
MARTIN BOUNDARY POINTS OF JOHN DOMAINS AND UNIONSOF CONVEX SETSHIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHDedi
ated to Professor Matts Ess�en on the o

asion of his 70th birthdayAbstra
t. We show that a John domain has �nitely many minimal Martin boundarypoints at ea
h Eu
lidean boundary point. The number of minimal Martin boundarypoints is estimated by the John 
onstant. In parti
ular, if the John 
onstant is biggerthan p3=2, then there are one or two minimal Martin boundary points at ea
h Eu
lideanboundary point. For a spe
ial John domain represented as the union of 
onvex setswe give a suÆ
ient 
ondition for the Martin boundary and the Eu
lidean boundary to
oin
ide. 1. Introdu
tionLet D be a domain in Rn with n � 2. Let ÆD(x) = dist(x; �D) and x0 2 D. We saythat D is a John domain with John 
onstant 
J > 0 and John 
enter at x0 if ea
h x 2 D
an be joined to x0 by a re
ti�able 
urve 
 su
h that(1) ÆD(y) � 
J`(
(x; y)) for all y 2 
;where 
(x; y) is the subar
 of 
 from x to y and `(
(x; y)) is the length of 
(x; y). Sin
ewe are interested in the boundary behavior, we may repla
e x0 by a 
ompa
t subset K0of D. We 
all su
h a domain a general John domain with 
enter K0 and John 
onstant
J . A general John domain with John 
onstant 
J is a John domain with John 
onstant
0J � 
J . Several interesting domains studied in 
onne
tion with the Martin boundary fallinto this 
ategory:(A) Let F be a 
ompa
t set on a hyperplane and let B be an open ball 
ontaining F .Then B n F (a Denjoy domain) is a general John domain with John 
onstant 1.(See Benedi
ks [?℄).(B) Let � be a Lips
hitz surfa
e and F a 
ompa
t set on �. Let B be an openball 
ontaining F . Then B n F (a Lips
hitz Denjoy domain) is a general Johndomain. Moreover, if � is given as the graph of a Lips
hitz fun
tion with Lips
hitz
onstant k, then the John 
onstant of B n F is 1=pk2 + 1. (See An
ona [?, ?℄and Chevallier [?℄).(C) A planar domain with boundary lying on the union of �nitely many rays leavingthe origin is 
alled a se
torial domain (Cranston-Salisbury [?℄). A se
torial domain2000 Mathemati
s Subje
t Classi�
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2 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHis a general John domain with John 
onstant 
J = sin(�=2), where � is the smallestangle between two rays. A higher dimensional analogue of a se
torial domain is
alled a quasi-se
torial domain (L�omker [?℄). A quasi-se
torial domain is a generalJohn domain.(D) The union of a family of open balls with the same radius is a general John domainwith John 
onstant 1, provided it is 
onne
ted (An
ona [?℄).(E) The 
omplement of a 
ertain self similar fra
tal is a general John domain (Aikawa-Lundh-Mizutani [?, Se
tion 4℄).In [?℄ the �rst author showed that the Martin boundary of a bounded uniform domain
onsists of minimal boundary points and it is homeomorphi
 to the Eu
lidean boundary;in [?℄ the �rst and the third authors and Mizutani showed that the Martin boundary ofa uniformly John domain 
onsists of minimal boundary points and it is homeomorphi
to the ideal boundary with respe
t to the internal metri
. No exterior 
onditions areassumed both in [?, ?℄. Bonk, Heinonen and Koskela [?℄ 
alled a uniformly John domainan inner uniform domain. In a very general framework of Gromov hyperboli
ity, but underthe additional assumption of the existen
e of a strong barrier, they identi�ed the Martinboundary of an inner uniform domain. The existen
e of a strong barrier is an exterior
ondition. The usage of strong barriers to the Martin boundary was �rst introdu
ed byAn
ona [?, ?℄. See [?℄ for the relationship between a strong barrier and other exterior
onditions, su
h as the 
apa
ity density 
ondition.The Martin boundary of a John domain is mu
h more 
ompli
ated; it may admit a nonminimal boundary point. Our �rst purpose of this paper is to show that a general Johndomain has �nitely many minimal Martin boundary points at ea
h Eu
lidean boundarypoint. Moreover, the number of minimal Martin boundary points is estimated in termsof the John 
onstant.Theorem 1. Let D be a general John domain with John 
onstant 
J and generalized John
enter K0. Let � 2 �D.(i) The number of minimal Martin boundary points at � is bounded by a 
onstantdepending only on the John 
onstant 
J .(ii) If 
J > p3=2, then there are one or two minimal Martin boundary points at � .Remark 1. Let D be a se
torial domain whose boundary near the origin lies on threeequally distributed rays leaving the origin. Then D is a general John domain with John
onstant sin(�=3) = p3=2. There may be three di�erent minimal Martin boundary pointsover the origin. This simple example shows that the bound 
J > p3=2 in Theorem 1 issharp. Note that the same bound 
J > p3=2 also applies to the higher dimensional 
ase.Remark 2. Theorem 1 generalizes some parts of [?℄, [?, ?℄, [?℄, [?℄ and [?℄. One of themain interests of these papers was to give a 
riterion for the number of minimal Martinboundary points at a �xed Eu
lidean boundary point (via Kelvin transform for [?℄). Su
ha 
riterion seems to be very diÆ
ult for a general John domain, sin
e the boundary maydisperse at every point (See e.g. [?, Figure 4.1 (b)℄).Our se
ond purpose is to �nd a 
ertain 
lass of John domains whose boundary pointshave one minimal Martin boundary point. In view of Benedi
ks' work on a Denjoydomain ([?℄), we observe that the John 
onstant 
J is not suÆ
ient to give a 
ondition



