Regular Expression Patterns

Niklas Broberg
d0Onibro@dtek.chalmers.se

Andreas Farre
dOOfarre@dtek.chalmers.se

Josef Svenningsson
josefs@cs.chalmers.se

Chalmers University of Technology

Abstract

We extend Haskell with regular expression patterns. Regular ex-
pression patterns provide means for matching and extracting data
which goes well beyond ordinary pattern matching as found in
Haskell. It has proven useful for string manipulation and for pro-
cessing structured data such as XML. Regular expression patterns
can be used with arbitrary lists, and work seamlessly together with
ordinary pattern matching in Haskell.

Our extension is lightweight, it is little more than syntactic sugar.
We present a semantics and a type system, and show how to imple-
ment it as a preprocessor to Haskell.

Categories and Subject Descriptors

D.3.2 [Language Classifications]: Applicative (functional) lan-
guages; D.3.3 [LLanguage Constructs and Features]: Patterns

General Terms

Languages

Keywords

Regular expressions, pattern matching, Haskell

1 Introduction

Pattern matching as found in many functional languages is a nice
feature. It allows for clear and succint definitions of functions by
cases and works very naturally together with algebraic data types.
But sometimes ordinary pattern matching is not enough. A distinct
feature of this form of pattern matching is that it only examines the
outermost constructors of a data type. While this allows for efficient
implementations it is also a rather limited construct for analysing
and retrieving data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’04, September 19-21, 2004, Snowbird, Utah, USA.

Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

A well-known example of a construct that provides deeper and
more complex retrievals are regular expressions for strings. While
this is not a very common feature among programming languages it
is one of the key constructs that have made Perl so popular. Regular
expressions are ideal for various forms of string manipulation, text
extraction etc, however, they remain a very domain specific and ad-
hoc construct targeted only for one particular data structure, namely
strings.

On another axis we find the recent trend in XML centric lan-
guages. The first attempts at such languages used the ordinary pat-
tern matching facility of functional languages to analyze XML frag-
ments [MS99]. This was found to be too restrictive, so in order to
be able to express more sophisticated patterns and transformations
on XML fragments the notion of regular expression patterns were
invented. Examples of languages including this feature are XDuce
[HPO3] and CDuce [BCF03]. While this is a great boost for the
XML programmer, in the case of XDuce it only works for XML
data and not for any other data. Furthermore those pattern match-
ing constructs are closely tied to rather sophisticated type systems
which makes them somewhat heavyweight.

In this paper we extend Haskell with regular expression patterns.
Our extension has the following advantages:

e QOur proposal is lightweight. It is hardly more than syntactic
sugar. Most notably it does not require any complex additions
to the type system.

o It works for arbitrary lists. It is a general construct and not
tied to a specific data type for elements. But it should be noted
that it works in particular for strings since strings are just lists
of characters in Haskell.

o It fits seamlessly with the ordinary pattern matching facility
found in Haskell.

In this paper we give a detailed semantics and type system of reg-
ular expression patterns. The extension has been implemented as a
preprocessor to Haskell, and we sketch the implementation

While we have chosen to focus on Haskell in this paper there are
very little Haskell specific details. We are quite confident that our
proposal could be adapted to any similar functional language.

In recent years a number of papers have been devoted to de-
veloping efficient pattern matching and efficient regular matching
[Fri04, HMO3, Lev03]. This is not the concern of this paper. Al-
though efficiency is an important consideration we focus only on
language design.

Another issue that we do not address is the question of overlap-
ping and exhaustive patterns. We are confident that the existing
techniques developed for XML centric languages will do the job
nicely [HVPOO]. Note also that in general it is undecidable to check
whether patterns are overlapping or non-exhaustive in Haskell be-
cause of guards, so in our setting it is something of a non-issue.

2 Regular expression patterns by example

2.1 Ordinary pattern matching

Assume that we have the following datatype representing an entry
in an address book.

data Contact = Person Name [ContactMode]
data ContactMode = Tel TelNr

We can assume that the types Name and TelNr are type synonyms
for String. The reason for not inlining TelNr in Contact is be-
cause we will later want to add other means of contact, e.g. email
addresses, to our address book.

Now consider two different functions that extract information from
a contact; firstTel will return the first Te1Nr in the list of contact
modes associated with a contact. lastTel will analogously return
the last associated TelNr. The first is easy to write using simple
pattern matching on a contact:

firstTel Contact -> TelNr
firstTel (Person _ (Tel nr : _)) = nr
firstTel (Person _ []) = error "No Tel"

The second function, although its functionality is very similar to
firstTel, cannot be written in the same simple way. We must
instead resort to recursion and an auxiliary function to step through
the list until we reach the end.

lastTel Contact -> TelNr
lastTel (Person _ nrs) = aux nrs
where aux [] = error "No Tel"
aux [Tel nr] = nr
aux (_:nrs) = aux nrs

Although the two functions have very similar functionality, only
one of them can be written using direct pattern matching. Why is
this so? The answer lies, of course, in the list datatype. A (non-
empty) list has a head and a tail, so extracting the first element is
easy. To get to the last element however, we must recursively look
at the tail for its last element. In other words, we must first match
on the structure of the list, before being able to look at the elements.

Haskell has a construct for matching directly on the elements of a
list, but only for fixed-size lists. If we know that a contact never has
more than three phone numbers, we could write lastTel as (we
will ignore the erroneous case from now on)

lastTel (Person _ [Tel nr]) = nr
lastTel (Person _ [_, Tel nr] = nr
lastTel (Person _ [_, _, Tel nr] = nr

Clearly this is not a very good solution. Even for this very small
task we must write far more than we are comfortable with, and
for larger lists or more complex datatypes this approach quickly
becomes infeasible. What we need is a way of saying “match a list
containing a Tel, preceded by any number of other elements”. This
is where regular expression patterns enter the picture.

2.2 Regular expression patterns

Mathematically a regular expression defines a regular language,
where language in this context means a (possibly infinite) set of
words, and each word is a sequence of elements taken from some
alphabet. We can use a regular expression as a validator and try to
match an arbitrary word against it to find out if the word belongs to
that regular language or not. The basic regular expression operators
are repetition, concatenation and choice. Concatenation is straight-
forward, ab means a followed by b. Choice (a|b) means either a or
b. Repetition a* means zero or more occurrences of a. Repetition
can be defined using choice and recursion as ax = €|aax where €
denotes the empty sequence. As an example, consider the regular
expression e = a x |bx. The language defined by e, denoted L(e), is
the set of all words consisting of only a’s or only b’s, including the
empty word. We have that aa € L(e), bbb € L(e), but ab ¢ L(e). In
other words, aa and bbb both match the regular expression e, but
ab doesn’t.

This notion of treating a regular expression as a validator is very
similar to the concept of pattern matching in Haskell. We take a
Haskell value (a word) and a pattern (a regular expression) and try
to match them, getting a yes or no as the result. Combining these
two concepts is straight-forward, yielding what we call regular ex-
pression patterns. As noted, a regular expression can be matched
against a sequence of elements from some alphabet. Lifting this
idea into Haskell, a regular expression pattern can be matched
against a list of elements of some datatype. When we speak of a
sequence, we mean a sequence of elements in the abstract sense. In
contrast, when we speak of a list, we mean the list datatype that is
used to encode sequences in Haskell.

