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ABSTRACT

Security and dependability are two closely connected areas. Recently, some
attempts have been made to integrate the two concepts by integrating security into
the more general topic of dependability. This paper describes security concepts and
gives a survey of security terminology. It also establishes a taxonomy reflecting
concepts within the security area which enables the integration of security and
dependability. Special concern isgiven to the problems which inevitably arise from
the integration, for example, a somewhat different definition of security is intro-
duced. This paper does not pretend to cover every single mechanism found in secu-
rity, but is rather an attempt to create a taxonomy for security analysis, estimation
and design; ataxonomy that should be useful for further research within this area.

* Thiswork was partially supported by the Swedish National Board for Industrial and Technical
Development (NUTEK) under contract #90-02692P.
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1. INTRODUCTION

The use of computers has increased considerably in the last few years and this develop-
ment has given usersatremendous amount of computing power and easy methodsfor infor-
mation exchange. During this period, large computer networks have been built to connect
these computer systems. Computers connected to networks are often operated and owned
by different companies, each with their own views of security. This, and different demands
on computer security, makes it very hard to agree about what a secure system really is.

Today, computers are also used in applications requiring avery high level of dependabil-
ity. Computer security hastraditionally been treated as an independent subject having noth-
ing in common with dependability. At the same time dependability has been discussed
without attention being paid to security. A recent suggestion in thisareaisto integrate secu-
rity with dependability [25]. Since security as well as dependability are rather well estab-
lished, it will take time before such an integration is fully accepted, especially since
changes in security terminology and taxonomy are needed. However, both areas will ben-
efit from thisintegration, evenif there are someinitial problems such asthe use of different
terms and the presence of overlapping areas, for example system availability which is
present in both dependability and in security.

Recently there has been a lot of work in the area of dependability to find a proper taxon-
omy and to define a common terminology. Such an approach is needed within computer
security aswell, especially since unification of security and dependability conceptsrequires
the taxonomy for security to match that which isused in dependability. There has been one
approach within the PDCS project [7], but its primary goa was not to present a complete
taxonomy. This paper makes a much deeper analysis of how to define a proper taxonomy,
and tries to cover most aspects and forms of security.

Both aterminology and a taxonomy reflecting the concepts needed for security analysis,
estimation and design are presented. The taxonomy makes it possible to fully integrate
security into dependability, thus changes have been made according to traditional viewsin
order to make this integration possible, such as giving a somewhat different definition of
security. Special concern has been spent to maintain existing terminology as much as pos-
sible, and, where possible, to present a taxonomy similar to the one found in the area of
dependability.



2. DEPENDABILITY AND SECURITY

Security is closely related to the more general topic of how to obtain a dependable com-
puting system. Dependability is the trustworthiness of a system and can be seen as the
quality of the service a system offers. Integrating security and dependability can be donein
various ways. One approach isto treat security as one characteristic of dependability onthe
same level as availability, reliability and safety, as shown in figure 1 [25].

DEPENDABILITY
(quality of service)

|
| | |

Availability Reliability Safety Security

Figure 1: The relation between dependability and security

The availability A(t) of asystem isdefined as the probability that a system be operational
at atimet or, in other words, the percentage of operational lifetime a system performs its
functions. Loss of availability is often referred to as denial of service. High availability is
mostly achieved by using redundant hardware in a system.

System reliability R(t) is closely related to availability, but reliability is the probability
that asystemwill performitsfunctionsduring atimeperiod [tg, t], given that it wasworking
at thetimetg. Reliability is quite different from availability since reliability isameasure of
the continuity of a service.

Safety S(t) isthe probability that a system either performsitsintended functions correctly
or that the system hasfailed in such amanner that no catastrophic consequences occur (fail-
safe operation). Safety is especially important in systems interacting with other systems
which in turn may fail, and in applications where an uncontrolled failure of a system may
cause major damage or personal injuries.

In this paper, security is defined as the possibility for a system to protect objects with
respect to confidentiality and integrity. An object isa"passive' component within asystem
and consist of information and system resources, such as CPUs, disks and programs. An
entity (which is sometimesreferred to as a subject) is an active component in a system that
causes information to flow among objects or causes a change in the system state [22], for
example auser, aprocess or adevice. What is considered as an entity in one operation may
be an object in another operation, e.g. an entity reading information from adatabase s itself
an object when another entity asks the process for the information.

