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41296 Göteborg, Sweden
Email: agrell@chalmers.se

Erik G. Ström
Department of Signals and Systems
Chalmers University of Technology
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Abstract— Labelings of multilevel PSK constellations are an-
alyzed with respect to the error probability for individual bit
positions, when symbols are transmitted over additive noise
channels. When the maximum bit error probability is minimized
instead of the average, the best labeling is in general not a Gray
code. We develop a new class of labelings by modifying balanced
Gray codes into better, but non-Gray, labelings.

I. I NTRODUCTION

It is standard engineering practice to label multilevel phase-
shift keying (PSK), pulse-amplitude modulation (PAM), and
rectangular quadrature-amplitude modulation (QAM) signal
constellations with a Gray code, usually the binary reflected
Gray Code (BRGC). The rationale is that maximum likelihood
symbol detection for additive white Gaussian noise (AWGN)
channels is a minimum distance decision rule, and thus the
most likely symbol error is to a neighboring signal point,
which will result in only one bit error when a Gray code is
used. If we accept this argument, we may be led to the false
conclusion that all Gray codes are equally good. However,
the number of Gray codes that give different average bit
error probabilities increases rapidly with constellationsize
M (or, equivalently, withm = log2 M , the number of bits
per symbol) [1] [3, p. 15]. The natural question of which
Gray code is optimum with respect to the average bit error
probability has only recently received a partial answer. In[4],
the BRGC was shown to be optimal for AWGN channels when
the signal-to-noise ratio (SNR) is larger than a finite threshold
for PSK, PAM, and rectangular QAM constellations.

In general, bits that are transmitted at different bit positions
in the label will experience unequal bit error probabilities. We
will consider an optimality criterion based on minimizing the
maximum error probability for any bit position (see SectionIII
for details), and it will be shown that the BRGC is no longer
optimal. Other Gray codes are better, and for mostm, a non-
Gray labeling is shown to be better than all Gray codes.
The minimax optimality criterion is useful when we want to
guarantee that the bit error probability for all positions in the
label does not exceed a given threshold. Hence, the criterion
is quite reasonable, perhaps more reasonable than the more
common average error probability criterion.

In the literature on this topic, it is usually assumed that the
transmitted bits are equally likely and statistically independent,

TABLE I

THE BINARY REFLECTEDGRAY CODE (BRGC),THE NATURAL BINARY

CODE (NBC), AND THE 2-MINIMAX OPTIMAL LABELING (2-MML) FOR

m = 3.

BRGC NBC 2-MML

0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1
0 1 1 0 1 0 0 1 0
0 1 0 0 1 1 0 1 1
1 1 0 1 0 0 1 1 1
1 1 1 1 0 1 1 0 1
1 0 1 1 1 0 1 1 0
1 0 0 1 1 1 1 0 0

and that the receiver finds the bit decisions from the label ofa
maximum likelihood (ML) decision on the transmitted symbol.
We will make the same assumption in this paper.

II. D EFINITIONS AND NOTATION

A binary labeling of orderm ∈ Z
+ is a sequence ofM =

2m distinct labels (or codewords),λ = (c0, c1, . . . , cM−1),
where the labels are represented as binary row vectorscl ∈
{0, 1}m. The ith component (counted from the right) ofc is
denoted[c]i. For notational convenience, we will considercl

to be periodic inl with period M , i.e., cl = cl+M for all l.
The well-known BRGC and the natural binary code (NBC)
for m = 3 are listed in Table I, along with a new labeling to
be discussed later.1

A cyclic binary Gray code is a labeling(c0, c1, . . . , cM−1)
for which cl andcl+1 for l = 0, 1, . . . , M −1 differ in one bit
position only. From now on, we will say simply Gray codes
when meaning cyclic binary Gray codes.

We will assume, without loss of generality, that the first
label c0 of any labeling is the all-zero label. With this con-
vention, a labeling(c0, c1, . . . , cM−1) of orderm is defined
from its transition sequence s = (s0, s1, . . . , sM−1), where
sk = {i : [ck]i 6= [ck+1]i}. For example, the transition
sequence of the NBC in Table I is

({0}, {0, 1}, {0}, {0, 1, 2}, {0}, {0, 1}, {0}, {0, 1, 2}).

