
Regular Expression PatternsNiklas Brobergd00nibro�dtek.halmers.se Andreas Farred00farre�dtek.halmers.se Josef Svenningssonjosefs�s.halmers.seChalmers University of Tehnology
AbstratWe extend Haskell with regular expression patterns. Regular ex-pression patterns provide means for mathing and extrating datawhih goes well beyond ordinary pattern mathing as found inHaskell. It has proven useful for string manipulation and for pro-essing strutured data suh as XML. Regular expression patternsan be used with arbitrary lists, and work seamlessly together withordinary pattern mathing in Haskell.Our extension is lightweight, it is little more than syntati sugar.We present a semantis and a type system, and show how to imple-ment it as a preproessor to Haskell.Categories and Subjet DesriptorsD.3.2 [Language Classi�ations℄: Appliative (funtional) lan-guages; D.3.3 [Language Construts and Features℄: PatternsGeneral TermsLanguagesKeywordsRegular expressions, pattern mathing, Haskell1 IntrodutionPattern mathing as found in many funtional languages is a niefeature. It allows for lear and suint de�nitions of funtions byases and works very naturally together with algebrai data types.But sometimes ordinary pattern mathing is not enough. A distintfeature of this form of pattern mathing is that it only examines theoutermost onstrutors of a data type. While this allows for ef�ientimplementations it is also a rather limited onstrut for analysingand retrieving data.
Permission to make digital or hard opies of all or part of this work for personal orlassroom use is granted without fee provided that opies are not made or distributedfor pro�t or ommerial advantage and that opies bear this notie and the full itationon the �rst page. To opy otherwise, to republish, to post on servers or to redistributeto lists, requires prior spei� permission and/or a fee.ICFP'04, September 19�21, 2004, Snowbird, Utah, USA.Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

A well-known example of a onstrut that provides deeper andmore omplex retrievals are regular expressions for strings. Whilethis is not a very ommon feature among programming languages itis one of the key onstruts that have made Perl so popular. Regularexpressions are ideal for various forms of string manipulation, textextration et, however, they remain a very domain spei� and ad-ho onstrut targeted only for one partiular data struture, namelystrings.On another axis we �nd the reent trend in XML entri lan-guages. The �rst attempts at suh languages used the ordinary pat-tern mathing faility of funtional languages to analyze XML frag-ments [MS99℄. This was found to be too restritive, so in order tobe able to express more sophistiated patterns and transformationson XML fragments the notion of regular expression patterns wereinvented. Examples of languages inluding this feature are XDue[HP03℄ and CDue [BCF03℄. While this is a great boost for theXML programmer, in the ase of XDue it only works for XMLdata and not for any other data. Furthermore those pattern math-ing onstruts are losely tied to rather sophistiated type systemswhih makes them somewhat heavyweight.In this paper we extend Haskell with regular expression patterns.Our extension has the following advantages:� Our proposal is lightweight. It is hardly more than syntatisugar. Most notably it does not require any omplex additionsto the type system.� It works for arbitrary lists. It is a general onstrut and nottied to a spei� data type for elements. But it should be notedthat it works in partiular for strings sine strings are just listsof haraters in Haskell.� It �ts seamlessly with the ordinary pattern mathing failityfound in Haskell.In this paper we give a detailed semantis and type system of reg-ular expression patterns. The extension has been implemented as apreproessor to Haskell, and we sketh the implementationWhile we have hosen to fous on Haskell in this paper there arevery little Haskell spei� details. We are quite on�dent that ourproposal ould be adapted to any similar funtional language.In reent years a number of papers have been devoted to de-veloping ef�ient pattern mathing and ef�ient regular mathing[Fri04, HM03, Lev03℄. This is not the onern of this paper. Al-though ef�ieny is an important onsideration we fous only onlanguage design.

Another issue that we do not address is the question of overlap-ping and exhaustive patterns. We are on�dent that the existingtehniques developed for XML entri languages will do the jobniely [HVP00℄. Note also that in general it is undeidable to hekwhether patterns are overlapping or non-exhaustive in Haskell be-ause of guards, so in our setting it is something of a non-issue.2 Regular expression patterns by example2.1 Ordinary pattern mathingAssume that we have the following datatype representing an entryin an address book.data Contat = Person Name [ContatMode℄data ContatMode = Tel TelNrWe an assume that the types Name and TelNr are type synonymsfor String. The reason for not inlining TelNr in Contat is be-ause we will later want to add other means of ontat, e.g. emailaddresses, to our address book.Now onsider two different funtions that extrat information froma ontat; firstTel will return the �rst TelNr in the list of ontatmodes assoiated with a ontat. lastTel will analogously returnthe last assoiated TelNr. The �rst is easy to write using simplepattern mathing on a ontat:firstTel :: Contat -> TelNrfirstTel (Person _ (Tel nr : _)) = nrfirstTel (Person _ [℄) = error "No Tel"The seond funtion, although its funtionality is very similar tofirstTel, annot be written in the same simple way. We mustinstead resort to reursion and an auxiliary funtion to step throughthe list until we reah the end.lastTel :: Contat -> TelNrlastTel (Person _ nrs) = aux nrswhere aux [℄ = error "No Tel"aux [Tel nr℄ = nraux (_:nrs) = aux nrsAlthough the two funtions have very similar funtionality, onlyone of them an be written using diret pattern mathing. Why isthis so? The answer lies, of ourse, in the list datatype. A (non-empty) list has a head and a tail, so extrating the �rst element iseasy. To get to the last element however, we must reursively lookat the tail for its last element. In other words, we must �rst mathon the struture of the list, before being able to look at the elements.Haskell has a onstrut for mathing diretly on the elements of alist, but only for �xed-size lists. If we know that a ontat never hasmore than three phone numbers, we ould write lastTel as (wewill ignore the erroneous ase from now on)lastTel (Person _ [Tel nr℄) = nrlastTel (Person _ [_, Tel nr℄ = nrlastTel (Person _ [_, _, Tel nr℄ = nrClearly this is not a very good solution. Even for this very smalltask we must write far more than we are omfortable with, andfor larger lists or more omplex datatypes this approah quiklybeomes infeasible. What we need is a way of saying �math a listontaining a Tel, preeded by any number of other elements�. Thisis where regular expression patterns enter the piture.

