
Regular Expression PatternsNiklas Brobergd00nibro�dtek.
halmers.se Andreas Farred00farre�dtek.
halmers.se Josef Svenningssonjosefs�
s.
halmers.seChalmers University of Te
hnology
Abstra
tWe extend Haskell with regular expression patterns. Regular ex-pression patterns provide means for mat
hing and extra
ting datawhi
h goes well beyond ordinary pattern mat
hing as found inHaskell. It has proven useful for string manipulation and for pro-
essing stru
tured data su
h as XML. Regular expression patterns
an be used with arbitrary lists, and work seamlessly together withordinary pattern mat
hing in Haskell.Our extension is lightweight, it is little more than synta
ti
 sugar.We present a semanti
s and a type system, and show how to imple-ment it as a prepro
essor to Haskell.Categories and Subje
t Des
riptorsD.3.2 [Language Classi�
ations℄: Appli
ative (fun
tional) lan-guages; D.3.3 [Language Constru
ts and Features℄: PatternsGeneral TermsLanguagesKeywordsRegular expressions, pattern mat
hing, Haskell1 Introdu
tionPattern mat
hing as found in many fun
tional languages is a ni
efeature. It allows for
lear and su

int de�nitions of fun
tions by
ases and works very naturally together with algebrai
 data types.But sometimes ordinary pattern mat
hing is not enough. A distin
tfeature of this form of pattern mat
hing is that it only examines theoutermost
onstru
tors of a data type. While this allows for ef�
ientimplementations it is also a rather limited
onstru
t for analysingand retrieving data.
Permission to make digital or hard
opies of all or part of this work for personal or
lassroom use is granted without fee provided that
opies are not made or distributedfor pro�t or
ommer
ial advantage and that
opies bear this noti
e and the full
itationon the �rst page. To
opy otherwise, to republish, to post on servers or to redistributeto lists, requires prior spe
i�
 permission and/or a fee.ICFP'04, September 19�21, 2004, Snowbird, Utah, USA.Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

A well-known example of a
onstru
t that provides deeper andmore
omplex retrievals are regular expressions for strings. Whilethis is not a very
ommon feature among programming languages itis one of the key
onstru
ts that have made Perl so popular. Regularexpressions are ideal for various forms of string manipulation, textextra
tion et
, however, they remain a very domain spe
i�
 and ad-ho

onstru
t targeted only for one parti
ular data stru
ture, namelystrings.On another axis we �nd the re
ent trend in XML
entri
 lan-guages. The �rst attempts at su
h languages used the ordinary pat-tern mat
hing fa
ility of fun
tional languages to analyze XML frag-ments [MS99℄. This was found to be too restri
tive, so in order tobe able to express more sophisti
ated patterns and transformationson XML fragments the notion of regular expression patterns wereinvented. Examples of languages in
luding this feature are XDu
e[HP03℄ and CDu
e [BCF03℄. While this is a great boost for theXML programmer, in the
ase of XDu
e it only works for XMLdata and not for any other data. Furthermore those pattern mat
h-ing
onstru
ts are
losely tied to rather sophisti
ated type systemswhi
h makes them somewhat heavyweight.In this paper we extend Haskell with regular expression patterns.Our extension has the following advantages:� Our proposal is lightweight. It is hardly more than synta
ti
sugar. Most notably it does not require any
omplex additionsto the type system.� It works for arbitrary lists. It is a general
onstru
t and nottied to a spe
i�
 data type for elements. But it should be notedthat it works in parti
ular for strings sin
e strings are just listsof
hara
ters in Haskell.� It �ts seamlessly with the ordinary pattern mat
hing fa
ilityfound in Haskell.In this paper we give a detailed semanti
s and type system of reg-ular expression patterns. The extension has been implemented as aprepro
essor to Haskell, and we sket
h the implementationWhile we have
hosen to fo
us on Haskell in this paper there arevery little Haskell spe
i�
 details. We are quite
on�dent that ourproposal
ould be adapted to any similar fun
tional language.In re
ent years a number of papers have been devoted to de-veloping ef�
ient pattern mat
hing and ef�
ient regular mat
hing[Fri04, HM03, Lev03℄. This is not the
on
ern of this paper. Al-though ef�
ien
y is an important
onsideration we fo
us only onlanguage design.

Another issue that we do not address is the question of overlap-ping and exhaustive patterns. We are
on�dent that the existingte
hniques developed for XML
entri
 languages will do the jobni
ely [HVP00℄. Note also that in general it is unde
idable to
he
kwhether patterns are overlapping or non-exhaustive in Haskell be-
ause of guards, so in our setting it is something of a non-issue.2 Regular expression patterns by example2.1 Ordinary pattern mat
hingAssume that we have the following datatype representing an entryin an address book.data Conta
t = Person Name [Conta
tMode℄data Conta
tMode = Tel TelNrWe
an assume that the types Name and TelNr are type synonymsfor String. The reason for not inlining TelNr in Conta
t is be-
ause we will later want to add other means of
onta
t, e.g. emailaddresses, to our address book.Now
onsider two different fun
tions that extra
t information froma
onta
t; firstTel will return the �rst TelNr in the list of
onta
tmodes asso
iated with a
onta
t. lastTel will analogously returnthe last asso
iated TelNr. The �rst is easy to write using simplepattern mat
hing on a
onta
t:firstTel :: Conta
t -> TelNrfirstTel (Person _ (Tel nr : _)) = nrfirstTel (Person _ [℄) = error "No Tel"The se
ond fun
tion, although its fun
tionality is very similar tofirstTel,
annot be written in the same simple way. We mustinstead resort to re
ursion and an auxiliary fun
tion to step throughthe list until we rea
h the end.lastTel :: Conta
t -> TelNrlastTel (Person _ nrs) = aux nrswhere aux [℄ = error "No Tel"aux [Tel nr℄ = nraux (_:nrs) = aux nrsAlthough the two fun
tions have very similar fun
tionality, onlyone of them
an be written using dire
t pattern mat
hing. Why isthis so? The answer lies, of
ourse, in the list datatype. A (non-empty) list has a head and a tail, so extra
ting the �rst element iseasy. To get to the last element however, we must re
ursively lookat the tail for its last element. In other words, we must �rst mat
hon the stru
ture of the list, before being able to look at the elements.Haskell has a
onstru
t for mat
hing dire
tly on the elements of alist, but only for �xed-size lists. If we know that a
onta
t never hasmore than three phone numbers, we
ould write lastTel as (wewill ignore the erroneous
ase from now on)lastTel (Person _ [Tel nr℄) = nrlastTel (Person _ [_, Tel nr℄ = nrlastTel (Person _ [_, _, Tel nr℄ = nrClearly this is not a very good solution. Even for this very smalltask we must write far more than we are
omfortable with, andfor larger lists or more
omplex datatypes this approa
h qui
klybe
omes infeasible. What we need is a way of saying �mat
h a list
ontaining a Tel, pre
eded by any number of other elements�. Thisis where regular expression patterns enter the pi
ture.