This definition of security is similar to existing definitions [25], but instead of defining
security as protection of information only, this definition a so includes protection of system
resources such as protection against illegal use of processor time, disks and networks.

Security isof special interest for those systems which need to preserve objectsfrom threats
intheir environment. Several attempts have been madein the past to find aproper definition
of security. The problem isto find a definition general enough to be accepted regardless of
what kind of system isbeing described, yet detailed enough to describe what security really



is. For example, it is possible to express security in general terms. a secure system isasys-
tem on which enough trust can be put to use it together with sensitive information. This
statement isvalid and could also be chosen as a definition of security. However, it does not
say anything at all about what security really is.

The integration of security with dependability allows dependability analysis more accu-
rately to describe events causing asystem to fail, since dependability analysis now includes
not only traditional issues but also failures caused by security problems. Since it is quite
clear that security problems affect the dependability of a system, it would then also seem
reasonable to integrate security and dependability.

Not only dependability but also security will benefit from the proposed integration. Some
mechanisms used to achieve a high reliability of a system, for example the use of design
diversity, can increase the quality of programs maintaining security, and by making these
programs less vulnerable the overall security for a system is increased. However, an
increase in reliability may not necessarily imply improved security, and there are examples
where increased reliability might degrade system security [22].

However, some complications arise from thisintegration. In traditional security analysis,
availability is seen as one aspect of security, which is a problem since availability is also
one aspect of dependability. This problem highly affects the discussion in section 5 which
describes different aspects of security.

In the future, it would be desirable to extend the definition of security to be a function of
time, Sec(t), denoting the probability for a system to protect objects with respect to confi-
dentiality and integrity during a specified time period [tq, t]. With this definition, security
and reliability become two very similar aspects of dependability. It opens new possibilities
of expressing the security level for asystem in absolute numbersand also to have ameasure
similar to MTTF (mean timeto failure, derived from reliability R(t)) in thefield of security.
However, it is not an easy task to accomplish this, since it implies that there are methods
available that describe security in absolute numbers. Extensive research is needed before
such a definition can be accepted.



3. THE SECURITY CONCEPT

3.1 Security Cost Function

Security requirements for a computer system differ depending on applications:. electronic
funds transfers, reservation systems and control systems all have different demands. Also
the amount of money the owners of the systemsare willing to spend on maintaining security
varies. There exist no absolutely secure systems and there are no absolutely reliable sys-
tems. Instead security can be measured on a continuous scale from 0 to 1 or from com-
pletely insecure to totally secure. Intuitively, a “secure system” is a system where an
intruder has to spend an unacceptable amount of time or money in order to make an intru-
sion. Moreover the risk an intruder has to take may be considered to be too high.

Increased security most often resultsinincreased cost for the system. The cost for security
Isacombination of many factors, for example cost for decreased system performance; cost
for increased system complexity; cost for decreased usability of the system and increased
operation and maintenance costs. Note that many of these costs are related in acomplicated
manner, for example it is possible to achieve a higher level of security by removing most
or perhaps al functionality from a system, but this would result in increased an cost as a
result of decreased usability.

Notethat, for most systems, the cost for security exponentially increases when the security
level approaches 100%, thus it is necessary to optimize the extent to which system
resources should be protected. There must be a trade-off between the cost for increasing
system security and the potential cost incurred as a result of successful security violations
(figure 2).

The total cost for security violations must be calculated as the cost for a single security
violation times the frequency of violations, a cost which isvery hard to estimate.

Cost A

Expected
total cost

Cost for securit

enhancing mechanisms

Expected total
cost for violations

— = Security level
100%
Optimal level

Figure 2: The security cost “function”



3.2 Security Policy

A security policy isaset of rules stating what is permitted and what is not permitted in a
system during normal operation [19]. It iswritten in general terms and describes the secu-
rity requirementsfor asystem. Thetask to define a proper security policy isoftenapolitical
decision to be taken by corporate management.

The security policy regul ates how entities can gain accessto objectsin asystem. The secu-
rity policy should describe the well-balanced cost-effective protection of the system, as
seen in figure 2, and should include all objects aswell asall entitiesin the system. Thereis
asimilar actionfor specifying asecurity policy inthefield of dependability, called to define
afailure semantics [9], which is to define in what ways a system can fail to deliver its
intended service.