MARTIN BOUNDARY POINTS 3for a boundary point to have one minimal Martin boundary point. We need some otherinformation. An
ona [?, Th�eor�eme℄ gave a 
ondition for the union of a family of openballs with the same radius to have one minimal Martin boundary point at ea
h Eu
lideanboundary point. By B(x; r) we denote the open ball with 
enter at x and radius r. Letx and y be distin
t points in Rn and � > 0. We denote by ��(x; y) the open 
ir
ular
one fz 2 Rn : \zxy < �g with vertex at x, axis xy and aperture �. An
ona says that adomain D is admissible if(A1) D is the union of a family of open balls with the same radius �0.(A2) Let � 2 �D. If D in
ludes two open balls B1 and B2 with radius �0 tangential toea
h other at �, then D in
ludes a trun
ated 
ir
ular 
one ��(�; y) \ B(�; r) forsome � > 0, r > 0 and y in the hyperplane tangent to Bi at �.Theorem A (An
ona). Let D be a bounded admissible domain. Then every Eu
lideanboundary point of D has one Martin boundary point and it is minimal. Moreover, theMartin boundary of D is homeomorphi
 to the Eu
lidean boundary.Let us generalize both (A1) and (A2). As observed previously, (A1) implies that D isa general John domain with John 
onstant 1. We would like to 
onsider general 
onvexsets rather than balls with the same radius. They need not to be 
ongruent. Observe thatAn
ona's 
ondition (A2) implies that two balls B1 and B2 are 
onne
ted by a trun
ated
one ��(�; y)\B(�; r). As a result, the union of trun
ated 
ones ��0(�; y)\B(�; r0) in
ludedin D is 
onne
ted for 0 < �0 � �, i.e.,[y2D;��0(�;y)\B(�;r0)�D ��0(�; y) \ B(�; r0) is 
onne
ted,provided r0 > 0 is suÆ
iently small. In view of this observation, we generalize (A1) and(A2) as follows. Let A0 � 1 and �0 > 0. We 
onsider a bounded domain D su
h that(I) D is the union of a family of open 
onvex sets fC�g�2� su
h that B(z�; �0) �C� � B(z�; A0�0):(II) Let � 2 �D. Then there are positive 
onstants �1 � sin�1(1=A0) and �1 � �0 
os �1su
h that the union of trun
ated 
ones ��1(�; y) \ B(�; 2�1) in
luded in D is
onne
ted, i.e., [y2D;��1 (�;y)\B(�;2�1)�D ��1(�; y) \ B(�; 2�1) is 
onne
ted.Theorem 2. Let D be a bounded domain satisfying (I) and (II). Then every Eu
lideanboundary point of D has one Martin boundary point and it is minimal. Moreover theMartin boundary of D is homeomorphi
 to the Eu
lidean boundary.Remark 3. An
ona's admissible domains satisfy (I) and (II) of Theorem 2. The argumentof An
ona depends on the spe
ial properties of a ball. His 
ru
ial lemma ([?, Lemme 1℄)relies on the re
e
tion with respe
t to a hyperplane. His lemma is applied to a ball bythe Kelvin transform ([?, Corollarie 2℄). This approa
h is not appli
able to our domains.Remark 4. A Denjoy domain 
an be represented as the union of a family of open ballswith the same radius. A Lips
hitz Denjoy domain, a se
torial domain and a quasi-se
torial



4 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHdomain 
an be represented as the union of a family of open 
onvex sets C� satisfying (I).However, they are not represented as the union of a family of open balls with the sameradius. Thus our Theorem 2 is appli
able to these domains, whereas Theorem A is not.Remark 5. Condition (II) is lo
al in the following sense: Suppose D is the union of afamily of open 
onvex sets fC�g�2� satisfying (I). If a parti
ular point � 2 �D satis�es(II), then there is one Martin boundary point at � and it is minimal.Remark 6. Note that 0 < �1 < �=2 by 0 < �1 � �0 
os �1. The bounds �1 � sin�1(1=A0)and �1 � �0 
os �1 are sharp. See Hirata [?℄. Under these assumptions, there existsa trun
ated 
ir
ular 
one ��1(�; y) \ B(�; 2�1) in
luded in D; the union of su
h 
ones
ontains a neighborhood of � in some sense. See Lemma 2 below.Both Theorems 1 and 2 are based on a 
ommon geometri
al notion, a system of lo
alreferen
e points. In Se
tion 2, we shall introdu
e a quasihyperboli
 metri
 and de�nea system of lo
al referen
e points. Then we shall observe that Theorems 1 and 2 arede
omposed into three propositions, namely, Propositions 1, 2 and 3. The �rst twopropositions are purely geometri
 and will be proved in the same se
tion. Proposition3 involves many potential theoreti
 arguments. Among them, a Carleson type estimate(Lemma 7 in Se
tion 5) for bounded positive harmoni
 fun
tions vanishing on a portion ofthe boundary will be useful. This estimate will be dedu
ed from a Domar's type theorem(Domar [?℄) for positive subharmoni
 fun
tions, as was employed by Benedi
ks [?℄ andChevallier [?℄.Be
ause of the intri
a
y of the boundary of a John domain, we shall give a re�nementof Domar's theorem in Se
tion 3 and prepare an integrability of the negative power ofthe distan
e fun
tion in Se
tion 4. These arguments are ne
essary to prove a Carlesontype estimate sin
e the so-
alled geometri
 lo
alization is not available for a general Johndomain. Even for an NTA domain a geometri
 lo
alization is diÆ
ult. It takes thefollowing form: If D is an NTA domain, then for any x0 2 �D and r < r0 there exists anNTA domain 
 � D su
h that B(x0; r=M) \D � 
 � B(x0;Mr) \D: Furthermore, the
onstant M > 1 in the NTA de�nition for 
 is independent of x0 and r. The problem isthat the interse
tion B(x0; r)\D is no longer 
onne
ted; so, 
ompli
ated modi�
ation ofthe interse
tion is needed to 
onstru
t a ni
e subdomain. See Jones [?℄ and Jerison andKenig [?℄. For a uniformly John domain see Balogh and Volberg [?℄. The approa
h of thispaper is to show potential theoreti
 estimates dire
tly avoiding a geometri
 lo
alization.This seems easier than showing a geometri
 lo
alization for a John domain.Se
tion 5 will be devoted to the proof of Proposition 3 in the 
ase 
orresponding toTheorem 1 (i). We shall give a growth estimate of kernel fun
tions at �; then we shallapply the tra
t argument due to Friedland and Hayman [?℄, as was employed by Benedi
ks[?℄. The tra
t argument gives a rather 
oarse estimate of the number of minimal boundarypoints. In Se
tion 6 we shall show Proposition 3 in the 
ase 
orresponding to Theorem1 (ii) and Theorem 2 by establishing a weak boundary Harna
k prin
iple (An
ona [?,Th�eor�eme 7.3℄). The main tool will be the box argument for the estimate of a harmoni
measure in terms of the Green fun
tion (Bass and Burdzy [?℄ and Aikawa [?, Lemma 2℄for the present form). We shall use a subtle estimate (21) of the Green fun
tion, whoseproof will be given in Se
tion 7.



MARTIN BOUNDARY POINTS 5By the symbol A we denote an absolute positive 
onstant whose value is unimportantand may 
hange from line to line. If ne
essary, we use A0; A1; : : : , to spe
ify them. Weshall say that two positive fun
tions f1 and f2 are 
omparable, written f1 � f2, if andonly if there exists a 
onstant A � 1 su
h that A�1f1 � f2 � Af1. The 
onstant A willbe 
alled the 
onstant of 
omparison. We write B(x; r) and S(x; r) for the open ball andthe sphere of 
enter at x and radius r, respe
tively.2. Lo
al referen
e points2.1. Restatements of Theorems 1 and 2. We de�ne the quasihyperboli
 metri
 kD(x; y)by kD(x; y) = inf
 Z
 ds(z)ÆD(z) ;where the in�mum is taken over all re
ti�able 
urves 
 
