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ABSTRACT. We show that a John domain has finitely many minimal Martin boundary
points at each Euclidean boundary point. The number of minimal Martin boundary
points is estimated by the John constant. In particular, if the John constant is bigger
than \/3/2, then there are one or two minimal Martin boundary points at each Euclidean
boundary point. For a special John domain represented as the union of convex sets
we give a sufficient condition for the Martin boundary and the Euclidean boundary to
coincide.

1. INTRODUCTION

Let D be a domain in R” with n > 2. Let dp(x) = dist(z,0D) and z, € D. We say
that D is a John domain with John constant ¢; > 0 and John center at xy if each x € D
can be joined to xy by a rectifiable curve ~ such that

(1) on(y) > csl(y(x,y)) forally €,

where y(z, y) is the subarc of v from z to y and ¢(vy(x,y)) is the length of v(z,y). Since
we are interested in the boundary behavior, we may replace zy by a compact subset K|
of D. We call such a domain a general John domain with center Ky and John constant
cy. A general John domain with John constant ¢; is a John domain with John constant
¢, < c¢;. Several interesting domains studied in connection with the Martin boundary fall
into this category:

(A) Let F' be a compact set on a hyperplane and let B be an open ball containing F'.
Then B\ F' (a Denjoy domain) is a general John domain with John constant 1.
(See Benedicks [?]).

(B) Let ¥ be a Lipschitz surface and F' a compact set on ¥. Let B be an open
ball containing F'. Then B\ F' (a Lipschitz Denjoy domain) is a general John
domain. Moreover, if ¥ is given as the graph of a Lipschitz function with Lipschitz
constant k, then the John constant of B\ F'is 1/v/k?+ 1. (See Ancona [?, 7]
and Chevallier [?]).

(C) A planar domain with boundary lying on the union of finitely many rays leaving
the origin is called a sectorial domain (Cranston-Salisbury [?]). A sectorial domain
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is a general John domain with John constant ¢; = sin(6/2), where @ is the smallest
angle between two rays. A higher dimensional analogue of a sectorial domain is
called a quasi-sectorial domain (Lomker [?]). A quasi-sectorial domain is a general
John domain.

(D) The union of a family of open balls with the same radius is a general John domain
with John constant 1, provided it is connected (Ancona [?]).

(E) The complement of a certain self similar fractal is a general John domain (Aikawa-
Lundh-Mizutani [?, Section 4]).

In [?] the first author showed that the Martin boundary of a bounded uniform domain
consists of minimal boundary points and it is homeomorphic to the Euclidean boundary;
in [?] the first and the third authors and Mizutani showed that the Martin boundary of
a uniformly John domain consists of minimal boundary points and it is homeomorphic
to the ideal boundary with respect to the internal metric. No exterior conditions are
assumed both in [?, ?]. Bonk, Heinonen and Koskela [?] called a uniformly John domain
an inner uniform domain. In a very general framework of Gromov hyperbolicity, but under
the additional assumption of the existence of a strong barrier, they identified the Martin
boundary of an inner uniform domain. The existence of a strong barrier is an exterior
condition. The usage of strong barriers to the Martin boundary was first introduced by
Ancona [?, ?]. See [?] for the relationship between a strong barrier and other exterior
conditions, such as the capacity density condition.

The Martin boundary of a John domain is much more complicated; it may admit a non
minimal boundary point. Our first purpose of this paper is to show that a general John
domain has finitely many minimal Martin boundary points at each Euclidean boundary
point. Moreover, the number of minimal Martin boundary points is estimated in terms
of the John constant.

Theorem 1. Let D be a general John domain with John constant c; and generalized John
center Ky. Let £ € 0D.

(i) The number of minimal Martin boundary points at & is bounded by a constant
depending only on the John constant c;.
(ii) If c; > \/3/2, then there are one or two minimal Martin boundary points at € .

Remark 1. Let D be a sectorial domain whose boundary near the origin lies on three
equally distributed rays leaving the origin. Then D is a general John domain with John
constant sin(7/3) = v/3/2. There may be three different minimal Martin boundary points
over the origin. This simple example shows that the bound c¢; > \/3/2 in Theorem 1 is
sharp. Note that the same bound c¢; > \/3/2 also applies to the higher dimensional case.

Remark 2. Theorem 1 generalizes some parts of [?], [?, ?], [?], [?] and [?]. One of the
main interests of these papers was to give a criterion for the number of minimal Martin
boundary points at a fixed Euclidean boundary point (via Kelvin transform for [?]). Such
a criterion seems to be very difficult for a general John domain, since the boundary may
disperse at every point (See e.g. [?, Figure 4.1 (b)]).

Our second purpose is to find a certain class of John domains whose boundary points
have one minimal Martin boundary point. In view of Benedicks’ work on a Denjoy
domain ([?]), we observe that the John constant ¢; is not sufficient to give a condition
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for a boundary point to have one minimal Martin boundary point. We need some other
information. Ancona [?, Théoreme] gave a condition for the union of a family of open
balls with the same radius to have one minimal Martin boundary point at each Euclidean
boundary point. By B(z,r) we denote the open ball with center at x and radius r. Let
z and y be distinct points in R” and # > 0. We denote by ['y(z,y) the open circular
cone {z € R" : Zzzy < A} with vertex at z, axis Ty and aperture §. Ancona says that a
domain D is admissible if

(A1) D is the union of a family of open balls with the same radius py.

(A2) Let £ € OD. If D includes two open balls By and By with radius py tangential to
each other at &, then D includes a truncated circular cone T'y(&,y) N B(&,r) for
some f > 0, r > 0 and y in the hyperplane tangent to B; at &.

Theorem A (Ancona). Let D be a bounded admissible domain. Then every Euclidean
boundary point of D has one Martin boundary point and it is minimal. Moreover, the
Martin boundary of D is homeomorphic to the Euclidean boundary.

Let us generalize both (A1) and (A2). As observed previously, (A1) implies that D is
a general John domain with John constant 1. We would like to consider general convex
sets rather than balls with the same radius. They need not to be congruent. Observe that
Ancona’s condition (A2) implies that two balls By and By are connected by a truncated
cone I'y(&, y)NB(E,r). As aresult, the union of truncated cones I'y (£, y)NB(&, r') included
in D is connected for 0 < ' < 0, i.e.,

U Lo (&, y) N B(E,r') is connected,

yeD,
Lor (€y)NB(Er")CD
provided r' > 0 is sufficiently small. In view of this observation, we generalize (A1) and
(A2) as follows. Let Ay > 1 and py > 0. We consider a bounded domain D such that

(I) D is the union of a family of open convex sets {C)}ren such that B(zy, pg) C
C, C B(Z)\,Aopg).