1We distinguish a labeling from acode, which is an (unordered) set
{c0, . . . , cM−1}. Hence, a Gray code is a labeling and not a code.



For compactness, we will from now on omit the braces around
sets with a single element.

The k-spaced transition count for the ith bit position of
a labeling(c0, c1, . . . , cM−1) of order m is defined for all
integersk as

ek(i) ,

M−1
∑

l=0

[cl]i ⊕ [cl+k]i, i = 0, 1, . . . , m − 1,

where the operator⊕ is defined such thatx ⊕ y equals the
integer 0 if the binary digitsx andy are equal and 1 otherwise.
Note that the commonly used termtransition count for the ith
bit position, see, e.g., [2], is the1-spaced transition count in
our terminology, i.e.,e1(i).

Now, sinceek(i) is an even and periodic sequence ink with
period M and ek(i) ∈ FM , whereFM , {0, 2, 4, . . . , M},
we can summarize all relevant values in thetransition count
vector

ei =
[

e1(i) e2(i) · · · eM/2(i)
]

∈ F
M/2
M .

The transition count matrix E ∈ F
m×(M/2)
M is defined as

E =





e0

· · ·
em−1



 .

As an example, the transition count matrix for the NBC
labeling in Table I is





8 0 8 0
4 8 4 0
2 4 6 8



 . (1)

The f -lexicographic value of a vectorv ∈ FN
M is defined

for all integers1 ≤ f ≤ N as

ℓf(v) =

f−1
∑

k=0

[v]N−f+k(M + 1)k.

For convenience, we will sometimes writeℓN (v) as ℓ(v),
where v ∈ FN

M . We note that the vectorsx and y are in
lexicographic order ifℓ(x) ≤ ℓ(y).

Let E be a transition count matrix for a labeling of order
m. By maxE and minE, we denote the rows ofE with
the largest and smallest lexicographic value, i.e.,ℓ(maxE) ≥
ℓ(ei) ≥ ℓ(minE) for i = 0, 1, . . . , m − 1.

A labeling of orderm is said to betotally balanced if its
1-spaced transition count is equal for all bit positions, i.e.,
e1(i) = e1(j) for 0 ≤ i < j ≤ m − 1. For a Gray code
λ, we have

∑m−1
i=0 e1(i) = 2m, andλ can therefore be totally

balanced only ifm is a power of 2. For all otherm, sincee1(i)
even, the most uniform distribution of the1-spaced transition
counts we can hope for is when|e1(i) − e1(j)| ≤ 2 for 0 ≤
i < j ≤ m − 1. If this condition is fulfilled,λ is said to be
balanced. It has been shown that there exist balanced Gray
codes for allm ≥ 1, see [2] and [3, pp. 14-15]2 and that
totally balanced Gray codes exist for allm = 2r for integers
r ≥ 0 [7].

2The perhaps earliest proof of the existence of balanced Graycodes for all
m is attributed to T. Bakos [6].

III. C OMPUTING THE BIT ERROR PROBABILITY

Suppose a labeling withk-spaced transition countek(i) and
order m is used to label anM -ary signal constellation. The
bit error probability for theith bit is defined as

Pb(i) , Pr{[cML]i 6= [c]i},

wherec is the transmitted label andcML is the label corre-
sponding to the maximum likelihood decision on the transmit-
ted symbol. The average bit error probability is defined as

Pb ,
1

m

m−1
∑

i=0

Pb(i),

the maximum bit error probability as

P̂b , max
i∈{0,...,m−1}

Pb(i),

and the minimum bit error probability as

P̌b , min
i∈{0,...,m−1}

Pb(i).

A binary labeling is said tooptimal in the minimax sense if
it has the smallest̂Pb of all possible labelingsλ of the same
order. This optimality criterion makes sense when a certain
quality of the transmission for the bits in all positions should
be guaranteed.

The average bit error probability forM -ary PSK over
additive noise channels (with rotationally invariant noise dis-
tributions) can be written as [1]

Pb =
1

m

M−1
∑

k=1

d̄(k)P (k),

whered̄(k) is theaverage distance spectrum, defined as

d̄(k) ,
1

M

m−1
∑

i=0

ek(i).

and P (k) is the crossover probability, defined as the proba-
bility that the ML symbol decision isk steps clockwise away
from the transmitted symbol along the PSK circle. It follows
from the channel assumptions above thatP (k) = P (M − k)
for all k. Clearly, we can write

Pb =
1

m

m−1
∑

i=0

1

M

M−1
∑

k=1

ek(i)P (k)

and it can easily be shown that the bit error probability for
the ith bit is

Pb(i) =
1

M

M−1
∑

k=1

ek(i)P (k) =
1

M
eip

T , (2)

where

p ,
[

2P (1) 2P (2) · · · 2P (M/2 − 1) P (M/2)
]

.