onne
ting x to y in D. We saythat D satis�es a quasihyperboli
 boundary 
ondition if(2) kD(x; x0) � A log ÆD(x0)ÆD(x) + A0 for all x 2 D:A domain satisfying the quasihyperboli
 boundary 
ondition is 
alled a H�older domain bySmith-Stegenga [?, ?℄. It is easy to see that a John domain satis�es the quasihyperboli
boundary 
ondition (see [?, Lemma 3.11℄). We need more pre
ise estimates.De�nition 1. Let N be a positive integer and 0 < � < 1. We say that � 2 �Dhas a system of lo
al referen
e points of order N with fa
tor � if there exist R� > 0and A� > 1 with the following property: for ea
h positive R < R� there are N pointsy1; : : : ; yN 2 D \ S(�; R) su
h that A�1� R � ÆD(yi) � R for i = 1; : : : ; N andmini=1;:::;NfkDR(x; yi)g � A� log RÆD(x) + A� for x 2 D \B(�; �R);where DR = D \ B(�; ��3R). If � is not so important, we simply say that � 2 �D has asystem of lo
al referen
e points of order N .Remark 7. The quasihyperboli
 metri
 is a useful tool to study the Martin boundary. See[?℄, [?℄ and [?℄. Note that no exterior 
ondition is assumed in the �rst two arti
les; whileBonk, Heinonen and Koskela [?℄ study a Gromov hyperboli
 domain with strong barrier,an exterior 
ondition.The proofs of Theorems 1 and 2 
an be de
omposed into the following three proposi-tions. The �rst and the se
ond are purely geometri
; the third is potential theoreti
.Proposition 1. Let D be a general John domain with John 
onstant 
J . Then every� 2 �D has a system of lo
al referen
e points of order N with N � N(
J ; n) < 1.Moreover, if the John 
onstant 
J > p3=2, then we 
an let N � 2 by 
hoosing a suitablefa
tor 0 < � < 1.Proposition 2. Let D be a bounded domain satisfying (I) and (II). Then every � 2 �Dhas a system of lo
al referen
e points of order 1.



6 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHRemark 8. In Proposition 1, the 
onstants R� and A� in De�nition 1 
an be taken uni-formly for � 2 �D, whereas they may depend on � in Proposition 2.By H� we denote the family of all kernel fun
tions at � normalized at the John 
enterx0, i.e., the set of all positive harmoni
 fun
tions h on D su
h that h(x0) = 1, h = 0 q.e.on �D and h is bounded on D nB(�; r) for ea
h r > 0. Here we say that a property holdsq.e. (quasi everywhere) if it holds outside a polar set. A Martin kernel at � (with referen
epoint x0) is a limit of the ratioG(x; yj)=G(x0; yj) of Green fun
tions with yj ! �. Supposeyj � D \ B(�; r=2). Then the (global) boundary Harna
k prin
iple for a John domain(Bass and Burdzy [?℄) implies that the G(�; yj)=G(x0; yj) is bounded on D n B(�; r), andso is a Martin kernel at �. Obviously, a Martin kernel at � is a positive harmoni
 fun
tionvanishing q.e on �D with value 1 at x0, so that it belongs to H�. Thus Theorems 1 and2 will follow from Propositions 1, 2 and the following:Proposition 3. Let D be a general John domain. Suppose � 2 �D has a system of lo
alreferen
e points of order N .(i) The number of minimal fun
tions in H� is bounded by a 
onstant depending onlyon N .(ii) If N � 2, then there are at most N minimal fun
tions inH�. Moreover, if N = 1,then H� itself is a singleton.2.2. Proof of Proposition 1. For the proof of the se
ond assertion in Proposition 1, weprepare an elementary geometri
al observation.Lemma 1. Let e1, e2 and e3 be points on the unit sphere S(0; 1). Thenmaxmini6=j jei � ejj = p3;where the maximum is taken over all positions of e1, e2 and e3.Proof. This is a well-known fa
t (Fejes [?℄). For the 
onvenien
e sake of the reader weprovide a proof. We 
an easily prove the lemma for n = 2. Let n � 3. We observe fromthe 
ompa
tness of S(0; 1) that the maximum d is taken by some points e1, e2 and e3on S(0; 1). There is a unique 2-dimensional plane � 
ontaining e1, e2 and e3, sin
e threedistin
t points on S(0; 1) 
annot be 
ollinear by 
onvexity. Observe that S(0; 1) \ � is a
ir
le with radius at most 1. Sin
e e1, e2 and e3 are points on this 
ir
le, it follows fromthe 
ase n = 2 that d � p3. The lemma follows. �Proof of Proposition 1. We prove the proposition with R� = ÆD(K0). Let � 2 �D and0 < R < ÆD(K0). Let us prove the �rst assertion with � = 1=2. Take x 2 D \B(�; R=2).By de�nition there is a re
ti�able 
urve 
 starting from x and terminating at K0 su
h that(1) holds. Then the �rst hit y(x) of S(�; R) along 
 satis�es 2�1
JR � ÆD(y(x)) � R andkDR(x; y(x)) � A log RÆD(x) . We asso
iate y(x) with x, although it may not be unique.Consider in general the family of balls B(y; 4�1
JR) with y 2 S(�; R). These balls arein
luded in B(�; (4�1
J+1)R), so that at most N(
J ; n) balls among them 
an be mutuallydisjoint. Hen
e we �nd N points x1; : : : ; xN 2 D \ B(�; R=2) with N � N(
J ; n) su
hthat fB(y1; 4�1
JR); : : : ; B(yN ; 4�1
JR)g is maximal, where yj = y(xj) 2 D \ S(�; R)is the point asso
iate with xj as above. This means that if x 2 D \ B(�; R=2), then



MARTIN BOUNDARY POINTS 7B(y(x); 4�1
JR) interse
ts some of B(y1; 4�1
JR); : : : ; B(yN ; 4�1
JR), say B(yi; 4�1
JR).Sin
e B(y(x); 4�1
JR) \ B(yi; 4�1
JR) 6= ; and B(y(x); 2�1
JR) [ B(yi; 2�1
JR) � D; itfollows that kDR(y(x); yi) � A0. Hen
ekDR(x; yi) � kDR(x; y(x)) + kDR(y(x); yi) � A log RÆD(x) + A0:Thus the �rst assertion follows.For the proof of the se
ond assertion, let p3=2 < b0 < b < 
J and � = 1 � b=
J > 0.Let us prove that � has a system of lo
al referen
e points of order at most 2 with fa
tor�. Let 0 < R < ÆD(K0). Suppose x 2 D \ B(�; �R). In the same way as in the proof ofthe �rst assertion, we �nd y(x) 2 S(�; R) su
h that kDR(x; y(x)) � A log RÆD(x) andÆD(y(x)) � 
J(1� �)R = bR > b0R > p32 R:In view of Lemma 1, we 
an 
hoose x1; x2 2 D\B(�; �R) su
h that if x 2 D\B(�; R), thenB(y(x); b0R) interse
ts B(yi; b0R) for some i = 1; 2, where yi = y(xi). Sin
e B(y(x); b0R)\B(yi; b0R) 6= ; and B(y(x); bR)[B(yi; bR) � D; it follows that kDR(y(x); yi) � A. Hen
ethe proposition follows. �Remark 9. In 
ase 
J � p3=2, we may have an estimate of N better than the above proof,by 
onsidering a lemma similar to Lemma 1. See Proposition 3 and Remark 10.2.3. Proof of Proposition 2. In this subse
tion, we assume, by translation and dilation,that � = 0 and �1 = 1 for simpli
ity. The aperture �1 � sin�1(1=A0) is �xed andwe write �(x; y) for ��1(x; y). Note that 1 = �1 � �0 
os �1, so that 0 < �1 < �=2 and�0 � se
 �1. Let C� be a 
onvex set appearing in (I) and let B(z�; �0) � C� � B(z�; A0�0):If x 2 C� nB(z�; �0), then(3) �(x; z�) \B(x; 2) � 
o(fxg [ B(z�; �0)) � C�;where 
o(fxg[B(z�; �0)) is the 
onvex hull of fxg[B(z�; �0). Observe that the assumption(II) 
an be restated as the 
onne
tedness of a 
ertain set on the unit sphere S(0; 1). LetY = fy 2 S(0; 1) : �(0; y) \B(0; 2) � Dg. Then (II) holds if and only if= [y2Y B(y; sin �1) \ S(0; 1)is a 
onne
ted domain on S(0; 1). By de�nitiondist(Y ; S(0; 1)n) � sin �1;and the trun
ated 
one of radius 2 with vertex at 0 subtended by is in
luded in D. Hen
e,by dilation, if 0 < � < 1 and 0 < R < 2�3, then(4) kDR(Ry1; Ry2) � A for y1; y2 2 Y ;where DR = D\B(0; ��3R) and A is independent of y1; y2 2 Y and R. Let us show thatY 6= ; and that the point 0 
an be a