(IT) Let & € OD. Then there are positive constants 6, < sin '(1/A4y) and p; < pg cos 6,
such that the union of truncated cones 'y, (&, y) N B(£, 2p1) included in D is
connected, i.e.,

U Ly, (&,9) N B(&,2py) is connected.
yeD,
La  (€y)NB(€,2p1)CD
Theorem 2. Let D be a bounded domain satisfying (I) and (II). Then every Euclidean
boundary point of D has one Martin boundary point and it is minimal. Moreover the
Martin boundary of D is homeomorphic to the Fuclidean boundary.

Remark 3. Ancona’s admissible domains satisfy (I) and (II) of Theorem 2. The argument
of Ancona depends on the special properties of a ball. His crucial lemma ([?, Lemme 1])
relies on the reflection with respect to a hyperplane. His lemma is applied to a ball by
the Kelvin transform ([?, Corollarie 2]). This approach is not applicable to our domains.

Remark 4. A Denjoy domain can be represented as the union of a family of open balls
with the same radius. A Lipschitz Denjoy domain, a sectorial domain and a quasi-sectorial
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domain can be represented as the union of a family of open convex sets C) satistying (I).
However, they are not represented as the union of a family of open balls with the same
radius. Thus our Theorem 2 is applicable to these domains, whereas Theorem A is not.

Remark 5. Condition (IT) is local in the following sense: Suppose D is the union of a
family of open convex sets {C)}en satisfying (I). If a particular point £ € 9D satisfies
(IT), then there is one Martin boundary point at & and it is minimal.

Remark 6. Note that 0 < 6, < 7/2 by 0 < p; < pgcosf;. The bounds 0; < sin~'(1/4)
and p; < pocosf; are sharp. See Hirata [?]. Under these assumptions, there exists
a truncated circular cone 'y (&, y) N B(&,2p1) included in D; the union of such cones
contains a neighborhood of £ in some sense. See LLemma 2 below.

Both Theorems 1 and 2 are based on a common geometrical notion, a system of local
reference points. In Section 2, we shall introduce a quasihyperbolic metric and define
a system of local reference points. Then we shall observe that Theorems 1 and 2 are
decomposed into three propositions, namely, Propositions 1, 2 and 3. The first two
propositions are purely geometric and will be proved in the same section. Proposition
3 involves many potential theoretic arguments. Among them, a Carleson type estimate
(Lemma 7 in Section 5) for bounded positive harmonic functions vanishing on a portion of
the boundary will be useful. This estimate will be deduced from a Domar’s type theorem
(Domar [?]) for positive subharmonic functions, as was employed by Benedicks [?] and
Chevallier [?].

Because of the intricacy of the boundary of a John domain, we shall give a refinement
of Domar’s theorem in Section 3 and prepare an integrability of the negative power of
the distance function in Section 4. These arguments are necessary to prove a Carleson
type estimate since the so-called geometric localization is not available for a general John
domain. Even for an NTA domain a geometric localization is difficult. It takes the
following form: If D is an NTA domain, then for any zy € 0D and r < ry there exists an
NTA domain Q C D such that B(xg,r/M)ND C Q C B(xy, Mr) N D. Furthermore, the
constant M > 1 in the NTA definition for €2 is independent of zy and r. The problem is
that the intersection B(xzq,r) N D is no longer connected; so, complicated modification of
the intersection is needed to construct a nice subdomain. See Jones [?] and Jerison and
Kenig [?]. For a uniformly John domain see Balogh and Volberg [?]. The approach of this
paper is to show potential theoretic estimates directly avoiding a geometric localization.
This seems easier than showing a geometric localization for a John domain.

Section 5 will be devoted to the proof of Proposition 3 in the case corresponding to
Theorem 1 (i). We shall give a growth estimate of kernel functions at &; then we shall
apply the tract argument due to Friedland and Hayman [?], as was employed by Benedicks
[?7]. The tract argument gives a rather coarse estimate of the number of minimal boundary
points. In Section 6 we shall show Proposition 3 in the case corresponding to Theorem
1 (ii) and Theorem 2 by establishing a weak boundary Harnack principle (Ancona [?,
Théoréme 7.3]). The main tool will be the box argument for the estimate of a harmonic
measure in terms of the Green function (Bass and Burdzy [?] and Aikawa [?, Lemma 2]
for the present form). We shall use a subtle estimate (21) of the Green function, whose
proof will be given in Section 7.
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By the symbol A we denote an absolute positive constant whose value is unimportant
and may change from line to line. If necessary, we use Ay, Ay, ..., to specify them. We
shall say that two positive functions f; and f, are comparable, written f; = f,, if and
only if there exists a constant A > 1 such that A~'f; < f, < Af,. The constant A will
be called the constant of comparison. We write B(z,r) and S(x,r) for the open ball and
the sphere of center at x and radius r, respectively.

2. LOCAL REFERENCE POINTS

2.1. Restatements of Theorems 1 and 2. We define the quasihyperbolic metric kp(z, y)
by
ds(z)
kp(x,y) = inf ,
() v J,y 0p(2)
where the infimum is taken over all rectifiable curves  connecting x to y in D. We say
that D satisfies a quasihyperbolic boundary condition if

0p(zo)
op(x)
A domain satisfying the quasihyperbolic boundary condition is called a Holder domain by

Smith-Stegenga [?, ?]. It is easy to see that a John domain satisfies the quasihyperbolic
boundary condition (see [?, Lemma 3.11]). We need more precise estimates.

(2) kp(x,xy) < Alog + A" forall z € D.

Definition 1. Let N be a positive integer and 0 < n < 1. We say that £ € 9D
has a system of local reference points of order N with factor n if there exist R > 0
and A; > 1 with the following property: for each positive R < R there are N points
Yty yn € DN S(E R) such that AglR <dp(y;) < Rfori=1,...,N and
. R -
i:IR.l.I.}N{kDR(.’E, yi)} < A¢log m + A forx € DN B(£,nR),
where Dr = DN B(§,n2R). If 5 is not so important, we simply say that £ € 9D has a
system of local reference points of order N.