Returning to our lastTel function, we can now easily write it with
a single pattern match by using a repetition regular expression pat-
tern:

lastTel (Person _ [_*, Tel nr]) = nr

We write concatenation using commas as with ordinary Haskell
lists, and we denote repetition with *. As we can see from the exam-
ple, regular expression patterns are actually more flexible than bare
regular expressions. A regular expression is built from elements
of some alphabet, the same alphabet that the words it may match
are built from. A regular expression pattern on the other hand is
built from patterns over elements of some datatype, allowing us
to use constructs like wildcards and pattern variables. We use the
term regular expression pattern both for the subpatterns (repetition,
choice etc) and for a top-level list pattern that contains the former.
It should be clear from the context which we are referring to.

2.3 Repetition and Ambiguities

Let us see what else we can do with regular expression patterns.
First, as promised, we extend our datatype with email addresses.

data Contact = Person Name [ContactMode]
data ContactMode = Tel TelNr | Email EAddr

If we only have ordinary pattern matching we cannot even write
firstTel without resorting to recursion and auxiliary functions.

firstTel (Person _ cmodes) = aux cmodes
where aux (Tel nr :) = nr
aux (_ : cmodes) = aux cmodes

Using a regular expression pattern, we can write it in one go:

firstTel (Person [(Email _)*, Tel nr, _*]) = nr

The straight-forward intuition of the pattern above is that the first
Tel in the list is preceded by zero or more Emails (but no Tels), and
any number of other elements may follow it. We can easily write
lastTel in a similar way as

lastTel (Person _ [_*, Tel nr, (Email _)*]) = nr

But seeing these two definitions leads to an interesting question:
What happens if we write the function

someTel Contact -> TelNr
someTel (Person _ [_*, Tel nr, _*]) = nr

i.e. where the Tel in question may both be preceded and suc-
ceeded by other Tels? Clearly this pattern is ambiguous, since if we
match it to e.g. Person "Niklas" [Tel 12345, Tel 23455,
Tel 34567] we can derive a match for either of the three TelNrs to
be bound to nr, by letting the first _* match either 0, 1 or 2 Tels. To
disambiguate such issues, we adopt the policy that a repetition pat-
tern will always match as few elements as possible while still letting
the whole pattern match the given list. In standard terminology, our
repetition regular patterns are non-greedy. This policy means that
someTel above will be exactly the same as our firstTel function,
since the first _* will now try to match as few elements as possible.

In some cases though, such as lastTel, we want the greedy behav-
ior. To this end we let the programmer specify if a repetition pattern
should be greedy by adding an exclamation mark (!) to it, e.g. in
the following definition of lastTel:

lastTel (Person [_*!, Tel nr, _*]) = nr

2.4 Choice patterns

Now that we’ve seen the power of repetition patterns, we turn
our attention to choice patterns. Assume that we want a function
allTels that returns a list of all telephone numbers associated with
a contact. Without regular expression patterns we must once more
resort to recursion and auxiliary functions.

allTels Contact —-> [TelNr]
allTels (Person _ cmodes) = aux cmodes
where aux [] = []
aux (Tel nr cmodes)
= nr : aux cmodes
(

aux cmodes) = aux cmodes

Using a combination of repetition and choice, we can write it as
allTels (Person _ [(Tel nr | _)*]) = nr

The intuition here is that each element in the list of contact modes
is either a Tel or something else (). Every time that we encounter
a Tel, we should include the associated TelNr in the result. As
the example shows we can achieve this accumulation of TelNrs
with a single pattern variable. Since the intuition of a repetition
pattern is that its subpattern, i.e. the pattern it encloses, should be
matched zero or more times, the same must be true for any pattern
variables inside such a pattern. For each repetition, such a variable
will match a new value. Clearly the only sensible thing to do is to
let that variable bind to a list of all those matched values.

This treatment of variables breaks one aspect of Haskell’s linearity
property — that the occurrence of a variable in a pattern will bind

that variable to exactly one value of the type that it matches. We
will therefore call such a variable non-linear. A non-linear variable
will be bound to a list of values that it matches, in the order that they
were matched (i.e. the order in which they appeared in the matched
list). When we speak of a non-linear binding, we mean a binding
of a non-linear variable to a list of values. We will also use the
terms non-linear context to mean a context in which linear variables
cannot appear, and non-linear patterns, by which we mean patterns
whose subpatterns will always be matched in a non-linear context.

By the example above we see that a repetition pattern is a non-
linear pattern, and consequently that the variable nr appears in a
non-linear context. Similarly a choice pattern is also non-linear.
If we remove the repetition from the regular expression pattern in
allTels we get the pattern [Tel nr|_] for matching a list of ex-
actly one element. If that element is a Tel we will have a value to
bind to nr, but if it is an Email we have none! Thus we still can-
not guarantee that a variable gets one value; in this case nr will be
bound to a list with zero or one element.

The function al1Tels shows how regular expression patterns can
be used for filtering a list based on pattern matching. We can go
one step further and do partitioning, e.g.

allTelsAndEmails Contact -> ([TelNr], [EAddr])
allTelsAndEmails (Person _
[(Tel nr | Email eaddr)*]) = (nr, eaddr)

A choice pattern can also be ambiguous if any of its subpatterns
overlap, as in

sillyAllTels Contact -> ([TelNr], [TelNr])
sillyAllTels (Person _ [(Tel nr | Tel mr | _)* 1)
= (nr, mr)

To disambiguate this we adopt a first-match policy, much like that
of Haskell pattern matching. Thus we first check if the first sub-
pattern matches, and consider the k:th subpattern only if no pattern
i < k matches. Note that we allow choice patterns to contain more
than two subpatterns. Choice patterns are right associative so for
example [(Tel nr | Tel mr | _)*] is parenthesised like [
(Tel nr | (Tel mr | _))* 1. Another interesting thing about
choice patterns is that we allow a variable to appear in both subpat-
terns assuming that it binds to values of the same type. For instance,
if our datatype for modes of contact was defined as

data ContactMode = Home TelNr | Work TelNr
we could define allTels as
allTels (Person _

[(Home nr | Work nr)*]) = nr

Variables in choice patterns are still non-linear even if they appear
in all subpatterns, so the function

singleTel (Person _ [(Home nr | Work nr)]) = nr

will have the type Contact —> [TelNr].

2.5 Subsequences and option patterns

Regular expressions allow grouping of elements and subexpres-
sions using parentheses. For example, the regular expression e =
(ba)* will match the words ba, baba etc. To add this feature to our
regular expression patterns we need to introduce some new syntax,
since using ordinary parentheses in Haskell will denote tuples, as in

wrongEveryOther [(_,b)*] = b

We (somewhat arbitrarily) choose to denote subsequences with (/
and /), so a correct function that picks out every other element from
a list can be written as

everyOther :: [a] —> [a]
everyOther [(/_, b/)*] = Db

There’s a problem with the above definition though; it works for
lists of even length only. Surely we want everyOther to work for
any list. To achieve this we could add another declaration to the one
above like

everyOther [(/_, b/)*, _1 =D

to catch the cases where the list is of odd length too. But couldn’t
we write these two cases as a single pattern? Indeed we can, using
a choice pattern

everyOther [(/_, b/)*, ((/ /) | _)]

where (/ /) denotes the empty subsequence, €. However, this pat-
tern is so common that regular expressions define a separate oper-
ator, ?, to denote optional regular expressions. The definition of ?
is €? = elg, and by lifting this to regular expression patterns we can
write everyOther more compactly as

everyOther [(/_, b/)*, _?] =D

Obviously, optional patterns are non-linear since they can be de-
fined in terms of choice patterns which are non-linear. Just as for a
repetition pattern, an optional pattern is non-greedy by default. We
also define greedy optional patterns by ?! in analogy with greedy
repetition patterns.

