and0 < R < ÆD(K0). Let us prove the �rst assertion with � = 1=2. Take x 2 D \B(�; R=2).By de�nition there is a reti�able urve  starting from x and terminating at K0 suh that(1) holds. Then the �rst hit y(x) of S(�; R) along  satis�es 2�1JR � ÆD(y(x)) � R andkDR(x; y(x)) � A log RÆD(x) . We assoiate y(x) with x, although it may not be unique.Consider in general the family of balls B(y; 4�1JR) with y 2 S(�; R). These balls areinluded in B(�; (4�1J+1)R), so that at most N(J ; n) balls among them an be mutuallydisjoint. Hene we �nd N points x1; : : : ; xN 2 D \ B(�; R=2) with N � N(J ; n) suhthat fB(y1; 4�1JR); : : : ; B(yN ; 4�1JR)g is maximal, where yj = y(xj) 2 D \ S(�; R)is the point assoiate with xj as above. This means that if x 2 D \ B(�; R=2), then



MARTIN BOUNDARY POINTS 7B(y(x); 4�1JR) intersets some of B(y1; 4�1JR); : : : ; B(yN ; 4�1JR), say B(yi; 4�1JR).Sine B(y(x); 4�1JR) \ B(yi; 4�1JR) 6= ; and B(y(x); 2�1JR) [ B(yi; 2�1JR) � D; itfollows that kDR(y(x); yi) � A0. HenekDR(x; yi) � kDR(x; y(x)) + kDR(y(x); yi) � A log RÆD(x) + A0:Thus the �rst assertion follows.For the proof of the seond assertion, let p3=2 < b0 < b < J and � = 1 � b=J > 0.Let us prove that � has a system of loal referene points of order at most 2 with fator�. Let 0 < R < ÆD(K0). Suppose x 2 D \ B(�; �R). In the same way as in the proof ofthe �rst assertion, we �nd y(x) 2 S(�; R) suh that kDR(x; y(x)) � A log RÆD(x) andÆD(y(x)) � J(1� �)R = bR > b0R > p32 R:In view of Lemma 1, we an hoose x1; x2 2 D\B(�; �R) suh that if x 2 D\B(�; R), thenB(y(x); b0R) intersets B(yi; b0R) for some i = 1; 2, where yi = y(xi). Sine B(y(x); b0R)\B(yi; b0R) 6= ; and B(y(x); bR)[B(yi; bR) � D; it follows that kDR(y(x); yi) � A. Henethe proposition follows. �Remark 9. In ase J � p3=2, we may have an estimate of N better than the above proof,by onsidering a lemma similar to Lemma 1. See Proposition 3 and Remark 10.2.3. Proof of Proposition 2. In this subsetion, we assume, by translation and dilation,that � = 0 and �1 = 1 for simpliity. The aperture �1 � sin�1(1=A0) is �xed andwe write �(x; y) for ��1(x; y). Note that 1 = �1 � �0 os �1, so that 0 < �1 < �=2 and�0 � se �1. Let C� be a onvex set appearing in (I) and let B(z�; �0) � C� � B(z�; A0�0):If x 2 C� nB(z�; �0), then(3) �(x; z�) \B(x; 2) � o(fxg [ B(z�; �0)) � C�;where o(fxg[B(z�; �0)) is the onvex hull of fxg[B(z�; �0). Observe that the assumption(II) an be restated as the onnetedness of a ertain set on the unit sphere S(0; 1). LetY = fy 2 S(0; 1) : �(0; y) \B(0; 2) � Dg. Then (II) holds if and only if= [y2Y B(y; sin �1) \ S(0; 1)is a onneted domain on S(0; 1). By de�nitiondist(Y ; S(0; 1)n) � sin �1;and the trunated one of radius 2 with vertex at 0 subtended by is inluded in D. Hene,by dilation, if 0 < � < 1 and 0 < R < 2�3, then(4) kDR(Ry1; Ry2) � A for y1; y2 2 Y ;where DR = D\B(0; ��3R) and A is independent of y1; y2 2 Y and R. Let us show thatY 6= ; and that the point 0 an be aessible along a ray issuing from the origin towarda point in Y .