Remark 7. The quasihyperbolic metric is a useful tool to study the Martin boundary. See
[?], [?] and [?]. Note that no exterior condition is assumed in the first two articles; while
Bonk, Heinonen and Koskela [?] study a Gromov hyperbolic domain with strong barrier,
an exterior condition.

The proofs of Theorems 1 and 2 can be decomposed into the following three proposi-
tions. The first and the second are purely geometric; the third is potential theoretic.

Proposition 1. Let D be a general John domain with John constant c;. Then every
& € 0D has a system of local reference points of order N with N < N(c;,n) < oo.
Moreover, if the John constant c; > \/3/2, then we can let N < 2 by choosing a suitable
factor 0 < n < 1.

Proposition 2. Let D be a bounded domain satisfying (1) and (II). Then every £ € 0D
has a system of local reference points of order 1.
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Remark 8. In Proposition 1, the constants R; and A¢ in Definition 1 can be taken uni-
formly for £ € 0D, whereas they may depend on £ in Proposition 2.

By 7% we denote the family of all kernel functions at £ normalized at the John center
Ty, i.e., the set of all positive harmonic functions h on D such that h(xzy) =1, h =0 q.e.
on dD and h is bounded on D\ B(&,r) for each r > (0. Here we say that a property holds
g.e. (quasi everywhere) if it holds outside a polar set. A Martin kernel at & (with reference
point xp) is a limit of the ratio G(x, y;)/G (0, y;) of Green functions with y; — £. Suppose
y; C DN B(&r/2). Then the (global) boundary Harnack principle for a John domain
(Bass and Burdzy [?]) implies that the G(-,y;)/G(x¢,y;) is bounded on D \ B(&,r), and
so is a Martin kernel at £&. Obviously, a Martin kernel at £ is a positive harmonic function
vanishing q.e on 0D with value 1 at xg, so that it belongs to . Thus Theorems 1 and
2 will follow from Propositions 1, 2 and the following:

Proposition 3. Let D be a general John domain. Suppose & € D has a system of local
reference points of order N.
(i) The number of minimal functions in € is bounded by a constant depending only
on N.
(ii) If N < 2, then there are at most N minimal functions in 7. Moreover, if N =1,
then ¢ itself is a singleton.

2.2. Proof of Proposition 1. For the proof of the second assertion in Proposition 1, we
prepare an elementary geometrical observation.

Lemma 1. Let e;, e and ez be points on the unit sphere S(0,1). Then
max min |e; — e;| = V3,
i£]
where the mazimum is taken over all positions of e, ex and es.

Proof. This is a well-known fact (Fejes [?]). For the convenience sake of the reader we
provide a proof. We can easily prove the lemma for n = 2. Let n > 3. We observe from
the compactness of S(0,1) that the maximum d is taken by some points e;, ey and e3
on S(0,1). There is a unique 2-dimensional plane II containing e;, e and e3, since three
distinct points on S(0, 1) cannot be collinear by convexity. Observe that S(0,1) NIl is a
circle with radius at most 1. Since e;, e5 and e3 are points on this circle, it follows from
the case n = 2 that d < v/3. The lemma follows. O

Proof of Proposition 1. We prove the proposition with R = 6p(Ky). Let £ € 0D and
0 < R < 0p(Kp). Let us prove the first assertion with n = 1/2. Take x € DN B(, R/2).

By definition there is a rectifiable curve 7 starting from x and terminating at K, such that
(1) holds. Then the first hit y(z) of S(&, R) along v satisfies 27 'c¢; R < dp(y(z)) < R and

kp,(xz,y(x)) < Alog 55 ()

Consider in general the family of balls B(y, 4 'c;R) with y € S(¢, R). These balls are
included in B(&, (4 'c;+1)R), so that at most N(c;,n) balls among them can be mutually
disjoint. Hence we find N points xy,...,oxy € DN B(£, R/2) with N < N(c;,n) such
that {B(yi,4 '¢sR),...,B(yn,4 'c¢;R)} is maximal, where y; = y(z;) € DN S(& R)
is the point associate with z; as above. This means that if x € D N B(&, R/2), then

. We associate y(z) with z, although it may not be unique.
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B(y(z),4 'c;R) intersects some of B(y;,4 '¢;R), ..., B(yn,4 'c;R), say B(y;, 4 'c;R).
Since B(y(x),4 '¢;R) N B(y;, 4 '¢;R) # 0 and B(y(x),2 '¢c;R) U B(y;,2 'c;R) C D, it
follows that kp,(y(z),y;) < A’. Hence

kg (2,4i) < kpg(2,y(x)) + kpg(y(2), yi) < Alog + A

R
p(z)

Thus the first assertion follows.

For the proof of the second assertion, let v/3/2 < o' < b < cyandn=1—b/c; > 0.
Let us prove that & has a system of local reference points of order at most 2 with factor
n. Let 0 < R < §p(Kp). Suppose x € DN B(&,nR). In the same way as in the proof of

R
the first assertion, we find y(x) € S(&, R) such that kp, (z,y(x)) < Alog 57 ()
pD\T

3
dp(y(x)) > c;(1—n)R=>bR > bR > gR.

and

In view of Lemma 1, we can choose 21,29 € DNB(&,nR) such that if x € DNB(E, R) then
B(y(x),0' R) intersects B(y;, b'R) for some i = 1,2, where y; = y(x;). Since B(y(z),b'R)N

B(y;,0'R) # 0 and B(y(z),bR) U B(y;, bR) C D, it follows that kp,(y(z),v;) < A. Hence
the proposition follows. (]

Remark 9. In case c; < v/3/2, we may have an estimate of N better than the above proof,
by considering a lemma similar to Lemma 1. See Proposition 3 and Remark 10.