Threat analysisis an important aid when defining the security policy. A threat analysisis
aprocesswhere all possiblethreatsto asystem areidentified. A list containing these threats
and the severity of each threat is created. Thislist is then used as a basis for defining the
security policy.

After the security policy has been defined, it can be used to decide what security mecha-
nisms to select. Security mechanisms are the basic mechanisms used to implement secu-
rity in a system, for example an access control mechanism which decides what entities are
allowed to access an object.

Threat Security D Security
analysis :D policy mechanisms
Figure 3: The role of the security policy

When the security policy is defined, it is important to realize that the rules highly affect
what security mechanisms are to be selected. This makes it important to define a security
policy which enablesthe design of both a correct but also a practical, usable system. A cor-
rectly designed system is like a door to a building: if the door and the locks are good
enough, most intruders will leave the building alone. However, if an intruder really wants
to get in, he/she will be able to do that no matter what locks there are on the door. Also, if
the locks are not easy enough to use, there is a tendency not to use them for their specific
function at least for shorter periods of time, and by that create a situation an intruder may
use. The samerule applies for computer security: the tools used to enforce security must be
good enough and at the same time easy enough to use, to be accepted and to be used by the
users of the system.

Any action, intentional or unintentional, that violates the rules stated in the security policy
Isasecurity violation. This definition allows for different interpretations of what is con-
sidered to be a security violation since two security policies can have different notions of
security issues; they can attack different problems, and they can demand different solutions.

A formal security model is a mathematical formalization of the rules stated in the secu-
rity policy and can be used to mathematically prove various properties about a system. To
be precise enough, it needs to be written in aspecification language or in aformal language
[1], as opposed to the security policy.



4. THREATS

Threats can be seen as potential violations of security [19] and exist because of vulner-
abilities, i.e. weaknesses, in a system. There are two basic types of threats. accidental
threats that results in either an exposure of confidential information or causes an illegal
system state to occur; and attacks that are intentional threats.

4.1 Accidental Threats

An accidental threat can be realized (or manifested) and result in either an exposure or
as amodification of an object. Exposures can emerge from both hardware and software
failures as well as from user and operational mistakes, and result in a violation of object
confidentiality. For example, an exposure occurs when auser sends confidential mail to the
wrong person.

An accidental threat may also realizeitself asamodification of the object, whichisavio-
lation of object integrity. An object can be both information and resources, and a modifica-
tion of aresource occurs when the resource entersanillegal state asaresult of an accidental
event.

4.2 Attacks

An attack isan intentional threat and is an action performed by an entity with the intention
to violate security. Examples of attacks are destruction, modification, fabrication, interrup-
tion or interception of data [33]. An attack resultsin disclosur e of information, aviolation
of object confidentiality, or in modification of objects, aviolation of object integrity.

Object Attack Object
Attac D Disclosure ac
Altacky, - —® > Modifi]
Vulnerability cation

Figure 4: Two attacks against an object resulting in
a) disclosure b) modification of information

The definition of security as protection of objects and the definition of a security violation
as an action violating the rules stated in the security policy (which describes how objects
are allowed to be accessed), implies that a security violation is always an illegal access to
an object. An attacker can gain access to a specific object by doing his attack in several
steps, where each step involvesan illegal accessto an object. For example, system software
could bethefirst target for an attacker, which in turn may help him to gain accessto another
object.

Attacks can be both direct and indirect. A direct attack aimsdirectly at an object. Severa
componentsin asystem may be attacked before the intended (final) object can be accessed.
In this case, al these intermediate objects are targets for direct attacks. In an indirect
attack, information is received from or about an object without attacking the object itself.
For example, it may be possible to derive confidential information without accessing an
object at all, by gathering statistics and thereby derive the desired information. Indirect
attacks are especially troublesome in database systems where it is possible to ask indirect
guestions to a database about an object, and from the answers derive confidential informa-
tion. Such an indirect attack is often called inference.



There are two different kinds of attacks: passive and active attacks. Passive attacks are
done by monitoring a system performing its tasks and collecting information. In general, it
is very hard to detect passive attacks since they do not interact or disturb normal system
functions. Examples of passive attacks are monitoring network traffic, CPU and disk usage.
Encryption of network traffic can only partly solve the problem since even the presence of
traffic on a network may reveal some information. Traffic analysis such as measuring the
length, time and frequency of transmissions can be very valuable to detect unusual activi-
ties. (Rumors say that prior to the US Panama invasion, Domino’s pizza deliveries to the
Pentagon jumped 25%, a situation in which an external observer could detect that some-
thing unusual was going on.)