2.2 Regular expression patternsMathemati
ally a regular expression de�nes a regular language,where language in this
ontext means a (possibly in�nite) set ofwords, and ea
h word is a sequen
e of elements taken from somealphabet. We
an use a regular expression as a validator and try tomat
h an arbitrary word against it to �nd out if the word belongs tothat regular language or not. The basi
 regular expression operatorsare repetition,
on
atenation and
hoi
e. Con
atenation is straight-forward, ab means a followed by b. Choi
e (ajb) means either a orb. Repetition a� means zero or more o

urren
es of a. Repetition
an be de�ned using
hoi
e and re
ursion as a� = ejaa� where edenotes the empty sequen
e. As an example,
onsider the regularexpression e= a� jb�. The language de�ned by e, denoted L(e), isthe set of all words
onsisting of only a's or only b's, in
luding theempty word. We have that aa 2 L(e), bbb 2 L(e), but ab =2 L(e). Inother words, aa and bbb both mat
h the regular expression e, butab doesn't.This notion of treating a regular expression as a validator is verysimilar to the
on
ept of pattern mat
hing in Haskell. We take aHaskell value (a word) and a pattern (a regular expression) and tryto mat
h them, getting a yes or no as the result. Combining thesetwo
on
epts is straight-forward, yielding what we
all regular ex-pression patterns. As noted, a regular expression
an be mat
hedagainst a sequen
e of elements from some alphabet. Lifting thisidea into Haskell, a regular expression pattern
an be mat
hedagainst a list of elements of some datatype. When we speak of asequen
e, we mean a sequen
e of elements in the abstra
t sense. In
ontrast, when we speak of a list, we mean the list datatype that isused to en
ode sequen
es in Haskell.Returning to our lastTel fun
tion, we
an now easily write it witha single pattern mat
h by using a repetition regular expression pat-tern:lastTel (Person _ [_*, Tel nr℄) = nrWe write
on
atenation using
ommas as with ordinary Haskelllists, and we denote repetition with *. As we
an see from the exam-ple, regular expression patterns are a
tually more �exible than bareregular expressions. A regular expression is built from elementsof some alphabet, the same alphabet that the words it may mat
hare built from. A regular expression pattern on the other hand isbuilt from patterns over elements of some datatype, allowing usto use
onstru
ts like wild
ards and pattern variables. We use theterm regular expression pattern both for the subpatterns (repetition,
hoi
e et
) and for a top-level list pattern that
ontains the former.It should be
lear from the
ontext whi
h we are referring to.2.3 Repetition and AmbiguitiesLet us see what else we
an do with regular expression patterns.First, as promised, we extend our datatype with email addresses.data Conta
t = Person Name [Conta
tMode℄data Conta
tMode = Tel TelNr | Email EAddrIf we only have ordinary pattern mat
hing we
annot even writefirstTel without resorting to re
ursion and auxiliary fun
tions.firstTel (Person _
modes) = aux
modeswhere aux (Tel nr : _) = nraux (_ :
modes) = aux
modesUsing a regular expression pattern, we
an write it in one go:

firstTel (Person _ [(Email _)*, Tel nr, _*℄) = nrThe straight-forward intuition of the pattern above is that the �rstTel in the list is pre
eded by zero or more Emails (but no Tels), andany number of other elements may follow it. We
an easily writelastTel in a similar way aslastTel (Person _ [_*, Tel nr, (Email _)*℄) = nrBut seeing these two de�nitions leads to an interesting question:What happens if we write the fun
tionsomeTel :: Conta
t -> TelNrsomeTel (Person _ [_*, Tel nr, _*℄) = nri.e. where the Tel in question may both be pre
eded and su
-
eeded by other Tels? Clearly this pattern is ambiguous, sin
e if wemat
h it to e.g. Person "Niklas" [Tel 12345, Tel 23456,Tel 34567℄ we
an derive a mat
h for either of the three TelNrs tobe bound to nr, by letting the �rst *mat
h either 0, 1 or 2 Tels. Todisambiguate su
h issues, we adopt the poli
y that a repetition pat-tern will always mat
h as few elements as possible while still lettingthe whole pattern mat
h the given list. In standard terminology, ourrepetition regular patterns are non-greedy. This poli
y means thatsomeTel above will be exa
tly the same as our firstTel fun
tion,sin
e the �rst * will now try to mat
h as few elements as possible.In some
ases though, su
h as lastTel, we want the greedy behav-ior. To this end we let the programmer spe
ify if a repetition patternshould be greedy by adding an ex
lamation mark (!) to it, e.g. inthe following de�nition of lastTel:lastTel (Person [_*!, Tel nr, _*℄) = nr2.4 Choi
e patternsNow that we've seen the power of repetition patterns, we turnour attention to
hoi
e patterns. Assume that we want a fun
tionallTels that returns a list of all telephone numbers asso
iated witha
onta
t. Without regular expression patterns we must on
e moreresort to re
ursion and auxiliary fun
tions.allTels :: Conta
t -> [TelNr℄allTels (Person _
modes) = aux
modeswhere aux [℄ = [℄aux (Tel nr :
modes)= nr : aux
modesaux (_ :
modes) = aux
modesUsing a
ombination of repetition and
hoi
e, we
an write it asallTels (Person _ [(Tel nr | _)* ℄) = nrThe intuition here is that ea
h element in the list of
onta
t modesis either a Tel or something else (). Every time that we en
ountera Tel, we should in
lude the asso
iated TelNr in the result. Asthe example shows we
an a
hieve this a

umulation of TelNrswith a single pattern variable. Sin
e the intuition of a repetitionpattern is that its subpattern, i.e. the pattern it en
loses, should bemat
hed zero or more times, the same must be true for any patternvariables inside su
h a pattern. For ea
h repetition, su
h a variablewill mat
h a new value. Clearly the only sensible thing to do is tolet that variable bind to a list of all those mat
hed values.This treatment of variables breaks one aspe
t of Haskell's linearityproperty � that the o

urren
e of a variable in a pattern will bind

that variable to exa
tly one value of the type that it mat
hes. Wewill therefore
all su
h a variable non-linear. A non-linear variablewill be bound to a list of values that it mat
hes, in the order that theywere mat
hed (i.e. the order in whi
h they appeared in the mat
hedlist). When we speak of a non-linear binding, we mean a bindingof a non-linear variable to a list of values. We will also use theterms non-linear
ontext to mean a
ontext in whi
h linear variables
annot appear, and non-linear patterns, by whi
h we mean patternswhose subpatterns will always be mat
hed in a non-linear
ontext.By the example above we see that a repetition pattern is a non-linear pattern, and
onsequently that the variable nr appears in anon-linear
ontext. Similarly a
hoi
e pattern is also non-linear.If we remove the repetition from the regular expression pattern inallTels we get the pattern [Tel nr| ℄ for mat
hing a list of ex-a
tly one element. If that element is a Tel we will have a value tobind to nr, but if it is an Email we have none! Thus we still
an-not guarantee that a variable gets one value; in this
ase nr will bebound to a list with zero or one element.The fun
tion allTels shows how regular expression patterns
anbe used for �ltering a list based on pattern mat
hing. We
an goone step further and do partitioning, e.g.allTelsAndEmails :: Conta
t -> ([TelNr℄,[EAddr℄)allTelsAndEmails (Person _[(Tel nr | Email eaddr)* ℄) = (nr, eaddr)A
hoi
e pattern
an also be ambiguous if any of its subpatternsoverlap, as insillyAllTels :: Conta
t -> ([TelNr℄,[TelNr℄)sillyAllTels (Person _ [(Tel nr | Tel mr | _)* ℄)= (nr, mr)To disambiguate this we adopt a �rst-mat
h poli
y, mu
h like thatof Haskell pattern mat
hing. Thus we �rst
he
k if the �rst sub-pattern mat
hes, and
onsider the k:th subpattern only if no patterni < k mat
hes. Note that we allow
hoi
e patterns to
ontain morethan two subpatterns. Choi
e patterns are right asso
iative so forexample [(Tel nr | Tel mr |)* ℄ is parenthesised like [(Tel nr | (Tel mr |))* ℄. Another interesting thing about
hoi
e patterns is that we allow a variable to appear in both subpat-terns assuming that it binds to values of the same type. For instan
e,if our datatype for modes of
onta
t was de�ned asdata Conta
tMode = Home TelNr | Work TelNrwe
ould de�ne allTels asallTels (Person _ [(Home nr | Work nr)*℄) = nrVariables in
hoi
e patterns are still non-linear even if they appearin all subpatterns, so the fun
tionsingleTel (Person _ [(Home nr | Work nr)℄) = nrwill have the type Conta
t -> [TelNr℄.2.5 Subsequen
es and option patternsRegular expressions allow grouping of elements and subexpres-sions using parentheses. For example, the regular expression e =(ba)� will mat
h the words ba, baba et
. To add this feature to ourregular expression patterns we need to introdu
e some new syntax,sin
e using ordinary parentheses in Haskell will denote tuples, as in