2.6 Non-empty repetition patterns

There is one more operator to discuss, namely + that is used to de-
note non-empty repetition. For instance we might require all con-
tacts to have at least one mode of contact registered, either a tele-
phone number or an email, otherwise it is an error. To enforce this
we may want to define al1TelsAndEmails from above as

allTelsAndEmails
(Person _ [(Tel nr | Email eaddr)
, (Tel nrs | Email eaddrs)*])
= (nr ++ nrs, eaddr:eaddrs)

Using + we can define this more compactly as

allTelsAndEmails (Person _
= (nr, eaddr)

[(Tel nr | Email eaddr)+])

Modulo variables bound, p+ = ppx. It is non-linear and non-
greedy just like *, and there is a greedy counterpart +!.

2.7 Variable bindings and their types

Since we can use any Haskell pattern inside regular expression pat-
terns, we can in particular use pattern variables to extract values
from the list that we match against, as we have seen in various ex-
amples already. Haskell also defines a way to explicitly bind values
to a variable using the @ operator. E.g. in the declaration

allCModes
allCModes (Person _

Contact —-> [ContactMode]
all@[(Tel _ | Email)+]) = all

the variable all will be bound to the (non-empty) list of
ContactModes associated with a contact. This is a very useful fea-
ture to have for regular expression patterns as well, for instance we
may want to write a function that picks the first two elements from
alist as

twoFirst :: [a] —> [a]
twoFirst [aQ(/_, _/), _*]1 = a

However, adding this feature raises some interesting questions.
Firstly, what will the type of a variable bound to a regular expres-
sion pattern be? For a subsequence it seems fairly obvious that it
will have a list type, but what about repetitions, choices and op-
tional patterns? To this issue there is no obvious right answer, one
way might be to let a variable be bound to all elements matched by
the subpattern in analogy with implicitly bound variables. We have
chosen a slightly different approach in which we assign different
types to patterns to mirror the intuition behind them.

Subsequences and repetition patterns will both have list types
since they represent sequences. There’s a difference between them
though; a subsequence is just what the name implies, a subsection
of the original sequence. Thus a variable bound to it will always
have the same type as the input list, i.e. a list of elements. A rep-
etition pattern on the other hand is a repetition of some subpattern,
and so it will have the type of a list of that subpattern. For choice
patterns we make use of Haskell’s built-in Either type defined as

data Either a b = Left a | Right b

By using this type we can allow the left and right subpatterns of a
choice pattern to have different types, for instance

singleCMode [ContactMode]
-> Either ContactMode ContactMode
singleCMode [a@(Tel _ | Email _)] = a
maybeSingleTel [ContactMode]
-> Either ContactMode [ContactMode]

maybeSingleTel [a@(Tel _ | _*)] = a

Similarly for optional patterns we use another built-in Haskell type:
data Maybe a = Nothing | Just a

so if we write a function

singleOrNoTel [(Email _)*,a@(Tel _)?, (Email _)*] = a

it will have the type [ContactMode] —-> Maybe ContactMode.

One way to think about this is to see the regular expression pattern
operators as special data constructors. In an analogy with ordinary
Haskell, we don’t expect a to have the same type in the two uses
a@(Just _) and (Just a@.). Nor do we expect the aina@ (_?) to
have the same type as the a in (a@_) 2.

The second issue concerns linear vs. non-linear binding. We have
already seen that implicit bindings, i.e bindings that arise from the
use of ordinary pattern variables, are context dependent; in linear
context they get the ordinary types, whereas in non-linear context
they get list types. This context dependence unfortunately makes it
easy for the programmer to make mistakes, since it isn’t clear just
by looking at a variable in the pattern what type it will have. We
cannot do anything about implicit bindings, but we can avoid the
same problem for explicit binding. Therefore we let the ordinary
@ operator signify linear explicit binding, the only kind available

in ordinary Haskell. For non-linear explicit binding we introduce a
new operator @: (read “as cons” or “accumulating as”). The former
may not appear in non-linear context, whereas the latter may appear
anywhere inside a regular expression pattern. Their differences are
shown by the following examples:

[a@(Tel _) , _*] => a :: ContactMode
[a@(Tel _)* , _*] =>a :: [ContactMode]
[(Tel al_) , _*] =>a :: TelNr

[(Tel a@_)* , _*] => Not allowed!

[(Tel a@:_)*, _*] =>a :: [TelNr]

We can define the semantics of implicit bindings in terms of ex-
plicit bindings. In linear context we have that a pattern variable a
is equivalent to the pattern a@_. This can be seen in the example
[(Tel a), -*] which is clearly equivalent to [(Tel a@.), _*].
In non-linear context, a is equivalent to a@:_, as in the examples
[(Tel a)*, _*]and [(Tel a@:_)*, _*].

2.8 Further examples

Now that we’ve seen all the basic building blocks that our regular
expression patterns consist of, let us put them to some real use.

Traditionally regular expressions have been used in programming
languages for text matching purposes, and certainly our regular ex-
pression patterns are well suited for this task. As an example, as-
sume we have a specification of a simple options file. An option has
a name and a value, written on a single row, where name and value
are separated with a colon and a whitespace. Different options are
written on different lines. Here are the contents of a sample options
file:

author: Niklas Broberg

author: Andreas Farre

author: Josef Svenningsson

title: Regular Expression Patterns
submitted: ICFP 2004

A simple parser for such option files can be written using a regular
expression pattern as

parseOptionFile

parseOptionFile

[(/ names@:_*, ":', " ', valsQ:_*, "\n’ /)*]
= z1ip names vals

String —-> [(String,String)]

where zip is a function that takes two lists and groups the elements
pair-wise.

XML processing is another area that greatly benefits from regu-
lar expressions, since “’proper pattern matching on XML fragments
requires ... matching of regular expressions” [MvVO01]. Indeed sev-
eral recent XML-centric languages (XDuce, CDuce) include regu-
lar expressions as part of their pattern matching facilities.