essible along a ray issuing from the origin towarda point in Y .



8 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHLemma 2. There is a positive 
onstant R0 < 1 su
h that if C� \ B(0; R0) 6= ;, thenC� \ Y 6= ;. In parti
ular, Y 6= ;.Proof. Suppose to the 
ontrary, there is a sequen
e C�j with dist(0; C�j)! 0 and C�j \Y = ;. Let z�j be su
h that B(z�j ; �0) � C�j � B(z�j ; A0�0): Taking a subsequen
e, ifne
essary, we may assume that z�j 
onverges, say to z0. We 
laim(5) �(0; z0) \B(0; 2) �[j C�j :We �nd x�j 2 �C�j with x�j ! 0. Take x 2 �(0; z0) \ B(0; 2). Then \x0z0 < �1 andjxj < 2 by de�nition. If j is suÆ
iently large, then \xx�jz�j < �1 and jx � x�j j < 2 by
ontinuity, so thatx 2 �(x�j ; z�j ) \B(x�j ; 2) � 
o(fx�jg [ B(z�j ; 1)) � C�j ;by (3). Thus (5) follows. Now, by de�nition, y0 = z0=jz0j 2 Y and y0 2 �(0; z0)\B(0; 2) �Sj C�j . This 
ontradi
ts C�j \ Y = ;. The lemma follows. �Observe that if C is a 
onvex set, then the distan
e fun
tion ÆC(x) = dist(x; �C) is a
on
ave fun
tion on C, i.e.,(6) ÆC(z) � jz � yjjx� yjÆC(x) + jx� zjjx� yjÆC(y) for z 2 xy,whenever x; y 2 C. This fa
t will be used in the following lemma.Lemma 3. Let 0 < R0 < 1 be as in Lemma 2. Suppose 0 < R < minfR0; 3�1 sin �1g.If C� \ B(0; R) 6= ; and y 2 C� \ Y , then there exists a point w 2 C� \ �(0; y) \B(0; 3R= sin �1) su
h that ÆC�\�(0;y)(w) � sin �14 R:Proof. Take x 2 C� \ B(0; R). Then xy � C�. Observe that there is a point w1 2xy \ �(0; y) with jw1j � R= sin �1. In fa
t, if x 2 �(0; y), then w1 = x satis�es the
ondition. Otherwise, let w1 be the interse
tion of xy and ��(0; y). By elementarygeometry R > dist(x; 0y) � dist(w1; 0y) = jw1j sin �1;so that jw1j � R= sin �1. Sin
e jw1� yj � 1�R= sin �1 and 3R= sin �1 < 1, we �nd a pointw2 2 w1y � C� \ �(0; y) with jw1 � w2j = R= sin �1. By (6) with C = �(0; y) we obtainÆ�(0;y)(w2) � jw1 � w2jjw1 � yj Æ�(0;y)(y) � R= sin �1R= sin �1 + 1 sin �1 > R2 :Moreover jw2j � 2R= sin �1. Sin
e jw2� z�j � �0� 2R= sin �1 > R by 3R= sin �1 < 1 � �0,we 
an take a point w 2 w2z� � C� su
h that jw � w2j = R=4. Then it follows from (6)with C = C� that ÆC�(w) � jw � w2jjz� � w2jÆC�(z�) � R=4A0�0�0 � sin �14 R:
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e Æ�(0;y)\C�(w) � min�R2 � R4 ; sin �14 R� = sin �14 R:Moreover, jwj � jw � w2j+ jw2 � w1j+ jw1j � R4 + Rsin �1 + Rsin �1 < 3Rsin �1 : �Proof of Proposition 2. Let 0 < R0 < 1 be as in Lemma 2 and let 0 < �3 < 3�1 sin �1.Suppose 0 < R < minfR0; 3�1 sin �1g. By Lemma 2 we �x y0 2 Y and write yR = Ry0.It is suÆ
ient to show(7) kDR(x; yR) � A log RÆD(x) + A for x 2 D \B(0; �R);where A is independent of x and R. Take x 2 D \ B(0; �R). Then there is a 
onvex setC� 
ontaining x and there is y 2 C� \ Y by Lemma 2. By Lemma 3 we �nd a pointw 2 C� \ �(0; y) \ B(0; 3R= sin �1) su
h that ÆC�\�(0;y)(w) � 4�1R sin �1: An elementary
al
ulation shows kDR(x; w) � Zxw ds(z)ÆD(z) � A log RÆD(x) :Similarly, kDR(w; jwjy) � A and kDR(jwjy0; Ry0) � A: Moreover, kDR(jwjy; jwjy0) � A by(4). These altogether imply (7). �3. Refinement of Domar's theoremDomar [?, Theorem 2℄ gave a 
riterion for the boundedness of a subharmoni
 fun
tionmajorized by a positive fun
tion. We need its quantitative re�nement, i.e., the dependen
yof the bound is given expli
itly.Lemma 4. Let u be a nonnegative subharmoni
 fun
tion on a bounded domain 
. Supposethere is " > 0 su
h that I = Z
(log+ u)n�1+"dx <1:Then(8) u(x) � exp(1 + AI1="Æ
(x)�n=");where A is a positive 
onstant depending only on the dimension n.For the proof we prepare the following.Lemma 5. Let u be a nonnegative subharmoni
 fun
tion on B(x;R). Suppose u(x) �t > 0 and(9) R � Lnjfy 2 B(x;R) : e�1t < u(y) � etgj1=n;where Ln = (e2=vn)1=n and vn is the volume of the unit ball. Then there exists a pointx0 2 B(x;R) with u(x0) > et.