wrongEveryOther [(_,b)*℄ = bWe (somewhat arbitrarily)
hoose to denote subsequen
es with (/and /), so a
orre
t fun
tion that pi
ks out every other element froma list
an be written aseveryOther :: [a℄ -> [a℄everyOther [(/_, b/)*℄ = bThere's a problem with the above de�nition though; it works forlists of even length only. Surely we want everyOther to work forany list. To a
hieve this we
ould add another de
laration to the oneabove likeeveryOther [(/_, b/)*, _℄ = bto
at
h the
ases where the list is of odd length too. But
ouldn'twe write these two
ases as a single pattern? Indeed we
an, usinga
hoi
e patterneveryOther [(/_, b/)*, ((/ /) | _)℄where (/ /) denotes the empty subsequen
e, e. However, this pat-tern is so
ommon that regular expressions de�ne a separate oper-ator, ?, to denote optional regular expressions. The de�nition of ?is e?= eje, and by lifting this to regular expression patterns we
anwrite everyOther more
ompa
tly aseveryOther [(/_, b/)*, _?℄ = bObviously, optional patterns are non-linear sin
e they
an be de-�ned in terms of
hoi
e patterns whi
h are non-linear. Just as for arepetition pattern, an optional pattern is non-greedy by default. Wealso de�ne greedy optional patterns by ?! in analogy with greedyrepetition patterns.2.6 Non-empty repetition patternsThere is one more operator to dis
uss, namely + that is used to de-note non-empty repetition. For instan
e we might require all
on-ta
ts to have at least one mode of
onta
t registered, either a tele-phone number or an email, otherwise it is an error. To enfor
e thiswe may want to de�ne allTelsAndEmails from above asallTelsAndEmails(Person _ [(Tel nr | Email eaddr),(Tel nrs | Email eaddrs)*℄)= (nr ++ nrs, eaddr:eaddrs)Using + we
an de�ne this more
ompa
tly asallTelsAndEmails (Person _ [(Tel nr | Email eaddr)+℄)= (nr, eaddr)Modulo variables bound, p+ � pp�. It is non-linear and non-greedy just like *, and there is a greedy
ounterpart +!.2.7 Variable bindings and their typesSin
e we
an use any Haskell pattern inside regular expression pat-terns, we
an in parti
ular use pattern variables to extra
t valuesfrom the list that we mat
h against, as we have seen in various ex-amples already. Haskell also de�nes a way to expli
itly bind valuesto a variable using the � operator. E.g. in the de
larationallCModes :: Conta
t -> [Conta
tMode℄allCModes (Person _ all�[(Tel _ | Email _)+℄) = all

the variable all will be bound to the (non-empty) list ofConta
tModes asso
iated with a
onta
t. This is a very useful fea-ture to have for regular expression patterns as well, for instan
e wemay want to write a fun
tion that pi
ks the �rst two elements froma list astwoFirst :: [a℄ -> [a℄twoFirst [a�(/_, _/), _*℄ = aHowever, adding this feature raises some interesting questions.Firstly, what will the type of a variable bound to a regular expres-sion pattern be? For a subsequen
e it seems fairly obvious that itwill have a list type, but what about repetitions,
hoi
es and op-tional patterns? To this issue there is no obvious right answer, oneway might be to let a variable be bound to all elements mat
hed bythe subpattern in analogy with impli
itly bound variables. We have
hosen a slightly different approa
h in whi
h we assign differenttypes to patterns to mirror the intuition behind them.Subsequen
es and repetition patterns will both have list typessin
e they represent sequen
es. There's a differen
e between themthough; a subsequen
e is just what the name implies, a subse
tionof the original sequen
e. Thus a variable bound to it will alwayshave the same type as the input list, i.e. a list of elements. A rep-etition pattern on the other hand is a repetition of some subpattern,and so it will have the type of a list of that subpattern. For
hoi
epatterns we make use of Haskell's built-in Either type de�ned asdata Either a b = Left a | Right bBy using this type we
an allow the left and right subpatterns of a
hoi
e pattern to have different types, for instan
esingleCMode :: [Conta
tMode℄-> Either Conta
tMode Conta
tModesingleCMode [a�(Tel _ | Email _)℄ = amaybeSingleTel :: [Conta
tMode℄-> Either Conta
tMode [Conta
tMode℄maybeSingleTel [a�(Tel _ | _*)℄ = aSimilarly for optional patterns we use another built-in Haskell type:data Maybe a = Nothing | Just aso if we write a fun
tionsingleOrNoTel [(Email _)*,a�(Tel _)?,(Email _)*℄ = ait will have the type [Conta
tMode℄ -> Maybe Conta
tMode.One way to think about this is to see the regular expression patternoperators as spe
ial data
onstru
tors. In an analogy with ordinaryHaskell, we don't expe
t a to have the same type in the two usesa�(Just) and (Just a�). Nor do we expe
t the a in a�(?) tohave the same type as the a in (a�)?.The se
ond issue
on
erns linear vs. non-linear binding. We havealready seen that impli
it bindings, i.e bindings that arise from theuse of ordinary pattern variables, are
ontext dependent; in linear
ontext they get the ordinary types, whereas in non-linear
ontextthey get list types. This
ontext dependen
e unfortunately makes iteasy for the programmer to make mistakes, sin
e it isn't
lear justby looking at a variable in the pattern what type it will have. We
annot do anything about impli
it bindings, but we
an avoid thesame problem for expli
it binding. Therefore we let the ordinary� operator signify linear expli
it binding, the only kind available

in ordinary Haskell. For non-linear expli
it binding we introdu
e anew operator �: (read �as
ons� or �a

umulating as�). The formermay not appear in non-linear
ontext, whereas the latter may appearanywhere inside a regular expression pattern. Their differen
es areshown by the following examples:[a�(Tel _) , _*℄ => a :: Conta
tMode[a�(Tel _)* , _*℄ => a :: [Conta
tMode℄[(Tel a�_) , _*℄ => a :: TelNr[(Tel a�_)* , _*℄ => Not allowed![(Tel a�:_)*, _*℄ => a :: [TelNr℄We
an de�ne the semanti
s of impli
it bindings in terms of ex-pli
it bindings. In linear
ontext we have that a pattern variable ais equivalent to the pattern a� . This
an be seen in the example[(Tel a), *℄ whi
h is
learly equivalent to [(Tel a�), *℄.In non-linear
ontext, a is equivalent to a�: , as in the examples[(Tel a)*, *℄ and [(Tel a�:)*, *℄.2.8 Further examplesNow that we've seen all the basi
 building blo
ks that our regularexpression patterns
onsist of, let us put them to some real use.Traditionally regular expressions have been used in programminglanguages for text mat
hing purposes, and
ertainly our regular ex-pression patterns are well suited for this task. As an example, as-sume we have a spe
i�
ation of a simple options �le. An option hasa name and a value, written on a single row, where name and valueare separated with a
olon and a whitespa
e. Different options arewritten on different lines. Here are the
ontents of a sample options�le:author: Niklas Brobergauthor: Andreas Farreauthor: Josef Svenningssontitle: Regular Expression Patternssubmitted: ICFP 2004A simple parser for su
h option �les
an be written using a regularexpression pattern asparseOptionFile :: String -> [(String,String)℄parseOptionFile[(/ names�:_*, ':', ' ', vals�:_*, '\n' /)*℄= zip names valswhere zip is a fun
tion that takes two lists and groups the elementspair-wise.XML pro
essing is another area that greatly bene�ts from regu-lar expressions, sin
e �proper pattern mat
hing on XML fragmentsrequires ... mat
hing of regular expressions� [MvV01℄. Indeed sev-eral re
ent XML-
entri
 languages (XDu
e, CDu
e) in
lude regu-lar expressions as part of their pattern mat
hing fa
ilities.As an example we en
ode XML in Haskell using a simple datatypedata XML = Tag String [XML℄| PCDATA StringAn XML fragment is either a Tag, e.g. <P> ... </P>, whi
h hasa name (a String) and a list of XML
hildren, or it is PCDATA (XMLlingo for a string inside tags). This model is of
ourse extremelysimpli�ed, we've left out anything that will not dire
tly add any-thing to our example, most notably XML attributes. Now assume