As an example we encode XML in Haskell using a simple datatype

data XML = Tag String [XML]
| PCDATA String

An XML fragment is either a Tag, e.g. <P> </P>, which has
aname (a String) and a list of XML children, or it is PCDATA (XML
lingo for a string inside tags). This model is of course extremely
simplified, we’ve left out anything that will not directly add any-
thing to our example, most notably XML attributes. Now assume

that we have a simple XML email format, where a sample email
message in this format might look like:

<MSG>
<FROM>d00nibro@dtek.chalmers.se</FROM>
<RCPTS>
<T0>d00farre@dtek.chalmers.se</TO>
<TO>josefs@cs.chalmers.se</TO>
</RCPTS>
<SUBJECT>Regular Expression Patterns</SUBJECT>
<BODY>
<P>Regular expression patterns are useful</P>
</BODY>
</MSG>

which would be encoded in our XML datatype as

Tag "MSG" [
Tag "FROM" [PCDATA "dOOnibro@dtek.chalmers.se"],
Tag "RCPTS" |

Tag "TO" [PCDATA "dOOfarre@dtek.chalmers.se"],
Tag "TO" [PCDATA "josefs@cs.chalmers.se"]
I
Tag "SUBJECT"
[PCDATA "Regular Expression Patterns"],
Tag "BODY" [
Tag "P"
[PCDATA "Regular expression patterns are useful"]
]
]

We can write a function to convert messages from this XML format
into the standard RFC822 format using regular expression patterns:

xmlToRfc822 XML -> String
xml1ToRfc822
(Tag "MSG" [
Tag "FROM" [PCDATA from],
Tag "RCPTS" [

(Tag "TO" [PCDATA tos])+
I
Tag "SUBJECT" [PCDATA subject],
Tag "BODY" [

(Tag "P" [PCDATA paras])*

1) = concat
["From: ", from, crlf,
"To: ", concat (intersperse ", " tos),
crlf,
"Subject: ", subject, crlf, crlf,
concat (intersperse crlf paras), crlf]
where crlf = "\r\n"

3 Syntax

The previous section has gone over all of regular expression pat-
terns by example. This section starts the formal treatment by giving
a grammar for the syntax, which can be seen in figure 1. We re-
fer to the nonterminal for Haskell’s ordinary patterns as pattern and
extend it with a new production for regular expression patterns.

The concrete syntax is quite close to that of e.g. Perl [Perl] or
CDuce [BCF03] with the notable exception that we have non-
greedy patterns as default. An extra exclamation mark indicates
greediness.

pattern — ...
| [regpaty ...regpat, '’

regpat — pattern

var’ @’ regpat
var’ @:’ regpat

| regpat **'[’!"]

| regpat*+'['!]

| regpat T[]

| regpat ‘| regpat

| (/" regpat) ...regpat, 1)
| C regpat’)y

|

Figure 1. Regular expression pattern syntax

Ordinary Haskell patterns are regular expressions patterns. The op-
erators are repetition (¥*), non-empty repetition (+) and option (?).
Furthermore there are choice patterns indicated by a vertical bar
and subsequences are enclosed in subsequence brackets. Regular
expression patterns can be enclosed in parenthesis. The last two
productions are for linear and non-linear variable bindings. Pre-
cendence of the operators is as follows: *, +, 7, *I, +! and ?!
binds strongest. They are followed by choice patterns which are
also right associative. Lastly we have @ and @: which bind weak-
est. All constructs in regular expression patterns bind stronger than
constructor application.

4 Semantics

In this section we turn to the formal semantics for regular expres-
sion patterns. Our semantics divides natually into two parts; one for
linear and one for non-linear patterns. The reason for this division
is that variable bindings are treated differently.

4.1 Structure of semantics

We give the semantics as an all-match semantics. This leads to pos-
sibly ambiguous matches, the same list can be matched in many dif-
ferent ways. Since this may affect how variables are bound to their
values we need to disambiguate our rules. We follow the approach
taken by Hosoya and Pierce [HP03] and introduce an ordering on
the rules indicating which rule will have precedence when several
rules can match. The order is given by numbers in the name of
the rules, where lower numbers have higher precedence. Intuitively
this means that when building the derivation tree for a match, one
must always try to use the rule with the highest precedence first,
and choose the other rule only if choosing the first rule cannot lead
to a match.

Before we begin with the semantics we will define some concepts
which will be used in our explanation of the semantics. We will
use sets of variable bindings to map variables to values. A variable
binding is denoted x — v. In repetition patterns we will need to
merge sets of variable bindings with overlapping domains. We use
W to this end and define it as follows:

{x1 = v, x = v W{x = s, X, 2 vsy =
{x1 = viHvsi,...,xy = vy Hvsy)

When giving a semantics for subsequence patterns we will use a
type indexed function flatten to merge lists of values. It is defined
as follows:

flatteny (v) = |v]

flatteny([]) = []
flatteniyy(v,vs) = flatten(v) 4 flatteny (vs)

flattenyqyper(Nothing) = ||
flattenyyayper(Just v) = flatteny(v)

flattengiperr,r, (Leftv) = flattenq, (v)
flattengiperr,r, (Right v) = flattens, (v)

We will refer to the set of bound variables in a pattern p as

4.2 Semantics for linear patterns

The semantics for linear regular expression patterns can be found
in figure 2. Due to space reasons we only give a few of the rules as
we explain below.

The judgement for matching linear patterns is denoted / €; p —
v;B;I'. Tt should read as “I is matched by a pattern p yielding a
value v, a set of variable bindings B, and a remainder list I’ . / and
I" range over Haskell lists, where [is the list we wish to match and
!" is a (possibly empty) suffix of / that wasn’t matched.

First of all we have a rule HM-REGPAT that extends Haskell’s pat-
tern matching semantics, denoted &€, with regular expression pat-
terns. It does so by performing a linear match.

Lei(/pr---pa/) = 1B
leylpr-..pn) =B
Here we require that the remainder list is empty i.e. that the whole

input listis succesfully matched. This requirement together with the
ordering on the rules determines which derivation must be chosen.

The base rule, LM-BASE, is that where the pattern to match is a
normal Haskell pattern. In this case we piggy-back on Haskell’s
normal mechanism for binding variables from patterns.

eec,m— B
e:len— el

Apart from ordinary Haskell patterns there are two ways that we can
bind variables to values at toplevel, given by the rules LM-AS and
LM-AccCAS. The @ operator simply binds the variable to a value,
whereas the @: operator binds the variable to a list containing the
value. The behavior of @: clearly makes more sense in a non-linear
context, where the number of bound values may vary, but since it
is harmless to do so we have chosen to allow it to appear in linear
contexts as well.

For subsequences we simply match each pattern in the sequence
in order, as stated by the rule LM-SEQ. The values produced after
matching are concatenated and the resulting disjoint sets of variable
bindings are merged. The value yielded by matching a subsequence
should always be a list of elements, so before we can concatenate
the values of the sub-matches we need to flatten these values to
simple lists. Here we need to use the typing relation on patterns
defined in section 5. The typing relation is defined relative to some
base type 7" that during the actual matching will be instantiated to
the type of the elements in the matching list.

Matching a non-linear pattern in a linear context is identical to
matching it in a non-linear context. This is exemplified by the rule

ec,m—P

L€ p—visBiih

he€rp—vi:Biib

LM-BASE LM-As

e:len— el

L e = v Bl
LM.SEq LELP1 1:B1: b

o 11 €[x@pﬁv1;{xl—>v1}U|31;lz

In € pn— Vn;Bn;lf

I € (/Pl---Pn/)‘>’Yl+1L---Jr+'Yn;BIU"'UBn§lf

HM-REGPAT

LM-ACCAS
L€ x@:p—vi{x— n|}UBL

ll GP* vaﬁvlz

.= flatt),pi:t LM-STAR
¥i = flattens(vi), p Lhoe pr—=viBh

Lei(/pi-- paf) = LB

lep[pi...pa) =B

Figure 2. Semantics for linear regular expression patterns

LM-STAR. The rules for the rest of the operators are similar and
are left out due to space restrictions.