In general, there is no labeling that is optimal for all chan-
nels. However, for many noise distributions at high SNR’s,
P (k) decreases fast withk for small values ofk. We will



therefore approach the problem by considering such channels;
to be precise, we will considerf -decreasing channels for
1 ≤ f ≤ M/2 − 1, which are channels such that

P (1) ≫ P (2) ≫ · · · ≫ P (f) ≫
1

2

M−f−1
∑

k=f+1

P (k),

where ≫ means larger by at least a factorM + 1. We
note that the standard AWGN channel isM/4-decreasing for
sufficiently large SNR’s.

It can be shown that for anf -decreasing channel, the
condition ℓf (e′) ≤ ℓf (e) is necessary fore′pT ≤ epT , for
any two transition count vectorse′ ande. Hence, the labeling
of order m with minimum P̂b must have a transition count
matrix E′ such that

ℓf (maxE′) ≤ ℓf(maxE), (3)

where E is the transition count matrix for any labeling of
order m. We call a labeling whose transition count matrix
E′ satisfies (3) anf -minimax optimal labeling (f -MML).
It is reasonable to search for labelings that are optimal in
the minimax sense by first finding the set of1-MML’s and
then finding the subset of the 1-MML’s that are2-MML’s, 3-
MML’s, and so on. In fact, a similar approach has been used
to prove that the BRGC gives the smallest possible average
bit error probability for AWGN channels when the SNR is
greater than a finite threshold [4].

Intuitively, a good labeling in the minimax sense should (a)
be as balanced as possible, meaning that|ek(i)−ek(j)| should
be small for all0 ≤ i < j ≤ m − 1 and k = 1, 2, . . . , M/2,
and (b) have a slowly growingk-step transition count, i.e.,
ℓ(maxE) should be as small as possible. Many labelings that
are “balanced,” in some sense, can be found in the literature,
see [2], [5] and references therein.

IV. PROPERTIES OFMML’ S

In the following, ⌈x⌉ and ⌊x⌉ denote the smallest integer
not smaller thanx and the closest integer tox, respectively.
Ties can be broken arbitrarily in the latter case. In addition,
we use the shorthand notation⌈x⌉i for i ⌈x/i⌉ and similarly
for ⌊x⌉i. For example,⌊x⌉2 is the closest even integer tox.

Theorem 1: A labeling of orderm ≥ 1 is a 1-MML if and
only if its 1-spaced transition count satisfies

max
i

e1(i) =

⌈

M

m

⌉

2

. (4)

Proof: It is well known that the transition count of
balanced Gray codes satisfies (4). To show that no other
labeling of the same order can do better, consider the transition
counte1(i) for an arbitrary labeling of orderm. The number
∑

i e1(i) is equal to the total number of elements in theM sets
that make up the transition sequence. Hence,

∑

i e1(i) ≥ M ,
with equality if the labeling is a Gray code. At least onee1(i)
for i = 0, 1, . . . , m−1, saye1(j), must be larger than or equal
to the averagem−1

∑

i e1(i) ≥ M/m. Now, sincee1(j) is
even, it follows thatmaxi e1(i) ≥ e1(j) ≥ ⌈M/m⌉2, and the
theorem follows.

As we will see, there exist balanced labelings that are not
Gray labelings.

A Gray code satisfiese2(i) = 2e1(i) for all bits i. Better
codes in the minimax sense can be designed by tradinge1(i)
for e2(i). Specifically, it can be shown that

2

m−1
∑

i=0

e1(i) +

m−1
∑

i=0

e2(i) ≥ 4M.

This relation indicates that for every two units of increase
in

∑

i e1(i), one might be able to reduce
∑

i e2(i) by four
units. We have been able to modify balanced Gray codes in
this manner at low orders (see Section V) to obtain labelings
with the followingmaxi e2(i), which we believe is the lowest
possible value for any orderm.