that we have a simple XML email format, where a sample emailmessage in this format might look like:<MSG><FROM>d00nibro�dtek.
halmers.se</FROM><RCPTS><TO>d00farre�dtek.
halmers.se</TO><TO>josefs�
s.
halmers.se</TO></RCPTS><SUBJECT>Regular Expression Patterns</SUBJECT><BODY><P>Regular expression patterns are useful</P></BODY></MSG>whi
h would be en
oded in our XML datatype asTag "MSG" [Tag "FROM" [PCDATA "d00nibro�dtek.
halmers.se"℄,Tag "RCPTS" [Tag "TO" [PCDATA "d00farre�dtek.
halmers.se"℄,Tag "TO" [PCDATA "josefs�
s.
halmers.se"℄℄,Tag "SUBJECT"[PCDATA "Regular Expression Patterns"℄,Tag "BODY" [Tag "P"[PCDATA "Regular expression patterns are useful"℄℄℄We
an write a fun
tion to
onvert messages from this XML formatinto the standard RFC822 format using regular expression patterns:xmlToRf
822 :: XML -> StringxmlToRf
822(Tag "MSG" [Tag "FROM" [PCDATA from℄,Tag "RCPTS" [(Tag "TO" [PCDATA tos℄)+℄,Tag "SUBJECT" [PCDATA subje
t℄,Tag "BODY" [(Tag "P" [PCDATA paras℄)*℄℄) =
on
at["From: ", from,
rlf,"To: ",
on
at (intersperse ", " tos),
rlf,"Subje
t: ", subje
t,
rlf,
rlf,
on
at (intersperse
rlf paras),
rlf℄where
rlf = "\r\n"3 SyntaxThe previous se
tion has gone over all of regular expression pat-terns by example. This se
tion starts the formal treatment by givinga grammar for the syntax, whi
h
an be seen in �gure 1. We re-fer to the nonterminal for Haskell's ordinary patterns as pattern andextend it with a new produ
tion for regular expression patterns.The
on
rete syntax is quite
lose to that of e.g. Perl [Perl℄ orCDu
e [BCF03℄ with the notable ex
eption that we have non-greedy patterns as default. An extra ex
lamation mark indi
atesgreediness.

pattern! : : :j '[' regpat1 : : : regpatn '℄'regpat ! patternj regpat '*'['!'℄j regpat '+'['!'℄j regpat '?'['!'℄j regpat ` j ` regpatj '(/' regpat1 : : :regpatn '/)'j '(' regpat ')'j var '�' regpatj var '�:' regpatFigure 1. Regular expression pattern syntaxOrdinary Haskell patterns are regular expressions patterns. The op-erators are repetition (*), non-empty repetition (+) and option (?).Furthermore there are
hoi
e patterns indi
ated by a verti
al barand subsequen
es are en
losed in subsequen
e bra
kets. Regularexpression patterns
an be en
losed in parenthesis. The last twoprodu
tions are for linear and non-linear variable bindings. Pre-
enden
e of the operators is as follows: *, +, ?, *!, +! and ?!binds strongest. They are followed by
hoi
e patterns whi
h arealso right asso
iative. Lastly we have � and �: whi
h bind weak-est. All
onstru
ts in regular expression patterns bind stronger than
onstru
tor appli
ation.4 Semanti
sIn this se
tion we turn to the formal semanti
s for regular expres-sion patterns. Our semanti
s divides natually into two parts; one forlinear and one for non-linear patterns. The reason for this divisionis that variable bindings are treated differently.4.1 Stru
ture of semanti
sWe give the semanti
s as an all-mat
h semanti
s. This leads to pos-sibly ambiguous mat
hes, the same list
an be mat
hed in many dif-ferent ways. Sin
e this may affe
t how variables are bound to theirvalues we need to disambiguate our rules. We follow the approa
htaken by Hosoya and Pier
e [HP03℄ and introdu
e an ordering onthe rules indi
ating whi
h rule will have pre
eden
e when severalrules
an mat
h. The order is given by numbers in the name ofthe rules, where lower numbers have higher pre
eden
e. Intuitivelythis means that when building the derivation tree for a mat
h, onemust always try to use the rule with the highest pre
eden
e �rst,and
hoose the other rule only if
hoosing the �rst rule
annot leadto a mat
h.Before we begin with the semanti
s we will de�ne some
on
eptswhi
h will be used in our explanation of the semanti
s. We willuse sets of variable bindings to map variables to values. A variablebinding is denoted x 7! v. In repetition patterns we will need tomerge sets of variable bindings with overlapping domains. We use℄ to this end and de�ne it as follows:fx1 7! v1; : : : ;xn 7! vng℄fx1 7! vs1; : : : ;xn 7! vsng=fx1 7! v1++vs1; : : : ;xn 7! vn++vsngWhen giving a semanti
s for subsequen
e patterns we will use atype indexed fun
tion �atten to merge lists of values. It is de�nedas follows:

f lattenT (v) = [v℄f latten[t℄([℄) = [℄f latten[t℄(v;vs) = f lattent(v)++ f latten[t℄(vs)f lattenMaybet(Nothing) = [℄f lattenMaybet(Just v) = f lattent(v)f lattenEither t1t2(Le f t v) = f lattent1(v)f lattenEither t1t2(Right v) = f lattent2(v)We will refer to the set of bound variables in a pattern p as4.2 Semanti
s for linear patternsThe semanti
s for linear regular expression patterns
an be foundin �gure 2. Due to spa
e reasons we only give a few of the rules aswe explain below.The judgement for mat
hing linear patterns is denoted l 2l p !v;b; l0. It should read as �l is mat
hed by a pattern p yielding avalue v, a set of variable bindings b, and a remainder list l0 �. l andl0 range over Haskell lists, where l is the list we wish to mat
h andl0 is a (possibly empty) suf�x of l that wasn't mat
hed.First of all we have a rule HM-REGPAT that extends Haskell's pat-tern mat
hing semanti
s, denoted 2h, with regular expression pat-terns. It does so by performing a linear mat
h.l 2l (=p1 : : : pn=)! l;b; [℄l 2h [p1 : : : pn℄! bHere we require that the remainder list is empty i.e. that the wholeinput list is su

esfully mat
hed. This requirement together with theordering on the rules determines whi
h derivation must be
hosen.The base rule, LM-BASE, is that where the pattern to mat
h is anormal Haskell pattern. In this
ase we piggy-ba
k on Haskell'snormal me
hanism for binding variables from patterns.e 2h p! be : l 2l p! e;b; lApart from ordinary Haskell patterns there are two ways that we
anbind variables to values at toplevel, given by the rules LM-AS andLM-ACCAS. The � operator simply binds the variable to a value,whereas the �: operator binds the variable to a list
ontaining thevalue. The behavior of �:
learly makes more sense in a non-linear
ontext, where the number of bound values may vary, but sin
e itis harmless to do so we have
hosen to allow it to appear in linear
ontexts as well.For subsequen
es we simply mat
h ea
h pattern in the sequen
ein order, as stated by the rule LM-SEQ. The values produ
ed aftermat
hing are
on
atenated and the resulting disjoint sets of variablebindings are merged. The value yielded by mat
hing a subsequen
eshould always be a list of elements, so before we
an
on
atenatethe values of the sub-mat
hes we need to �atten these values tosimple lists. Here we need to use the typing relation on patternsde�ned in se
tion 5. The typing relation is de�ned relative to somebase type T that during the a
tual mat
hing will be instantiated tothe type of the elements in the mat
hing list.Mat
hing a non-linear pattern in a linear
ontext is identi
al tomat
hing it in a non-linear
ontext. This is exempli�ed by the rule