4.3 Semantics for non-linear patterns

The relation for matching in a non-linear context, denoted [€ p —
v;B;1' (the only difference in syntax is that we drop the subscript
on €), is similar to the relation for linear contexts. It differs in two
crucial aspects, namely variable bindings and that we handle non-
linear patterns. The rules can be found in figure 3.

The base rule M-BASE is once again that where the pattern to match
is an ordinary Haskell pattern. Since the matching now takes place
in a non-linear context, the values of variables being bound while
matching this pattern are put into lists instead of just being bound
outright. Binding variables explicitly in a non-linear context can
only be done using the @: (accumulating as) operator that binds its
variable argument to a list of the value matching its pattern argu-
ment, as shown in the rule M-ACCUMAS.

The rule for matching a subsequence, M-SEQ, is identical to LM-
SEQ except that subpatterns in the sequence are also matched in a
non-linear context.

The rules for a repetition pattern, M-STAR1 and M-STAR2, give
a non-greedy semantics to the operator by giving the rule for not
matching higher precedence than the rule for actually matching the
subpattern. The first rule simply doesn’t try to match anything,
whereas the second rule matches the given subpattern p once and
then recurses to obtain more matches. The value obtained from
matching p is then prepended to the result values of the recursive
second premise. Similarly the values of bound values are prepended
to the bindings from the recursive call. To get a greedy semantics
in the rules M-GSTAR1 and M-GSTAR?2 we simply swap the order
of the rules to give precedence to preforming a match.

The non-empty repetition pattern operator p* is defined as p* =
pp*, similarly its greedy counterpart p*! = pp*!, and the rules M-
Pr.us and M-GP1.US can easily be derived from these facts.

The rules M-OPT1 and M-OPT2 for optional patterns are very sim-
ilar to the rules for repeating patterns, only that no recursion to
obtain more matches is done. The values returned by an optional
pattern are of the Haskell Maybe type for optional values.

For choice regular expression patterns we return values of the
Haskell Either type to indicate which choice was taken. In the
rules M-CHOICE 1 and M-CHOICE2 we give precedence for match-
ing the left pattern. Furthermore all variables occuring only in the
branch not taken are assigned empty lists.

5 Well-formed regular expression patterns

We now turn our attention to the static semantics of regular ex-
pression patterns. We will refer to the static semantics as well-
formedness of regular expression patterns.

There are two reasons why we need a static semantics. The first
reason concerns where and how a variable is bound in a pattern. In
ordinary patterns a variable may appear only once, with the notable
exception for or-patterns found in Ocaml and SML/NJ. In these lan-
guages all alternatives must bind exactly the same set of variables.
We have similar yet more liberal restrictions on variable bindings.
Bound variables must not necessarily be bound in all alternatives in
a choice pattern.

The second reason is that we need to ensure that the types of the
bound variables are correct. The same variable should in particular
have the same type for all its occurrences in a choice pattern.

To express the well-formedness of a regular expression pattern we
use the judgment A F; p which says that a (linear) regular expres-
sion pattern p is well-formed in the typing context A. The typing
context A gives types to the variables bound in the pattern. When
checking the validity of patterns in a non-linear context we use the
judgment A F p which is similar to the judgment for linear patterns.
We will also refer to the well-formedness of patterns in Haskell,
using the judgment A -, p. We refer to Faxén’s paper for a static
semantics of Haskell patterns [Fax02]. We require that A F;, p can
only be derived if p binds exactly the variables in the typing con-
text A. Finally we will need a notion of types for regular expression
patterns. We use the judgment p :: T to say that the pattern p has the

type T.

Checking the well-formedness of a regular expression pattern as
an ordinary pattern in the host language is done using the following
rule. Is is noteworthy that we split the typing context. All the typing
contexts A; must bind different names. We use this to enforce that
a variable may only be bound once.

Arbppr . Anly pa
Ay Ay [pr- - pal

ANA;=0Viji# |

The rules for establishing well-formedness of linear patterns can be
found in figure 4. In this section we only present the rules for non-
greedy operators as the rules for greedy counterparts are exactly the
same. The only interesting thing to note about the rules for %, 4+ and
7 is the fact that when checking their subpatterns we are in a non-
linear context and therefore use the corresponding judgment for the
premises. The rule for sequences is reminiscent of that for regular
expression patterns in the context of ordinary patterns explained
above.

ec,m— B

M-BASE—————
e.len—e0;l

L€ pr = visBish

6={x—[|x—=veB} M-ACCAS

ln € pn— Vn;Bn;lf

hep—viBrib
L ex@:p—vi;{x— [n]}UBLkL

M-SEQ

M-STARl ——
lep*—=1[;Bsl

M-GSTARI

I e (/PI---PM/)‘>’Yl+1L---Jr+’Yn;B1U"'UBn§lf
B={x— [J|x€vars(p)} M-STAR2

. . *) . .
hep—viiBiib bep'! —viPals M-GSTAR?

Lhep!=viivy;PiepPasl

hep—vi,Bi,lh hLep —v,Blk

Yi = flattent(v;),v; = T

hep—visBiih bep" —viBal
L€ p* = vitvysBrWPasls

g B b llxevars(o))

Lep*l—=];

hep—=vi,Bi,h hep'l—viBals

M-PLUS M-GPLUS
hept—viiv,Biwh,is hept!—viiv,Biups,l
hep—v,Bih
M-OprT1 ={x— € var: M-OPT2
1 € p? — Nothing,B,! B={r [llx € vars(p)} Iy € p?— (Justvy),B1,b
hep—vi,Bih
M-GOrTI M-GOprT2 =X €
Iy € p" — (Justvy),B1, [€ p?! — Nothing,B,1 B={xr= [[x € vars(p)}
Ly € pr = visBil
M-CHOICE1 6 =BU{x—[]|x €vars(pr)}\vars(py
e (011p) = (Lefin)ioih {x—= 1l (p2)}\vars(p1))
hepr—visBiih
M-CHOICE2 - B=B1U{x— [||x € vars(p1)}\vars(p>
i € (p1|p2) — (Rightvi):Bila be e varsipyfyvars(pa))
Figure 3. Semantics for non-linear regular expression patterns
AF Ak A FEp AE AF AF AF AEp AE
p p 1™ P A2 qA:A]UAz p p p 1P Ay qAZA]UAz
A p* AR pt Ak plg AFy p? AFpx AFp+ At plg

ArbEpr.o. Ak py
Ar. At (/preapaf)

ANA;=0Vij.i

pitT AFp putT AkF;p
Ax:thHx@p Ax:[tlH x@:p

Aty hpat
Ay hpat

Figure 4. Wellformed linear regular expression patterns

The variable binding rules are interesting to contrast against each
others. “As”-patterns are well-formed if the variable is bound to
a pattern with the same type as the variable. ”Accumulating as”-
patterns on the other hand may match several times so the type of
the variable must be a list.