8 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHLemma 2. There is a positive onstant R0 < 1 suh that if C� \ B(0; R0) 6= ;, thenC� \ Y 6= ;. In partiular, Y 6= ;.Proof. Suppose to the ontrary, there is a sequene C�j with dist(0; C�j)! 0 and C�j \Y = ;. Let z�j be suh that B(z�j ; �0) � C�j � B(z�j ; A0�0): Taking a subsequene, ifneessary, we may assume that z�j onverges, say to z0. We laim(5) �(0; z0) \B(0; 2) �[j C�j :We �nd x�j 2 �C�j with x�j ! 0. Take x 2 �(0; z0) \ B(0; 2). Then \x0z0 < �1 andjxj < 2 by de�nition. If j is suÆiently large, then \xx�jz�j < �1 and jx � x�j j < 2 byontinuity, so thatx 2 �(x�j ; z�j ) \B(x�j ; 2) � o(fx�jg [ B(z�j ; 1)) � C�j ;by (3). Thus (5) follows. Now, by de�nition, y0 = z0=jz0j 2 Y and y0 2 �(0; z0)\B(0; 2) �Sj C�j . This ontradits C�j \ Y = ;. The lemma follows. �Observe that if C is a onvex set, then the distane funtion ÆC(x) = dist(x; �C) is aonave funtion on C, i.e.,(6) ÆC(z) � jz � yjjx� yjÆC(x) + jx� zjjx� yjÆC(y) for z 2 xy,whenever x; y 2 C. This fat will be used in the following lemma.Lemma 3. Let 0 < R0 < 1 be as in Lemma 2. Suppose 0 < R < minfR0; 3�1 sin �1g.If C� \ B(0; R) 6= ; and y 2 C� \ Y , then there exists a point w 2 C� \ �(0; y) \B(0; 3R= sin �1) suh that ÆC�\�(0;y)(w) � sin �14 R:Proof. Take x 2 C� \ B(0; R). Then xy � C�. Observe that there is a point w1 2xy \ �(0; y) with jw1j � R= sin �1. In fat, if x 2 �(0; y), then w1 = x satis�es theondition. Otherwise, let w1 be the intersetion of xy and ��(0; y). By elementarygeometry R > dist(x; 0y) � dist(w1; 0y) = jw1j sin �1;so that jw1j � R= sin �1. Sine jw1� yj � 1�R= sin �1 and 3R= sin �1 < 1, we �nd a pointw2 2 w1y � C� \ �(0; y) with jw1 � w2j = R= sin �1. By (6) with C = �(0; y) we obtainÆ�(0;y)(w2) � jw1 � w2jjw1 � yj Æ�(0;y)(y) � R= sin �1R= sin �1 + 1 sin �1 > R2 :Moreover jw2j � 2R= sin �1. Sine jw2� z�j � �0� 2R= sin �1 > R by 3R= sin �1 < 1 � �0,we an take a point w 2 w2z� � C� suh that jw � w2j = R=4. Then it follows from (6)with C = C� that ÆC�(w) � jw � w2jjz� � w2jÆC�(z�) � R=4A0�0�0 � sin �14 R:



MARTIN BOUNDARY POINTS 9Hene Æ�(0;y)\C�(w) � min�R2 � R4 ; sin �14 R� = sin �14 R:Moreover, jwj � jw � w2j+ jw2 � w1j+ jw1j � R4 + Rsin �1 + Rsin �1 < 3Rsin �1 : �Proof of Proposition 2. Let 0 < R0 < 1 be as in Lemma 2 and let 0 < �3 < 3�1 sin �1.Suppose 0 < R < minfR0; 3�1 sin �1g. By Lemma 2 we �x y0 2 Y and write yR = Ry0.It is suÆient to show(7) kDR(x; yR) � A log RÆD(x) + A for x 2 D \B(0; �R);where A is independent of x and R. Take x 2 D \ B(0; �R). Then there is a onvex setC� ontaining x and there is y 2 C� \ Y by Lemma 2. By Lemma 3 we �nd a pointw 2 C� \ �(0; y) \ B(0; 3R= sin �1) suh that ÆC�\�(0;y)(w) � 4�1R sin �1: An elementaryalulation shows kDR(x; w) � Zxw ds(z)ÆD(z) � A log RÆD(x) :Similarly, kDR(w; jwjy) � A and kDR(jwjy0; Ry0) � A: Moreover, kDR(jwjy; jwjy0) � A by(4). These altogether imply (7). �3. Refinement of Domar's theoremDomar [?, Theorem 2℄ gave a riterion for the boundedness of a subharmoni funtionmajorized by a positive funtion. We need its quantitative re�nement, i.e., the dependenyof the bound is given expliitly.Lemma 4. Let u be a nonnegative subharmoni funtion on a bounded domain 
. Supposethere is " > 0 suh that I = Z
(log+ u)n�1+"dx <1:Then(8) u(x) � exp(1 + AI1="Æ
(x)�n=");where A is a positive onstant depending only on the dimension n.For the proof we prepare the following.Lemma 5. Let u be a nonnegative subharmoni funtion on B(x;R). Suppose u(x) �t > 0 and(9) R � Lnjfy 2 B(x;R) : e�1t < u(y) � etgj1=n;where Ln = (e2=vn)1=n and vn is the volume of the unit ball. Then there exists a pointx0 2 B(x;R) with u(x0) > et.