An active attack changes the system behavior in some way. Examples can be to insert
new messages on a network, to modify, delay, reorder, duplicate or delete existing mes-
sages, to deliberately abuse system software causing it to fail and to steal magnetic tapes.
A simple operation such as the modification of a negative acknowledgment (NACK) from
a database server into a positive acknowledgment (ACK) could result in great confusion
and/or damage. Active attacks are, in contrast to passive attacks, more easy to detect if
proper precautions have been taken.

The following paragraphs will describe some important types of attacks: Trojan horses,
viruses, worms and covert channels.

4.2.1 Example: Trojan Horses

A Trojan Horse is a program performing one action but secretly also performing another.
An example of a Trojan horse is a text editor searching documents for special keywords
and, if akeyword isfound, making a copy of the document available to someone else. The
protection mechanismsin most systems have problems protecting information against such
an attack. A document may be protected, but when entities have the possibility to select pro-
tection of objects at their own will, it isvery hard for a system to stop a Trojan horse from
requesting a change of protection for an object. In fact, most actions an entity may perform
can be performed secretly by a Trojan horse, since the Trojan horse normally executes with
the same privileges as the entity using it.

Another task a Trojan horse can perform isto open aback-door into asystem. If asystem
administrator or any highly privileged user executes a program containing a Trojan horse,
almost any action can be performed. For example, the Trojan horse may create new user
accounts, modify the system into accepting users secretly or to modify encryption algo-
rithms.

A special type of Trojan horseisalogic bomb. It is a program with a “feature” incorpo-
rated into it and this feature often consists of the destruction of objects. The bomb is pro-
grammed to go off at a specific time or when a specific event occurs. The idea behind a
logic bomb is often to cause as much damage to a system as possible.

A Trojan horse can enter a system in many ways: it can be planted there by another user,
it may have entered a system from the network (like viruses and worms) or it may have
come with any piece of software installed in the system. It isnormally very hard to identify
what programs may contain a Trojan horse aswell asit can be very hard to get rid of aTro-
jan horse [34]. Since the most vulnerable target for a Trojan horse is an entity with high
privileges, this is a motivation for giving entities the least possible amount of privileges
within a system, as long as they can fulfill their working tasks.
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4.2.2 Example: Viruses and worms

Viruses and worms are relatives of Trojan horses. They are programs or code sequences
designed to spread copies of themselves into other programs and to other computers. A
virusisasmall code sequence that modifies other programs into containing a copy of the
same virus. A virus cannot survive by itself but it needs another program to modify and to
insertitself into. By “infecting” other programsin thisway, it will spread itself within asys-
tem. A worm on the other hand, is a program that spreads throughout a system without
affecting other programs.

The function of avirus or a worm can be to disrupt the service of a system or to plant a
Trojan horse or alogic bomb into a system. Worms and viruses are common in smaller sys-
temslacking protection, but systemswith ahigh degree of protection can also be the subject
of avirus or worm attack [39]. Improper handling and incomplete testing of software are
important channels for the spreading of viruses and worms.

4.2.3 Example: Covert channels

A covert channel is an unprotected channel that can be used by an entity to send confiden-
tial information to unauthorized entities and thereby violate security. In generdl, it is very
hard to identify covert channelsin a system since they can be of many different types: mes-
sage length variations during transmissions, time and length of transmissions, presence and
size of files, creation time for objects, modulation of disk usage, CPU time usage, etc. Itis
impossible to give a complete list, resulting in that there are no simple workable solutions
solving all problems with covert channels.

Mandatory encryption of communication isno guaranteethat entitieswill not (deliberately
or not) send information to another entity over a covert channel. For example, it isstill pos-
sible, while sending legal messages to another entity, to modul ate the length of messages.
More importantly this can be done without any users of the system being aware of it, since
information can be created and sent without their knowledge by a Trojan horse.

Sometimes covert channels are divided into two groups: timing channels are covert chan-
nels modulating aresource in time, and stor age channels are channels where actions like
creation of objects reveal information to other entities, for example to choose specific file
names, file sizes, etc.