LM-BASE e 2h p! be : l 2l p! e;b; l LM-AS l1 2l p! v1;b1; l2l1 2l x�p! v1;fx 7! v1g[b1; l2 LM-ACCAS l1 2l p! v1;b1; l2l1 2l x� : p! v1;fx 7! [v1℄g[b1; l2LM-SEQ l1 2l p1 ! v1;b1; l2 : : : ln 2l pn ! vn;bn; l fl1 2l (=p1 : : : pn=)! g1++ : : :++gn;b1[�� �[bn; l f gi = f lattent(vi); pi : t LM-STAR l1 2 p� ! v;b; l2l1 2l p� ! v;b; l2HM-REGPAT l 2l (=p1 : : : pn=)! l;b; [℄l 2h [p1 : : : pn℄! bFigure 2. Semanti
s for linear regular expression patternsLM-STAR. The rules for the rest of the operators are similar andare left out due to spa
e restri
tions.4.3 Semanti
s for non-linear patternsThe relation for mat
hing in a non-linear
ontext, denoted l 2 p!v;b; l0 (the only differen
e in syntax is that we drop the subs
ripton 2), is similar to the relation for linear
ontexts. It differs in two
ru
ial aspe
ts, namely variable bindings and that we handle non-linear patterns. The rules
an be found in �gure 3.The base rule M-BASE is on
e again that where the pattern to mat
his an ordinary Haskell pattern. Sin
e the mat
hing now takes pla
ein a non-linear
ontext, the values of variables being bound whilemat
hing this pattern are put into lists instead of just being boundoutright. Binding variables expli
itly in a non-linear
ontext
anonly be done using the �: (a

umulating as) operator that binds itsvariable argument to a list of the value mat
hing its pattern argu-ment, as shown in the rule M-ACCUMAS.The rule for mat
hing a subsequen
e, M-SEQ, is identi
al to LM-SEQ ex
ept that subpatterns in the sequen
e are also mat
hed in anon-linear
ontext.The rules for a repetition pattern, M-STAR1 and M-STAR2, givea non-greedy semanti
s to the operator by giving the rule for notmat
hing higher pre
eden
e than the rule for a
tually mat
hing thesubpattern. The �rst rule simply doesn't try to mat
h anything,whereas the se
ond rule mat
hes the given subpattern p on
e andthen re
urses to obtain more mat
hes. The value obtained frommat
hing p is then prepended to the result values of the re
ursivese
ond premise. Similarly the values of bound values are prependedto the bindings from the re
ursive
all. To get a greedy semanti
sin the rules M-GSTAR1 and M-GSTAR2 we simply swap the orderof the rules to give pre
eden
e to preforming a mat
h.The non-empty repetition pattern operator p+ is de�ned as p+ �pp�, similarly its greedy
ounterpart p+!� pp�!, and the rules M-PLUS and M-GPLUS
an easily be derived from these fa
ts.The rules M-OPT1 and M-OPT2 for optional patterns are very sim-ilar to the rules for repeating patterns, only that no re
ursion toobtain more mat
hes is done. The values returned by an optionalpattern are of the Haskell Maybe type for optional values.For
hoi
e regular expression patterns we return values of theHaskell Either type to indi
ate whi
h
hoi
e was taken. In therules M-CHOICE1 and M-CHOICE2 we give pre
eden
e for mat
h-ing the left pattern. Furthermore all variables o

uring only in thebran
h not taken are assigned empty lists.

5 Well-formed regular expression patternsWe now turn our attention to the stati
 semanti
s of regular ex-pression patterns. We will refer to the stati
 semanti
s as well-formedness of regular expression patterns.There are two reasons why we need a stati
 semanti
s. The �rstreason
on
erns where and how a variable is bound in a pattern. Inordinary patterns a variable may appear only on
e, with the notableex
eption for or-patterns found in O
aml and SML/NJ. In these lan-guages all alternatives must bind exa
tly the same set of variables.We have similar yet more liberal restri
tions on variable bindings.Bound variables must not ne
essarily be bound in all alternatives ina
hoi
e pattern.The se
ond reason is that we need to ensure that the types of thebound variables are
orre
t. The same variable should in parti
ularhave the same type for all its o

urren
es in a
hoi
e pattern.To express the well-formedness of a regular expression pattern weuse the judgment D `l p whi
h says that a (linear) regular expres-sion pattern p is well-formed in the typing
ontext D. The typing
ontext D gives types to the variables bound in the pattern. When
he
king the validity of patterns in a non-linear
ontext we use thejudgment D ` p whi
h is similar to the judgment for linear patterns.We will also refer to the well-formedness of patterns in Haskell,using the judgment D `h p. We refer to Faxén's paper for a stati
semanti
s of Haskell patterns [Fax02℄. We require that D `h p
anonly be derived if p binds exa
tly the variables in the typing
on-text D. Finally we will need a notion of types for regular expressionpatterns. We use the judgment p :: t to say that the pattern p has thetype t.Che
king the well-formedness of a regular expression pattern asan ordinary pattern in the host language is done using the followingrule. Is is noteworthy that we split the typing
ontext. All the typing
ontexts Di must bind different names. We use this to enfor
e thata variable may only be bound on
e.D1 `l p1 : : : Dn `l pnD1 : : :Dn `h [p1 : : : pn℄ Di \D j = /0 8i j:i 6= jThe rules for establishing well-formedness of linear patterns
an befound in �gure 4. In this se
tion we only present the rules for non-greedy operators as the rules for greedy
ounterparts are exa
tly thesame. The only interesting thing to note about the rules for �,+ and? is the fa
t that when
he
king their subpatterns we are in a non-linear
ontext and therefore use the
orresponding judgment for thepremises. The rule for sequen
es is reminis
ent of that for regularexpression patterns in the
ontext of ordinary patterns explainedabove.

M-BASE e 2h p! be : l 2 p! e;s; l s= fx 7! [v℄j x 7! v 2 bg M-ACCAS l1 2 p! v1;b1; l2l1 2 x�:p! v1;fx 7! [v1℄g[b1; l2M-SEQ l1 2 p1 ! v1;b1; l2 : : : ln 2 pn ! vn;bn; l fl1 2 (=p1 : : : pn=)! g1++ : : :++gn;b1[�� �[bn; l f gi = f lattent(vi);vi :: tM-STAR1 l 2 p� ! [℄;b; l b= fx 7! [℄j x 2 vars(p)g M-STAR2 l1 2 p! v1;b1; l2 l2 2 p� ! v2;b2; l3l1 2 p� ! v1 : v2;b1 ℄b2; l3M-GSTAR1 l1 2 p! v1;b1; l2 l2 2 p�!! v2;b2; l3l1 2 p�!! v1 : v2;b1℄b2; l3 M-GSTAR2 l 2 p�!! [℄;b; l b= fx 7! [℄j x 2 vars(p)gM-PLUS l1 2 p! v1;b1; l2 l2 2 p� ! v2;b2; l3l1 2 p+ ! v1 : v2;b1 ℄b2; l3 M-GPLUS l1 2 p! v1;b1; l2 l2 2 p�!! v2;b2; l3l1 2 p+!! v1 : v2;b1℄b2; l3M-OPT1 l 2 p?! Nothing;b; l b= fx 7! [℄j x 2 vars(p)g M-OPT2 l1 2 p! v1;b1; l2l1 2 p?! (Just v1);b1; l2M-GOPT1 l1 2 p! v1;b1; l2l1 2 p?!! (Just v1);b1; l2 M-GOPT2 l 2 p?!! Nothing;b; l b= fx 7! [℄j x 2 vars(p)gM-CHOICE1 l1 2 p1 ! v1;b; l2l1 2 (p1jp2)! (Le f t v1);s; l2 s= b[fx 7! [℄j x 2 vars(p2)gn vars(p1))M-CHOICE2 l1 2 p2 ! v1;b1; l2l1 2 (p1jp2)! (Right v1);b; l2 b= b1[fx 7! [℄j x 2 vars(p1)gn vars(p2))Figure 3. Semanti
s for non-linear regular expression patternsD ` pD `l p� D ` pD `l p+ D1 ` p D2 ` qD `l pjq D= D1[D2 D ` pD `l p?D1 ` p1 : : : Dn ` pnD1 : : :Dn `l (=p1 : : : pn=)Di\D j = /0 8i j:i 6= jp :: t D `l pD;x :: t `l x�p p :: t D `l pD;x :: [t℄ `l x�:p D `h hpatD `l hpatFigure 4. Wellformed linear regular expression patternsThe variable binding rules are interesting to
ontrast against ea
hothers. �As�-patterns are well-formed if the variable is bound toa pattern with the same type as the variable. �A

umulating as�-patterns on the other hand may mat
h several times so the type ofthe variable must be a list.In �gure 5 we present the rules for establishing the well-formednessof non-linear patterns. Most of the rules
arry over straightfor-wardly from those for linear patterns. It should be noted thoughthat the rule for ordinary patterns rebuilds the typing
ontext so thatall variables have list types.Figure 6 gives the typing rules for regular expression patterns. Theintuition behind these rules is that a pattern has a type whi
h re-�e
ts the ways it
an mat
h. For example a pattern whi
h
an mat
hmany times has a list type, hen
e variables bound to � and + pat-terns get list types. Choi
e patterns
an mat
h one of two things