10 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHProof. Observe that (9) is equivalent tojfy 2 B(x;R) : e�1t < u(y) � etgjjB(x;R)j � 1e2 :Suppose u � et on B(x;R). Then the mean value property of subharmoni funtionsyields t � u(x) � 1jB(x;R)j ZB(x;R) u(y)dy= 1jB(x;R)j �ZB(x;R)\fu�e�1tg udy + ZB(x;R)\fu>e�1tg udy�� e�1t+ 1e2 et < t:This is a ontradition. �Proof of Lemma 4. Sine the right hand side of (8) is not less than e, it is suÆient toshow that(10) Æ
(x) � AI1=n(log u(x))�"=n; whenever u(x) > e:Fix x1 2 
 with u(x1) > e and let us prove (10) with x = x1. LetRj = Lnjfy 2 
 : ej�2u(x1) < u(y) � eju(x1)gj1=n for j � 1:We hoose a sequene fxjg as follows: If Æ
(x1) < R1, then we stop. If Æ
(x1) � R1,then B(x1; R1) � 
, so that there exists x2 2 B(x1; R1) suh that u(x2) > eu(x1) byLemma 5. Next we onsider Æ
(x2). If Æ
(x2) < R2, then we stop. If Æ
(x2) � R2, thenB(x2; R2) � 
, so that there exists x3 2 B(x2; R2) suh that u(x3) > e2u(x1) by Lemma5. Repeat this proedure to obtain a �nite or in�nite sequene fxjg. We laim(11) Æ
(x1) � 2 1Xj=1 Rj:Suppose �rst fxjg is �nite. If Æ
(x1) < R1, then (11) trivially holds. If Æ
(x1) � R1, thenwe have an integer J � 2 suh thatÆ
(x1) � R1; : : : ; Æ
(xJ�1) � RJ�1; Æ
(xJ) < RJ ;x2 2 B(x1; R1); x3 2 B(x2; R2); : : : ; xJ 2 B(xJ�1; RJ�1):Hene we haveÆ
(x1) � jx1 � x2j+ � � �+ jxJ�1 � xJ j+ Æ
(xJ) < R1 + � � �+RJ�1 +RJ ;so that (11) follows. Suppose next fxjg is in�nite. Sine u(xj) > eju(x1)!1, it followsfrom the loal boundedness of a subharmoni funtion that xj goes to the boundary.Hene, there is an integer J � 2 suh that Æ
(xJ) � 12Æ
(x1). ThenÆ
(x1) � jx1 � x2j+ � � �+ jxJ�1 � xJ j+ Æ
(xJ) � R1 + � � �+RJ�1 + 12Æ
(x1);



MARTIN BOUNDARY POINTS 11so that (11) follows. In view of (11) we observe that (10) follows from(12) 1Xj=1 Rj � AI1=n(logu(x1))�"=n:To show (12), let j1 be the positive integer suh that ej1 < u(x1) � ej1+1. ThenRj � Lnjfy 2 
 : ej1+j�2 < u(y) � ej1+j+1gj1=n:Sine the family of intervals f(ej1+j�2; ej1+j+1℄gj overlaps at most 3 times, it follows fromH�older's inequality that1Xj=1 Rj � 3Ln 1Xj=j1 jfy 2 
 : ej�1 < u(y) � ejgj1=n� 3Ln 1Xj=j1 1j(n�1+")=(n�1)!(n�1)=n 1Xj=j1 jn�1+"jfy 2 
 : ej�1 < u(y) � ejgj!1=n� Aj�"=n1 �Z
(log+ u)n�1+"dy�1=n� A(log u(x1))�"=nI1=n:Thus (12) follows. The lemma is proved. �4. Integrability of negative power of the distane funtionInspired by Smith and Stegenga [?, Theorem 4℄ we have proved that for a boundedJohn domain there is a positive onstant � suh thatZD ÆD(x)��dx <1([?, Lemma 5℄). We need its loal version.Lemma 6. Let D be a general John domain with John onstant J and generalized Johnenter K0. Then there are positive onstants � and A depending on J suh thatZD\B(�;R) � RÆD(x)�� dx � ARnfor eah � 2 �D and 0 < R < ÆD(K0).Proof. LetVj = fx 2 D \B(�; R + (1 + �1J )21�jR) : 2�j�1R � ÆD(x) < 2�jRgfor j � 0. For a moment we �x x 2 S1i=j+1 Vi. By de�nition there is a reti�able urve onneting x and K0 with (1). Hene we �nd y 2  suh that ÆD(y) = 2�jR � J jx� yj.In other words x 2 B(y; �1J 2�jR). We observe(13) jB(y; 5�1J 2�jR)j � AjVj \B(y; �1J 2�jR)j:



12 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHIn fat, take y� 2 �D suh that jy � y�j = 2�jR, and then take and y0 2 yy� withÆD(y0) = 12(2�jR+2�j�1R). An elementary geometrial observation gives B(y0; 2�j�2R) �Vj \ B(y; �1J 2�jR), so that (13) follows.Now the overing lemma yields a sequene fykg suh that1[i=j+1Vi �[k B(yk; 5�1J 2�jR)and fB(yk; �1J 2�jR)gk are disjoint. Hene1Xi=j+1 jVij � ����� 1[i=j+1Vi����� �Xk jB(yk; 5�1J 2�jR)j � A1Xk jVj \ B(yk; �1J 2�jR)j � A1jVjjby (13). Let 1 < t < 1 + A�11 . In the same way as in [?, Lemma 5℄ we have1Xj=0 tjjVjj � t1� (t� 1)A1 1Xj=0 jVjj � AjB(�; R+ (1 + �1J )2R)j � ARn:Sine tj < (R=ÆD(x))� � tj+1 on Vj with � = log t= log 2 > 0, it follows thatZD\B(�;R) � RÆD(x)�� dx � 1Xj=0 tj+1jVjj � ARn:Thus the lemma follows. �5. Growth of positive harmoni funtionsIn this setion we shall show Proposition 3 (i) by investigating the growth of h 2H�. Throughout this setion we let D be a general John domain and let � 2 �D be�xed. We say that x; y 2 D are onneted by a Harnak hain fB(xj; 12ÆD(xj))gkj=1 ifx 2 B(x1; 12ÆD(x1)), y 2 B(yk; 12ÆD(yk)), and B(xj; 12ÆD(xj))\B(xj+1; 12ÆD(xj+1)) 6= ; forj = 1; : : : ; k�1. The number k is alled the length of the Harnak hain. We observe thatthe shortest length of the Harnak hain onneting x and y is omparable to kD(x; y).Therefore, the Harnak inequality yields that there is a onstant A2 > 1 depending onlyon n suh that(14) exp(�A2kD(x; y)) � h(x)h(y) � exp(A2kD(x; y))for every positive harmoni funtion h on D. If D is a John domain with John onstantJ and John enter x0, then we have from (2)(15) h(x)h(x0) � A3�ÆD(x0)ÆD(x) ��with � and A3 > 0 depending only on the John onstant J . If D is a general John domainwith John onstant J and John enter K0, then (15) holds with the same � and anotherA3 depending only on J , x0 and K0.Let 
 be an open set interseting �D. Let h be a bounded positive harmoni funtionin D \ 
 vanishing q.e. on �D \ 
. We extend h to 
 n D by 0 outside D and denoteby h� its upper regularization. Then we observe that h� is a nonnegative subharmoni



MARTIN BOUNDARY POINTS 13funtion on 
 ([?, Theorem 5.2.1℄). We shall apply the re�nement of Domar's theorem(Lemma 4) to the subharmoni funtion h� to obtain a Carleson type estimate.Lemma 7. Let � 2 �D have a system of loal referene points y1; : : : ; yN 2 D \ S(�; R)of order N with fator � for 0 < R < R�. Suppose h is a positive harmoni funtion inD \ B(�; ��3R) vanishing q.e. on �D \ B(�; ��3R). If h is bounded in D \ B(�; �R) nB(�; �3R), then(16) h � A NXi=1 h(yi) on S(�; �2R);where A is independent of h and R.Proof. Let 0 < R < R�. Then we �nd y1; : : : ; yN 2 D\S(�; R) with ÆD(yi) � R suh thatmini=1;:::;NfkDR(x; yi)g � A log RÆD(x) + A for x 2 D \B(�; �R).Hene(17) h(x) � A� RÆD(x)�� NXi=1 h(yi) for x 2 D \B(�; �R).by (14). Let us apply Lemma 4 to u = h�=PNi=1 h(yi) and 
 = B(�; �R) nB(�; �3R). Let" > 0 and � > 0 be as in Lemma 6. Apply the elementary inequality:(log t)n�1+" � �n� 1 + "� �n�1+" t� for t � 1to t = R=ÆD(x) � 1 for x 2 
. Then�log+� RÆD(x)��n�1+" � A� RÆD(x)�� ;so that it follows from (17) and Lemma 6 thatI = Z
(log+ u)n�1+"dx � A ZB(�;�R) � RÆD(x)�� dx � ARn:Hene, Lemma 4 yields that u � exp(1 + AI1="R�n=") � A on S(�; �2R), i.e., (16) holds.�Let us apply Lemma 7 to a kernel funtion h 2 H� to obtain the following growthestimate.Lemma 8. Let � 2 �D have a system of loal referene points y1; : : : ; yN 2 D \ S(�; R)of order N with fator � for 0 < R < R�. Let h 2H� for � 2 �D. Thenh(x) � Ajx� �j�� for x 2 D;where � > 0 is as in (15) and A is independent of R and h.