2.2 Regular expression patternsMathematially a regular expression de�nes a regular language,where language in this ontext means a (possibly in�nite) set ofwords, and eah word is a sequene of elements taken from somealphabet. We an use a regular expression as a validator and try tomath an arbitrary word against it to �nd out if the word belongs tothat regular language or not. The basi regular expression operatorsare repetition, onatenation and hoie. Conatenation is straight-forward, ab means a followed by b. Choie (ajb) means either a orb. Repetition a� means zero or more ourrenes of a. Repetitionan be de�ned using hoie and reursion as a� = ejaa� where edenotes the empty sequene. As an example, onsider the regularexpression e= a� jb�. The language de�ned by e, denoted L(e), isthe set of all words onsisting of only a's or only b's, inluding theempty word. We have that aa 2 L(e), bbb 2 L(e), but ab =2 L(e). Inother words, aa and bbb both math the regular expression e, butab doesn't.This notion of treating a regular expression as a validator is verysimilar to the onept of pattern mathing in Haskell. We take aHaskell value (a word) and a pattern (a regular expression) and tryto math them, getting a yes or no as the result. Combining thesetwo onepts is straight-forward, yielding what we all regular ex-pression patterns. As noted, a regular expression an be mathedagainst a sequene of elements from some alphabet. Lifting thisidea into Haskell, a regular expression pattern an be mathedagainst a list of elements of some datatype. When we speak of asequene, we mean a sequene of elements in the abstrat sense. Inontrast, when we speak of a list, we mean the list datatype that isused to enode sequenes in Haskell.Returning to our lastTel funtion, we an now easily write it witha single pattern math by using a repetition regular expression pat-tern:lastTel (Person _ [_*, Tel nr℄) = nrWe write onatenation using ommas as with ordinary Haskelllists, and we denote repetition with *. As we an see from the exam-ple, regular expression patterns are atually more �exible than bareregular expressions. A regular expression is built from elementsof some alphabet, the same alphabet that the words it may mathare built from. A regular expression pattern on the other hand isbuilt from patterns over elements of some datatype, allowing usto use onstruts like wildards and pattern variables. We use theterm regular expression pattern both for the subpatterns (repetition,hoie et) and for a top-level list pattern that ontains the former.It should be lear from the ontext whih we are referring to.2.3 Repetition and AmbiguitiesLet us see what else we an do with regular expression patterns.First, as promised, we extend our datatype with email addresses.data Contat = Person Name [ContatMode℄data ContatMode = Tel TelNr | Email EAddrIf we only have ordinary pattern mathing we annot even writefirstTel without resorting to reursion and auxiliary funtions.firstTel (Person _ modes) = aux modeswhere aux (Tel nr : _) = nraux (_ : modes) = aux modesUsing a regular expression pattern, we an write it in one go:

firstTel (Person _ [(Email _)*, Tel nr, _*℄) = nrThe straight-forward intuition of the pattern above is that the �rstTel in the list is preeded by zero or more Emails (but no Tels), andany number of other elements may follow it. We an easily writelastTel in a similar way aslastTel (Person _ [_*, Tel nr, (Email _)*℄) = nrBut seeing these two de�nitions leads to an interesting question:What happens if we write the funtionsomeTel :: Contat -> TelNrsomeTel (Person _ [_*, Tel nr, _*℄) = nri.e. where the Tel in question may both be preeded and su-eeded by other Tels? Clearly this pattern is ambiguous, sine if wemath it to e.g. Person "Niklas" [Tel 12345, Tel 23456,Tel 34567℄ we an derive a math for either of the three TelNrs tobe bound to nr, by letting the �rst *math either 0, 1 or 2 Tels. Todisambiguate suh issues, we adopt the poliy that a repetition pat-tern will always math as few elements as possible while still lettingthe whole pattern math the given list. In standard terminology, ourrepetition regular patterns are non-greedy. This poliy means thatsomeTel above will be exatly the same as our firstTel funtion,sine the �rst * will now try to math as few elements as possible.In some ases though, suh as lastTel, we want the greedy behav-ior. To this end we let the programmer speify if a repetition patternshould be greedy by adding an exlamation mark (!) to it, e.g. inthe following de�nition of lastTel:lastTel (Person [_*!, Tel nr, _*℄) = nr2.4 Choie patternsNow that we've seen the power of repetition patterns, we turnour attention to hoie patterns. Assume that we want a funtionallTels that returns a list of all telephone numbers assoiated witha ontat. Without regular expression patterns we must one moreresort to reursion and auxiliary funtions.allTels :: Contat -> [TelNr℄allTels (Person _ modes) = aux modeswhere aux [℄ = [℄aux (Tel nr : modes)= nr : aux modesaux (_ : modes) = aux modesUsing a ombination of repetition and hoie, we an write it asallTels (Person _ [(Tel nr | _)* ℄) = nrThe intuition here is that eah element in the list of ontat modesis either a Tel or something else (). Every time that we enountera Tel, we should inlude the assoiated TelNr in the result. Asthe example shows we an ahieve this aumulation of TelNrswith a single pattern variable. Sine the intuition of a repetitionpattern is that its subpattern, i.e. the pattern it enloses, should bemathed zero or more times, the same must be true for any patternvariables inside suh a pattern. For eah repetition, suh a variablewill math a new value. Clearly the only sensible thing to do is tolet that variable bind to a list of all those mathed values.This treatment of variables breaks one aspet of Haskell's linearityproperty � that the ourrene of a variable in a pattern will bind

that variable to exatly one value of the type that it mathes. Wewill therefore all suh a variable non-linear. A non-linear variablewill be bound to a list of values that it mathes, in the order that theywere mathed (i.e. the order in whih they appeared in the mathedlist). When we speak of a non-linear binding, we mean a bindingof a non-linear variable to a list of values. We will also use theterms non-linear ontext to mean a ontext in whih linear variablesannot appear, and non-linear patterns, by whih we mean patternswhose subpatterns will always be mathed in a non-linear ontext.By the example above we see that a repetition pattern is a non-linear pattern, and onsequently that the variable nr appears in anon-linear ontext. Similarly a hoie pattern is also non-linear.If we remove the repetition from the regular expression pattern inallTels we get the pattern [Tel nr| ℄ for mathing a list of ex-atly one element. If that element is a Tel we will have a value tobind to nr, but if it is an Email we have none! Thus we still an-not guarantee that a variable gets one value; in this ase nr will bebound to a list with zero or one element.The funtion allTels shows how regular expression patterns anbe used for �ltering a list based on pattern mathing. We an goone step further and do partitioning, e.g.allTelsAndEmails :: Contat -> ([TelNr℄,[EAddr℄)allTelsAndEmails (Person _[(Tel nr | Email eaddr)* ℄) = (nr, eaddr)A hoie pattern an also be ambiguous if any of its subpatternsoverlap, as insillyAllTels :: Contat -> ([TelNr℄,[TelNr℄)sillyAllTels (Person _ [(Tel nr | Tel mr | _)* ℄)= (nr, mr)To disambiguate this we adopt a �rst-math poliy, muh like thatof Haskell pattern mathing. Thus we �rst hek if the �rst sub-pattern mathes, and onsider the k:th subpattern only if no patterni < k mathes. Note that we allow hoie patterns to ontain morethan two subpatterns. Choie patterns are right assoiative so forexample [(Tel nr | Tel mr |)* ℄ is parenthesised like [(Tel nr | (Tel mr |))* ℄. Another interesting thing abouthoie patterns is that we allow a variable to appear in both subpat-terns assuming that it binds to values of the same type. For instane,if our datatype for modes of ontat was de�ned asdata ContatMode = Home TelNr | Work TelNrwe ould de�ne allTels asallTels (Person _ [(Home nr | Work nr)*℄) = nrVariables in hoie patterns are still non-linear even if they appearin all subpatterns, so the funtionsingleTel (Person _ [(Home nr | Work nr)℄) = nrwill have the type Contat -> [TelNr℄.2.5 Subsequenes and option patternsRegular expressions allow grouping of elements and subexpres-sions using parentheses. For example, the regular expression e =(ba)� will math the words ba, baba et. To add this feature to ourregular expression patterns we need to introdue some new syntax,sine using ordinary parentheses in Haskell will denote tuples, as in