D ` pD ` p� D ` pD ` p+ D1 ` p D2 ` qD ` pjq D= D1 [D2D ` pD ` p? D1 ` p1 : : : Dn ` pnD1 : : :Dn ` (=p1 : : : pn=)Di\D j = /0 8i j:i 6= jp :: t D ` pD;x :: [t℄ ` x�:p D0 `h hpatD ` hpat D= fx :: [t℄jx :: t 2 D0gFigure 5. Wellformed regular expression patternsp :: tp� :: [t℄ p :: tp+ :: [t℄ p :: t q :: t0pjq :: Either t t0 p :: tp? ::Maybe tp1 :: t1 : : : pn :: tn(=p1 : : : pn=) :: [T ℄ p :: tx�p :: t p :: tx�:p :: t hpat :: TFigure 6. Typing rules for regular expression patternswhi
h is
aptured by the Either type of Haskell. A sequen
e pat-tern mat
hes yields a sequen
e and hen
e it also has a list type.Variable binding patterns don't affe
t the typing. The last typingrule for ordinary patterns in the underlying language is more sur-prising, sin
e it refers to a spe
i�
 type T. This means that the typ-ing rules should be interpreted in a
ontext where we are mat
hingon a list of type [T℄, i.e. T is the type of the elements of the list.

6 ImplementationWe
urrently have an implementation of our regular expression pat-tern system that works as a prepro
essor for GHC. It takes a sour
e
ode �le possibly
ontaining regular expression patterns and trans-lates it into semanti
ally equivalent vanilla Haskell
ode. It also
omes with a mat
hing engine, whi
h we implement as a simpleparser monad. The prepro
essor does not
he
k any types, insteadwe rely on GHC's type
he
ker to
at
h type errors.6.1 Mat
hing engineThe datatype for a mat
hing parser, whi
h we from now on willrefer to as a mat
her, looks likedata Mat
her e a = Mat
her ([e℄ -> [(a,[e℄)℄)It is essentially a fun
tion that takes an input list,
ondu
ts a mat
h,and returns a list of results. Ea
h result will
onsist of a value, aset of values for bound variables, and a remainder list. All of this isread dire
tly from our semanti
 rules.Sin
e different variables will be bound to values of different types,we need to model the set of bindings as a tuple, with ea
h entry
orresponding to the value(s) for one spe
i�
 variable. As is
us-tomary, we let the remainder list be the state of the mat
her monad,so that it is impli
itly threaded through a series of mat
hes. Theindividual mat
her fun
tions then need to return a value for futurebindings, and a tuple with values for variables.To a

ount for our all-mat
h semanti
s the parser generates a list ofresults at ea
h step. At pla
es where we need to bran
h we
an usethe +++ operator whi
h lets us pro
eed with two different mat
hers.We de�ne +++ as(+++) :: Mat
her e a -> Mat
her e a -> Mat
her e a(Mat
her f) +++ (Mat
her g) =Mat
her (\es -> let aes1 = f esaes2 = g esin aes1 ++ aes2)As we
an see from the de�nition +++ is left-biased, i.e. any resultsfrom its left operand will end up before any results from its rightoperand in the list of results. This allows us to de�ne a fun
tionthat
ondu
ts the full mat
hing by, as de�ned by our �rst-mat
hpoli
y, sele
ting the �rst result in this list of results for whi
h themat
her has rea
hed the end of the input list (i.e. the remainder listis empty). This fun
tion,
alled runMat
h,
orresponds to the ruleHM-REGPAT from �gure 2, and is de�ned asrunMat
h :: Mat
h e a -> [e℄ -> Maybe arunMat
h (Mat
her f) es =let allps = f esallMat
hes = filter (null . snd) allpsin
ase allMat
hes of[℄ -> Nothing(((_, vars),_):_) -> Just vars6.2 TranslationThe basi
 idea behind translating a regular expression pattern intovanilla Haskell is to generate a mat
her for ea
h subpattern, all theway down to ordinary Haskell patterns, and then
ombine these toform a top-level mat
her
orresponding to the whole of the pattern.

6.2.1 Base patternsThe base
ase is when the pattern in question is an ordinary Haskellpattern. First we must generate a fun
tion that a
tually takes anelement from the input list and tries to mat
h it to the given pattern.For example, if the pattern in question is Tel nr, the
orrespondingfun
tion would look likemat
h0 :: CMode -> Maybe TelNrmat
h0 e =
ase e ofTel nr -> Just (nr)_ -> NothingNo type signatures are a
tually generated, we just supply them hereto simplify understanding. To avoid overly long signatures we ab-breviate Conta
tMode with CMode in our examples.What the fun
tion returns if the mat
h su

eeds is a tuple
ontain-ing the values of bound variables. The fun
tion above works inlinear
ontext sin
e we return the bound variable as is. If we in-stead wanted a fun
tion to work in non-linear
ontext, we wouldwrap the values in lists, likemat
h0 :: CMode -> Maybe [TelNr℄mat
h0 e =
ase e ofTel nr -> Just ([nr℄)_ -> NothingWe also need to lift a generated mat
hing fun
tion into the mat
hermonad. This lifting works identi
ally regardless of what the pat-tern is, so we have a fun
tion in the mat
her engine that does this,de�ned asbaseMat
h :: (e -> Maybe a) -> Mat
her e (e,a)baseMat
h mat
her = doe <- getElement
ase mat
her e ofNothing -> mfailJust b -> do dis
ardreturn (e, b)The fun
tions used by baseMat
h are inherent to our mat
hermonad. getElement retreives the head of the input list, dis
arddrops the head of the input list, and mfail is a mat
her that alwaysreturns an empty list of results. We now need to generate a mat
herby applying baseMat
h to our generated fun
tion, i.e.mat
h1 :: Mat
her CMode (CMode, TelNr)mat
h1 = baseMat
h mat
h0The type states that mat
h1 is a mat
her for a list of CModes. Thevalue mat
hed is a CMode, and the only variable bound is of typeTelNr. The numbers 0 and 1 in the names of these fun
tions signifythat ea
h name is fresh, i.e. these numbers
ould be any positiveintegers, but no two fun
tions share the same integer.For Haskell patterns that are guaranteed to always mat
h, i.e. pat-tern variables and wild
ards (), we
an simplify these steps. For awild
ard, what we need to generate is the mat
hermat
h0 :: Mat
her e (e, ())mat
h0 = baseMat
h (_ -> Just ())meaning we will always mat
h, and no variables are bound. Theonly differen
e for a pattern variable is that the variable in questionis also bound, e.g. for the pattern a we get

mat
h0 :: Mat
her e (e, e)mat
h0 = baseMat
h (\a -> Just (a))On
e again the shown fun
tion works in linear
ontext, in non-linear
ontext we would wrap the returned a in a list.6.2.2 RepetitionAll regular expression patterns have one or more subpatterns, andthe �rst step when translating a regular expression pattern will be totranslate these subpatterns. For a repetition pattern, p�, we would�rst translate the subpattern p into some mat
her fun
tion mat
hX.A