14 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHProof. By Lemma 7 we have (16). Sine h is bounded apart from a neighborhood of �,the maximum priniple givesh(x) � A NXi=1 h(yi) for x 2 D nB(�; �2R):Apply (15) to eah yi 2 D \ S(�; R) with ÆD(yi) � R. Then obtain h(yi) � AR��. This,together with the above estimate, yields h(x) � Ajx � �j�� for x 2 D. The lemma isproved. �Here we reord another appliation of Lemma 7, as this will be useful later.Lemma 9. Let � 2 �D have a system of loal referene points y1; : : : ; yN 2 D \ S(�; R)of order N with fator � for 0 < R < R�. Let h be a bounded positive harmoni funtionon D \ B(�; ��3R) vanishing q.e on �D \B(�; ��3R). Thenh(x) � A NXi=1 h(yi) for x 2 D \B(�; �2R);where A is independent of R and h.Proof. We have (16). Apply the maximum priniple to D \B(�; �2R). �The following lemma is well-known. For the reader's onveniene sake, we reord itwith a proof.Lemma 10. Suppose there exist a positive integer M and a positive onstant A with thefollowing property: if h0; : : : ; hM 2H�, then there is j suh thathj � AXi6=j hi on D:Then H� has at most M minimal harmoni funtions.Proof. Suppose there are M +1 di�erent minimal harmoni funtions h0; : : : hM 2H�. Ifneessary relabeling, we may assume thath0 � A MXi=1 hi on D:We may also assume that A � 1. Thenh = (A MXi=1 hi � h0)=(AM � 1) 2H�:Hene 1AM h0 + (1� 1AM )h = 1M MXi=1 hi:Compare the Martin representation measures for the both sides. The measure for the lefthand side has at least 1AM mass at h0, whereas the measure for the right hand side has0 mass at h0. This ontradits the uniqueness of the Martin representation. �



MARTIN BOUNDARY POINTS 15Proof of Proposition 3 for N � 3. Let hj 2 H� for j = 0; : : : ;M . Let h�j be the upperregularization of the extension of hj and let Hj be the Kelvin transform of h�j with respetto S(�; 1), i.e., Hj(x) = jx� �j2�nh�j(� + jx� �j�2(x� �)):Observe that Hj is a nonnegative subharmoni funtion on Rn whih is positive andharmoni on the Kelvin image D� of D and is equal to 0 q.e. outside D�. Moreover,Lemma 8 shows Hj(x) � Ajx� �j2�n+�:Thus Hj is of order at most 2� n + �. As in Benediks [?, Theorem 2℄, we letw = maxj=0;:::;MfHj �Xi6=j Higand let w+ be the upper regularization of maxfw; 0g. Then w+ is a nonnegative subhar-moni funtion on Rn of order at most 2� n+ �. If none of fx : Hj(x) >Pi6=j Hi(x)g isempty, then w+ has M + 1 trats. Hene, [?, Theorem 3℄ yields2� n+ � � 12 log�M + 14 �+ 32 if M � 3:Hene, if M > 4 exp(1 � 2n + 2�) � 1, then fx : Hj(x) > Pi6=j Hi(x)g = ; for somej = 1; : : : ;M . This means that Hj �Pi6=j Hi on D�, so thathj �Xi6=j hi on D:Hene Lemma 10 implies that H� has at most M minimal harmoni funtions, or equiv-alently there are at most M minimal Martin boundary points at �. Thus the number ofminimal Martin boundary points at � is bounded by 4 exp(1� 2n+ 2�). �Remark 10. The above proof gives a oarse estimate of the number of minimal harmonifuntions of H� in terms of � depending on the John onstant J . For a sharp estimatemore deliate argument will be needed.6. Weak boundary Harnak prinipleIn this setion we shall prove Proposition 3 for N � 2. Throughout this setion welet D be a general John domain and �x � 2 �D. By !(x; E; U) we denote the harmonimeasure of E for an open set U evaluated at x. Let G be the Green funtion for D. Sinemany arguments are valid for a general N exept for (21), we shall state the results for ageneral N .The box argument in [?, Lemma 2℄ (see [?℄ for the original form), gives the followingestimate of the harmoni measure.