It is very hard to eliminate covert channels completely in a system, and since a covert
channel with a high bandwidth constitutes a higher threat than a covert channel with alow
bandwidth, most security mechanisms try to reduce the bandwidth of these channels as
much as possible. Even a covert channel with a bandwidth as low as 100 baud is in some
environments considered to be dangerous [17]. However, actions to limit covert channel
bandwidths aways limit system performance. For example, in order to avoid the length of
messages from being used as an information carrier, all messages can be forced to be of
equal length. The problem with this method isthat it reduces the available bandwidth of the
network as well.
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5. ASPECTSOF SECURITY

Traditionally security has been divided into three different aspects: confidentiality, integ-
rity, availability. However, when security is integrated with dependability (fig. 1), avail-
ability must be seen as a dependability issue and not as a security issue[3][25]. Asaresult,
security isdivided into two aspects, confidentiality and integrity (fig. 5). In asystem where
dependability is a crucial matter, all objects in a system must be protected against both
intentional and unintentional threats. To a user, there is not a very big difference between
someone deliberately disconnecting the power to a system, someone doing it by mistake or
if a hardware failure disconnects the power, since in all three cases the system will fail to
deliver its service.

ASPECTS
|

Confidentiality Integrity

Figure 5: Aspects of security

Sometimes a fourth aspect of security is identified: preservation of objects. However,
preservation of objects can be dealt with either as an availability issue or as an integrity
Issue. It is closely related to integrity issues since loss of information is not very different
from having it destroyed completely by unauthorized modification.

5.1 Confidentiality

Security was defined as the possibility of a system to protect objects with respect to con-
fidentiaity and integrity. Confidentiality is the issue of how to protect objects from unau-
thorized release of information or from unauthorized use of system resources such as
CPUs, programs or other kinds of equipment. The protection mechanism should make it
possible for each individual entity to decide whether his objects should be confidential or
not. Also, a good protection mechanism should allow the owner of a system to determine
who may and who may not access or use an object, i.e. the protection system must be able
to prevent an entity from making confidential information available to other entities. A
more detailed discussion of protection mechanisms follows in section 7.

5.2 Integrity

Integrity is the issue of how to preserve objects to make them trustworthy, i.e. how to
avoid the unauthorized modification of objects. Unauthorized users might not be able to
read the contents of an object but the protection system must be able to prevent an autho-
rized entity from adding or modifying any parts of the object. Integrity of aresourceisthe
issue of how to preserve the resource and how to protect it from unauthorized modification.
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6. FORMSOF SECURITY

An attacker can find several objectsto attack in a system in order to obtain a specific piece
of information: system software can be attacked; the physical computer installation can be
attacked, for example, by theft of magnetic tapes; alegal user may be bribed (i.e. attacked);
etc. Thus, there is a need to divide security into different forms which will keep similar
security characteristicstogether. There are some (somewhat disagreeing) approachestothis
problem [4][7][43]. In this paper, most of the security forms are similar to onesfound el se-
where, but here they are grouped into a completely different hierarchical structure. This
structure is based on where in a system vulnerabilities may be found: vulnerabilitiesin the
hardware, vulnerabilitiesin information or software, and vulnerabilitiesin the organization
that administers the system, as shown in figure 6.

FORMS
Hardware Information Administration
security security security
Physical Computer Personnel
security security security
Emanation Communication Operation
security security security

Figure 6: Forms of security

6.1 Hardware-related Security | ssues

Hardware security issues deal with protection of objectsfrom vulnerabilities present in the
handling of hardware. Hardware security can be divided into physical security and emana-
tion security:

Physical security deals with protection of hardware in the system from external physical
threats, such as tampering, theft, earthquakes, water flooding. All equipment handling or
containing sensitive information needs to be protected. There must be no possibility for an
intruder to access these devices, for example no one must be able to remove a disk contain-
ing sensitive information or to install devices to record confidential information. These
problems can be solved by locating equipment in an environment secure enough to contain
the information handled by the equipment, i.e. physical security deals with how to create
and maintain such an environment. Note that physical security deals with protection of
objects and not with computer equipment in general. However, the result of protecting sen-
sitive objects can very well result in better protection of equipment as well.