2.3. Proof of Proposition 2. In this subsection, we assume, by translation and dilation,
that £ = 0 and p; = 1 for simplicity. The aperture 6, < sin '(1/4,) is fixed and
we write I'(x,y) for Ty, (x,y). Note that 1 = p; < pycosby, so that 0 < 6; < 7/2 and
po > sec fy. Let C) be a convex set appearing in (I) and let B(zy, pg) C Cx C B(zx, Aopo)-
If v € Cy \ B(2\, pg), then

(3) ['(z,2)) N B(x,2) C co({z} U B(zx, po)) C Ch,

where co({z}UB(zy, po)) is the convex hull of {x}UB(z,, pg). Observe that the assumption
(IT) can be restated as the connectedness of a certain set on the unit sphere S(0,1). Let
% ={yeS0,1):I'(0,y) N B(0,2) C D}. Then (II) holds if and only if

= U B(y,sinf,) N S(0,1)
YeEW
is a connected domain on S(0,1). By definition
dist(#/, S(0,1)\) > sin 6y,

and the truncated cone of radius 2 with vertex at 0 subtended by is included in DD. Hence,
by dilation, if 0 <7 <1 and 0 < R < 273, then

(4) kpg(Ryr, Rys) < A fory,,y, € ¥,

where Dp = DN B(0,7?R) and A is independent of y;,y, € % and R. Let us show that
% + () and that the point 0 can be accessible along a ray issuing from the origin toward
a point in %
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Lemma 2. There is a positive constant Ry < 1 such that if Cy N B(0, Ry) # 0, then
O\N% #0. In particular, % # ().

Proof. Suppose to the contrary, there is a sequence Cy; with dist(0,Cy;) — 0 and Cy;, N
% = 0. Let zy, be such that B(zy,,p) C Cy; C B(2y,, Agpo). Taking a subsequence, if
necessary, we may assume that zy, converges, say to zg. We claim

(5) I'(0,20) N B(0,2) C | JCh,-

J

We find z), € 9C,, with x5, — 0. Take z € I'(0, 20) N B(0,2). Then Z20z < 6, and
2| < 2 by definition. If j is sufficiently large, then Zaxy, 2y, < 61 and |z — x| < 2 by
continuity, so that

x € F(:E)\j,Z)\j) N B(JZ‘)\j,Q) C CO({:E)\j} U B(Z)\j, 1)) C C)\j,

by (3). Thus (5) follows. Now, by definition, yo = zo/|20| € # and yo € (0, 20)NB(0,2) C
Uj Cy,. This contradicts Cy, N % = (). The lemma follows. O

Observe that if C' is a convex set, then the distance function ¢ (z) = dist(z, dC) is a
concave function on C| i.e.,

ol e
6 0c(z) > oo(x) +
R B 2yt ey

whenever z,y € C. This fact will be used in the following lemma.

Scly) for z € 7,

Lemma 3. Let 0 < Ry < 1 be as in Lemma 2. Suppose 0 < R < min{Ry,3 'sin6,}.
If CxNB(0,R) # 0 and y € Cx N, then there exists a point w € Cy NT(0,y) N
B(0,3R/sinby) such that
sin 6,

4

Proof. Take x € Cy N B(0,R). Then Ty C C). Observe that there is a point w; €
Ty NT(0,y) with |wy| < R/sin#;. In fact, if x € ['(0,y), then w; = x satisfies the
condition. Otherwise, let w; be the intersection of Ty and OI'(0,y). By elementary

geometry

R.

doyr(oy) (w) >

R > dist(z,0y) > dist(w, 0y) = |w,|sin 0y,
so that |wq| < R/sin#;. Since |w; —y| > 1 — R/sinf; and 3R/ sinf; < 1, we find a point
wy € Wy C C\NT(0,y) with |w; — we| = R/sinf;. By (6) with C =T'(0,y) we obtain
‘U)l — wg‘ R/ sin 01 . R
— > ————sinf; > —.

Moreover |ws| < 2R/ sin 6. Sinceim — 2y > po—2R/sinby > R by 3R/sinf; < 1 < py,
we can take a point w € Wz, C C) such that |w — wy| = R/4. Then it follows from (6)
with C' = C,, that

6F(0,y) (w2) >

R/4 by s Sl

dcy (w) > 1
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Hence

R.

. [R R sint, sin 6
(5r(g,y)ch (w) > min {5 — Z’ 1 R} = 1

Moreover,

R R R 3R
< |w— - ST < '
|w‘ < |U) U}Q‘ + ‘U)Q wl‘ + ‘U)1| -4 + sin 01 t sin 91 sin 91

O

Proof of Proposition 2. Let 0 < Ry < 1 be as in Lemma 2 and let 0 < n* < 37!sin#,.
Suppose 0 < R < min{Ry,3 'sinf;}. By Lemma 2 we fix yy € # and write yp = Ryp.
It is sufficient to show

(7) kp,(x,yr) §Alogi+A for x € DN B(0,nR),

dp(z)
where A is independent of z and R. Take x € D N B(0,nR). Then there is a convex set
C') containing x and there is y € C\ N % by Lemma 2. By Lemma 3 we find a point
w e CyNT(0,y) N B(0,3R/sinf;) such that dc,qr,y)(w) > 4 'Rsinf;. An elementary
calculation shows

ds(z) R
k < < Alog ——.
Dl ) < 7w 0p(2) o Op ()
Similarly, kp, (w, |wly) < A and kp,(|w|yo, Ryo) < A. Moreover, kp, (|wly, |lw|ys) < A by
(4). These altogether imply (7). O

3. REFINEMENT OF DOMAR’S THEOREM

Domar [?, Theorem 2] gave a criterion for the boundedness of a subharmonic function
majorized by a positive function. We need its quantitative refinement, i.e., the dependency
of the bound is given explicitly.

Lemma 4. Let u be a nonnegative subharmonic function on a bounded domain ). Suppose
there is € > 0 such that

I= /(logJr u)” edr < oo,
Then )
(8) u(z) < exp(l + AI'5q(2) /%),
where A is a positive constant depending only on the dimension n.
For the proof we prepare the following.

Lemma 5. Let u be a nonnegative subharmonic function on B(x, R). Suppose u(x) >
t>0 and

(9) R > Ly{y € B(z,R): e 't <u(y) < et}|"'",

where L, = (€2/v,)"/™ and v, is the volume of the unit ball. Then there exists a point
' € B(x, R) with u(z') > et.
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Proof. Observe that (9) is equivalent to

Hy € B(x,R) : e 't < u(y) < et} < 1
B <@

Suppose u < et on B(z,R). Then the mean value property of subharmonic functions
yields

1
t < < — d
1

= — udy +/ udy)
|B(z, R)| </B’(x,R)ﬂ{u§elt} B(x,R)n{u>e~1t}

1 1
<e t+ —2€t < t.
e
This is a contradiction. O

Proof of Lemma 4. Since the right hand side of (8) is not less than e, it is sufficient to
show that

(10) do(z) < ATV (logu(z)) /",  whenever u(x) > e.
Fix z; € Q with u(z,) > e and let us prove (10) with z = z;. Let
R;i=L,{y€Q:e u(r) <uly) <eulz)}'/" forj>1.