wrongEveryOther [(_,b)*℄ = bWe (somewhat arbitrarily) hoose to denote subsequenes with (/and /), so a orret funtion that piks out every other element froma list an be written aseveryOther :: [a℄ -> [a℄everyOther [(/_, b/)*℄ = bThere's a problem with the above de�nition though; it works forlists of even length only. Surely we want everyOther to work forany list. To ahieve this we ould add another delaration to the oneabove likeeveryOther [(/_, b/)*, _℄ = bto ath the ases where the list is of odd length too. But ouldn'twe write these two ases as a single pattern? Indeed we an, usinga hoie patterneveryOther [(/_, b/)*, ((/ /) | _)℄where (/ /) denotes the empty subsequene, e. However, this pat-tern is so ommon that regular expressions de�ne a separate oper-ator, ?, to denote optional regular expressions. The de�nition of ?is e?= eje, and by lifting this to regular expression patterns we anwrite everyOther more ompatly aseveryOther [(/_, b/)*, _?℄ = bObviously, optional patterns are non-linear sine they an be de-�ned in terms of hoie patterns whih are non-linear. Just as for arepetition pattern, an optional pattern is non-greedy by default. Wealso de�ne greedy optional patterns by ?! in analogy with greedyrepetition patterns.2.6 Non-empty repetition patternsThere is one more operator to disuss, namely + that is used to de-note non-empty repetition. For instane we might require all on-tats to have at least one mode of ontat registered, either a tele-phone number or an email, otherwise it is an error. To enfore thiswe may want to de�ne allTelsAndEmails from above asallTelsAndEmails(Person _ [(Tel nr | Email eaddr),(Tel nrs | Email eaddrs)*℄)= (nr ++ nrs, eaddr:eaddrs)Using + we an de�ne this more ompatly asallTelsAndEmails (Person _ [(Tel nr | Email eaddr)+℄)= (nr, eaddr)Modulo variables bound, p+ � pp�. It is non-linear and non-greedy just like *, and there is a greedy ounterpart +!.2.7 Variable bindings and their typesSine we an use any Haskell pattern inside regular expression pat-terns, we an in partiular use pattern variables to extrat valuesfrom the list that we math against, as we have seen in various ex-amples already. Haskell also de�nes a way to expliitly bind valuesto a variable using the � operator. E.g. in the delarationallCModes :: Contat -> [ContatMode℄allCModes (Person _ all�[(Tel _ | Email _)+℄) = all

the variable all will be bound to the (non-empty) list ofContatModes assoiated with a ontat. This is a very useful fea-ture to have for regular expression patterns as well, for instane wemay want to write a funtion that piks the �rst two elements froma list astwoFirst :: [a℄ -> [a℄twoFirst [a�(/_, _/), _*℄ = aHowever, adding this feature raises some interesting questions.Firstly, what will the type of a variable bound to a regular expres-sion pattern be? For a subsequene it seems fairly obvious that itwill have a list type, but what about repetitions, hoies and op-tional patterns? To this issue there is no obvious right answer, oneway might be to let a variable be bound to all elements mathed bythe subpattern in analogy with impliitly bound variables. We havehosen a slightly different approah in whih we assign differenttypes to patterns to mirror the intuition behind them.Subsequenes and repetition patterns will both have list typessine they represent sequenes. There's a differene between themthough; a subsequene is just what the name implies, a subsetionof the original sequene. Thus a variable bound to it will alwayshave the same type as the input list, i.e. a list of elements. A rep-etition pattern on the other hand is a repetition of some subpattern,and so it will have the type of a list of that subpattern. For hoiepatterns we make use of Haskell's built-in Either type de�ned asdata Either a b = Left a | Right bBy using this type we an allow the left and right subpatterns of ahoie pattern to have different types, for instanesingleCMode :: [ContatMode℄-> Either ContatMode ContatModesingleCMode [a�(Tel _ | Email _)℄ = amaybeSingleTel :: [ContatMode℄-> Either ContatMode [ContatMode℄maybeSingleTel [a�(Tel _ | _*)℄ = aSimilarly for optional patterns we use another built-in Haskell type:data Maybe a = Nothing | Just aso if we write a funtionsingleOrNoTel [(Email _)*,a�(Tel _)?,(Email _)*℄ = ait will have the type [ContatMode℄ -> Maybe ContatMode.One way to think about this is to see the regular expression patternoperators as speial data onstrutors. In an analogy with ordinaryHaskell, we don't expet a to have the same type in the two usesa�(Just) and (Just a�). Nor do we expet the a in a�(?) tohave the same type as the a in (a�)?.The seond issue onerns linear vs. non-linear binding. We havealready seen that impliit bindings, i.e bindings that arise from theuse of ordinary pattern variables, are ontext dependent; in linearontext they get the ordinary types, whereas in non-linear ontextthey get list types. This ontext dependene unfortunately makes iteasy for the programmer to make mistakes, sine it isn't lear justby looking at a variable in the pattern what type it will have. Weannot do anything about impliit bindings, but we an avoid thesame problem for expliit binding. Therefore we let the ordinary� operator signify linear expliit binding, the only kind available

in ordinary Haskell. For non-linear expliit binding we introdue anew operator �: (read �as ons� or �aumulating as�). The formermay not appear in non-linear ontext, whereas the latter may appearanywhere inside a regular expression pattern. Their differenes areshown by the following examples:[a�(Tel _) , _*℄ => a :: ContatMode[a�(Tel _)* , _*℄ => a :: [ContatMode℄[(Tel a�_) , _*℄ => a :: TelNr[(Tel a�_)* , _*℄ => Not allowed![(Tel a�:_)*, _*℄ => a :: [TelNr℄We an de�ne the semantis of impliit bindings in terms of ex-pliit bindings. In linear ontext we have that a pattern variable ais equivalent to the pattern a� . This an be seen in the example[(Tel a), *℄ whih is learly equivalent to [(Tel a�), *℄.In non-linear ontext, a is equivalent to a�: , as in the examples[(Tel a)*, *℄ and [(Tel a�:)*, *℄.2.8 Further examplesNow that we've seen all the basi building bloks that our regularexpression patterns onsist of, let us put them to some real use.Traditionally regular expressions have been used in programminglanguages for text mathing purposes, and ertainly our regular ex-pression patterns are well suited for this task. As an example, as-sume we have a spei�ation of a simple options �le. An option hasa name and a value, written on a single row, where name and valueare separated with a olon and a whitespae. Different options arewritten on different lines. Here are the ontents of a sample options�le:author: Niklas Brobergauthor: Andreas Farreauthor: Josef Svenningssontitle: Regular Expression Patternssubmitted: ICFP 2004A simple parser for suh option �les an be written using a regularexpression pattern asparseOptionFile :: String -> [(String,String)℄parseOptionFile[(/ names�:_*, ':', ' ', vals�:_*, '\n' /)*℄= zip names valswhere zip is a funtion that takes two lists and groups the elementspair-wise.XML proessing is another area that greatly bene�ts from regu-lar expressions, sine �proper pattern mathing on XML fragmentsrequires ... mathing of regular expressions� [MvV01℄. Indeed sev-eral reent XML-entri languages (XDue, CDue) inlude regu-lar expressions as part of their pattern mathing failities.As an example we enode XML in Haskell using a simple datatypedata XML = Tag String [XML℄| PCDATA StringAn XML fragment is either a Tag, e.g. <P> ... </P>, whih hasa name (a String) and a list of XML hildren, or it is PCDATA (XMLlingo for a string inside tags). This model is of ourse extremelysimpli�ed, we've left out anything that will not diretly add any-thing to our example, most notably XML attributes. Now assume