Emanation security deals with protection against emission of signals (i.e. information)
from the hardware in the system, for example electromagnetic emission (e.g. from dis-
plays), visible emission (displays may be visible through windows) and audio emission
(sounds from printers).
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6.2 Information-related Security I ssues

Information security is protection of objects from vulnerabilities present in the architec-
ture of the system, i.e. vulnerabilities in software, hardware and in the combination of soft-
ware and hardware. Information security can be divided into computer security and com-
munication security:

Computer security dealswith protection of objects against exposures and against attacks
making use of vulnerabilities in the system architecture. It deals with a wide variety of
problems: how programs inside the computer should act to enforce the security policy; how
the access control mechanism should work; what hardware mechanisms the operating sys-
tem needs, for example virtual memory; what encryption mechanisms to select; etc.

Communication security deals with protection of information during transportation.
When objects are transported, either between computers or locally within a computer, an
active attack may be undertaken in order to interact with the communication process, for
exampleto modify, retransmit, reorder or destroy information. Also, objects need to be pro-
tected against passive attacks and exposures during transmission.

6.3 Administration- related Security | ssues

Administration security is protection of objects from vulnerabilities caused by users (i.e.
humans) and threats against vulnerabilities in the security organization. Administration
security can be divided into personnel security and operation security:

Per sonnel security dealswith protection of objects against attacks from authorized users.
Users of a system have access to various objects, and protection mechanisms against users
who deliberately abuse their privileges are necessary or at least methods limiting the dam-
ages a user may cause. The reasons auser may have to abuse hig/her privileges can be sev-
eral: an external attacker may convince the user to perform an attack (bribes, threats, cheat-
ing, etc), there can be a personal gain such as money, it can be an intellectual challenge, it
can be to punish the company, etc. Personnel security issues also include protection against
exposures arising from authorized users, for example when a user sends confidential mail
to the wrong person or when a user forgets to log out.

Important mechanisms used to limit damages are to educate users as to the importance of
maintaining security, to restrict privilegesto users who have a need to know, to move sen-
sitive information away from certain systems, to have supervisory controls, etc. Note that
if auser needsto commit a security violation to accessinformation, thiswould be an infor-
mation security issue and not a personnel security issue.

In general, authorized users are agreater threat than external attackers, and an even worse
threat is personnel responsible for maintaining security in a system who abuse their privi-
leges. Statistics say that only about 10% of all computer crimes are performed as outside
break-ins, 40% are committed by insiders and about 50% by former employees as an act of
revenge [20]. Clearly, personnel security issues should highly affect the security mecha-
nisms to implement in a system.

Operation security deals with protection of objects against vulnerabilities present in the
organization that maintains security in a system. Operation security regulates how al the
other forms of security should be implemented and how the system should be operated. It
deals with ways of enforcing the rules stated in the security policy, what actions to take
when security violations are detected in the system, what recovery mechanisms to imple-
ment, etc. It isimportant that persons maintaining security are informed about events that



14

cause security violations in other systems, and that they continuoudly update and modify
their own system to reach the desired level of security, which can be done by regular updat-
ing, changes and modifications of the mechanisms enforcing security.

All six forms of security are summarized in the table below. The primary target shown
describes what kind of object an attacker may use in the system, i.e. what primary resource
to protect in the system.

Note that operation security as described above cannot be atarget for attacks. An attacker
can very well use this knowledge that avulnerability in the operation of a system exists, for
example the knowledge that faulty software is used and never updated, but the actual attack
Is directed against another form of security, in thiscaseit isacomputer security issue. Itis
necessary to make this distinction, or else all attacks could be seen as operation-security
ISsUes since operation security maintains the overall security in the system. In other words,
an attack can not be directed against operation security, but a vulnerability (a deficiency)
in operation security may result in an attack against another form of security, or in exposure
of information.

Target Primary
Category Form_of Aspect for SETEIE security
security of threat .
attacks mechanisms
Physical Conf+int | hiw Theft, modification h/iw
Hardware
Emanation Conf hiw Receivers hiw
Computer Conf+int | s’'w (h/w) | Abuse of system siw siw (h/w)
Information Conf inform. Recording information encryption, h/iw
Communication
Int siw Interaction (with comm) | encryption, s'w
Personnel Conf+Int | humans Authorized users rules, education
Administration
Operation Conf+Int | -- Operational mistakes rules, training

Table 1: Characteristics for different forms of security

Thereasonswhy it can be necessary to protect acomputer against theft can be several, and
many forms of security can be involved:

1) Protection of information in the computer: a physical security issue

2) Protection of the computer as aresource not to be used by others: a physical security
Issue.

