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Abstract— Labelings of multilevel PSK constellations are an- THE BINARY REFLECTEDGRAY CODE (BRGC) THE NATURAL BINARY
alyzed with respect to the error probability for individual bit ( ).
positions, when symbols are transmitted over additive nos  CODE(NBC),AND THE 2-MINIMAX OPTIMAL LABELING (2-MML) FOR

channels. When the maximum bit error probability is minimiz ed m = 3.

instead of the average, the best labeling is in general not ar@y

code. We develop a new class of labelings by modifying balaed BRGC NBC 2-MML
Gray codes into better, but non-Gray, labelings. 000 000 000
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|. INTRODUCTION 011 010 010

It is standard engineering practice to label multilevelggha 010 011 011
shift keying (PSK), pulse-amplitude modulation (PAM), and 110 100 111
rectangular quadrature-amplitude modulation (QAM) signa 111 101 101

101 110 110

constellations with a Gray code, usually the binary reflécte
100 111 100

Gray Code (BRGC). The rationale is that maximum likelihood
symbol detection for additive white Gaussian noise (AWGN)

channels is a minimum distance decision rule, and thus tgﬁd that the receiver finds the bit decisions from the labeal of

most likely symbol error is to a neighboring signal pOir!tmaximumlikelihood (ML) decision on the transmitted symbol

which will result in only one bit error when a Gray code ISve will make the same assumption in this paper.
used. If we accept this argument, we may be led to the false

conclusion that all Gray codes are equally good. However, [I. DEFINITIONS AND NOTATION

the number of Gray codes that give different average bit A binary labeling of orderm € Z* is a sequence af/ =
error probabilities increases rapidly with constellatisize 2™ distinct labels (or codewords) = (cg,c1,...,cupr—1),

M (or, equivalently, withm = log, M, the number of bits where the labels are represented as binary row veciors
per symbol) [1] [3, p. 15]. The natural question of which(, 1}™. Theith component (counted from the right) ofis
Gray code is optimum with respect to the average bit errgenoted|c];. For notational convenience, we will considgr
probability has only recently received a partial answeff4ln  to be periodic inl with period M, i.e., ¢; = ¢4 for all 1.
the BRGC was shown to be optimal for AWGN channels wherhe well-known BRGC and the natural binary code (NBC)
the signal-to-noise ratio (SNR) is larger than a finite thaé8  for 1 = 3 are listed in Table I, along with a new labeling to

for PSK, PAM, and rectangular QAM constellations. be discussed latér.
In general, bits that are transmitted at different bit posg A cyclic binary Gray code is a labeling(co, ¢1,...,cpr—1)
in the label will experience unequal bit error probabibti®Ve for which ¢; andc;; for I = 0,1, ..., M —1 differ in one bit

will consider an optimality criterion based on minimizirtget position only. From now on, we will say simply Gray codes
maximum error probability for any bit position (see Sectiln when meaning cyclic binary Gray codes.
for _details), and it will be shown that the BRGC is no longer We will assume, without loss of generality, that the first
optimal. Other Gray codes are better, and for mosia non- label ¢, of any labeling is the all-zero label. With this con-
Gray labeling is shown to be better than all Gray codegention, a labelingcy,ci,...,cy1) of orderm is defined
The minimax optimality criterion is useful when we want tdrom its transition sequence s = (s, s1,...,5: 1), Where
guarantee that the bit error probability for all positionsthe s, = {i : [c.]; # [crky1]i}. For example, the transition
label does not exceed a given threshold. Hence, the criterisequence of the NBC in Table | is
is quite reasonable, perhaps more reasonable than the more
common average error probability criterion. ({0}, 10,1}, {0}, {0, 1,2}, {0}, {0, 1}, {0}, {0, 1,2}).

In th_e Iltera_lture on this tOP'C* itis usua_”y_ assu_med that th lwe distinguish a labeling from a@ode, which is an (unordered) set
transmitted bits are equally likely and statistically ipdadent, {co,...,ca_1}. Hence, a Gray code is a labeling and not a code.



For compactness, we will from now on omit the braces around  Ill. COMPUTING THE BIT ERROR PROBABILITY

sets with a single element. o N Suppose a labeling with-spaced transition count, (i) and
The k-spaced transition count for the ith bit position of gery, is used to label ad/-ary signal constellation. The

a labeling(co, ¢, ..., ca—1) of orderm is defined for all i error probability for theith bit is defined as
integersk as R
M-1 Py(i) = Pr{[emw]; # [c]i},
N A .
ex (i) = Z [ei)i ® [k, i=0,1,....m—1, wherec is the transmitted label aneh, is the label corre-

=0 sponding to the maximum likelihood decision on the transmit

where the operatop is defined such that @ y equals the ted symbol. The average bit error probability is defined as
integer O if the binary digits andy are equal and 1 otherwise.