Conjecture 1: A labeling of orderm > 1 is a 2-MML if
and only if itsk-spaced transition count satisfies (4) and

max
i

e2(i) = 2

⌊

M

m

⌉

2

.

It is known that balanced Gray codes exist for all orders
m ≥ 1, and if m is a power of two, a balanced Gray code is
totally balanced [2], [7], [3, Ch. 7.2.1.1]. Since totally balanced
Gray codes satisfymaxi e2(i) = 2M/m = 2 ⌊M/m⌉2, they
are 2-minimax optimal and prove the Conjecture for power-
of-two ordersm. For some other orders (but surprisingly
few, namely,m = 12, 18, 25, 36, 42, . . .) it also holds that
⌊M/m⌉2 = ⌈M/m⌉2, which means that a balanced Gray code
satisfies the Conjecture. For all other orders, the2-MML’s, if
the Conjecture holds, are not Gray codes. In Section V, we
exemplify 2-MML’s of orders m = 3, 5, and 6 that satisfy
the Conjecture. Finding a general construction method for2-
MML’s (or even better,f -MML’s for somef > 2) remains an
open question.

V. PERFORMANCE OF SOME2-MML’ S

In this section, we compare the bit error probabilities ofM -
PSK with various labelings for communication over an AWGN
channel, as a function ofEb/N0, whereEb is the energy per
bit and N0/2 is the double-sided noise spectral density. We
are mainly interested in the maximum bit error probabilityP̂b;
however, to indicate how balanced (or unbalanced) the labeling
is, and how equal error protection the labeling provides, we
also plot the minimum error probability̌Pb.

In Figure 1, we plotP̂b andP̌b for a2-MML of orderm = 3,
compared with two classical labelings, the NBC and the BRGC
(see Table I). The codewords of the2-MML are also shown in
Table I. Alternatively, it can be defined through its transition
sequence, which is{0, {0, 1}, 0, 2, 1, {0, 1}, 1, 2}. The BRGC
is the only Gray code of orderm = 3, and it is balanced.
It is nevertheless not the best labeling in the minimax sense,
which is apparent from the figure. The2-MML labeling is
better, although the BRGC performance approaches it at high
Eb/N0.
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Fig. 1. Plots ofP̂b (solid) and P̌b (dashed) for three labelings of order
m = 3: the NBC, the BRGC, and a 2-MML.

The transition count matrices for the BRGC and the2-MML
labeling are, respectively,





4 8 4 0
2 4 6 8
2 4 6 8









4 4 6 4
4 4 6 4
2 4 6 8



 . (5)

These matrices have the same maximum value in the first col-
umn, which is why the labelings are equivalent asymptotically,
but the superiority of the2-MML is seen in the second column,
e2(i). The corresponding matrix for the NBC is given in (1). It
differs from the two other labelings already in the first column,
which explains its inferior performance in Figure 1.

The first two columns of the transition count matrix of the
2-MML labeling satisfy Theorem 1 and Conjecture 1. Observe
that the elements of the second column,e2(i), has a constant
value, which is characteristic for all2-MML’s in this paper,
although there exist2-MML’s without this property.

If we look at the rows of the transition count matrices in
(5), we note that the2-MML has two equally bad rows and
one good row (bad and good in the lexicographic sense). This
is in contrast to the BRGC which has one bad row and two
equally good. As a matter of fact, it can be shown that the
BRGC is theworst possible Gray code at large SNR when
the maximum bit error is considered, whereas it in contrast is
the best possible Gray code (and also the best labeling) for
average bit error performance, as mentioned in Section I.

Proceeding to higher orders, we skipm = 4, where a totally
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Fig. 2. Plots ofP̂b (solid) andP̌b (dashed) for four labelings of orderm = 5:
the BRGC, a balanced Gray code, a Gray code by Okunev, and a2-MML.

balanced Gray code exists (which is 2-minimax optimal), and
exemplify 2-MML’s of orders 5 and 6.

For m = 5, we study a non-Gray labeling defined by the
transition sequence

(0, {0, 1}, 0, 2, 1, {0, 1}, 1, 3, 4, 3, 2, 3, 0, 4,

2, 4, 1, 4, 2, 4, 0, 3, 0, 1, 2, 1, 0, 3, 4, 2, 1, 3).