In figure 5 we present the rules for establishing the well-formedness
of non-linear patterns. Most of the rules carry over straightfor-
wardly from those for linear patterns. It should be noted though
that the rule for ordinary patterns rebuilds the typing context so that
all variables have list types.

Figure 6 gives the typing rules for regular expression patterns. The
intuition behind these rules is that a pattern has a type which re-
flects the ways it can match. For example a pattern which can match
many times has a list type, hence variables bound to % and + pat-
terns get list types. Choice patterns can match one of two things

At p A bEpr.. A py

ANA;=0Viji# |

AFEp? A AE(/preopaf)
put AbFp A Fp, hpat — {x:[riTen)
Ax:[t|Fx@:p AF hpat N -

Figure 5. Wellformed regular expression patterns

Pt piut putT gut pit
p*t] ptotl plg: Eithertt p?::Maybet
PLETL .o Pt T pitT pitT

(/p1-.-pa/) = [T]

Figure 6. Typing rules for regular expression patterns

x@p:t x@:p:t hpat T

which is captured by the Either type of Haskell. A sequence pat-
tern matches yields a sequence and hence it also has a list type.
Variable binding patterns don’t affect the typing. The last typing
rule for ordinary patterns in the underlying language is more sur-
prising, since it refers to a specific type T. This means that the typ-
ing rules should be interpreted in a context where we are matching
on a list of type [T],i.e. T is the type of the elements of the list.

6 Implementation

We currently have an implementation of our regular expression pat-
tern system that works as a preprocessor for GHC. It takes a source
code file possibly containing regular expression patterns and trans-
lates it into semantically equivalent vanilla Haskell code. It also
comes with a matching engine, which we implement as a simple
parser monad. The preprocessor does not check any types, instead
we rely on GHC’s type checker to catch type errors.

6.1 Matching engine

The datatype for a matching parser, which we from now on will
refer to as a matcher, looks like

data Matcher e a = Matcher ([e] —> [(a,[e])])

Itis essentially a function that takes an input list, conducts a match,
and returns a list of results. Each result will consist of a value, a
set of values for bound variables, and a remainder list. All of this is
read directly from our semantic rules.

Since different variables will be bound to values of different types,
we need to model the set of bindings as a tuple, with each entry
corresponding to the value(s) for one specific variable. As is cus-
tomary, we let the remainder list be the state of the matcher monad,
so that it is implicitly threaded through a series of matches. The
individual matcher functions then need to return a value for future
bindings, and a tuple with values for variables.

To account for our all-match semantics the parser generates a list of
results at each step. At places where we need to branch we can use
the +++ operator which lets us proceed with two different matchers.
We define +++ as

(+++) :: Matcher e a —> Matcher e a —> Matcher e a
(Matcher f) +++ (Matcher g) =
Matcher (\es —-> let aesl = f es
aes2 = g es
in aesl ++ aes2?)

As we can see from the definition +++ is left-biased, i.e. any results
from its left operand will end up before any results from its right
operand in the list of results. This allows us to define a function
that conducts the full matching by, as defined by our first-match
policy, selecting the first result in this list of results for which the
matcher has reached the end of the input list (i.e. the remainder list
is empty). This function, called runMatch, corresponds to the rule
HM-REGPAT from figure 2, and is defined as

runMatch :: Match e a -> [e] -> Maybe a
runMatch (Matcher f) es =
let allps = f es
allMatches = filter (null . snd) allps
in case allMatches of
] -> Nothing
(((_, vars),_):_) —> Just vars

6.2 Translation

The basic idea behind translating a regular expression pattern into
vanilla Haskell is to generate a matcher for each subpattern, all the
way down to ordinary Haskell patterns, and then combine these to
form a top-level matcher corresponding to the whole of the pattern.

6.2.1 Base patterns

The base case is when the pattern in question is an ordinary Haskell
pattern. First we must generate a function that actually takes an
element from the input list and tries to match it to the given pattern.
For example, if the pattern in question is Tel nr, the corresponding
function would look like

match0 :: CMode -> Maybe TelNr
matchO0 e = case e of
Tel nr -> Just (nr)
_ —> Nothing

No type signatures are actually generated, we just supply them here
to simplify understanding. To avoid overly long signatures we ab-
breviate ContactMode with CMode in our examples.

What the function returns if the match succeeds is a tuple contain-
ing the values of bound variables. The function above works in
linear context since we return the bound variable as is. If we in-
stead wanted a function to work in non-linear context, we would
wrap the values in lists, like

matchO :: CMode -> Maybe [TelNr]
matchQ0 e = case e of
Tel nr -> Just ([nr])
_ —> Nothing

We also need to lift a generated matching function into the matcher
monad. This lifting works identically regardless of what the pat-
tern is, so we have a function in the matcher engine that does this,
defined as

baseMatch :: (e -> Maybe a) —-> Matcher e (e,a)
baseMatch matcher = do
e <- getElement
case matcher e of
Nothing -> mfail
Just b -> do discard
return (e, b)

The functions used by baseMatch are inherent to our matcher
monad. getElement retreives the head of the input list, discard
drops the head of the input list, and mfail is a matcher that always
returns an empty list of results. We now need to generate a matcher
by applying baseMatch to our generated function, i.e.

matchl :: Matcher CMode (CMode, TelNr)
matchl = baseMatch match0

The type states that matchl is a matcher for a list of CModes. The
value matched is a CMode, and the only variable bound is of type
TelNr. The numbers 0 and 1 in the names of these functions signify
that each name is fresh, i.e. these numbers could be any positive
integers, but no two functions share the same integer.

For Haskell patterns that are guaranteed to always match, i.e. pat-
tern variables and wildcards (), we can simplify these steps. For a
wildcard, what we need to generate is the matcher

match0 :: Matcher e (e, ())
match0 = baseMatch (_ -> Just ())

meaning we will always match, and no variables are bound. The
only difference for a pattern variable is that the variable in question
is also bound, e.g. for the pattern a we get

matchQO :: Matcher e (e, e)
match0 = baseMatch (\a -> Just (a))

Once again the shown function works in linear context, in non-
linear context we would wrap the returned a in a list.

6.2.2 Repetition

All regular expression patterns have one or more subpatterns, and
the first step when translating a regular expression pattern will be to
translate these subpatterns. For a repetition pattern, p*, we would
first translate the subpattern p into some matcher function mat chX.
According to the rules M-STAR1 and M-STAR2, a matcher for
a repetition pattern should if possible continue without trying to
match anything, otherwise it should match one element and then re-
cursively match the repetition pattern again. This behavior is com-
mon to all repetition patterns so we define it as a function in the
matching engine:

manyMatch :: Match e a -> Match e [a]
manyMatch matcher = (return []) +++
(do a <- matcher
as <- manyMatch matcher
return (a:as)

The problem with this definition is that manyMatch returns a list in
which each element is the result of one step of the recursion. We
need to unpack this list so that we instead return a tuple, in which
each entry is a list of results for a specific variable binding. We
cannot do this generically since the number of bound variables, and
thus the size of the tuple, will vary. Therefore we must supply an
appropriate unzipping function that works for the correct number
of variables. The exact function to use can be determined by the
preprocessor, that has the necessary meta-information on what vari-
ables are bound. Note that all variables inside the repetition will be
non-linear, so the result of matching a variable in each step of the
recursion will be a list of values. If we only unzip to get a list of
such results for each variable, what we would really get is a list of
lists of values. Thus to get a list of values we should also let the
unzipping function concatenate the results for each variable in the
resulting tuple.