We choose a sequence {x;} as follows: If do(xi) < Ry, then we stop. If dg(z1) > Ry,
then B(zy, Ry) C €, so that there exists xo € B(xy, Ry) such that u(zy) > eu(x;) by
Lemma 5. Next we consider dg(zy). If dg(zs) < Rs, then we stop. If dg(zy) > Ry, then
B(xy, Ry) C £, so that there exists 73 € B(xy, Ry) such that u(z3) > e?u(z;) by Lemma
5. Repeat this procedure to obtain a finite or infinite sequence {z,}. We claim

(11) So(1) < QiRj.

Suppose first {z;} is finite. If 0g(21) < Ry, then (11) trivially holds. If éo(xy) > Ry, then
we have an integer J > 2 such that

do(x1) > Ry, ... 00(x50) > Ry, 60(xy) < Ry,
To € B(.’El,Rl),JIg € B(.’EQ,RQ), Lo,y € B(.’Ejfl,ijl).

Hence we have
(59(3’)1) S |JI1 —JI2‘+"'+ ‘.’EJ,1 —(I?J|+5Q(JIJ) < R1+"'+RJ71+RJ,

so that (11) follows. Suppose next {z;} is infinite. Since u(z;) > e’u(z;) — oo, it follows
from the local boundedness of a subharmonic function that z; goes to the boundary.
Hence, there is an integer .JJ > 2 such that dg(z,) < %69(@). Then

1
(59(3’)1) S |JI1 —JIQ‘ + -+ ‘LEJ,1 — .’EJ‘ +6Q(JZ‘J) S R1 + - '+RJ,1 + 559(@),
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so that (11) follows. In view of (11) we observe that (10) follows from
(12) ZR]- < ATV (logu(zy)) /™.
j=1
To show (12), let j; be the positive integer such that e/t < u(z;) < e1t'. Then
R; < L,{y € Q:e" 72 <u(y) < Tt} Hm,

Since the family of intervals {(e/' ™7/ ~2 e/ +1]}1 overlaps at most 3 times, it follows from
Holder’s inequality that

ZR]- < 3L, Z {yeQ:e ! <uly) < e}V
j=1

J=J1

o (n—1)/n 0 1/n
1 I . 4
< 3L, (ZW) (Zy iy e 1<u<y)§ef})

i=n ) i=h

1/n
< aj;n ( [ s u>"l+ﬁdy)
Q

< A(logu(zy))~e/m1/m,
Thus (12) follows. The lemma is proved. O

4. INTEGRABILITY OF NEGATIVE POWER OF THE DISTANCE FUNCTION

Inspired by Smith and Stegenga [?, Theorem 4] we have proved that for a bounded
John domain there is a positive constant 7 such that

/ dp(z) Tdr < 0o
D

([?, Lemma 5]). We need its local version.

Lemma 6. Let D be a general John domain with John constant c; and generalized John
center K. Then there are positive constants T and A depending on c¢; such that

/ ( i ) de < AR"
DNB(¢,R) 6p(7)

for each & € 0D and 0 < R < dp(Ky).
Proof. Let
Vi={r € DNB R+ (1+c¢;")2"7'R): 2777 'R < 6p(z) < 277R}

for 7 > 0. For a moment we fix x € U;)ijJrl V;. By definition there is a rectifiable curve v
connecting x and K, with (1). Hence we find y € v such that dp(y) =277R > ¢ |z — y|.

In other words = € B(y,c;'2-7R). We observe
(13) |B(y,5¢;'277R)| < A|V; N B(y,c;'277R)|.




12 HIROAKI AIKAWA, KENTARO HIRATA, AND TORBJORN LUNDH

In fact, take y* € 9D such that |y — y*| = 277R, and then take and y' € yy* with
6p(y') = 1(277R+2777'R). An elementary geometrical observation gives B(y',27"?R) C
Vi N B(y,c;'277R), so that (13) follows.

Now the covering lemma yields a sequence {y;} such that

G Vi C UB(yk,5c;12*jR)

i=j+1 k

and {B(yx,c;'271R)}, are disjoint. Hence

> il < U Vil < Z\B (yi, 5¢; ' 279 R)| <A12|V N By, ¢;'279R)| < AV
i=j+1 i=j+1

by (13). Let 1 <t <1+ A*1 In the same way as in [?, Lemma 5] we have
ZtJ\V|_1 0, Z\V|<A\B( R+ (1+¢,Y)2R)| < AR,

Since #/ < (R/dp(x))” <t on V Wlth T =logt/log2 > 0, it follows that

R \7 =, .
dz < UV < AR™.
/DmBgR <5D( )) _Z Vil <

Jj=0

Thus the lemma follows. L]

5. GROWTH OF POSITIVE HARMONIC FUNCTIONS

In this section we shall show Proposition 3 (i) by investigating the growth of h €
H¢. Throughout this section we let D be a general John domain and let £ € 9D be
fixed. We say that 2,y € D are connected by a Harnack chain {B(z;, 50p(x;))}s_, if
€ B(w1, 300(21)), ¥ € By, 300(yk)), and B(x;, 50p(x;)) N B(wj, 50p(x541)) # 0 for
j=1,...,k—1. The number £ is called the length of the Harnack chain. We observe that
the shortest length of the Harnack chain connecting = and y is comparable to kp(x,y).
Therefore, the Harnack inequality yields that there is a constant As > 1 depending only
on n such that

h(z)

for every positive harmonic function A on D. If D is a John domain with John constant
c; and John center xy, then we have from (2)

A
(15) o) 4, (‘517("’”’))
h(z) op(7)

with A and A3 > 0 depending only on the John constant ¢;. If D is a general John domain
with John constant ¢; and John center Ky, then (15) holds with the same A and another
Aj depending only on ¢;, zg and K.