that we have a simple XML email format, where a sample emailmessage in this format might look like:<MSG><FROM>d00nibro�dtek.halmers.se</FROM><RCPTS><TO>d00farre�dtek.halmers.se</TO><TO>josefs�s.halmers.se</TO></RCPTS><SUBJECT>Regular Expression Patterns</SUBJECT><BODY><P>Regular expression patterns are useful</P></BODY></MSG>whih would be enoded in our XML datatype asTag "MSG" [Tag "FROM" [PCDATA "d00nibro�dtek.halmers.se"℄,Tag "RCPTS" [Tag "TO" [PCDATA "d00farre�dtek.halmers.se"℄,Tag "TO" [PCDATA "josefs�s.halmers.se"℄℄,Tag "SUBJECT"[PCDATA "Regular Expression Patterns"℄,Tag "BODY" [Tag "P"[PCDATA "Regular expression patterns are useful"℄℄℄We an write a funtion to onvert messages from this XML formatinto the standard RFC822 format using regular expression patterns:xmlToRf822 :: XML -> StringxmlToRf822(Tag "MSG" [Tag "FROM" [PCDATA from℄,Tag "RCPTS" [(Tag "TO" [PCDATA tos℄)+℄,Tag "SUBJECT" [PCDATA subjet℄,Tag "BODY" [(Tag "P" [PCDATA paras℄)*℄℄) = onat["From: ", from, rlf,"To: ", onat (intersperse ", " tos),rlf,"Subjet: ", subjet, rlf, rlf,onat (intersperse rlf paras), rlf℄where rlf = "\r\n"3 SyntaxThe previous setion has gone over all of regular expression pat-terns by example. This setion starts the formal treatment by givinga grammar for the syntax, whih an be seen in �gure 1. We re-fer to the nonterminal for Haskell's ordinary patterns as pattern andextend it with a new prodution for regular expression patterns.The onrete syntax is quite lose to that of e.g. Perl [Perl℄ orCDue [BCF03℄ with the notable exeption that we have non-greedy patterns as default. An extra exlamation mark indiatesgreediness.

pattern! : : :j '[' regpat1 : : : regpatn '℄'regpat ! patternj regpat '*'['!'℄j regpat '+'['!'℄j regpat '?'['!'℄j regpat ` j ` regpatj '(/' regpat1 : : :regpatn '/)'j '(' regpat ')'j var '�' regpatj var '�:' regpatFigure 1. Regular expression pattern syntaxOrdinary Haskell patterns are regular expressions patterns. The op-erators are repetition (*), non-empty repetition (+) and option (?).Furthermore there are hoie patterns indiated by a vertial barand subsequenes are enlosed in subsequene brakets. Regularexpression patterns an be enlosed in parenthesis. The last twoprodutions are for linear and non-linear variable bindings. Pre-endene of the operators is as follows: *, +, ?, *!, +! and ?!binds strongest. They are followed by hoie patterns whih arealso right assoiative. Lastly we have � and �: whih bind weak-est. All onstruts in regular expression patterns bind stronger thanonstrutor appliation.4 SemantisIn this setion we turn to the formal semantis for regular expres-sion patterns. Our semantis divides natually into two parts; one forlinear and one for non-linear patterns. The reason for this divisionis that variable bindings are treated differently.4.1 Struture of semantisWe give the semantis as an all-math semantis. This leads to pos-sibly ambiguous mathes, the same list an be mathed in many dif-ferent ways. Sine this may affet how variables are bound to theirvalues we need to disambiguate our rules. We follow the approahtaken by Hosoya and Piere [HP03℄ and introdue an ordering onthe rules indiating whih rule will have preedene when severalrules an math. The order is given by numbers in the name ofthe rules, where lower numbers have higher preedene. Intuitivelythis means that when building the derivation tree for a math, onemust always try to use the rule with the highest preedene �rst,and hoose the other rule only if hoosing the �rst rule annot leadto a math.Before we begin with the semantis we will de�ne some oneptswhih will be used in our explanation of the semantis. We willuse sets of variable bindings to map variables to values. A variablebinding is denoted x 7! v. In repetition patterns we will need tomerge sets of variable bindings with overlapping domains. We use℄ to this end and de�ne it as follows:fx1 7! v1; : : : ;xn 7! vng℄fx1 7! vs1; : : : ;xn 7! vsng=fx1 7! v1++vs1; : : : ;xn 7! vn++vsngWhen giving a semantis for subsequene patterns we will use atype indexed funtion �atten to merge lists of values. It is de�nedas follows:

f lattenT (v) = [v℄f latten[t℄([℄) = [℄f latten[t℄(v;vs) = f lattent(v)++ f latten[t℄(vs)f lattenMaybet(Nothing) = [℄f lattenMaybet(Just v) = f lattent(v)f lattenEither t1t2(Le f t v) = f lattent1(v)f lattenEither t1t2(Right v) = f lattent2(v)We will refer to the set of bound variables in a pattern p as4.2 Semantis for linear patternsThe semantis for linear regular expression patterns an be foundin �gure 2. Due to spae reasons we only give a few of the rules aswe explain below.The judgement for mathing linear patterns is denoted l 2l p !v;b; l0. It should read as �l is mathed by a pattern p yielding avalue v, a set of variable bindings b, and a remainder list l0 �. l andl0 range over Haskell lists, where l is the list we wish to math andl0 is a (possibly empty) suf�x of l that wasn't mathed.First of all we have a rule HM-REGPAT that extends Haskell's pat-tern mathing semantis, denoted 2h, with regular expression pat-terns. It does so by performing a linear math.l 2l (=p1 : : : pn=)! l;b; [℄l 2h [p1 : : : pn℄! bHere we require that the remainder list is empty i.e. that the wholeinput list is suesfully mathed. This requirement together with theordering on the rules determines whih derivation must be hosen.The base rule, LM-BASE, is that where the pattern to math is anormal Haskell pattern. In this ase we piggy-bak on Haskell'snormal mehanism for binding variables from patterns.e 2h p! be : l 2l p! e;b; lApart from ordinary Haskell patterns there are two ways that we anbind variables to values at toplevel, given by the rules LM-AS andLM-ACCAS. The � operator simply binds the variable to a value,whereas the �: operator binds the variable to a list ontaining thevalue. The behavior of �: learly makes more sense in a non-linearontext, where the number of bound values may vary, but sine itis harmless to do so we have hosen to allow it to appear in linearontexts as well.For subsequenes we simply math eah pattern in the sequenein order, as stated by the rule LM-SEQ. The values produed aftermathing are onatenated and the resulting disjoint sets of variablebindings are merged. The value yielded by mathing a subsequeneshould always be a list of elements, so before we an onatenatethe values of the sub-mathes we need to �atten these values tosimple lists. Here we need to use the typing relation on patternsde�ned in setion 5. The typing relation is de�ned relative to somebase type T that during the atual mathing will be instantiated tothe type of the elements in the mathing list.Mathing a non-linear pattern in a linear ontext is idential tomathing it in a non-linear ontext. This is exempli�ed by the rule