Inside manyMatch the unpacking will be done in two steps. The first
is to simply unzip the list into two lists, one containing all values (v;
from the rules), the other containing all values of bound variables.
In the second step we need to apply the supplied unzipping-and-
concatenating function to the latter list to get the variable values
proper. This new improved manyMatch will thus look like

manyMatch :: Matcher e (a,b) -> ([b] -> c)
-> Matcher e ([a], c)
manyMatch matcher unzipper = do
res <- mMatch matcher
let (vals, vars) = unzip res
vs = unzipper vars
return (vals, vs)

where mMatch is our old definition of manyMatch.

As an example, we show the translation of the pattern (Tel nr)*.
The first step is to translate the subpattern Tel a, which we have
already seen how to do. The new function that we generate will
then look like

match? :: Matcher CMode ([CMode], [TelNr])
match2 = manyMatch matchl unzipl

assuming the matcher for the subpattern is called matchl. The
function unzipl here is simply the concat function, since there
is only one variable bound. To account for the greedy version of
a repetition pattern, *!, we simply flip the arguments to +++ in
manyMatch, which will give a higher priority to the case when we
actually match an element.

Non-empty repetition patterns, +, are very similar to ordinary rep-
etition patterns, the only difference is of course that we make an
initial match before starting the recursion, as shown in

neManyMatch :: Matcher e (a,b) -> ([b] -> c)
-> Matcher e ([a], c)
neManyMatch matcher unzipper = do
resl <- matcher
res <- mMatch matcher
let (vals, vars) = unzip (resl:res)
vs = unzipper vars
return (vals, vs)

6.2.3 Choice and Optional patterns

Choice patterns are slightly trickier to handle because of the way
variables are bound. As we saw in the rules M-CHOICEI and M-
CHOICE2, any variables appearing in the other branch than the one
being matched should be bound to empty lists. This is very difficult
to handle generically since we need access to the meta-information
of variable names. Thus we instead generate the full code for the
choice pattern during translation. As an example we translate the
pattern (Tel nr | Email eaddr). We start by translating the
subpatterns, resulting in two functions that we assume are named
matchl and match2. The code generated for the choice pattern will
be

: Matcher CMode

(Either CMode CMode, ([TelNr], [EAddr]))
match3 = (do (val, (a)) <- matchl
return (Left val, (a, [1)))

match3

+++
(do (val, (b)) <- match2
return (Right val, ([], b)))

where we have tagged the result value of the pattern match with the
respective constructors from the Either type.

The story is very similar for optional patterns, but this time all vari-
ables should be bound to empty lists if no match is done. For the
pattern (Tel nr)? we get

matchd4 :: Matcher CMode (Maybe CMode, [TelNr])
match4 = (return (Nothing, [])) +++
(do (val, (a)) <- matchl
return (Just val, a))

For a greedy optional pattern we would simply switch the argu-
ments to +++, just as for repetition patterns.

6.2.4 Subsequences

The trickiest pattern to implement is subsequence, due to the need
for flattening. As we saw in section 5, flattening is done based on
the type of a subpattern (with respect to some base type for ele-
ments in the input list), which means that the preprocessor must
keep track of these types in order to insert the proper flattening func-
tions. For a pattern (/ (Tel nr)?, (Email eaddr)* /) we get

the following translation, assuming the two subpatterns are trans-
lated into matcher functions matchl and match?2 respectively:

match5 :: Matcher CMode ([CMode], ([TelNr], [EAddr]))
matchb5 = do (vl, (a)) <- matchl
(v2, (b)) <- match2
let v1f = maybe [] (\v —> [v]) vl
v2f = concatMap (\v -> [v]) v2
return (v1f ++ v2f, (a,b))

The value v1 is the result of matchl, i.e. the matcher for (Tel
nr) ?, so it will have type Maybe CMode. To flatten it we use the
built-in Haskell function maybe that takes two arguments, one that
is a default value to return if it encounters a Nothing (in this case
[1), the other a function to apply to a value held by a Just (in this
case the flattening function for a value of the base type). Similarly
v2 comes from match2, so its type will be [CMode]. We flatten it
using the built-in function concatMap that takes a function, applies
is to all elements of a list, and then concatenates the results.

6.2.5 Variable bindings

Finally we turn to the explicit binding operators. Binding a variable
to a value in our matcher means to add that value to the result tu-
ple. Since an explicitly bound variable syntactically appears to the
left of any variables in its subpattern, we add the value in the left-
most position in the tuple, i.e. before those bound in the subpattern.
Thus we know that the values in the result of the top-level matcher
should be bound to variables from left to right in the order they
appear in the pattern. As an example consider the pattern a@ (Tel
nr | Email eaddr). We first translate the subpattern (Tel nr |
Fmail eaddr) into a matcher matchl. The matcher generated for
the variable binding will then be

match? :: Matcher CMode (Either CMode CMode,
(Either CMode CMode, [TelNr], [Eaddr]))
match?2 = do (val, (nr, eaddr)) <- matchl

return (val, (val, nr, eaddr))

If we had instead used non-linear binding, i.e. a@: (Tel nr |
Email eaddr), we would get a list for the returned value, i.e.

match2 :: Matcher CMode
(Either CMode CMode,
([Either CMode CMode], [TelNr], [Eaddr])
match?2 = do (val, (nr, eaddr)) <- matchl

return (val, ([val], nr, eaddr))

6.3 Matching

Now we know how to translate a regular expression pattern into a
top-level matcher function, what is left is to insert and invoke the
generated matcher at the right place to preserve the pattern match-
ing semantics. To this end we use Haskell pattern guards [EPJO0]
that allow us to evaluate a function and pattern match on the result
as part of the original pattern match. The function that we so wish
to evaluate is runMatch applied to our generated top-level matcher
and the input list that we wish to match. For our matcher functions
to be in scope we add them to the where clause of the declaration
that the regular expression pattern appears in. To show a complete
example of the translation of a function declaration we revisit our
function al1Tels defined as

allTels (Person _ [(Tel nr | _)*]) = nr

since it contains several different features of regular expression pat-
terns. The translated version of this function will look like

allTels (Person _ arg0)
| Just (nr) <- runMatch match5 arg0 = nr
where match0 e = case e of
Tel nr —> Just ([nr])
_ —> Nothing
matchl = baseMatch match(
match2 = baseMatch (_ -> Just ())

match3 = (do (val, (nr)) <- matchl
return (Left val, (nr)))
+++
(do (val, ()) <- match2

return (Right val, ([])))
match4 = manyMatch match3 unzipl
match5 = do (vl, (nr)) <- match4
let v1f = concatMap
(either (\v -> [v])
(\v —> [v]))
vl
return (v1f, (nr))

The functions match0 and matchl together correspond to the pat-
tern (Tel nr). Note the list around the returned variable nr sig-
naling that the pattern is matched in a non-linear context. match2
corresponds to the pattern .. Combining these two into a choice
patterns yields (Tel nr | _), which is translated to match3. On
top of that we add a repetition, which gives us match4 when trans-
lated. Finally since the top-level pattern should be matched as a
subsequence, as seen in the rule HM-REGPAT, we translate it into
match5. The actual matching is done in the pattern guard that ap-
plies runMatch to the matcher and the input list. The latter is held
by an automatically generated fresh variable, in this case arg0. Itis
also interesting to note that the actual binding of variables to values
does not happen until runMatch is evaluated. Any mention of vari-
able names in the matcher functions, e.g. nr in match0, are only
there as mnemonic aids to a human reader. We could change all
such names to freshly generated variable names without changing
any semantics.