Note that the commonly used tertnansition count for the ith p 2 1 mflp .

bit position, see, e.g., [2], is the-spaced transition count in "Tm Z b(0),

our terminology, i.e.¢;(i). _ _ =
Now, sinceey (i) is an even and periodic sequenceiwith the maximum bit error probability as

period M andey (i) € Far, whereFy = {0,2,4,..., M}, B2 max B
we can summarize all relevant values in thansition count i€{0,...,m—1} ’
vector and the minimum bit error probability as
e =le1(i) ex(i) -+ emp(i)] € .7:M/2. 5,2 min By(i).
1€40,..., m—1
The transition count matrix E € }‘}(}X(M/Q) is defined as ) o . / . . )
A binary labeling is said teptimal in the minimax sense if
€o it has the smallesP, of all possible labelings of the same
E= order. This optimality criterion makes sense when a certain
em—1 quality of the transmission for the bits in all positions altb
As an example, the transition count matrix for the NB®e guaranteed.
labeling in Table | is The average bit error probability for/-ary PSK over
S 0 8 0 additive noise channels (with rotationally invariant roiis-
4 8 4 0. (1) tributions) can be written as [1]
2 4 6 8 M1
: , , , P =+ > d(k)P(k)
The f-lexicographic value of a vectorv € F1; is defined b= '
for all integersl < f < N as ) k=1
-1 whered(k) is the average distance spectrum, defined as
Lr(v) =Y [VIn-prn(M + 1)F, =
A )
k=0 d(k) = Y Z er (7).
For convenience, we will sometimes write; (v) as ¢(v), i=0
wherev € _fﬁ- We note that the vectors andy are in  and P(k) is the crossover probability, defined as the proba-
lexicographic order iff(x) < {(y). bility that the ML symbol decision i& steps clockwise away

Let E be a transition count matrix for a labeling of ordefom the transmitted symbol along the PSK circle. It follows

m. By maxE and min E, we denote the rows oE with  from the channel assumptions above tRdk) = P(M — k)
the largest and smallest lexicographic value, LemaxE) > for all k. Clearly, we can write

l(e;) > ¢(minE) fori=0,1,...,m — 1.

A labeling of orderm is said to betotally balanced if its 1 1 .
1-spaced transition count is equal for all bit positions,,i.e By = m Z M Z ex(i)P(k)
e1(i) = ei(j) for 0 < i < j < m — 1. For a Gray code . ) N ) -
A we havez’fol e1(i) = 2, and\ can therefore be totally and it can easily be shown that the bit error probability for
balanced only ifn is a power of 2. For all other, sincee, (i) theith bitis
even, the most uniform distribution of thespaced transition 1 Mt 1 .
counts we can hope for is wheey (i) — e (j)] < 2 for 0 < Py(i)=— > ex(i)P(k) = —e;p”, )
S : LT ) . : M M
1 < j < m — 1. If this condition is fulfilled, A is said to be k=1
balanced. It has been shown that there exist balanced Grayhere
codes for allm > 1, see [2] and [3, pp. 14-15]and that
totally balanced Gray codes exist for all = 2" for integers

r >0 [7]. In general, there is no labeling that is optimal for all chan-
2The perhaps earliest proof of the existence of balanced Gudgs for all nels. However, for mar?y noise distributions at hlgh S_NR’S’
m is attributed to T. Bakos [6]. P(k) decreases fast witlk for small values ofk. We will

p=[2P(1) 2P(2) --- 2P(M/2-1) P(M/2)].



therefore approach the problem by considering such channel As we will see, there exist balanced labelings that are not
to be precise, we will considef-decreasing channels for Gray labelings.

1 < f < M/2 -1, which are channels such that A Gray code satisfiess(i) = 2e;(i) for all bits . Better
M—f-1 codes in the minimax sense can be designed by tradifig
P(1)> P(2)> ---> P(f) > = Z P(k), for ez (7). Specifically, it can be shown that
k=f+1 m—1 m—1
where > means larger by at least a factdr + 1. We 92 Z e1(i) + Z ea(i) > 4M.
note that the standard AWGN channelli§/4-decreasing for = =

sufficiently large SNR’s. _ o ) _

It can be shown that for arf-decreasing channel, theThis relation indicates that for every two units of increase
condition ¢4 (e’) < ¢;(e) is necessary foe'p? < ep?, for N >_;ei(i), one might be able to reducg; e»(i) by four
any two transition count vectoks ande. Hence, the labeling Units. We have been able to modify balanced Gray codes in
of orderm with minimum P, must have a transition countthis manner at low orders (see Section V) to obtain labelings

matrix E/ such that with the following max; e2(1), which we believe is the lowest
, possible value for any order.
s (max EY) < £f(max E), @) Conjecture 1: A labeling of orderm > 1 is a2-MML if

where E is the transition count matrix for any labeling ofand only if its k-spaced transition count satisfies (4) and

order m. We call a labeling whose transition count matrix

E’ satisfies (3) anf-minimax optimal labeling (f-MML). max es(i) = 2 {%-‘ )