16 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHLemma 11. Let � 2 �D have a system of loal referene points y1; : : : ; yN 2 D \ S(�; R)of order N with fator � for 0 < R < R�. If x 2 D \ B(�; �3R), then(18) !(x;D \ S(�; �2R); D \ B(�; �2R)) � 8>><>>:A(log 1R)�1PNi=1G(x; yi) if n = 2;ARn�2PNi=1G(x; yi) if n � 3;where A depends only on n, J , R� and A�.Remark 11. If n = 2, then (log 1=R)�1 appears in (18). This is di�erent from [?, Lemma2℄. In [?℄, the harmoni measure is estimated by the Green funtion for D \ B(�; AR),whereas in (18), it is estimated by the Green funtion for D itself.Proof. Let us begin with an estimate of harmoni measure in a John domain. For 0 <r < ÆD(K0) let U(r) = fx 2 D : ÆD(x) < rg. Then eah point x 2 U(r) an be onnetedto K0 by a urve with (1). Hene, B(x;A4r)nU(r) inludes a ball with radius r, providedA4 is large. This implies that!(x; U(r) \ S(x;A4r); U(r) \ B(x;A4r)) � 1� "0 for x 2 U(r)with 0 < "0 < 1 depending only on A4 and the dimension. Let R � r and repeat thisargument with the maximum priniple. Then there exist positive onstants A5 and A6suh that(19) !(x; U(r) \ S(x;R); U(r) \B(x;R)) � exp(A5 � A6R=r):See [?, Lemma 1℄ for details.Let 0 < R < R�. For eah x 2 D \ B(�; �R) there is a loal referene point y(x) 2fy1; : : : ; yNg suh that kDR(x; y(x)) � A� log RÆD(x) + A�by de�nition. Let y0(x) 2 S(y(x); 12ÆD(y(x))). Then we observe that kDRnfy(x)g(x; y0(x)) �A� log(R=ÆD(x)) + A�. It is easy to see that (log 1R)�1G(y0(x); y(x)) � 1 if n = 2, andthat ARn�2G(y0(x); y(x)) � 1 if n � 3. Hene, lettingu(x) = 8>><>>:A(log 1R)�1PNi=1G(x; yi) if n = 2;ARn�2PNi=1G(x; yi) if n � 3;we obtain from (14) and (15) thatu(x) � A�ÆD(x)R �� for x 2 D \B(�; �R)with some � > 0 depending only on n, J , R� and A�. Let Dj = fx 2 D : exp(�2j+1) �u(x) < exp(�2j)g and Uj = fx 2 D : u(x) < exp(�2j)g. Then we seeUj \B(�; �R) � �x 2 D : ÆD(x) < AR exp��2j� �� :



MARTIN BOUNDARY POINTS 17De�ne a dereasing sequene Rj by R0 = �2R andRj =  �2 � 6(�2 � �3)�2 jXk=1 1k2!R for j � 1.Let !0 = !(�; D \ S(�; �2R); D \B(�; �2R)) and putdj = 8>>><>>>: supx2Dj\B(�;Rj) !0(x)u(x) if Dj \ B(�; Rj) 6= ;;0 if Dj \ B(�; Rj) = ;:It is suÆient to show that dj is bounded by a onstant independent of R, sine Rj > �3Rfor all j � 0. Apply the maximum priniple to Uj \ B(�; Rj�1) to obtain!0(x) � !(x; Uj \ S(�; Rj�1); Uj \B(�; Rj�1)) + dj�1u(x):Divide the both sides by u(x) and take the supremum over Dj \ B(�; Rj). Then (19)yields dj � A exp�2j+1 + A5 � A6 Rj�1 �RjAR exp(�2j=�)� + dj�1;provided j is suÆiently large, say j � j0, so thatRj�1 �RjAR exp(�2j=�) = 6(�2 � �3)�2 exp(2j=�)Aj2 � 1:For j < j0 we have dj � 1 + dj�1. Sine the series1Xj=1 exp�2j+1 + A5 � A6 6(�2 � �3)�2 exp(2j=�)Aj2 �is onvergent and independent of R, we obtain supj�0 dj <1. Thus (18) follows. �Lemma 12. Let � 2 �D have a system of loal referene points y1; : : : ; yN 2 D \ S(�; R)of order N with fator � for 0 < R < R�. If x 2 D \ B(�; �3R) and y 2 D nB(�; ��3R),then(20) G(x; y) � 8><>:A(log 1R)PNi=1G(x; yi)PNj=1G(yj; y) if n = 2;ARn�2PNi=1G(x; yi)PNj=1G(yj; y) if n � 3;where A depends only on n, J , R� and A�.Proof. For simpliity we give the proof only for n � 3. In ase n = 2, we replae Rn�2 by(log 1=R)�1. Apply Lemma 9 to h(x) = G(x; y) with y 2 D nB(�; ��3R). ThenG(x; y) � A NXj=1 h(yj) for x 2 D \ S(�; �2R):