Its transition count matrix is












8 12 16 18 20 20 · · ·
8 12 16 16 18 16 · · ·
6 12 18 24 26 26 · · ·
6 12 14 16 18 20 · · ·
6 12 12 12 16 18 · · ·













. (6)

It satisfies Theorem 1 and Conjecture 1 and is therefore a
2-MML, assuming that the Conjecture holds.

The maximum and minimum bit error probabilities of this
2-MML are plotted in Figure 2. The corresponding curves
are shown for three Gray codes: the BRGC, a balanced code
from [2, Fig. 2], and a Gray code designed by Okunev to have
the “least nonuniformity” in the sense that all bits except one
are as balanced as possible [5, pp. 79–80]. We see that the2-
MML has lowerP̂b for all Eb/N0 values in the diagram. This
can again be explained by the transition count matrix (6). The
2-MML, the balanced Gray code, and Okunev’s Gray code
all satisfy maxi e1(i) = 8, but maxi e2(i) equals 12 for the
2-MML and 16 for the two others. The BRGC differs from
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Fig. 3. Plots ofP̂b (solid) and P̌b (dashed) for three labelings of order
m = 6: the BRGC, a balanced Gray code, and a2-MML.

the other labelings already in the first column, where it has
maxi e1(i) = 16.

Figure 3 shows a similar comparison of some labelings of
order m = 6. A (non-Gray)2-MML is compared with two
Gray codes, the BRGC and a balanced Gray code, and the
same conclusions as before hold.

The 2-MML of order 6 in Figure 3 is generated by the
transition sequence

(0, {0, 1}, 0, 2, 1, {0, 1}, 1, 4, 3, 1, 3, 2, 3, 0

3, {2, 3}, 3, 5, 4, 0, 4, 2, 4, 0, 4, 1, 4, 0, 4, 3

1, 2, 0, 2, 1, 2, 0, 3, 4, 3, 5, 1, 5, 2, 5, 1, 5, 0,

5, 1, 5, 2, 5, 1, 5, 3, 4, 5, 2, {2, 3}, 2, 0, 3, 4)

and its transition count matrix is
















12 20 30 36 40 38 · · ·
12 20 30 36 38 34 · · ·
12 20 26 32 38 44 · · ·
12 20 22 24 26 26 · · ·
10 20 20 20 28 36 · · ·
10 20 16 10 16 24 · · ·

















. (7)

The m = 6 balanced Gray code is obtained by applying
Theorem D in [3, p. 14] twice: first on them = 2 balanced

Gray code (underlined transitions are thejk-transitions in
Theorem D)

(0, 1, 0, 1)

and then on the resultingm = 4 labeling

(3, 2, 0, 1, 2, 1, 3, 1, 0, 3, 2, 3, 0, 1, 0, 2),

which produces them = 6 balanced Gray code with transition
sequence

(3, 5, 3, 4, 3, 2, 4, 5, 0, 5, 4, 1, 2, 4, 2, 5,

2, 1, 5, 4, 3, 4, 5, 1, 5, 4, 0, 4, 5, 3, 2, 5,

2, 4, 2, 3, 4, 5, 0, 1, 0, 5, 0, 1, 4, 1, 0, 5,

0, 1, 0, 3, 2, 3, 0, 1, 3, 1, 2, 1, 0, 2, 3, 4),

and the transition count matrix is
















10 20 22 24 26 28 · · ·
10 20 24 28 30 32 · · ·
10 20 22 22 26 30 · · ·
10 20 22 22 26 32 · · ·
12 24 32 34 30 26 · · ·
12 24 32 36 34 32 · · ·

















.

Comparing the second column with (7) shows that this Gray
code is not minimax optimal, which is also clear from Figure 3.

VI. CONCLUSIONS

The individual bits inM -ary transmission are, in general,
subject to unequal error protection. We have argued that it is
more natural to design communication systems to minimize
the maximum rather than theaverage bit error probability.
Systems designed according to the minimax principle will be
efficient when a certain quality of transmission for all bits
must be guaranteed. We have also shown that the ubiquitous
binary reflected Gray code is, in general, not optimum in this
sense for labelingM -ary PSK constellations. Indeed, there
exist labelings that are better than all Gray codes, and we
have designed such labelings for a few orders.
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