It is reasonable to search for labelings that are optimal in ' m s

the minimax sense by first finding the set bMML's and It is known that balanced Gray codes exist for all orders

then finding the subset of the _1-|_\/IML’S that a2eMMLs, 3- > 1, and if m is a power of two, a balanced Gray code is

MMLs, and so on. In fact, a similar approach has been usggla|ly balanced [2], [7], [3, Ch. 7.2.1.1]. Since totallglanced

to prove that thg_ BRGC gives the smallest possible averagay codes satisfynax; ex(i) = 2M/m = 2 | M/ml],, they

bit error probability for AWGN channels when the SNR ig;re 2 minimax optimal and prove the Conjecture for power-

greater than a finite threshold [4]. of-two ordersm. For some other orders (but surprisingly
Intuitively, a good labeling in the minimax sense should (g w, namely,m = 12,18,25,36,42,..) it also holds that

be as balanced as possible, meaning ihdt) — e ()| should |M/m], = [M/m],, which means that a balanced Gray code

be small for all0 <i <j <m —1andk =1,2,....M/2,  gaiisfies the Conjecture. For all other orders, THAMLS, if

and (b) have a slowly growing-step transition count, i.€., the Conjecture holds, are not Gray codes. In Section V, we

¢(max E) should_ be as small as possible. Many Iabelipgs th@;(emplify 9-MML's of orders m —= 3,5, and 6 that satisfy

are “balanced,” in some sense, can be found in the literatujige conjecture. Finding a general construction methocfor

see [2], [5] and references therein. MML’s (or even better,f-MML’s for some f > 2) remains an

V. PROPERTIES OFMML’ s open question.
In the following, [z] and |«] denote the smallest integer
not smaller thanz and the closest integer te, respectively. V. PERFORMANCE OF SOME2-MML' s

Ties can be broken arbitrarily in the latter case. In addijtio

we use the shorthand notatidn], for i [z/i] and similarly In this sect_ion, we compare the bit er_rorprobabilitiest
for |a],. For example|x], is the closest even integer 1o PSK with various labelings for communication over an AWGN

Theorem 1: A labeling of orderm > 1 is a1-MML if and channel, as a function df,/No, whereE, is the energy per
only if its 1-spaced transition count satisfies bit and_No/_2 is the dpuble-5|de_d noise spectral densg:ny. We
are mainly interested in the maximum bit error probabilty

max ey (i) = {%-‘ _ (4) however, to indicate how balanced (or unbalanced) theiteel

i m{q is, and how equal error protection the labeling provides, we
Proof: It is well known that the transition count ofalso plot the minimum error probabilify,.

balanced Gray codes satisfies (4). To show that no othein Figure 1, we plot’, andP, for a2-MML of order m = 3,
labeling of the same order can do better, consider the transi compared with two classical labelings, the NBC and the BRGC
counte (¢) for an arbitrary labeling of ordem. The number (see Table I). The codewords of tReVIML are also shown in
>, e1(i) is equal to the total number of elements in fiesets  Table |. Alternatively, it can be defined through its traiogit
that make up the transition sequence. Hecee: (i) > M, sequence, which i§0,{0,1},0,2,1,{0,1},1,2}. The BRGC
with equality if the labeling is a Gray code. At least oné:) is the only Gray code of ordem = 3, and it is balanced.
fori =0,1,...,m—1, saye;(j), must be larger than or equallt is nevertheless not the best labeling in the minimax sense
to the averagen='>".ei(i) > M/m. Now, sincee;(j) is which is apparent from the figure. THEMML labeling is
even, it follows thatmax; e (i) > e (j) > [M/m],, and the better, although the BRGC performance approaches it at high
theorem follows. H FE,/No.
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Fig. 1. Plots of P, (solid) and P, (dashed) for three labelings of order Fig. 2. Plots ofP, (solid) andP, (dashed) for four labelings of ordes = 5:
m = 3: the NBC, the BRGC, and a 2-MML. the BRGC, a balanced Gray code, a Gray code by Okunev, @aMislL.