ording to the rules M-STAR1 and M-STAR2, a mat
her fora repetition pattern should if possible
ontinue without trying tomat
h anything, otherwise it should mat
h one element and then re-
ursively mat
h the repetition pattern again. This behavior is
om-mon to all repetition patterns so we de�ne it as a fun
tion in themat
hing engine:manyMat
h :: Mat
h e a -> Mat
h e [a℄manyMat
h mat
her = (return [℄) +++(do a <- mat
heras <- manyMat
h mat
herreturn (a:as))The problem with this de�nition is that manyMat
h returns a list inwhi
h ea
h element is the result of one step of the re
ursion. Weneed to unpa
k this list so that we instead return a tuple, in whi
hea
h entry is a list of results for a spe
i�
 variable binding. We
annot do this generi
ally sin
e the number of bound variables, andthus the size of the tuple, will vary. Therefore we must supply anappropriate unzipping fun
tion that works for the
orre
t numberof variables. The exa
t fun
tion to use
an be determined by theprepro
essor, that has the ne
essary meta-information on what vari-ables are bound. Note that all variables inside the repetition will benon-linear, so the result of mat
hing a variable in ea
h step of there
ursion will be a list of values. If we only unzip to get a list ofsu
h results for ea
h variable, what we would really get is a list oflists of values. Thus to get a list of values we should also let theunzipping fun
tion
on
atenate the results for ea
h variable in theresulting tuple.Inside manyMat
h the unpa
king will be done in two steps. The �rstis to simply unzip the list into two lists, one
ontaining all values (vifrom the rules), the other
ontaining all values of bound variables.In the se
ond step we need to apply the supplied unzipping-and-
on
atenating fun
tion to the latter list to get the variable valuesproper. This new improved manyMat
h will thus look likemanyMat
h :: Mat
her e (a,b) -> ([b℄ ->
)-> Mat
her e ([a℄,
)manyMat
h mat
her unzipper = dores <- mMat
h mat
herlet (vals, vars) = unzip resvs = unzipper varsreturn (vals, vs)where mMat
h is our old de�nition of manyMat
h.As an example, we show the translation of the pattern (Tel nr)*.The �rst step is to translate the subpattern Tel a, whi
h we havealready seen how to do. The new fun
tion that we generate willthen look likemat
h2 :: Mat
her CMode ([CMode℄,[TelNr℄)mat
h2 = manyMat
h mat
h1 unzip1

assuming the mat
her for the subpattern is
alled mat
h1. Thefun
tion unzip1 here is simply the
on
at fun
tion, sin
e thereis only one variable bound. To a

ount for the greedy version ofa repetition pattern, *!, we simply �ip the arguments to +++ inmanyMat
h, whi
h will give a higher priority to the
ase when wea
tually mat
h an element.Non-empty repetition patterns, +, are very similar to ordinary rep-etition patterns, the only differen
e is of
ourse that we make aninitial mat
h before starting the re
ursion, as shown inneManyMat
h :: Mat
her e (a,b) -> ([b℄ ->
)-> Mat
her e ([a℄,
)neManyMat
h mat
her unzipper = dores1 <- mat
herres <- mMat
h mat
herlet (vals, vars) = unzip (res1:res)vs = unzipper varsreturn (vals, vs)6.2.3 Choi
e and Optional patternsChoi
e patterns are slightly tri
kier to handle be
ause of the wayvariables are bound. As we saw in the rules M-CHOICE1 and M-CHOICE2, any variables appearing in the other bran
h than the onebeing mat
hed should be bound to empty lists. This is very dif�
ultto handle generi
ally sin
e we need a

ess to the meta-informationof variable names. Thus we instead generate the full
ode for the
hoi
e pattern during translation. As an example we translate thepattern (Tel nr | Email eaddr). We start by translating thesubpatterns, resulting in two fun
tions that we assume are namedmat
h1 and mat
h2. The
ode generated for the
hoi
e pattern willbemat
h3 :: Mat
her CMode(Either CMode CMode, ([TelNr℄,[EAddr℄))mat
h3 = (do (val, (a)) <- mat
h1return (Left val, (a, [℄)))+++(do (val, (b)) <- mat
h2return (Right val, ([℄, b)))where we have tagged the result value of the pattern mat
h with therespe
tive
onstru
tors from the Either type.The story is very similar for optional patterns, but this time all vari-ables should be bound to empty lists if no mat
h is done. For thepattern (Tel nr)? we getmat
h4 :: Mat
her CMode (Maybe CMode, [TelNr℄)mat
h4 = (return (Nothing, [℄)) +++(do (val, (a)) <- mat
h1return (Just val, a))For a greedy optional pattern we would simply swit
h the argu-ments to +++, just as for repetition patterns.6.2.4 Subsequen
esThe tri
kiest pattern to implement is subsequen
e, due to the needfor �attening. As we saw in se
tion 5, �attening is done based onthe type of a subpattern (with respe
t to some base type for ele-ments in the input list), whi
h means that the prepro
essor mustkeep tra
k of these types in order to insert the proper �attening fun
-tions. For a pattern (/ (Tel nr)?, (Email eaddr)* /) we get

the following translation, assuming the two subpatterns are trans-lated into mat
her fun
tions mat
h1 and mat
h2 respe
tively:mat
h5 :: Mat
her CMode ([CMode℄, ([TelNr℄,[EAddr℄))mat
h5 = do (v1, (a)) <- mat
h1(v2, (b)) <- mat
h2let v1f = maybe [℄ (\v -> [v℄) v1v2f =
on
atMap (\v -> [v℄) v2return (v1f ++ v2f, (a,b))The value v1 is the result of mat
h1, i.e. the mat
her for (Telnr)?, so it will have type Maybe CMode. To �atten it we use thebuilt-in Haskell fun
tion maybe that takes two arguments, one thatis a default value to return if it en
ounters a Nothing (in this
ase[℄), the other a fun
tion to apply to a value held by a Just (in this
ase the �attening fun
tion for a value of the base type). Similarlyv2
omes from mat
h2, so its type will be [CMode℄. We �atten itusing the built-in fun
tion
on
atMap that takes a fun
tion, appliesis to all elements of a list, and then
on
atenates the results.6.2.5 Variable bindingsFinally we turn to the expli
it binding operators. Binding a variableto a value in our mat
her means to add that value to the result tu-ple. Sin
e an expli
itly bound variable synta
ti
ally appears to theleft of any variables in its subpattern, we add the value in the left-most position in the tuple, i.e. before those bound in the subpattern.Thus we know that the values in the result of the top-level mat
hershould be bound to variables from left to right in the order theyappear in the pattern. As an example
onsider the pattern a�(Telnr | Email eaddr). We �rst translate the subpattern (Tel nr |Email eaddr) into a mat
her mat
h1. The mat
her generated forthe variable binding will then bemat
h2 :: Mat
her CMode (Either CMode CMode,(Either CMode CMode,[TelNr℄,[Eaddr℄))mat
h2 = do (val, (nr, eaddr)) <- mat
h1return (val, (val, nr, eaddr))If we had instead used non-linear binding, i.e. a�:(Tel nr |Email eaddr), we would get a list for the returned value, i.e.mat
h2 :: Mat
her CMode(Either CMode CMode,([Either CMode CMode℄,[TelNr℄,[Eaddr℄))mat
h2 = do (val, (nr, eaddr)) <- mat
h1return (val, ([val℄, nr, eaddr))6.3 Mat
hingNow we know how to translate a regular expression pattern into atop-level mat
her fun
tion, what is left is to insert and invoke thegenerated mat
her at the right pla
e to preserve the pattern mat
h-ing semanti
s. To this end we use Haskell pattern guards [EPJ00℄that allow us to evaluate a fun
tion and pattern mat
h on the resultas part of the original pattern mat
h. The fun
tion that we so wishto evaluate is runMat
h applied to our generated top-level mat
herand the input list that we wish to mat
h. For our mat
her fun
tionsto be in s
ope we add them to the where
lause of the de
larationthat the regular expression pattern appears in. To show a
ompleteexample of the translation of a fun
tion de
laration we revisit ourfun
tion allTels de�ned asallTels (Person _ [(Tel nr | _)*℄) = nr