In Haskell, patterns can appear in numerous places such as func-
tion declarations, case expressions, let expressions, statements
etc. Translating regular expression patterns into vanilla Haskell is
slightly different depending on just where the pattern appears. The
generated matchers will be identical in all cases, but the placement
of them and of the evaluation may differ. We will not go through
these differences in detail, but our implementation handles all cases
correctly. Irrefutable (lazy) patterns also require special care, and
we have yet to implement support for them in full.

7 Related Work

Pattern matching is a well-known and much studied feature of func-
tional languages [Aug85, Wad87, Mar92, Mar94]. It provides the
startingpoint for the work presented in this paper.

Regular expressions have been used in programming for a long
time, mostly for text matching purposes. Perl’s support for regu-
lar expressions is probably one of the most well-known [Perl], but
most mainstream languages, including Haskell, have some library
support for regular expression text matching. Regular expressions
in such libraries are themselves encoded as strings. Matching them
means taking two strings, where one encodes a regular expression,
and match them to each other. This is in some sense very low-

level when compared to our regular expression patterns since there
are no guarantees that regular expressions encoded as strings are
well-formed, and there is no direct way to bind variables to values
during a match. Yet another drawback is of course that such regular
expressions work on strings only, whereas our regular expression
patterns work over lists of any datatype.

The recent trend in XML-centric languages has led to several new
languages with support for regular expression pattern matching
such as XMLambda [MS99], XDuce [HP03] and CDuce [BCF03].
Most similar to ours is probably CDuce, a general purpose XML-
centric programming language. The main focus in this language is
its regular expression types which are used to validate XML doc-
uments. Borrowing from XDuce they also have regular expression
patterns which are tightly coupled with the type system. This al-
lows for very precise type information to be propagated in the right
hand side of a pattern. The main difference with our work is the
close connection with the type system. Our extension is little more
than just syntactic sugar which makes it very easy to implement.

Another recently developed language that features regular expres-
sion patterns is Scala [Scala]. Scala is a multi paradigm language
supporting both object oriented and functional programming. Its
regular expression facility is rather similar to ours but differs at the
following points. Firstly, there is only one variable binding con-
struct which has a context dependent behaviour. Secondly, Scala
has non-greedy operators just as we do but have no greedy coun-
terparts. This can make some patterns awkward to express. Scala’s
regular expression patterns work for arbitrary sequences.

There has been some work in extending Haskell with the full power
of XDuce, called XHaskell [L.S04]. This work focuses on fitting the
type system of XDuce into Haskell and encoding it using Haskell’s
class system. They also have regular expression patterns but these
are intimately coupled with regular expression types and do not
work together with ordinary pattern matching.

8 Future Work

There are several areas where our regular expression patterns ex-
tension can be improved. It is not obvious that our implementation
using a monadic parser is the most efficient approach, on the con-
trary. There has been lots of work on efficient matching of regular
expressions and it is likely that some of these techniques could be
used with our system to make it more efficient.

We will need to devise and implement a type checking algorithm
for our regular expression patterns on top of Haskell’s type check-
ing mechanism. Being able to type check our regular expression
patterns before translating them into vanilla Haskell, as opposed
to our current implementation that first translates and then lets a
Haskell type checker do the work, would, if nothing else, lead to
much improved error messages.

9 Acknowledgement

We would like to thank our shepherd Erik Meijer for his many sug-
gestions which improved the paper enormously. Thanks also to
Karol Ostrovsky and David Sands who gave valueable feedback on
draft versions of this paper. The participants of the Multi Meeting
provided insightful comments when we presented the material in
this paper. Lastly thanks to the anonymous referees for their com-
ments.

This work was partially funded by the Swedish Foundation for
Strategic Research.

10 References

[Aug85] Lennart Augustsson. Compiling Pattern Matching. In
Functional Programming and Computer Architecture,

1985.

[BCF03] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An
XML-Centric General-Purpose Language. In Proceed-
ings of the ACM International Conference on Functional
Programming, 2003.

[EPJOO] Martin Erwig and Simon Peyton Jones. Pattern Guards
and Transformational Patterns. In Haskell Workshop,
2000.

[Fax02] Karl-Filip Faxén. A Static Semantics for Haskell. Jour-
nal of Functional Programming, 12(4-5), 2002.

[Fri04] A. Frisch. Regular Tree Language Recognition with
Static Information. In 3rd IFIP International Conference
on Theoretical Computer Science, 2004.

[HMO03] Haruo Hosoya and Makoto Murata. Boolean Operations
and Inclusion Test for Attribute-Element Constraints. In
Eighth International Conference on Implementation and
Application of Automata, volume 2759 of Lecture Notes
in Computer Science, pages 201-212. Springer-Verlag,
2003.

[HPO3] Haruo Hosoya and Benjamin C. Pierce. XDuce: A Typed
XML Processing Language. ACM Transactions on Inter-

net Technology, 2(3):117-148, 2003.

[HVPOO] Haruo Hosoya, Jerome Vouillon, and Benjamin C.
Pierce. Regular Expression Types for XML. In Proceed-
ings of the ACM International Conference on Functional
Programming, 2000.

[Lev03] Michael Y. Levin. Compiling Regular Patterns. In Pro-
ceedings of the ACM International Conference on Func-
tional Programming, pages 65-78, 2003.

[LS04] Kenny Zhuo Ming Lu and Martin Sulzmann.
XHaskell: Regular Expression Types for Haskell.
http://www.comp.nus.edu.sg/ sulzmann/, 2004.

[Mar92] Luc Maranget. Compiling Lazy Pattern Matching. In
Proc. of the 1992 conference on Lisp and Functional
Programming. ACM Press, 1992.

[Mar94] Luc Maranget. Two Techniques for Compiling Lazy Pat-
tern Matching. Research report 2385, INRIA, 1994,

[MS99] Erik Meijer and Mark Shields. XMA: A Functional Lan-

guage for Constructing and Manipulating XML Docu-
ments. (Draft), 1999.

[MvVO01] Erik Meijer and Danny van Velzen. Haskell Server
Pages. In Graham Hutton, editor, Electronic Notes
in Theoretical Computer Science, volume 41. Elsevier,
2001.

[Perl] www.perl.org.

[Scala] Martin Odersky et.al. The Scala Programming Lan-
guage. http://scala.epfl.ch/.

[Wad87] Philip Wadler. The Implementation of Functional Pro-
gramming Languages, chapter Efficient Compilation of
Pattern Matching. Prentice Hall, 1987.