Let €2 be an open set intersecting dD. Let h be a bounded positive harmonic function
in D N vanishing q.e. on 9D N Q. We extend h to 2\ D by 0 outside D and denote
by h* its upper regularization. Then we observe that h* is a nonnegative subharmonic

< exp(Askp(z,y))
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function on Q ([?, Theorem 5.2.1]). We shall apply the refinement of Domar’s theorem
(Lemma 4) to the subharmonic function h* to obtain a Carleson type estimate.

Lemma 7. Let £ € 0D have a system of local reference points yi,...,yy € DN S(E, R)

of order N with factor n for 0 < R < R¢. Suppose h is a positive harmonic function in
D N B(&,n3R) vanishing q.e. on 0D N B(&,n 3R). If h is bounded in D N B(&,nR) \

B(&, P R), then

(16) h<AZhy2 on S(€,1°R),

where A is independent of h and R.
Proof. Let 0 < R < Re. Then we find yy,...,yy € DNS(§, R) with 6p(y;) &~ R such that

mln {kDR(T yi)} < Alogéj(% ] +A forxze DN B R).
Hence
R \'& -
(17) h(z) < A <5D(T)> Zh(yz) for x € DN B(&,nR).

by (14). Let us apply Lemma 4 to u = h*/ 3.~  h(y;) and Q = B(£,nR) \ B(§, °R). Let
e > 0and 7 > 0 be as in Lemma 6. Apply the elementary inequality:

, 1 n—1+e
(logt)" 1+ < (”7+5> 7 fort>1
T

tot = R/op(x) > 1 for x € Q. Then

{W @ﬁm)] e (55(2))7’

so that it follows from (17) and Lemma 6 that

I = /(log+ w)” edr < A/ < K ) de < AR".
Q B(£,1R) 6p(x)

Hence, Lemma 4 yields that u < exp(1 4+ AI'*R™™/¢) < A on S(&,7*R), i.e., (16) holds.
U

Let us apply Lemma 7 to a kernel function h € . to obtain the following growth
estimate.

Lemma 8. Let £ € 0D have a system of local reference points y,,...,yny € DN S(E, R)
of order N with factor n for 0 < R < R¢. Let h € 3¢ for £ € 0D. Then

h(z) < Alx — & forz € D,
where A > 0 is as in (15) and A is independent of R and h.
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Proof. By Lemma 7 we have (16). Since h is bounded apart from a neighborhood of ¢,
the maximum principle gives

N
h(z) <A h(y;) forz € D\ B n’R).

Apply (15) to each y; € DN S(E, R) with §p(y;) ~ R. Then obtain h(y;) < AR*. This,
together with the above estimate, yields h(z) < Alz — |7 for z € D. The lemma is
proved. (]

Here we record another application of Lemma 7, as this will be useful later.

Lemma 9. Let £ € 0D have a system of local reference points y,,...,yn € DN S(&, R)
of order N with factor n for 0 < R < Re. Let h be a bounded positive harmonic function
on DN B(&,n*R) vanishing q.e on D N B(&,n*R). Then

N
h(z) < AY h(y;) forz € DN B R),
i=1

where A is independent of R and h.
Proof. We have (16). Apply the maximum principle to D N B(&,n%R). O

The following lemma is well-known. For the reader’s convenience sake, we record it
with a proof.

Lemma 10. Suppose there exist a positive integer M and a positive constant A with the
following property: if hy, ..., hy € S, then there is j such that

hj <AY hi onD.
i£]
Then 7 has at most M minimal harmonic functions.

Proof. Suppose there are M + 1 different minimal harmonic functions h, ... hy € 2. If
necessary relabeling, we may assume that

M
hg<AY h; onD.
i=1
We may also assume that A > 1. Then

h= (Aihi—hg)/(AM—l) e .

=1
Hence Y
1 1 1
e he+ (1 — == h
et ) M;

Compare the Martin representation measures for the both sides. The measure for the left

1
hand side has at least g7 mass at hg, whereas the measure for the right hand side has

0 mass at hg. This contradicts the uniqueness of the Martin representation. O]
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Proof of Proposition 3 for N > 3. Let h; € # for j = 0,..., M. Let h] be the upper
regularization of the extension of h; and let H; be the Kelvin transform of A} with respect
to S(&, 1), i.e.,

Hj(x) = |z — £ "hj (€ + |z — | (z — ©)).

Observe that H; is a nonnegative subharmonic function on R" which is positive and
harmonic on the Kelvin image D* of D and is equal to 0 q.e. outside D*. Moreover,
Lemma 8 shows

Hj(x) < Aw — €27+

Thus H; is of order at most 2 — n + A. As in Benedicks [?, Theorem 2], we let

and let w™ be the upper regularization of max{w,0}. Then w™ is a nonnegative subhar-
monic function on R* of order at most 2 —n + A. If none of {z : H;(x) > >, Hi(x)} is
empty, then w™ has M + 1 tracts. Hence, [?, Theorem 3] yields

M+1

1 3
2—n+)\2510g< )4—5 if M > 3.
Hence, if M > 4exp(l — 2n + 2\) — 1, then {z : H;(z) > >, Hi(v)} = 0 for some
j=1,..., M. This means that H; <}, H; on D", so that
hj < hi onD.
i#]

Hence Lemma 10 implies that .77 has at most /M minimal harmonic functions, or equiv-
alently there are at most M minimal Martin boundary points at &. Thus the number of
minimal Martin boundary points at £ is bounded by 4 exp(1 — 2n + 2)). 0

Remark 10. The above proof gives a coarse estimate of the number of minimal harmonic
functions of 7% in terms of A depending on the John constant c;. For a sharp estimate
more delicate argument will be needed.

6. WEAK BOUNDARY HARNACK PRINCIPLE

In this section we shall prove Proposition 3 for N < 2. Throughout this section we
let D be a general John domain and fix £ € 0D. By w(z, E,U) we denote the harmonic
measure of E for an open set U evaluated at x. Let G be the Green function for D. Since
many arguments are valid for a general N except for (21), we shall state the results for a
general N.

The box argument in [?, Lemma 2| (see [?] for the original form), gives the following
estimate of the harmonic measure.
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Lemma 11. Let £ € D have a system of local reference points yi,...,yn € DN S(E, R)
of order N with factor n for 0 < R < Re. If v € DN B(§,mR), then

Allog 75)" S, Glaw) ifn=2,
(18)  w(x, DN S(E,12R), DN B(£, 12R)) <

AR 2N G(x,y;) if n >3,
where A depends only on n, c;, Re and Ag.
Remark 11. If n = 2, then (log1/R)~! appears in (18). This is different from [?, Lemma

2]. In [?], the harmonic measure is estimated by the Green function for D N B(£, AR),
whereas in (18), it is estimated by the Green function for D itself.