sin
e it
ontains several different features of regular expression pat-terns. The translated version of this fun
tion will look likeallTels (Person _ arg0)| Just (nr) <- runMat
h mat
h5 arg0 = nrwhere mat
h0 e =
ase e ofTel nr -> Just ([nr℄)_ -> Nothingmat
h1 = baseMat
h mat
h0mat
h2 = baseMat
h (_ -> Just ())mat
h3 = (do (val, (nr)) <- mat
h1return (Left val, (nr)))+++(do (val, ()) <- mat
h2return (Right val, ([℄)))mat
h4 = manyMat
h mat
h3 unzip1mat
h5 = do (v1, (nr)) <- mat
h4let v1f =
on
atMap(either (\v -> [v℄)(\v -> [v℄))v1return (v1f, (nr))The fun
tions mat
h0 and mat
h1 together
orrespond to the pat-tern (Tel nr). Note the list around the returned variable nr sig-naling that the pattern is mat
hed in a non-linear
ontext. mat
h2
orresponds to the pattern . Combining these two into a
hoi
epatterns yields (Tel nr |), whi
h is translated to mat
h3. Ontop of that we add a repetition, whi
h gives us mat
h4 when trans-lated. Finally sin
e the top-level pattern should be mat
hed as asubsequen
e, as seen in the rule HM-REGPAT, we translate it intomat
h5. The a
tual mat
hing is done in the pattern guard that ap-plies runMat
h to the mat
her and the input list. The latter is heldby an automati
ally generated fresh variable, in this
ase arg0. It isalso interesting to note that the a
tual binding of variables to valuesdoes not happen until runMat
h is evaluated. Any mention of vari-able names in the mat
her fun
tions, e.g. nr in mat
h0, are onlythere as mnemoni
 aids to a human reader. We
ould
hange allsu
h names to freshly generated variable names without
hangingany semanti
s.In Haskell, patterns
an appear in numerous pla
es su
h as fun
-tion de
larations,
ase expressions, let expressions, statementset
. Translating regular expression patterns into vanilla Haskell isslightly different depending on just where the pattern appears. Thegenerated mat
hers will be identi
al in all
ases, but the pla
ementof them and of the evaluation may differ. We will not go throughthese differen
es in detail, but our implementation handles all
ases
orre
tly. Irrefutable (lazy) patterns also require spe
ial
are, andwe have yet to implement support for them in full.7 Related WorkPattern mat
hing is a well-known and mu
h studied feature of fun
-tional languages [Aug85, Wad87, Mar92, Mar94℄. It provides thestartingpoint for the work presented in this paper.Regular expressions have been used in programming for a longtime, mostly for text mat
hing purposes. Perl's support for regu-lar expressions is probably one of the most well-known [Perl℄, butmost mainstream languages, in
luding Haskell, have some librarysupport for regular expression text mat
hing. Regular expressionsin su
h libraries are themselves en
oded as strings. Mat
hing themmeans taking two strings, where one en
odes a regular expression,and mat
h them to ea
h other. This is in some sense very low-

level when
ompared to our regular expression patterns sin
e thereare no guarantees that regular expressions en
oded as strings arewell-formed, and there is no dire
t way to bind variables to valuesduring a mat
h. Yet another drawba
k is of
ourse that su
h regularexpressions work on strings only, whereas our regular expressionpatterns work over lists of any datatype.The re
ent trend in XML-
entri
 languages has led to several newlanguages with support for regular expression pattern mat
hingsu
h as XMLambda [MS99℄, XDu
e [HP03℄ and CDu
e [BCF03℄.Most similar to ours is probably CDu
e, a general purpose XML-
entri
 programming language. The main fo
us in this language isits regular expression types whi
h are used to validate XML do
-uments. Borrowing from XDu
e they also have regular expressionpatterns whi
h are tightly
oupled with the type system. This al-lows for very pre
ise type information to be propagated in the righthand side of a pattern. The main differen
e with our work is the
lose
onne
tion with the type system. Our extension is little morethan just synta
ti
 sugar whi
h makes it very easy to implement.Another re
ently developed language that features regular expres-sion patterns is S
ala [S
ala℄. S
ala is a multi paradigm languagesupporting both obje
t oriented and fun
tional programming. Itsregular expression fa
ility is rather similar to ours but differs at thefollowing points. Firstly, there is only one variable binding
on-stru
t whi
h has a
ontext dependent behaviour. Se
ondly, S
alahas non-greedy operators just as we do but have no greedy
oun-terparts. This
an make some patterns awkward to express. S
ala'sregular expression patterns work for arbitrary sequen
es.There has been some work in extending Haskell with the full powerof XDu
e,
alled XHaskell [LS04℄. This work fo
uses on �tting thetype system of XDu
e into Haskell and en
oding it using Haskell's
lass system. They also have regular expression patterns but theseare intimately
oupled with regular expression types and do notwork together with ordinary pattern mat
hing.8 Future WorkThere are several areas where our regular expression patterns ex-tension
an be improved. It is not obvious that our implementationusing a monadi
 parser is the most ef�
ient approa
h, on the
on-trary. There has been lots of work on ef�
ient mat
hing of regularexpressions and it is likely that some of these te
hniques
ould beused with our system to make it more ef�
ient.We will need to devise and implement a type
he
king algorithmfor our regular expression patterns on top of Haskell´s type
he
k-ing me
hanism. Being able to type
he
k our regular expressionpatterns before translating them into vanilla Haskell, as opposedto our
urrent implementation that �rst translates and then lets aHaskell type
he
ker do the work, would, if nothing else, lead tomu
h improved error messages.9 A
knowledgementWe would like to thank our shepherd Erik Meijer for his many sug-gestions whi
h improved the paper enormously. Thanks also toKarol Ostrovsky and David Sands who gave valueable feedba
k ondraft versions of this paper. The parti
ipants of the Multi Meetingprovided insightful
omments when we presented the material inthis paper. Lastly thanks to the anonymous referees for their
om-ments.

This work was partially funded by the Swedish Foundation forStrategi
 Resear
h.10 Referen
es[Aug85℄ Lennart Augustsson. Compiling Pattern Mat
hing. InFun
tional Programming and Computer Ar
hite
ture,1985.[BCF03℄ V. Benzaken, G. Castagna, and A. Fris
h. CDu
e: AnXML-Centri
 General-Purpose Language. In Pro
eed-ings of the ACM International Conferen
e on Fun
tionalProgramming, 2003.[EPJ00℄ Martin Erwig and Simon Peyton Jones. Pattern Guardsand Transformational Patterns. In Haskell Workshop,2000.[Fax02℄ Karl-Filip Faxén. A Stati
 Semanti
s for Haskell. Jour-nal of Fun
tional Programming, 12(4�5), 2002.[Fri04℄ A. Fris
h. Regular Tree Language Re
ognition withStati
 Information. In 3rd IFIP International Conferen
eon Theoreti
al Computer S
ien
e, 2004.[HM03℄ Haruo Hosoya and Makoto Murata. Boolean Operationsand In
lusion Test for Attribute-Element Constraints. InEighth International Conferen
e on Implementation andAppli
ation of Automata, volume 2759 of Le
ture Notesin Computer S
ien
e, pages 201�212. Springer-Verlag,2003.[HP03℄ Haruo Hosoya and Benjamin C. Pier
e. XDu
e: A TypedXML Pro
essing Language. ACM Transa
tions on Inter-net Te
hnology, 2(3):117�148, 2003.[HVP00℄ Haruo Hosoya, Jerome Vouillon, and Benjamin C.Pier
e. Regular Expression Types for XML. In Pro
eed-ings of the ACM International Conferen
e on Fun
tionalProgramming, 2000.[Lev03℄ Mi
hael Y. Levin. Compiling Regular Patterns. In Pro-
eedings of the ACM International Conferen
e on Fun
-tional Programming, pages 65�78, 2003.[LS04℄ Kenny Zhuo Ming Lu and Martin Sulzmann.XHaskell: Regular Expression Types for Haskell.http://www.
omp.nus.edu.sg/ sulzmann/, 2004.[Mar92℄ Lu
 Maranget. Compiling Lazy Pattern Mat
hing. InPro
. of the 1992
onferen
e on Lisp and Fun
tionalProgramming. ACM Press, 1992.[Mar94℄ Lu
 Maranget. Two Te
hniques for Compiling Lazy Pat-tern Mat
hing. Resear
h report 2385, INRIA, 1994.[MS99℄ Erik Meijer and Mark Shields. XMl: A Fun
tional Lan-guage for Constru
ting and Manipulating XML Do
u-ments. (Draft), 1999.[MvV01℄ Erik Meijer and Danny van Velzen. Haskell ServerPages. In Graham Hutton, editor, Ele
troni
 Notesin Theoreti
al Computer S
ien
e, volume 41. Elsevier,2001.[Perl℄ www.perl.org.[S
ala℄ Martin Odersky et.al. The S
ala Programming Lan-guage. http://s
ala.ep�.
h/.[Wad87℄ Philip Wadler. The Implementation of Fun
tional Pro-gramming Languages,
hapter Ef�
ient Compilation ofPattern Mat
hing. Prenti
e Hall, 1987.