18 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHHene (18) yieldsG(x; y) � ARn�2 NXi=1 G(x; yi) NXj=1 h(yj) for x 2 D \B(�; �3R)by the maximum priniple. The lemma follows. �For further arguments we need the following improvement of (20): If x 2 D\B(�; �9R)and y 2 D nB(�; ��3R), then(21) G(x; y) � 8>><>>:A(log 1R)�1PNi=1G(x; yi)G(yi; y) if n = 2;ARn�2PNi=1G(x; yi)G(yi; y) if n � 3;where A depends only on n, J , R� andA�. The point is that the ross termsG(x; yi)G(yj; y)(i 6= j) disappear from the right hand side of (20).If N = 1, then (21) is nothing but (20). If N � 2, then Anona's ingenious trik[?, Th�eor�eme 7.3℄ gives (21) from (20). However, the proof is rather ompliated and wepostpone the proof to the next setion. The remaining arguments are rather easy andhold for arbitrary N � 1, provided (21) holds. Let us show the weak boundary Harnakpriniple de�ned by Anona [?, D�e�nition 2.3℄.Lemma 13. (Weak Boundary Harnak Priniple) Let � 2 �D have a system of loalreferene points y1; : : : ; yN 2 D \ S(�; R) of order N with fator � for 0 < R < R�.Moreover, suppose (21) holds. Let h0; h1; : : : ; hN 2H�. Then(22) h0(y) � A NXi=1 h0(yi)hi(yi)hi(y) for y 2 D nB(�; ��3R):where A depends only on n, J , R� and A�.Proof. For simpliity we give the proof only for n � 3. In ase n = 2, we replaeRn�2 by (log 1=R)�1. Let 0 < r < �9R. Observe that the regularized redued funtionur = bRD\S(�;r)h0 is a Green potential of a measure �r onentrated on D\S(�; r). We havefrom (21)ur(y) = ZD\S(�;r)G(x; y)d�r(x)� ARn�2 NXi=1 ZD\S(�;r)G(x; yi)G(yi; y)d�r(x) = ARn�2 NXi=1 ur(yi)G(yi; y)for y 2 D nB(�; ��3R). Letting r! 0, we obtainh0(y) � ARn�2 NXi=1 h0(yi)G(yi; y) for y 2 D nB(�; ��3R):Let " = minf12 ; ��3 � 1g. Then D n B(�; ��3R) � D n B(yi; "ÆD(yi)). Observe fromthe Harnak priniple that hi(yi)Rn�2G(yi; y) � hi(y) for y 2 S(yi; "ÆD(yi)), and so is



MARTIN BOUNDARY POINTS 19for y 2 D n B(�; ��3R) � D n B(yi; "ÆD(yi)) by the maximum priniple. Hene (22)follows. �Varying R in Lemma 13, we obtain relationships among kernel funtions inH�, whihyield Proposition 3.Proof of Proposition 3 (ii) for N = 1. Obviously, (21) holds, and hene (22) holds forN = 1 by Lemma 13. Let h0; h1 2 H�. Let Rj ! 0 and take a loal referene pointyj1 2 D\S(�; Rj). Then one of the inequalities h0(yj1) � h1(yj1) and h1(yj1) � h0(yj1) holdsfor in�nitely many j. Hene h0 � Ah1 or h1 � Ah0 holds on D by (22) with N = 1.Moreover suppose that h0 and h1 are minimal. Then h0 � h1 in any ase. This impliesthat H� has just one minimal kernel funtion. Take h 2 H�. By the Martin representa-tion theorem h is given as the integral of Martin kernel by a measure � over the minimalMartin boundary. Sine h vanishes q.e. on �D and bounded apart from a neighborhoodof �, it follows that � is a point measure at �, so that h must oinide with a uniqueminimal harmoni funtion in H�. Thus, H� is a singleton. �Proof of Proposition 3 (ii) for N = 2. As we shall show in the next setion (21) holds forN = 2, and hene (22) holds for N = 2 by Lemma 13. We follow the proof of Anona[?, Th�eorem�e 2.5℄. We slightly generalize the proof of Proposition 3 for N = 1. Leth0; h1; h2 2 H�. Take a dereasing sequene Rj ! 0. For eah Rj suÆiently small we�nd referene points yji 2 D \ S(�; Rj) with i = 1; 2. For a moment �x j and onsidermax0�k�2 hk(yj1). Then we �nd k(j) suh that hk(j) = max0�k�2 hk(yj1). This holds forin�nitely many j, so that we �nd k1 2 f0; 1; 2g suh that(23) hk1(yj1) = max0�k�2hk(yj1)for in�nitely many j. Then onsider j satisfying (23) and �nd k2 2 f0; 1; 2g suh thathk2(yj2) = max0�k�2hk(yj2)for in�nitely many j. Thushk(yji ) � hki(yji ) for all i; k 2 f0; 1; 2gholds for in�nitely many j. If neessary relabeling h0; h1; h2, we may assume that k1 6= 0and k2 6= 0. Then (22) yieldsh0(y) � A 2Xi=1 h0(yji )hki(yji )hki(y) � A 2Xk=1 hk(y) for y 2 D nB(�; ��3Rj):This holds for in�nitely many j. Letting j !1, we obtainh0 � A 2Xk=1 hk on D:This, together with Lemma 10, ompletes the proof. �Remark 12. We do not know whether the weak boundary Harnak priniple holds forN � 3. In speial ases, suh as a setorial domain whose boundary lies on N raysleaving �, we an apply the weak boundary Harnak priniple repeatedly to subdomains