10 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHProof. Observe that (9) is equivalent tojfy 2 B(x;R) : e�1t < u(y) � etgjjB(x;R)j � 1e2 :Suppose u � et on B(x;R). Then the mean value property of subharmoni
 fun
tionsyields t � u(x) � 1jB(x;R)j ZB(x;R) u(y)dy= 1jB(x;R)j �ZB(x;R)\fu�e�1tg udy + ZB(x;R)\fu>e�1tg udy�� e�1t+ 1e2 et < t:This is a 
ontradi
tion. �Proof of Lemma 4. Sin
e the right hand side of (8) is not less than e, it is suÆ
ient toshow that(10) Æ
(x) � AI1=n(log u(x))�"=n; whenever u(x) > e:Fix x1 2 
 with u(x1) > e and let us prove (10) with x = x1. LetRj = Lnjfy 2 
 : ej�2u(x1) < u(y) � eju(x1)gj1=n for j � 1:We 
hoose a sequen
e fxjg as follows: If Æ
(x1) < R1, then we stop. If Æ
(x1) � R1,then B(x1; R1) � 
, so that there exists x2 2 B(x1; R1) su
h that u(x2) > eu(x1) byLemma 5. Next we 
onsider Æ
(x2). If Æ
(x2) < R2, then we stop. If Æ
(x2) � R2, thenB(x2; R2) � 
, so that there exists x3 2 B(x2; R2) su
h that u(x3) > e2u(x1) by Lemma5. Repeat this pro
edure to obtain a �nite or in�nite sequen
e fxjg. We 
laim(11) Æ
(x1) � 2 1Xj=1 Rj:Suppose �rst fxjg is �nite. If Æ
(x1) < R1, then (11) trivially holds. If Æ
(x1) � R1, thenwe have an integer J � 2 su
h thatÆ
(x1) � R1; : : : ; Æ
(xJ�1) � RJ�1; Æ
(xJ) < RJ ;x2 2 B(x1; R1); x3 2 B(x2; R2); : : : ; xJ 2 B(xJ�1; RJ�1):Hen
e we haveÆ
(x1) � jx1 � x2j+ � � �+ jxJ�1 � xJ j+ Æ
(xJ) < R1 + � � �+RJ�1 +RJ ;so that (11) follows. Suppose next fxjg is in�nite. Sin
e u(xj) > eju(x1)!1, it followsfrom the lo
al boundedness of a subharmoni
 fun
tion that xj goes to the boundary.Hen
e, there is an integer J � 2 su
h that Æ
(xJ) � 12Æ
(x1). ThenÆ
(x1) � jx1 � x2j+ � � �+ jxJ�1 � xJ j+ Æ
(xJ) � R1 + � � �+RJ�1 + 12Æ
(x1);



MARTIN BOUNDARY POINTS 11so that (11) follows. In view of (11) we observe that (10) follows from(12) 1Xj=1 Rj � AI1=n(logu(x1))�"=n:To show (12), let j1 be the positive integer su
h that ej1 < u(x1) � ej1+1. ThenRj � Lnjfy 2 
 : ej1+j�2 < u(y) � ej1+j+1gj1=n:Sin
e the family of intervals f(ej1+j�2; ej1+j+1℄gj overlaps at most 3 times, it follows fromH�older's inequality that1Xj=1 Rj � 3Ln 1Xj=j1 jfy 2 
 : ej�1 < u(y) � ejgj1=n� 3Ln 1Xj=j1 1j(n�1+")=(n�1)!(n�1)=n 1Xj=j1 jn�1+"jfy 2 
 : ej�1 < u(y) � ejgj!1=n� Aj�"=n1 �Z
(log+ u)n�1+"dy�1=n� A(log u(x1))�"=nI1=n:Thus (12) follows. The lemma is proved. �4. Integrability of negative power of the distan
e fun
tionInspired by Smith and Stegenga [?, Theorem 4℄ we have proved that for a boundedJohn domain there is a positive 
onstant � su
h thatZD ÆD(x)��dx <1([?, Lemma 5℄). We need its lo
al version.Lemma 6. Let D be a general John domain with John 
onstant 
J and generalized John
enter K0. Then there are positive 
onstants � and A depending on 
J su
h thatZD\B(�;R) � RÆD(x)�� dx � ARnfor ea
h � 2 �D and 0 < R < ÆD(K0).Proof. LetVj = fx 2 D \B(�; R + (1 + 
�1J )21�jR) : 2�j�1R � ÆD(x) < 2�jRgfor j � 0. For a moment we �x x 2 S1i=j+1 Vi. By de�nition there is a re
ti�able 
urve 

onne
ting x and K0 with (1). Hen
e we �nd y 2 
 su
h that ÆD(y) = 2�jR � 
J jx� yj.In other words x 2 B(y; 
�1J 2�jR). We observe(13) jB(y; 5
�1J 2�jR)j � AjVj \B(y; 
�1J 2�jR)j:



12 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHIn fa
t, take y� 2 �D su
h that jy � y�j = 2�jR, and then take and y0 2 yy� withÆD(y0) = 12(2�jR+2�j�1R). An elementary geometri
al observation gives B(y0; 2�j�2R) �Vj \ B(y; 
�1J 2�jR), so that (13) follows.Now the 
overing lemma yields a sequen
e fykg su
h that1[i=j+1Vi �[k B(yk; 5
�1J 2�jR)and fB(yk; 
�1J 2�jR)gk are disjoint. Hen
e1Xi=j+1 jVij � ����� 1[i=j+1Vi����� �Xk jB(yk; 5
�1J 2�jR)j � A1Xk jVj \ B(yk; 
�1J 2�jR)j � A1jVjjby (13). Let 1 < t < 1 + A�11 . In the same way as in [?, Lemma 5℄ we have1Xj=0 tjjVjj � t1� (t� 1)A1 1Xj=0 jVjj � AjB(�; R+ (1 + 
�1J )2R)j � ARn:Sin
e tj < (R=ÆD(x))� � tj+1 on Vj with � = log t= log 2 > 0, it follows thatZD\B(�;R) � RÆD(x)�� dx � 1Xj=0 tj+1jVjj � ARn:Thus the lemma follows. �5. Growth of positive harmoni
 fun
tionsIn this se
tion we shall show Proposition 3 (i) by investigating the growth of h 2H�. Throughout this se
tion we let D be a general John domain and let � 2 �D be�xed. We say that x; y 2 D are 
onne
ted by a Harna
k 
hain fB(xj; 12ÆD(xj))gkj=1 ifx 2 B(x1; 12ÆD(x1)), y 2 B(yk; 12ÆD(yk)), and B(xj; 12ÆD(xj))\B(xj+1; 12ÆD(xj+1)) 6= ; forj = 1; : : : ; k�1. The number k is 
alled the length of the Harna
k 
hain. We observe thatthe shortest length of the Harna
k 
hain 
onne
ting x and y is 
omparable to kD(x; y).Therefore, the Harna
k inequality yields that there is a 
onstant A2 > 1 depending onlyon n su
h that(14) exp(�A2kD(x; y)) � h(x)h(y) � exp(A2kD(x; y))for every positive harmoni
 fun
tion h on D. If D is a John domain with John 
onstant
J and John 
enter x0, then we have from (2)(15) h(x)h(x0) � A3�ÆD(x0)ÆD(x) ��with � and A3 > 0 depending only on the John 
onstant 
J . If D is a general John domainwith John 
onstant 
J and John 
enter K0, then (15) holds with the same � and anotherA3 depending only on 
J , x0 and K0.Let 
 be an open set interse
ting �D. Let h be a bounded positive harmoni
 fun
tionin D \ 
 vanishing q.e. on �D \ 
. We extend h to 
 n D by 0 outside D and denoteby h� its upper regularization. Then we observe that h� is a nonnegative subharmoni
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tion on 
 ([?, Theorem 5.2.1℄). We shall apply the re�nement of Domar's theorem(Lemma 4) to the subharmoni
 fun
tion h� to obtain a Carleson type estimate.Lemma 7. Let � 2 �D have a system of lo
al referen
e points y1; : : : ; yN 2 D \ S(�; R)of order N with fa
tor � for 0 < R < R�. Suppose h is a positive harmoni
 fun
tion inD \ B(�; ��3R) vanishing q.e. on �D \ B(�; ��3R). If h is bounded in D \ B(�; �R) nB(�; �3R), then(16) h � A NXi=1 h(yi) on S(�; �2R);where A is independent of h and R.Proof. Let 0 < R < R�. Then we �nd y1; : : : ; yN 2 D\S(�; R) with ÆD(yi) � R su
h thatmini=1;:::;NfkDR(x; yi)g � A log RÆD(x) + A for x 2 D \B(�; �R).Hen
e(17) h(x) � A� RÆD(x)�� NXi=1 h(yi) for x 2 D \B(�; �R).by (14). Let us apply Lemma 4 to u = h�=PNi=1 h(yi) and 
 = B(�; �R) nB(�; �3R). Let" > 0 and � > 0 be as in Lemma 6. Apply the elementary inequality:(log t)n�1+" � �n� 1 + "� �n�1+" t� for t � 1to t = R=ÆD(x) � 1 for x 2 
. Then�log+� RÆD(x)��n�1+" � A� RÆD(x)�� ;so that it follows from (17) and Lemma 6 thatI = Z
(log+ u)n�1+"dx � A ZB(�;�R) � RÆD(x)�� dx � ARn:Hen
e, Lemma 4 yields that u � exp(1 + AI1="R�n=") � A on S(�; �2R), i.e., (16) holds.�Let us apply Lemma 7 to a kernel fun
tion h 2 H� to obtain the following growthestimate.Lemma 8. Let � 2 �D have a system of lo
al referen
e points y1; : : : ; yN 2 D \ S(�; R)of order N with fa
tor � for 0 < R < R�. Let h 2H� for � 2 �D. Thenh(x) � Ajx� �j�� for x 2 D;where � > 0 is as in (15) and A is independent of R and h.