Proof. Let us begin with an estimate of harmonic measure in a John domain. For 0 <
r < op(Ky) let U(r) = {x € D :dp(x) < r}. Then each point x € U(r) can be connected
to Ky by a curve with (1). Hence, B(z, A4r) \U(r) includes a ball with radius r, provided
Ay is large. This implies that

w(z, U(r)N Sz, Ayr), U(r) N B(x, Ayr)) <1 —¢¢ forxz € U(r)

with 0 < ¢y < 1 depending only on A, and the dimension. Let R > r and repeat this
argument with the maximum principle. Then there exist positive constants A5 and Ag
such that

(19) U)(.I‘, U(T) N S(Ta R)a U(T) N B(Ta R)) < eXp(A5 - AGR/T)
See [?, Lemma 1] for details.

Let 0 < R < R¢. For each x € DN W there is a local reference point y(z) €
{y1,...,yn} such that

R
kpg(z,y(z)) < Ag logm + A¢

by definition. Let y'(z) € S(y(x), 36p(y(z))). Then we observe that kp,\(y() (2, y'(z)) <
1
Aclog(R/op(x)) + Ae. It is easy to see that (log E)”G(y’(x),y(:r)) ~ 1if n =2, and
that AR"2G(y'(z),y(x)) ~ 1 if n > 3. Hence, letting
1

A(log E)fl S Gla,y) ifn=2,
u(z) =
AR2YN G, y,) if n > 3,
we obtain from (14) and (15) that
op(x)\ T
u(z) > A B for x € DN B(&,nR)

with some A > 0 depending only on n, ¢;, Re and A¢. Let D; = {x € D : exp(—27!) <
u(z) < exp(—27)} and U; = {z € D : u(x) < exp(—27)}. Then we see
2J

U,NB(,nR) C {:r € D:dp(r) < ARexp <_X> } :
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Define a decreasing sequence R; by Ry = n*R and

j
6(n° —n*) *77 1 :
Rj:<772 ZE)R for j > 1.
k=1
Let wy = w(-, DN S(¢,7*R), DN B(£,7*R)) and put
sup wol®)

zeD;NB(£,R;) u(z)
d; =

if D; N B(&,R;) # 0,

It is sufficient to show that d; is bounded by a constant independent of R, since R; > n*R
for all j > 0. Apply the maximum principle to U; N B(§, R,;_1) to obtain
wo(z) <w(z,U;NS(E Rj—1),UiN B Rj—1)) + d;_qu(z).

Divide the both sides by u(z) and take the supremum over D; N B(&, R;). Then (19)
yields

, R, R,
d. < A 20t LA A g7l d;_
/= eXp( A GARexpuf/A))* i

provided j is sufficiently large, say 7 > 7jo, so that

Rja— Ry 60 —n’)exp(2/A) _
ARexp(—27/)) 2 Az T

For j < jo we have d; <1+ d;_;. Since the series

= . 6(r° — 1’ 27/
Zexp <2]+1+A5_A6 (n - U )eXPIEUQ/ )>

j=1
is convergent and independent of R, we obtain sup;,d; < oo. Thus (18) follows. U

Lemma 12. Let £ € D have a system of local reference points yi,...,yn € DN S(&, R)

of order N with factor n for 0 < R < Re. Ifz € DN B(E,n*R) and y € D\ B(&,n *R),
then

Alog £) X Gz, yi) o0, Glyjey)  ifn=2,
(20) G(z,y) <
AR"? Zl]\il G(z, i) Z;V:I G(y;,y) ifn >3,
where A depends only on n, c;, Re and Ag.
Proof. For simplicity we give the proof only for n > 3. In case n = 2, we replace R" 2 by

(log1/R)~'. Apply Lemma 9 to h(z) = G(x,y) with y € D\ B(¢, 7 *R). Then

N
G(z,y) < AZh(yj) for v € DN S(&,n*R).

j=1
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Hence (18) yields

N N
G(z,y) < AR * ZG(m, Yi) Z h(y;) for x € DN B(£,n*R)

i=1 j=1

by the maximum principle. The lemma follows. [

For further arguments we need the following improvement of (20): If x € DNB(§, n°R)
and y € D\ B(§,n*R), then

1
A(log E)*l SN G, y)Gyiy) ifn=2,
(21) G(z,y) <

AR G, y:) Gy y) ifn >3,

where A depends only on n, ¢;, Re and A¢. The point is that the cross terms G(z, v;) G (y;, y)
(i # j) disappear from the right hand side of (20).

If N =1, then (21) is nothing but (20). If N < 2, then Ancona’s ingenious trick
[?7, Théoreme 7.3] gives (21) from (20). However, the proof is rather complicated and we
postpone the proof to the next section. The remaining arguments are rather easy and
hold for arbitrary N > 1, provided (21) holds. Let us show the weak boundary Harnack
principle defined by Ancona [?, Définition 2.3].

Lemma 13. (Weak Boundary Harnack Principle) Let & € 0D have a system of local
reference points yi,...,yn € D N S(, R) of order N with factor n for 0 < R < Re.
Moreover, suppose (21) holds. Let hy, hy, ..., hy € 5. Then

hi(y) fory e D\ B(&,n *R).

— ho(y:)
22 ho(y) <AY -
22) olv) 1 hi(ys)
where A depends only on n, c;, Re and Ag.

Proof. For simplicity we give the proof only for n > 3. In case n = 2, we replace
R" % by (log1/R)™". Let 0 < r < nR. Observe that the regularized reduced function

u, = RPMET s a Green potential of a measure y, concentrated on DN S(&,r). We have
ho

from (21)
wi) = [ Gl ()
DNS(¢,r)
N N
< AR”QZ/ ( )G(x,yi)G(yi,y)dur(m) = AR" ", (1:)G (i, y)
i=1 DNS(&,r i=1

for y € D\ B(&,n3R). Letting r — 0, we obtain

N
ho(y) < AR " ho(y;)G(yiy) fory € D\ B(&,n°R).
i=1
Let & = min{},n® — 1}. Then D\ B(&,7*R) € D\ B(y:=0p(y)). Observe from
the Harnack principle that h;(y;)R" 2G(y;,y) ~ hi(y) for y € S(y;,€0p(y;)), and so is
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fory € D\ B(§,n*R) € D\ B(yi,e0p(y;)) by the maximum principle. Hence (22)
follows. -

Varying R in Lemma 13, we obtain relationships among kernel functions in .7z, which
yield Proposition 3.