LM-BASE e 2h p! be : l 2l p! e;b; l LM-AS l1 2l p! v1;b1; l2l1 2l x�p! v1;fx 7! v1g[b1; l2 LM-ACCAS l1 2l p! v1;b1; l2l1 2l x� : p! v1;fx 7! [v1℄g[b1; l2LM-SEQ l1 2l p1 ! v1;b1; l2 : : : ln 2l pn ! vn;bn; l fl1 2l (=p1 : : : pn=)! g1++ : : :++gn;b1[�� �[bn; l f gi = f lattent(vi); pi : t LM-STAR l1 2 p� ! v;b; l2l1 2l p� ! v;b; l2HM-REGPAT l 2l (=p1 : : : pn=)! l;b; [℄l 2h [p1 : : : pn℄! bFigure 2. Semantis for linear regular expression patternsLM-STAR. The rules for the rest of the operators are similar andare left out due to spae restritions.4.3 Semantis for non-linear patternsThe relation for mathing in a non-linear ontext, denoted l 2 p!v;b; l0 (the only differene in syntax is that we drop the subsripton 2), is similar to the relation for linear ontexts. It differs in tworuial aspets, namely variable bindings and that we handle non-linear patterns. The rules an be found in �gure 3.The base rule M-BASE is one again that where the pattern to mathis an ordinary Haskell pattern. Sine the mathing now takes plaein a non-linear ontext, the values of variables being bound whilemathing this pattern are put into lists instead of just being boundoutright. Binding variables expliitly in a non-linear ontext anonly be done using the �: (aumulating as) operator that binds itsvariable argument to a list of the value mathing its pattern argu-ment, as shown in the rule M-ACCUMAS.The rule for mathing a subsequene, M-SEQ, is idential to LM-SEQ exept that subpatterns in the sequene are also mathed in anon-linear ontext.The rules for a repetition pattern, M-STAR1 and M-STAR2, givea non-greedy semantis to the operator by giving the rule for notmathing higher preedene than the rule for atually mathing thesubpattern. The �rst rule simply doesn't try to math anything,whereas the seond rule mathes the given subpattern p one andthen reurses to obtain more mathes. The value obtained frommathing p is then prepended to the result values of the reursiveseond premise. Similarly the values of bound values are prependedto the bindings from the reursive all. To get a greedy semantisin the rules M-GSTAR1 and M-GSTAR2 we simply swap the orderof the rules to give preedene to preforming a math.The non-empty repetition pattern operator p+ is de�ned as p+ �pp�, similarly its greedy ounterpart p+!� pp�!, and the rules M-PLUS and M-GPLUS an easily be derived from these fats.The rules M-OPT1 and M-OPT2 for optional patterns are very sim-ilar to the rules for repeating patterns, only that no reursion toobtain more mathes is done. The values returned by an optionalpattern are of the Haskell Maybe type for optional values.For hoie regular expression patterns we return values of theHaskell Either type to indiate whih hoie was taken. In therules M-CHOICE1 and M-CHOICE2 we give preedene for math-ing the left pattern. Furthermore all variables ouring only in thebranh not taken are assigned empty lists.

5 Well-formed regular expression patternsWe now turn our attention to the stati semantis of regular ex-pression patterns. We will refer to the stati semantis as well-formedness of regular expression patterns.There are two reasons why we need a stati semantis. The �rstreason onerns where and how a variable is bound in a pattern. Inordinary patterns a variable may appear only one, with the notableexeption for or-patterns found in Oaml and SML/NJ. In these lan-guages all alternatives must bind exatly the same set of variables.We have similar yet more liberal restritions on variable bindings.Bound variables must not neessarily be bound in all alternatives ina hoie pattern.The seond reason is that we need to ensure that the types of thebound variables are orret. The same variable should in partiularhave the same type for all its ourrenes in a hoie pattern.To express the well-formedness of a regular expression pattern weuse the judgment D `l p whih says that a (linear) regular expres-sion pattern p is well-formed in the typing ontext D. The typingontext D gives types to the variables bound in the pattern. Whenheking the validity of patterns in a non-linear ontext we use thejudgment D ` p whih is similar to the judgment for linear patterns.We will also refer to the well-formedness of patterns in Haskell,using the judgment D `h p. We refer to Faxén's paper for a statisemantis of Haskell patterns [Fax02℄. We require that D `h p anonly be derived if p binds exatly the variables in the typing on-text D. Finally we will need a notion of types for regular expressionpatterns. We use the judgment p :: t to say that the pattern p has thetype t.Cheking the well-formedness of a regular expression pattern asan ordinary pattern in the host language is done using the followingrule. Is is noteworthy that we split the typing ontext. All the typingontexts Di must bind different names. We use this to enfore thata variable may only be bound one.D1 `l p1 : : : Dn `l pnD1 : : :Dn `h [p1 : : : pn℄ Di \D j = /0 8i j:i 6= jThe rules for establishing well-formedness of linear patterns an befound in �gure 4. In this setion we only present the rules for non-greedy operators as the rules for greedy ounterparts are exatly thesame. The only interesting thing to note about the rules for �,+ and? is the fat that when heking their subpatterns we are in a non-linear ontext and therefore use the orresponding judgment for thepremises. The rule for sequenes is reminisent of that for regularexpression patterns in the ontext of ordinary patterns explainedabove.

M-BASE e 2h p! be : l 2 p! e;s; l s= fx 7! [v℄j x 7! v 2 bg M-ACCAS l1 2 p! v1;b1; l2l1 2 x�:p! v1;fx 7! [v1℄g[b1; l2M-SEQ l1 2 p1 ! v1;b1; l2 : : : ln 2 pn ! vn;bn; l fl1 2 (=p1 : : : pn=)! g1++ : : :++gn;b1[�� �[bn; l f gi = f lattent(vi);vi :: tM-STAR1 l 2 p� ! [℄;b; l b= fx 7! [℄j x 2 vars(p)g M-STAR2 l1 2 p! v1;b1; l2 l2 2 p� ! v2;b2; l3l1 2 p� ! v1 : v2;b1 ℄b2; l3M-GSTAR1 l1 2 p! v1;b1; l2 l2 2 p�!! v2;b2; l3l1 2 p�!! v1 : v2;b1℄b2; l3 M-GSTAR2 l 2 p�!! [℄;b; l b= fx 7! [℄j x 2 vars(p)gM-PLUS l1 2 p! v1;b1; l2 l2 2 p� ! v2;b2; l3l1 2 p+ ! v1 : v2;b1 ℄b2; l3 M-GPLUS l1 2 p! v1;b1; l2 l2 2 p�!! v2;b2; l3l1 2 p+!! v1 : v2;b1℄b2; l3M-OPT1 l 2 p?! Nothing;b; l b= fx 7! [℄j x 2 vars(p)g M-OPT2 l1 2 p! v1;b1; l2l1 2 p?! (Just v1);b1; l2M-GOPT1 l1 2 p! v1;b1; l2l1 2 p?!! (Just v1);b1; l2 M-GOPT2 l 2 p?!! Nothing;b; l b= fx 7! [℄j x 2 vars(p)gM-CHOICE1 l1 2 p1 ! v1;b; l2l1 2 (p1jp2)! (Le f t v1);s; l2 s= b[fx 7! [℄j x 2 vars(p2)gn vars(p1))M-CHOICE2 l1 2 p2 ! v1;b1; l2l1 2 (p1jp2)! (Right v1);b; l2 b= b1[fx 7! [℄j x 2 vars(p1)gn vars(p2))Figure 3. Semantis for non-linear regular expression patternsD ` pD `l p� D ` pD `l p+ D1 ` p D2 ` qD `l pjq D= D1[D2 D ` pD `l p?D1 ` p1 : : : Dn ` pnD1 : : :Dn `l (=p1 : : : pn=)Di\D j = /0 8i j:i 6= jp :: t D `l pD;x :: t `l x�p p :: t D `l pD;x :: [t℄ `l x�:p D `h hpatD `l hpatFigure 4. Wellformed linear regular expression patternsThe variable binding rules are interesting to ontrast against eahothers. �As�-patterns are well-formed if the variable is bound toa pattern with the same type as the variable. �Aumulating as�-patterns on the other hand may math several times so the type ofthe variable must be a list.In �gure 5 we present the rules for establishing the well-formednessof non-linear patterns. Most of the rules arry over straightfor-wardly from those for linear patterns. It should be noted thoughthat the rule for ordinary patterns rebuilds the typing ontext so thatall variables have list types.Figure 6 gives the typing rules for regular expression patterns. Theintuition behind these rules is that a pattern has a type whih re-�ets the ways it an math. For example a pattern whih an mathmany times has a list type, hene variables bound to � and + pat-terns get list types. Choie patterns an math one of two things