14 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHProof. By Lemma 7 we have (16). Sin
e h is bounded apart from a neighborhood of �,the maximum prin
iple givesh(x) � A NXi=1 h(yi) for x 2 D nB(�; �2R):Apply (15) to ea
h yi 2 D \ S(�; R) with ÆD(yi) � R. Then obtain h(yi) � AR��. This,together with the above estimate, yields h(x) � Ajx � �j�� for x 2 D. The lemma isproved. �Here we re
ord another appli
ation of Lemma 7, as this will be useful later.Lemma 9. Let � 2 �D have a system of lo
al referen
e points y1; : : : ; yN 2 D \ S(�; R)of order N with fa
tor � for 0 < R < R�. Let h be a bounded positive harmoni
 fun
tionon D \ B(�; ��3R) vanishing q.e on �D \B(�; ��3R). Thenh(x) � A NXi=1 h(yi) for x 2 D \B(�; �2R);where A is independent of R and h.Proof. We have (16). Apply the maximum prin
iple to D \B(�; �2R). �The following lemma is well-known. For the reader's 
onvenien
e sake, we re
ord itwith a proof.Lemma 10. Suppose there exist a positive integer M and a positive 
onstant A with thefollowing property: if h0; : : : ; hM 2H�, then there is j su
h thathj � AXi6=j hi on D:Then H� has at most M minimal harmoni
 fun
tions.Proof. Suppose there are M +1 di�erent minimal harmoni
 fun
tions h0; : : : hM 2H�. Ifne
essary relabeling, we may assume thath0 � A MXi=1 hi on D:We may also assume that A � 1. Thenh = (A MXi=1 hi � h0)=(AM � 1) 2H�:Hen
e 1AM h0 + (1� 1AM )h = 1M MXi=1 hi:Compare the Martin representation measures for the both sides. The measure for the lefthand side has at least 1AM mass at h0, whereas the measure for the right hand side has0 mass at h0. This 
ontradi
ts the uniqueness of the Martin representation. �



MARTIN BOUNDARY POINTS 15Proof of Proposition 3 for N � 3. Let hj 2 H� for j = 0; : : : ;M . Let h�j be the upperregularization of the extension of hj and let Hj be the Kelvin transform of h�j with respe
tto S(�; 1), i.e., Hj(x) = jx� �j2�nh�j(� + jx� �j�2(x� �)):Observe that Hj is a nonnegative subharmoni
 fun
tion on Rn whi
h is positive andharmoni
 on the Kelvin image D� of D and is equal to 0 q.e. outside D�. Moreover,Lemma 8 shows Hj(x) � Ajx� �j2�n+�:Thus Hj is of order at most 2� n + �. As in Benedi
ks [?, Theorem 2℄, we letw = maxj=0;:::;MfHj �Xi6=j Higand let w+ be the upper regularization of maxfw; 0g. Then w+ is a nonnegative subhar-moni
 fun
tion on Rn of order at most 2� n+ �. If none of fx : Hj(x) >Pi6=j Hi(x)g isempty, then w+ has M + 1 tra
ts. Hen
e, [?, Theorem 3℄ yields2� n+ � � 12 log�M + 14 �+ 32 if M � 3:Hen
e, if M > 4 exp(1 � 2n + 2�) � 1, then fx : Hj(x) > Pi6=j Hi(x)g = ; for somej = 1; : : : ;M . This means that Hj �Pi6=j Hi on D�, so thathj �Xi6=j hi on D:Hen
e Lemma 10 implies that H� has at most M minimal harmoni
 fun
tions, or equiv-alently there are at most M minimal Martin boundary points at �. Thus the number ofminimal Martin boundary points at � is bounded by 4 exp(1� 2n+ 2�). �Remark 10. The above proof gives a 
oarse estimate of the number of minimal harmoni
fun
tions of H� in terms of � depending on the John 
onstant 
J . For a sharp estimatemore deli
ate argument will be needed.6. Weak boundary Harna
k prin
ipleIn this se
tion we shall prove Proposition 3 for N � 2. Throughout this se
tion welet D be a general John domain and �x � 2 �D. By !(x; E; U) we denote the harmoni
measure of E for an open set U evaluated at x. Let G be the Green fun
tion for D. Sin
emany arguments are valid for a general N ex
ept for (21), we shall state the results for ageneral N .The box argument in [?, Lemma 2℄ (see [?℄ for the original form), gives the followingestimate of the harmoni
 measure.