Proof of Proposition 3 (ii) for N = 1. Obviously, (21) holds, and hence (22) holds for
N =1 by Lemma 13. Let hg,hy € 5. Let R; — 0 and take a local reference point
yl € DN S(&, R;). Then one of the inequalities ho(y]) < by (y]) and hy (y]) < ho(y]) holds
for infinitely many j. Hence hy < Ah; or hy < Ahgy holds on D by (22) with N = 1.
Moreover suppose that hy and h; are minimal. Then hy = hy in any case. This implies
that 7 has just one minimal kernel function. Take h € . By the Martin representa-
tion theorem A is given as the integral of Martin kernel by a measure p over the minimal
Martin boundary. Since h vanishes q.e. on dD and bounded apart from a neighborhood
of &, it follows that p is a point measure at £, so that A must coincide with a unique
minimal harmonic function in J%;. Thus, .7 is a singleton. 0]

Proof of Proposition 8 (ii) for N = 2. As we shall show in the next section (21) holds for
N = 2, and hence (22) holds for N = 2 by Lemma 13. We follow the proof of Ancona
[7, Théoreme 2.5]. We slightly generalize the proof of Proposition 3 for N = 1. Let
ho, hi, hy € 5. Take a decreasing sequence R; — 0. For each R, sufficiently small we
find reference points 3/ € D N S(&, R;) with ¢ = 1,2. For a moment fix j and consider
maxg<g<z hi(y]). Then we find k(j) such that hi(jy = maxo<p<s hi(y?). This holds for
infinitely many 7, so that we find k; € {0, 1,2} such that

(23) o (1) = moaxs i (y7)

for infinitely many j. Then consider j satisfying (23) and find &y € {0, 1,2} such that
i, (y3) = max hy(y3)

0<k<2
for infinitely many j. Thus
hi(yl) < hy,(y!) for all i,k € {0,1,2}

holds for infinitely many j. If necessary relabeling hg, hy, ho, we may assume that k; # 0
and ko # 0. Then (22) yields

2

ho(y) < A Z ::_((?) hi(y) < A hi(y) fory € D\ B, °R;).

This holds for infinitely many j. Letting j — oo, we obtain

2
hy < Ath on D.
k=1

This, together with Lemma 10, completes the proof. 0

Remark 12. We do not know whether the weak boundary Harnack principle holds for
N > 3. In special cases, such as a sectorial domain whose boundary lies on N rays
leaving &, we can apply the weak boundary Harnack principle repeatedly to subdomains
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containing just one ray and conclude the weak boundary Harnack principle for the sectorial
domain itself (cf. Cranston and Salisbury [?, (2.2) Lemmal).

7. PROOF OF (21)
In this section we shall prove the following:

Lemma 14. Let £ € 0D have a system of local reference points y,y2 € D N S(E, R) of
order 2 with factor n for 0 < R < Re. If x € DN B(E,n°R) and y € D\ B(§,n *R), then
(21) holds, i.e.,

1 .
A(log ) S G, y)Gyiy) ifn=2,
G(z,y) <

AR Z?:l G(r,y:))G(Yiy) if n > 3,
where A depends only on n, c;, Re and Ag.

We employ Ancona’s ingenious trick [?, Théoreme 7.3]. Since our setting is slightly
different from Ancona’s, we provide a proof for the sake of the reader’s convenience.

Proof. For simplicity we give the proof only for n > 3. In case n = 2, we replace R" ? by
(log1/R)~". Besides the local reference points y;,y, € DNS(E, R), we take local reference
points y;,y3 € DN S(&,n°R) with

6

R _
min{kpapeqpr) (7 ¥;)} < Aelog (;’D—(T) +Ag forz e DN B(E1'R).

Then

R
in{k Syt < Aglog ——— + A < Ag.
anlig{ DR(szy])} — ¢ Og 6D(yl*) + £ > 3

So, we may assume either

(24) kpg (W, y) < Aand kpg(y5, 1) < A,
or
(25) kpg (Wi, y) < Aand kpg(ys,y2) < A,

by replacing the roles of y; and ys», if necessary.
First consider the case when (24) holds. Suppose x € DN B(,n°R) and y € D\
B(&,m°R). Then (14) and (20) for y;,y; yield

G(z,y) < AR" D G(z,y))G(y},y) < AR *G(x,51)G(y1, ).
ij

Hence the lemma follows in this case.

Next consider the case when (25) holds. Let ® = {z € D : G(z,11) > G(z,y2)}.
If either x,y € ® or x,y € D\ ®, then (21) follows from (20). Let us consider the
remaining cases. If necessary, exchanging the roles of y; and y,, we may assume that
re®NB(En°R) andy € (D\ @)\ B(,,n3R). Let E =&\ B(£,7°R) and consider the
regularized reduced function

R = [ G2)duto)
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which is represented as the Green potential of a measure p concentrated on dFE. Observe
that (20) for yi, y5 and (25) imply

G(z,2) < AR"? ZG(m,y;‘)G(y;‘, 2) < AR" *G(z,y1)G(y1,2) for z € E.
]
Hence

Ry () < AR"QG(SE,yl)/ Gy, 2)dp(2)

E
= AR"*G(x, yl)ﬁg(-,y)(yl) < AR"?G(2,491)G (1, y)-
Let v, = G(-,y) — ﬁg(y) Then
(27) v,=0 qe. on E=®\B(n°R).
By (20) we have
(28)  vy(2) < G(z,y) < AR"*G(z,42)G(ya,y) for z € (D\ @) N B(E, *R).
Observe that

DNa(®N B n'R)) C (@\ B(&,7°R) U (DN B, PR) N 0P).
Hence (27), (28) and the maximum principle yield

v, < AR"2G(-, 42)G(y2,y) on ® N B(E, PR).
This, together with (26), implies
G(x,y) < AR"*(G(,51)G (11, y) + G (7, 42)G(y2,))-

The proof is complete. 0J

(26)
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