D ` pD ` p� D ` pD ` p+ D1 ` p D2 ` qD ` pjq D= D1 [D2D ` pD ` p? D1 ` p1 : : : Dn ` pnD1 : : :Dn ` (=p1 : : : pn=)Di\D j = /0 8i j:i 6= jp :: t D ` pD;x :: [t℄ ` x�:p D0 `h hpatD ` hpat D= fx :: [t℄jx :: t 2 D0gFigure 5. Wellformed regular expression patternsp :: tp� :: [t℄ p :: tp+ :: [t℄ p :: t q :: t0pjq :: Either t t0 p :: tp? ::Maybe tp1 :: t1 : : : pn :: tn(=p1 : : : pn=) :: [T ℄ p :: tx�p :: t p :: tx�:p :: t hpat :: TFigure 6. Typing rules for regular expression patternswhih is aptured by the Either type of Haskell. A sequene pat-tern mathes yields a sequene and hene it also has a list type.Variable binding patterns don't affet the typing. The last typingrule for ordinary patterns in the underlying language is more sur-prising, sine it refers to a spei� type T. This means that the typ-ing rules should be interpreted in a ontext where we are mathingon a list of type [T℄, i.e. T is the type of the elements of the list.

6 ImplementationWe urrently have an implementation of our regular expression pat-tern system that works as a preproessor for GHC. It takes a soureode �le possibly ontaining regular expression patterns and trans-lates it into semantially equivalent vanilla Haskell ode. It alsoomes with a mathing engine, whih we implement as a simpleparser monad. The preproessor does not hek any types, insteadwe rely on GHC's type heker to ath type errors.6.1 Mathing engineThe datatype for a mathing parser, whih we from now on willrefer to as a mather, looks likedata Mather e a = Mather ([e℄ -> [(a,[e℄)℄)It is essentially a funtion that takes an input list, onduts a math,and returns a list of results. Eah result will onsist of a value, aset of values for bound variables, and a remainder list. All of this isread diretly from our semanti rules.Sine different variables will be bound to values of different types,we need to model the set of bindings as a tuple, with eah entryorresponding to the value(s) for one spei� variable. As is us-tomary, we let the remainder list be the state of the mather monad,so that it is impliitly threaded through a series of mathes. Theindividual mather funtions then need to return a value for futurebindings, and a tuple with values for variables.To aount for our all-math semantis the parser generates a list ofresults at eah step. At plaes where we need to branh we an usethe +++ operator whih lets us proeed with two different mathers.We de�ne +++ as(+++) :: Mather e a -> Mather e a -> Mather e a(Mather f) +++ (Mather g) =Mather (\es -> let aes1 = f esaes2 = g esin aes1 ++ aes2)As we an see from the de�nition +++ is left-biased, i.e. any resultsfrom its left operand will end up before any results from its rightoperand in the list of results. This allows us to de�ne a funtionthat onduts the full mathing by, as de�ned by our �rst-mathpoliy, seleting the �rst result in this list of results for whih themather has reahed the end of the input list (i.e. the remainder listis empty). This funtion, alled runMath, orresponds to the ruleHM-REGPAT from �gure 2, and is de�ned asrunMath :: Math e a -> [e℄ -> Maybe arunMath (Mather f) es =let allps = f esallMathes = filter (null . snd) allpsin ase allMathes of[℄ -> Nothing(((_, vars),_):_) -> Just vars6.2 TranslationThe basi idea behind translating a regular expression pattern intovanilla Haskell is to generate a mather for eah subpattern, all theway down to ordinary Haskell patterns, and then ombine these toform a top-level mather orresponding to the whole of the pattern.

6.2.1 Base patternsThe base ase is when the pattern in question is an ordinary Haskellpattern. First we must generate a funtion that atually takes anelement from the input list and tries to math it to the given pattern.For example, if the pattern in question is Tel nr, the orrespondingfuntion would look likemath0 :: CMode -> Maybe TelNrmath0 e = ase e ofTel nr -> Just (nr)_ -> NothingNo type signatures are atually generated, we just supply them hereto simplify understanding. To avoid overly long signatures we ab-breviate ContatMode with CMode in our examples.What the funtion returns if the math sueeds is a tuple ontain-ing the values of bound variables. The funtion above works inlinear ontext sine we return the bound variable as is. If we in-stead wanted a funtion to work in non-linear ontext, we wouldwrap the values in lists, likemath0 :: CMode -> Maybe [TelNr℄math0 e = ase e ofTel nr -> Just ([nr℄)_ -> NothingWe also need to lift a generated mathing funtion into the mathermonad. This lifting works identially regardless of what the pat-tern is, so we have a funtion in the mather engine that does this,de�ned asbaseMath :: (e -> Maybe a) -> Mather e (e,a)baseMath mather = doe <- getElementase mather e ofNothing -> mfailJust b -> do disardreturn (e, b)The funtions used by baseMath are inherent to our mathermonad. getElement retreives the head of the input list, disarddrops the head of the input list, and mfail is a mather that alwaysreturns an empty list of results. We now need to generate a matherby applying baseMath to our generated funtion, i.e.math1 :: Mather CMode (CMode, TelNr)math1 = baseMath math0The type states that math1 is a mather for a list of CModes. Thevalue mathed is a CMode, and the only variable bound is of typeTelNr. The numbers 0 and 1 in the names of these funtions signifythat eah name is fresh, i.e. these numbers ould be any positiveintegers, but no two funtions share the same integer.For Haskell patterns that are guaranteed to always math, i.e. pat-tern variables and wildards (), we an simplify these steps. For awildard, what we need to generate is the mathermath0 :: Mather e (e, ())math0 = baseMath (_ -> Just ())meaning we will always math, and no variables are bound. Theonly differene for a pattern variable is that the variable in questionis also bound, e.g. for the pattern a we get