16 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHLemma 11. Let � 2 �D have a system of lo
al referen
e points y1; : : : ; yN 2 D \ S(�; R)of order N with fa
tor � for 0 < R < R�. If x 2 D \ B(�; �3R), then(18) !(x;D \ S(�; �2R); D \ B(�; �2R)) � 8>><>>:A(log 1R)�1PNi=1G(x; yi) if n = 2;ARn�2PNi=1G(x; yi) if n � 3;where A depends only on n, 
J , R� and A�.Remark 11. If n = 2, then (log 1=R)�1 appears in (18). This is di�erent from [?, Lemma2℄. In [?℄, the harmoni
 measure is estimated by the Green fun
tion for D \ B(�; AR),whereas in (18), it is estimated by the Green fun
tion for D itself.Proof. Let us begin with an estimate of harmoni
 measure in a John domain. For 0 <r < ÆD(K0) let U(r) = fx 2 D : ÆD(x) < rg. Then ea
h point x 2 U(r) 
an be 
onne
tedto K0 by a 
urve with (1). Hen
e, B(x;A4r)nU(r) in
ludes a ball with radius r, providedA4 is large. This implies that!(x; U(r) \ S(x;A4r); U(r) \ B(x;A4r)) � 1� "0 for x 2 U(r)with 0 < "0 < 1 depending only on A4 and the dimension. Let R � r and repeat thisargument with the maximum prin
iple. Then there exist positive 
onstants A5 and A6su
h that(19) !(x; U(r) \ S(x;R); U(r) \B(x;R)) � exp(A5 � A6R=r):See [?, Lemma 1℄ for details.Let 0 < R < R�. For ea
h x 2 D \ B(�; �R) there is a lo
al referen
e point y(x) 2fy1; : : : ; yNg su
h that kDR(x; y(x)) � A� log RÆD(x) + A�by de�nition. Let y0(x) 2 S(y(x); 12ÆD(y(x))). Then we observe that kDRnfy(x)g(x; y0(x)) �A� log(R=ÆD(x)) + A�. It is easy to see that (log 1R)�1G(y0(x); y(x)) � 1 if n = 2, andthat ARn�2G(y0(x); y(x)) � 1 if n � 3. Hen
e, lettingu(x) = 8>><>>:A(log 1R)�1PNi=1G(x; yi) if n = 2;ARn�2PNi=1G(x; yi) if n � 3;we obtain from (14) and (15) thatu(x) � A�ÆD(x)R �� for x 2 D \B(�; �R)with some � > 0 depending only on n, 
J , R� and A�. Let Dj = fx 2 D : exp(�2j+1) �u(x) < exp(�2j)g and Uj = fx 2 D : u(x) < exp(�2j)g. Then we seeUj \B(�; �R) � �x 2 D : ÆD(x) < AR exp��2j� �� :



MARTIN BOUNDARY POINTS 17De�ne a de
reasing sequen
e Rj by R0 = �2R andRj =  �2 � 6(�2 � �3)�2 jXk=1 1k2!R for j � 1.Let !0 = !(�; D \ S(�; �2R); D \B(�; �2R)) and putdj = 8>>><>>>: supx2Dj\B(�;Rj) !0(x)u(x) if Dj \ B(�; Rj) 6= ;;0 if Dj \ B(�; Rj) = ;:It is suÆ
ient to show that dj is bounded by a 
onstant independent of R, sin
e Rj > �3Rfor all j � 0. Apply the maximum prin
iple to Uj \ B(�; Rj�1) to obtain!0(x) � !(x; Uj \ S(�; Rj�1); Uj \B(�; Rj�1)) + dj�1u(x):Divide the both sides by u(x) and take the supremum over Dj \ B(�; Rj). Then (19)yields dj � A exp�2j+1 + A5 � A6 Rj�1 �RjAR exp(�2j=�)� + dj�1;provided j is suÆ
iently large, say j � j0, so thatRj�1 �RjAR exp(�2j=�) = 6(�2 � �3)�2 exp(2j=�)Aj2 � 1:For j < j0 we have dj � 1 + dj�1. Sin
e the series1Xj=1 exp�2j+1 + A5 � A6 6(�2 � �3)�2 exp(2j=�)Aj2 �is 
onvergent and independent of R, we obtain supj�0 dj <1. Thus (18) follows. �Lemma 12. Let � 2 �D have a system of lo
al referen
e points y1; : : : ; yN 2 D \ S(�; R)of order N with fa
tor � for 0 < R < R�. If x 2 D \ B(�; �3R) and y 2 D nB(�; ��3R),then(20) G(x; y) � 8><>:A(log 1R)PNi=1G(x; yi)PNj=1G(yj; y) if n = 2;ARn�2PNi=1G(x; yi)PNj=1G(yj; y) if n � 3;where A depends only on n, 
J , R� and A�.Proof. For simpli
ity we give the proof only for n � 3. In 
ase n = 2, we repla
e Rn�2 by(log 1=R)�1. Apply Lemma 9 to h(x) = G(x; y) with y 2 D nB(�; ��3R). ThenG(x; y) � A NXj=1 h(yj) for x 2 D \ S(�; �2R):



18 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJ�ORN LUNDHHen
e (18) yieldsG(x; y) � ARn�2 NXi=1 G(x; yi) NXj=1 h(yj) for x 2 D \B(�; �3R)by the maximum prin
iple. The lemma follows. �For further arguments we need the following improvement of (20): If x 2 D\B(�; �9R)and y 2 D nB(�; ��3R), then(21) G(x; y) � 8>><>>:A(log 1R)�1PNi=1G(x; yi)G(yi; y) if n = 2;ARn�2PNi=1G(x; yi)G(yi; y) if n � 3;where A depends only on n, 
J , R� andA�. The point is that the 
ross termsG(x; yi)G(yj; y)(i 6= j) disappear from the right hand side of (20).If N = 1, then (21) is nothing but (20). If N � 2, then An
ona's ingenious tri
k[?, Th�eor�eme 7.3℄ gives (21) from (20). However, the proof is rather 
ompli
ated and wepostpone the proof to the next se
tion. The remaining arguments are rather easy andhold for arbitrary N � 1, provided (21) holds. Let us show the weak boundary Harna
kprin
iple de�ned by An
ona [?, D�e�nition 2.3℄.Lemma 13. (Weak Boundary Harna
k Prin
iple) Let � 2 �D have a system of lo
alreferen
e points y1; : : : ; yN 2 D \ S(�; R) of order N with fa
tor � for 0 < R < R�.Moreover, suppose (21) holds. Let h0; h1; : : : ; hN 2H�. Then(22) h0(y) � A NXi=1 h0(yi)hi(yi)hi(y) for y 2 D nB(�; ��3R):where A depends only on n, 
J , R� and A�.Proof. For simpli
ity we give the proof only for n � 3. In 
ase n = 2, we repla
eRn�2 by (log 1=R)�1. Let 0 < r < �9R. Observe that the regularized redu
ed fun
tionur = bRD\S(�;r)h0 is a Green potential of a measure �r 
on
entrated on D\S(�; r). We havefrom (21)ur(y) = ZD\S(�;r)G(x; y)d�r(x)� ARn�2 NXi=1 ZD\S(�;r)G(x; yi)G(yi; y)d�r(x) = ARn�2 NXi=1 ur(yi)G(yi; y)for y 2 D nB(�; ��3R). Letting r! 0, we obtainh0(y) � ARn�2 NXi=1 h0(yi)G(yi; y) for y 2 D nB(�; ��3R):Let " = minf12 ; ��3 � 1g. Then D n B(�; ��3R) � D n B(yi; "ÆD(yi)). Observe fromthe Harna
k prin
iple that hi(yi)Rn�2G(yi; y) � hi(y) for y 2 S(yi; "ÆD(yi)), and so is