20 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHontaining just one ray and onlude the weak boundary Harnak priniple for the setorialdomain itself (f. Cranston and Salisbury [?, (2.2) Lemma℄).7. Proof of (21)In this setion we shall prove the following:Lemma 14. Let � 2 �D have a system of loal referene points y1; y2 2 D \ S(�; R) oforder 2 with fator � for 0 < R < R�. If x 2 D\B(�; �9R) and y 2 D nB(�; ��3R), then(21) holds, i.e., G(x; y) � 8>><>>:A(log 1R )�1P2i=1G(x; yi)G(yi; y) if n = 2;ARn�2P2i=1G(x; yi)G(yi; y) if n � 3;where A depends only on n, J , R� and A�.We employ Anona's ingenious trik [?, Th�eor�eme 7.3℄. Sine our setting is slightlydi�erent from Anona's, we provide a proof for the sake of the reader's onveniene.Proof. For simpliity we give the proof only for n � 3. In ase n = 2, we replae Rn�2 by(log 1=R)�1. Besides the loal referene points y1; y2 2 D\S(�; R), we take loal referenepoints y�1; y�2 2 D \ S(�; �6R) withmini=1;2fkD\B(�;�3R)(x; y�i )g � A� log �6RÆD(x) + A� for x 2 D \B(�; �7R):Then minj=1;2fkDR(y�i ; yj)g � A� log RÆD(y�i ) + A� � A�:So, we may assume either(24) kDR(y�1; y1) � A and kDR(y�2; y1) � A;or(25) kDR(y�1; y1) � A and kDR(y�2; y2) � A;by replaing the roles of y1 and y2, if neessary.First onsider the ase when (24) holds. Suppose x 2 D \ B(�; �9R) and y 2 D nB(�; �3R). Then (14) and (20) for y�1; y�2 yieldG(x; y) � ARn�2Xi;j G(x; y�i )G(y�j ; y) � ARn�2G(x; y1)G(y1; y):Hene the lemma follows in this ase.Next onsider the ase when (25) holds. Let � = fz 2 D : G(z; y1) � G(z; y2)g.If either x; y 2 � or x; y 2 D n �, then (21) follows from (20). Let us onsider theremaining ases. If neessary, exhanging the roles of y1 and y2, we may assume thatx 2 �\B(�; �9R) and y 2 (D n�) nB(�; ��3R). Let E = � nB(�; �3R) and onsider theregularized redued funtion bREG(�;y) = ZE G(�; z)d�(z);



MARTIN BOUNDARY POINTS 21whih is represented as the Green potential of a measure � onentrated on �E. Observethat (20) for y�1; y�2 and (25) implyG(x; z) � ARn�2Xi;j G(x; y�i )G(y�j ; z) � ARn�2G(x; y1)G(y1; z) for z 2 E:Hene bREG(�;y)(x) � ARn�2G(x; y1) ZE G(y1; z)d�(z)= ARn�2G(x; y1) bREG(�;y)(y1) � ARn�2G(x; y1)G(y1; y):(26)Let vy = G(�; y)� bREG(�;y). Then(27) vy = 0 q.e. on E = � nB(�; �3R):By (20) we have(28) vy(z) � G(z; y) � ARn�2G(z; y2)G(y2; y) for z 2 (D n�) \ B(�; �3R):Observe thatD \ �(� \ B(�; �3R)) � (� nB(�; �3R)) [ (D \B(�; �3R) \ ��):Hene (27), (28) and the maximum priniple yieldvy � ARn�2G(�; y2)G(y2; y) on � \B(�; �3R):This, together with (26), impliesG(x; y) � ARn�2(G(x; y1)G(y1; y) +G(x; y2)G(y2; y)):The proof is omplete. �Department of Mathematis, Shimane University, Matsue 690-8504, JapanE-mail address : haikawa�math.shimane-u.a.jpDepartment of Mathematis, Shimane University, Matsue 690-8504, JapanE-mail address : hirata�math.shimane-u.a.jpDepartment of Mathematis, Chalmers University of Tehnology, SE-412 96 G�oteborg,SwedenE-mail address : torbjrn�math.halmers.se