math0 :: Mather e (e, e)math0 = baseMath (\a -> Just (a))One again the shown funtion works in linear ontext, in non-linear ontext we would wrap the returned a in a list.6.2.2 RepetitionAll regular expression patterns have one or more subpatterns, andthe �rst step when translating a regular expression pattern will be totranslate these subpatterns. For a repetition pattern, p�, we would�rst translate the subpattern p into some mather funtion mathX.Aording to the rules M-STAR1 and M-STAR2, a mather fora repetition pattern should if possible ontinue without trying tomath anything, otherwise it should math one element and then re-ursively math the repetition pattern again. This behavior is om-mon to all repetition patterns so we de�ne it as a funtion in themathing engine:manyMath :: Math e a -> Math e [a℄manyMath mather = (return [℄) +++(do a <- matheras <- manyMath matherreturn (a:as))The problem with this de�nition is that manyMath returns a list inwhih eah element is the result of one step of the reursion. Weneed to unpak this list so that we instead return a tuple, in whiheah entry is a list of results for a spei� variable binding. Weannot do this generially sine the number of bound variables, andthus the size of the tuple, will vary. Therefore we must supply anappropriate unzipping funtion that works for the orret numberof variables. The exat funtion to use an be determined by thepreproessor, that has the neessary meta-information on what vari-ables are bound. Note that all variables inside the repetition will benon-linear, so the result of mathing a variable in eah step of thereursion will be a list of values. If we only unzip to get a list ofsuh results for eah variable, what we would really get is a list oflists of values. Thus to get a list of values we should also let theunzipping funtion onatenate the results for eah variable in theresulting tuple.Inside manyMath the unpaking will be done in two steps. The �rstis to simply unzip the list into two lists, one ontaining all values (vifrom the rules), the other ontaining all values of bound variables.In the seond step we need to apply the supplied unzipping-and-onatenating funtion to the latter list to get the variable valuesproper. This new improved manyMath will thus look likemanyMath :: Mather e (a,b) -> ([b℄ ->)-> Mather e ([a℄,)manyMath mather unzipper = dores <- mMath matherlet (vals, vars) = unzip resvs = unzipper varsreturn (vals, vs)where mMath is our old de�nition of manyMath.As an example, we show the translation of the pattern (Tel nr)*.The �rst step is to translate the subpattern Tel a, whih we havealready seen how to do. The new funtion that we generate willthen look likemath2 :: Mather CMode ([CMode℄,[TelNr℄)math2 = manyMath math1 unzip1

assuming the mather for the subpattern is alled math1. Thefuntion unzip1 here is simply the onat funtion, sine thereis only one variable bound. To aount for the greedy version ofa repetition pattern, *!, we simply �ip the arguments to +++ inmanyMath, whih will give a higher priority to the ase when weatually math an element.Non-empty repetition patterns, +, are very similar to ordinary rep-etition patterns, the only differene is of ourse that we make aninitial math before starting the reursion, as shown inneManyMath :: Mather e (a,b) -> ([b℄ ->)-> Mather e ([a℄,)neManyMath mather unzipper = dores1 <- matherres <- mMath matherlet (vals, vars) = unzip (res1:res)vs = unzipper varsreturn (vals, vs)6.2.3 Choie and Optional patternsChoie patterns are slightly trikier to handle beause of the wayvariables are bound. As we saw in the rules M-CHOICE1 and M-CHOICE2, any variables appearing in the other branh than the onebeing mathed should be bound to empty lists. This is very dif�ultto handle generially sine we need aess to the meta-informationof variable names. Thus we instead generate the full ode for thehoie pattern during translation. As an example we translate thepattern (Tel nr | Email eaddr). We start by translating thesubpatterns, resulting in two funtions that we assume are namedmath1 and math2. The ode generated for the hoie pattern willbemath3 :: Mather CMode(Either CMode CMode, ([TelNr℄,[EAddr℄))math3 = (do (val, (a)) <- math1return (Left val, (a, [℄)))+++(do (val, (b)) <- math2return (Right val, ([℄, b)))where we have tagged the result value of the pattern math with therespetive onstrutors from the Either type.The story is very similar for optional patterns, but this time all vari-ables should be bound to empty lists if no math is done. For thepattern (Tel nr)? we getmath4 :: Mather CMode (Maybe CMode, [TelNr℄)math4 = (return (Nothing, [℄)) +++(do (val, (a)) <- math1return (Just val, a))For a greedy optional pattern we would simply swith the argu-ments to +++, just as for repetition patterns.6.2.4 SubsequenesThe trikiest pattern to implement is subsequene, due to the needfor �attening. As we saw in setion 5, �attening is done based onthe type of a subpattern (with respet to some base type for ele-ments in the input list), whih means that the preproessor mustkeep trak of these types in order to insert the proper �attening fun-tions. For a pattern (/ (Tel nr)?, (Email eaddr)* /) we get

the following translation, assuming the two subpatterns are trans-lated into mather funtions math1 and math2 respetively:math5 :: Mather CMode ([CMode℄, ([TelNr℄,[EAddr℄))math5 = do (v1, (a)) <- math1(v2, (b)) <- math2let v1f = maybe [℄ (\v -> [v℄) v1v2f = onatMap (\v -> [v℄) v2return (v1f ++ v2f, (a,b))The value v1 is the result of math1, i.e. the mather for (Telnr)?, so it will have type Maybe CMode. To �atten it we use thebuilt-in Haskell funtion maybe that takes two arguments, one thatis a default value to return if it enounters a Nothing (in this ase[℄), the other a funtion to apply to a value held by a Just (in thisase the �attening funtion for a value of the base type). Similarlyv2 omes from math2, so its type will be [CMode℄. We �atten itusing the built-in funtion onatMap that takes a funtion, appliesis to all elements of a list, and then onatenates the results.6.2.5 Variable bindingsFinally we turn to the expliit binding operators. Binding a variableto a value in our mather means to add that value to the result tu-ple. Sine an expliitly bound variable syntatially appears to theleft of any variables in its subpattern, we add the value in the left-most position in the tuple, i.e. before those bound in the subpattern.Thus we know that the values in the result of the top-level mathershould be bound to variables from left to right in the order theyappear in the pattern. As an example onsider the pattern a�(Telnr | Email eaddr). We �rst translate the subpattern (Tel nr |Email eaddr) into a mather math1. The mather generated forthe variable binding will then bemath2 :: Mather CMode (Either CMode CMode,(Either CMode CMode,[TelNr℄,[Eaddr℄))math2 = do (val, (nr, eaddr)) <- math1return (val, (val, nr, eaddr))If we had instead used non-linear binding, i.e. a�:(Tel nr |Email eaddr), we would get a list for the returned value, i.e.math2 :: Mather CMode(Either CMode CMode,([Either CMode CMode℄,[TelNr℄,[Eaddr℄))math2 = do (val, (nr, eaddr)) <- math1return (val, ([val℄, nr, eaddr))6.3 MathingNow we know how to translate a regular expression pattern into atop-level mather funtion, what is left is to insert and invoke thegenerated mather at the right plae to preserve the pattern math-ing semantis. To this end we use Haskell pattern guards [EPJ00℄that allow us to evaluate a funtion and pattern math on the resultas part of the original pattern math. The funtion that we so wishto evaluate is runMath applied to our generated top-level matherand the input list that we wish to math. For our mather funtionsto be in sope we add them to the where lause of the delarationthat the regular expression pattern appears in. To show a ompleteexample of the translation of a funtion delaration we revisit ourfuntion allTels de�ned asallTels (Person _ [(Tel nr | _)*℄) = nr