The transition count matrices for the BRGC and2hR€IML  balanced Gray code exists (which is 2-minimax optimal), and
labeling are, respectively, exemplify 2-MML’s of orders 5 and 6.
For m = 5, we study a non-Gray labeling defined by the

4840 4 4.6 4 transition sequence
2 4 6 8 4 4 6 4). (5)
2 4 6 8 2 4 6 8 (0,{0,1},0,2,1,{0,1},1,3,4,3,2,3,0,4,

These matrices have the same maximum value in the first col- 2,4,1,4,2,4,0,3,0,1,2,1,0,3,4,2,1,3).
umn, which is why the labelings are equivalent asymptdsical 5 transition count matrix is
but the superiority of the-MML is seen in the second column,
e2(1). The corresponding matrix for the NBC is given in (1). It
differs from the two other labelings already in the first cohy
which explains its inferior performance in Figure 1.

The first two columns of the transition count matrix of the 121416 18 20
2-MML labeling satisfy Theorem 1 and Conjecture 1. Observe 1212 1216 18
that the elements of the second colums(i), has a constant It satisfies Theorem 1 and Conjecture 1 and is therefore a
value, which is characteristic for al-MML's in this paper, 2-MML, assuming that the Conjecture holds.
although there exi2-MML'’s without this property. The maximum and minimum bit error probabilities of this

If we look at the rows of the transition count matrices i2-MML are plotted in Figure 2. The corresponding curves
(5), we note that th@-MML has two equally bad rows and are shown for three Gray codes: the BRGC, a balanced code
one good row (bad and good in the lexicographic sense). Tlism [2, Fig. 2], and a Gray code designed by Okunev to have
is in contrast to the BRGC which has one bad row and tvthe “least nonuniformity” in the sense that all bits excepé o
equally good. As a matter of fact, it can be shown that trere as balanced as possible [5, pp. 79-80]. We see that the
BRGC is theworst possible Gray code at large SNR whemMML has lower P, for all Ey /Ny values in the diagram. This
the maximum bit error is considered, whereas it in contrast isan again be explained by the transition count matrix (6g Th
the best possible Gray code (and also the best labeling) farMML, the balanced Gray code, and Okunev's Gray code
average bit error performance, as mentioned in Section I. all satisfy max; e; (i) = 8, but max; e2(i) equals 12 for the

Proceeding to higher orders, we skip= 4, where a totally 2-MML and 16 for the two others. The BRGC differs from

8 12 16 18 20 20
12 16 16 18 16 ---
12 18 24 26 26 ---|. (6)

D O O 0o



0.5

Gray code (underlined transitions are thigtransitions in
Theorem D)

0.4 (0,1,0,1)

and then on the resulting. = 4 labeling
0.3

which produces the: = 6 balanced Gray code with transition

0.2 sequence

(3,5,3,4,3,2,4,5,0,5,4,1,2,4,2,5,
2,1,5,4,3,4,5,1,5,4,0,4,5,3,2,5,
27412731475107110751071141110757

01 0711073127310711371127110121374)7

and the transition count matrix is

10 20 22 24 26 28
10 20 24 28 30 32
10 20 22 22 26 30
10 20 22 22 26 32

12 24 32 34 30 26
12 24 32 36 34 32

0.08

0.06

004 ! N ! ! ! 1 !
2 4 6 8 10 12 14 Comparing the second column with (7) shows that this Gray
Ey/No in [dB] code is not minimax optimal, which is also clear from Figure 3
Fig. 3. Plots of P, (solid) and P, (dashed) for three labelings of order VI. CONCLUSIONS

m = 6: the BRGC, a balanced Gray code, an@-BIML. o o o .
The individual bits inM-ary transmission are, in general,

subject to unequal error protection. We have argued that it i

more natural to design communication systems to minimize

the other labelings already in the first column, where it hqﬁe maximum rather than theaverage bit error probability
max; e (i) = 16. S .

Ei 3 sh imil . f labeli [?f/stems designed according to the minimax principle will be
gure 5 Shows a similar comparison ot Some 1abelings Blscient when a certain quality of transmission for all bits
orderm = 6. A (non-Gray)2-MML is compared with two

ust be guaranteed. We have also shown that the ubiquitous
Gray codes, t_he BRGC and a balanced Gray code, and ﬂ%ﬁary reflected Gray code is, in general, not optimum in this
same conclusions as before hold.

A . sense for labelingV/-ary PSK constellations. Indeed, there
Th?.2'MML of order 6 in Figure 3 is generated by theexist labelings that are better than all Gray codes, and we
transition sequence

have designed such labelings for a few orders.
(0,{0,1},0,2,1,{0,1},1,4,3,1,3,2,3,0
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