MARTIN BOUNDARY POINTS 19for y 2 D n B(�; ��3R) � D n B(yi; "ÆD(yi)) by the maximum prin
iple. Hen
e (22)follows. �Varying R in Lemma 13, we obtain relationships among kernel fun
tions inH�, whi
hyield Proposition 3.Proof of Proposition 3 (ii) for N = 1. Obviously, (21) holds, and hen
e (22) holds forN = 1 by Lemma 13. Let h0; h1 2 H�. Let Rj ! 0 and take a lo
al referen
e pointyj1 2 D\S(�; Rj). Then one of the inequalities h0(yj1) � h1(yj1) and h1(yj1) � h0(yj1) holdsfor in�nitely many j. Hen
e h0 � Ah1 or h1 � Ah0 holds on D by (22) with N = 1.Moreover suppose that h0 and h1 are minimal. Then h0 � h1 in any 
ase. This impliesthat H� has just one minimal kernel fun
tion. Take h 2 H�. By the Martin representa-tion theorem h is given as the integral of Martin kernel by a measure � over the minimalMartin boundary. Sin
e h vanishes q.e. on �D and bounded apart from a neighborhoodof �, it follows that � is a point measure at �, so that h must 
oin
ide with a uniqueminimal harmoni
 fun
tion in H�. Thus, H� is a singleton. �Proof of Proposition 3 (ii) for N = 2. As we shall show in the next se
tion (21) holds forN = 2, and hen
e (22) holds for N = 2 by Lemma 13. We follow the proof of An
ona[?, Th�eorem�e 2.5℄. We slightly generalize the proof of Proposition 3 for N = 1. Leth0; h1; h2 2 H�. Take a de
reasing sequen
e Rj ! 0. For ea
h Rj suÆ
iently small we�nd referen
e points yji 2 D \ S(�; Rj) with i = 1; 2. For a moment �x j and 
onsidermax0�k�2 hk(yj1). Then we �nd k(j) su
h that hk(j) = max0�k�2 hk(yj1). This holds forin�nitely many j, so that we �nd k1 2 f0; 1; 2g su
h that(23) hk1(yj1) = max0�k�2hk(yj1)for in�nitely many j. Then 
onsider j satisfying (23) and �nd k2 2 f0; 1; 2g su
h thathk2(yj2) = max0�k�2hk(yj2)for in�nitely many j. Thushk(yji ) � hki(yji ) for all i; k 2 f0; 1; 2gholds for in�nitely many j. If ne
essary relabeling h0; h1; h2, we may assume that k1 6= 0and k2 6= 0. Then (22) yieldsh0(y) � A 2Xi=1 h0(yji )hki(yji )hki(y) � A 2Xk=1 hk(y) for y 2 D nB(�; ��3Rj):This holds for in�nitely many j. Letting j !1, we obtainh0 � A 2Xk=1 hk on D:This, together with Lemma 10, 
ompletes the proof. �Remark 12. We do not know whether the weak boundary Harna
k prin
iple holds forN � 3. In spe
ial 
ases, su
h as a se
torial domain whose boundary lies on N raysleaving �, we 
an apply the weak boundary Harna
k prin
iple repeatedly to subdomains
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ontaining just one ray and 
on
lude the weak boundary Harna
k prin
iple for the se
torialdomain itself (
f. Cranston and Salisbury [?, (2.2) Lemma℄).7. Proof of (21)In this se
tion we shall prove the following:Lemma 14. Let � 2 �D have a system of lo
al referen
e points y1; y2 2 D \ S(�; R) oforder 2 with fa
tor � for 0 < R < R�. If x 2 D\B(�; �9R) and y 2 D nB(�; ��3R), then(21) holds, i.e., G(x; y) � 8>><>>:A(log 1R )�1P2i=1G(x; yi)G(yi; y) if n = 2;ARn�2P2i=1G(x; yi)G(yi; y) if n � 3;where A depends only on n, 
J , R� and A�.We employ An
ona's ingenious tri
k [?, Th�eor�eme 7.3℄. Sin
e our setting is slightlydi�erent from An
ona's, we provide a proof for the sake of the reader's 
onvenien
e.Proof. For simpli
ity we give the proof only for n � 3. In 
ase n = 2, we repla
e Rn�2 by(log 1=R)�1. Besides the lo
al referen
e points y1; y2 2 D\S(�; R), we take lo
al referen
epoints y�1; y�2 2 D \ S(�; �6R) withmini=1;2fkD\B(�;�3R)(x; y�i )g � A� log �6RÆD(x) + A� for x 2 D \B(�; �7R):Then minj=1;2fkDR(y�i ; yj)g � A� log RÆD(y�i ) + A� � A�:So, we may assume either(24) kDR(y�1; y1) � A and kDR(y�2; y1) � A;or(25) kDR(y�1; y1) � A and kDR(y�2; y2) � A;by repla
ing the roles of y1 and y2, if ne
essary.First 
onsider the 
ase when (24) holds. Suppose x 2 D \ B(�; �9R) and y 2 D nB(�; �3R). Then (14) and (20) for y�1; y�2 yieldG(x; y) � ARn�2Xi;j G(x; y�i )G(y�j ; y) � ARn�2G(x; y1)G(y1; y):Hen
e the lemma follows in this 
ase.Next 
onsider the 
ase when (25) holds. Let � = fz 2 D : G(z; y1) � G(z; y2)g.If either x; y 2 � or x; y 2 D n �, then (21) follows from (20). Let us 
onsider theremaining 
ases. If ne
essary, ex
hanging the roles of y1 and y2, we may assume thatx 2 �\B(�; �9R) and y 2 (D n�) nB(�; ��3R). Let E = � nB(�; �3R) and 
onsider theregularized redu
ed fun
tion bREG(�;y) = ZE G(�; z)d�(z);
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h is represented as the Green potential of a measure � 
on
entrated on �E. Observethat (20) for y�1; y�2 and (25) implyG(x; z) � ARn�2Xi;j G(x; y�i )G(y�j ; z) � ARn�2G(x; y1)G(y1; z) for z 2 E:Hen
e bREG(�;y)(x) � ARn�2G(x; y1) ZE G(y1; z)d�(z)= ARn�2G(x; y1) bREG(�;y)(y1) � ARn�2G(x; y1)G(y1; y):(26)Let vy = G(�; y)� bREG(�;y). Then(27) vy = 0 q.e. on E = � nB(�; �3R):By (20) we have(28) vy(z) � G(z; y) � ARn�2G(z; y2)G(y2; y) for z 2 (D n�) \ B(�; �3R):Observe thatD \ �(� \ B(�; �3R)) � (� nB(�; �3R)) [ (D \B(�; �3R) \ ��):Hen
e (27), (28) and the maximum prin
iple yieldvy � ARn�2G(�; y2)G(y2; y) on � \B(�; �3R):This, together with (26), impliesG(x; y) � ARn�2(G(x; y1)G(y1; y) +G(x; y2)G(y2; y)):The proof is 
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