sine it ontains several different features of regular expression pat-terns. The translated version of this funtion will look likeallTels (Person _ arg0)| Just (nr) <- runMath math5 arg0 = nrwhere math0 e = ase e ofTel nr -> Just ([nr℄)_ -> Nothingmath1 = baseMath math0math2 = baseMath (_ -> Just ())math3 = (do (val, (nr)) <- math1return (Left val, (nr)))+++(do (val, ()) <- math2return (Right val, ([℄)))math4 = manyMath math3 unzip1math5 = do (v1, (nr)) <- math4let v1f = onatMap(either (\v -> [v℄)(\v -> [v℄))v1return (v1f, (nr))The funtions math0 and math1 together orrespond to the pat-tern (Tel nr). Note the list around the returned variable nr sig-naling that the pattern is mathed in a non-linear ontext. math2orresponds to the pattern . Combining these two into a hoiepatterns yields (Tel nr |), whih is translated to math3. Ontop of that we add a repetition, whih gives us math4 when trans-lated. Finally sine the top-level pattern should be mathed as asubsequene, as seen in the rule HM-REGPAT, we translate it intomath5. The atual mathing is done in the pattern guard that ap-plies runMath to the mather and the input list. The latter is heldby an automatially generated fresh variable, in this ase arg0. It isalso interesting to note that the atual binding of variables to valuesdoes not happen until runMath is evaluated. Any mention of vari-able names in the mather funtions, e.g. nr in math0, are onlythere as mnemoni aids to a human reader. We ould hange allsuh names to freshly generated variable names without hangingany semantis.In Haskell, patterns an appear in numerous plaes suh as fun-tion delarations, ase expressions, let expressions, statementset. Translating regular expression patterns into vanilla Haskell isslightly different depending on just where the pattern appears. Thegenerated mathers will be idential in all ases, but the plaementof them and of the evaluation may differ. We will not go throughthese differenes in detail, but our implementation handles all asesorretly. Irrefutable (lazy) patterns also require speial are, andwe have yet to implement support for them in full.7 Related WorkPattern mathing is a well-known and muh studied feature of fun-tional languages [Aug85, Wad87, Mar92, Mar94℄. It provides thestartingpoint for the work presented in this paper.Regular expressions have been used in programming for a longtime, mostly for text mathing purposes. Perl's support for regu-lar expressions is probably one of the most well-known [Perl℄, butmost mainstream languages, inluding Haskell, have some librarysupport for regular expression text mathing. Regular expressionsin suh libraries are themselves enoded as strings. Mathing themmeans taking two strings, where one enodes a regular expression,and math them to eah other. This is in some sense very low-

level when ompared to our regular expression patterns sine thereare no guarantees that regular expressions enoded as strings arewell-formed, and there is no diret way to bind variables to valuesduring a math. Yet another drawbak is of ourse that suh regularexpressions work on strings only, whereas our regular expressionpatterns work over lists of any datatype.The reent trend in XML-entri languages has led to several newlanguages with support for regular expression pattern mathingsuh as XMLambda [MS99℄, XDue [HP03℄ and CDue [BCF03℄.Most similar to ours is probably CDue, a general purpose XML-entri programming language. The main fous in this language isits regular expression types whih are used to validate XML do-uments. Borrowing from XDue they also have regular expressionpatterns whih are tightly oupled with the type system. This al-lows for very preise type information to be propagated in the righthand side of a pattern. The main differene with our work is thelose onnetion with the type system. Our extension is little morethan just syntati sugar whih makes it very easy to implement.Another reently developed language that features regular expres-sion patterns is Sala [Sala℄. Sala is a multi paradigm languagesupporting both objet oriented and funtional programming. Itsregular expression faility is rather similar to ours but differs at thefollowing points. Firstly, there is only one variable binding on-strut whih has a ontext dependent behaviour. Seondly, Salahas non-greedy operators just as we do but have no greedy oun-terparts. This an make some patterns awkward to express. Sala'sregular expression patterns work for arbitrary sequenes.There has been some work in extending Haskell with the full powerof XDue, alled XHaskell [LS04℄. This work fouses on �tting thetype system of XDue into Haskell and enoding it using Haskell'slass system. They also have regular expression patterns but theseare intimately oupled with regular expression types and do notwork together with ordinary pattern mathing.8 Future WorkThere are several areas where our regular expression patterns ex-tension an be improved. It is not obvious that our implementationusing a monadi parser is the most ef�ient approah, on the on-trary. There has been lots of work on ef�ient mathing of regularexpressions and it is likely that some of these tehniques ould beused with our system to make it more ef�ient.We will need to devise and implement a type heking algorithmfor our regular expression patterns on top of Haskell´s type hek-ing mehanism. Being able to type hek our regular expressionpatterns before translating them into vanilla Haskell, as opposedto our urrent implementation that �rst translates and then lets aHaskell type heker do the work, would, if nothing else, lead tomuh improved error messages.9 AknowledgementWe would like to thank our shepherd Erik Meijer for his many sug-gestions whih improved the paper enormously. Thanks also toKarol Ostrovsky and David Sands who gave valueable feedbak ondraft versions of this paper. The partiipants of the Multi Meetingprovided insightful omments when we presented the material inthis paper. Lastly thanks to the anonymous referees for their om-ments.

This work was partially funded by the Swedish Foundation forStrategi Researh.10 Referenes[Aug85℄ Lennart Augustsson. Compiling Pattern Mathing. InFuntional Programming and Computer Arhiteture,1985.[BCF03℄ V. Benzaken, G. Castagna, and A. Frish. CDue: AnXML-Centri General-Purpose Language. In Proeed-ings of the ACM International Conferene on FuntionalProgramming, 2003.[EPJ00℄ Martin Erwig and Simon Peyton Jones. Pattern Guardsand Transformational Patterns. In Haskell Workshop,2000.[Fax02℄ Karl-Filip Faxén. A Stati Semantis for Haskell. Jour-nal of Funtional Programming, 12(4�5), 2002.[Fri04℄ A. Frish. Regular Tree Language Reognition withStati Information. In 3rd IFIP International Confereneon Theoretial Computer Siene, 2004.[HM03℄ Haruo Hosoya and Makoto Murata. Boolean Operationsand Inlusion Test for Attribute-Element Constraints. InEighth International Conferene on Implementation andAppliation of Automata, volume 2759 of Leture Notesin Computer Siene, pages 201�212. Springer-Verlag,2003.[HP03℄ Haruo Hosoya and Benjamin C. Piere. XDue: A TypedXML Proessing Language. ACM Transations on Inter-net Tehnology, 2(3):117�148, 2003.[HVP00℄ Haruo Hosoya, Jerome Vouillon, and Benjamin C.Piere. Regular Expression Types for XML. In Proeed-ings of the ACM International Conferene on FuntionalProgramming, 2000.[Lev03℄ Mihael Y. Levin. Compiling Regular Patterns. In Pro-eedings of the ACM International Conferene on Fun-tional Programming, pages 65�78, 2003.[LS04℄ Kenny Zhuo Ming Lu and Martin Sulzmann.XHaskell: Regular Expression Types for Haskell.http://www.omp.nus.edu.sg/ sulzmann/, 2004.[Mar92℄ Lu Maranget. Compiling Lazy Pattern Mathing. InPro. of the 1992 onferene on Lisp and FuntionalProgramming. ACM Press, 1992.[Mar94℄ Lu Maranget. Two Tehniques for Compiling Lazy Pat-tern Mathing. Researh report 2385, INRIA, 1994.[MS99℄ Erik Meijer and Mark Shields. XMl: A Funtional Lan-guage for Construting and Manipulating XML Dou-ments. (Draft), 1999.[MvV01℄ Erik Meijer and Danny van Velzen. Haskell ServerPages. In Graham Hutton, editor, Eletroni Notesin Theoretial Computer Siene, volume 41. Elsevier,2001.[Perl℄ www.perl.org.[Sala℄ Martin Odersky et.al. The Sala Programming Lan-guage. http://sala.ep�.h/.[Wad87℄ Philip Wadler. The Implementation of Funtional Pro-gramming Languages, hapter Ef�ient Compilation ofPattern Mathing. Prentie Hall, 1987.