3) Protection of the equipment because of its monetary value: some other kind of prob-
lem, not different from theft of typewriters and other equipment.

4) Depending on the circumstances, it could be an availability issue, areliability and/or
asafety issue.



15

7. SECURITY MECHANISMS

Security mechanisms are mechanisms used to implement the rules stated in the security
policy as shown in figure 3. Security mechanisms can be divided into three categories: pre-
vention, detection and recovery mechanisms[19]. Within each group, there are many secu-
rity mechanisms available, where each mechanism focuses on a specific kind of threat and
deals with a specific form and aspect of security.

SECURITY

ASPECTS FORMS THREATS MECHANISMS
Confidentiality |- Hardware Attacks — Prevention

Physical
Integrity Emanation Exposures — Detection

— Information
Computer .- Recovery
Communication

— Administration

Personnel
Operation

Figure 7: Relations within security

A security prevention mechanism is amechanism enforcing security during the operation
of a system by preventing a security violation from occurring, for example a mechanism
restricting physical access to a system or the use of access control mechanisms based on
encryption to prevent unauthorized users from accessing objects. A detection mechanism
Is used to detect both attempts to violate security and successful security violations, when
or after they have occurred in a system. Alarms can be used to detect unauthorized physical
accesses and audit trails can be used to detect unusual system activities after they have
occurred. A recovery mechanism isamechanism that is used after a security violation has
been detected, and is amechanism that restores the system to a pre security violation state,
for example to have backup tapes and to add redundant hardware to a system.

It is also possible to find mechanisms which belong to several of these categories: a pro-
gram registering al unusual system activities and thus working as a detection mechanism,
may also prevent security breaches from occurring simply because it exists. In a system
with a total lack of vulnerabilities and where the security prevention mechanisms fully
implement all rules stated in the security policy, there would be no need for detection and
recovery mechanisms.



16

The following paragraphs describe in detail some of the most important security mecha-
nismsin usetoday. Thediscussion is, for practical reasons, limited to information security
issues only. Security mechanisms are identified in the 1ISO/OSI security addendum [19],
however, here we have a somewhat different approach to the problem: only the most impor-
tant mechanisms are selected but each individual mechanism is discussed more in detail.
Also, some mechanisms not present in the OS| addendum (e.g. separation mechanisms) are
included here. The following mechanisms are discussed:

e Authentication

» Access control: policies, models and implementations

Separation mechanisms

Communi cation mechanisms: routing control, traffic padding, signatures, etc.

Detection and recovery mechanisms

7.1 Authentication and Identification M echanisms

An authenti cation mechanism makesit possible to uniquely identify entities, which isnec-
essary before other mechanisms can make decisionsbased on the identity of an entity. Since
the authentication mechanism is the basis for most other security mechanisms, it needs to
be as secure and robust as possible in order for other entities and security mechanisms to
be trusted.

Before the authentication process can start, al entities need a unique identification. It
must be something which is very hard to counterfeit by other entities, for example some-
thing an entity knows or carries such as a key to an encryption algorithm (a password), a
smart card or afinger print. The process of checking the identity of an entity is called to
authenticate the entity. To administer identities, asecurity administrator, who maintains
a security information database is needed.

The authentication mechanism is normally mandatory for all entities, since identity must
be established before the entity can be granted any rightsin asystem. In many systemsthere
are mechanisms available to pass the identity of one entity to another entity. For example,
when auser logsin to asystem, hisrights are inherited by one or more processesin the sys-
tem, such astext editors, mail programs, etc. These processes can be thought of as bearers
of the user’sidentity.

Authentication can be divided into two types: weak and strong authentication. Weak or
simple authentication mechanisms are "normal” mechanisms used by most systems, for
example the use of a password when a user logs in to a system. Strong authentication
mechani sms are mechanisms where an entity does not reveal any secrets during the authen-
tication process. This can be achieved, for example, by using asymmetric cryptosystems
where only the entity itself knows how to encrypt a message but where all entities knows
how to decrypt the message. In this case, an entity never has to reveal the encryption key,
I.e. it isasecret not shared with anyone el se (see below).

7.1.1 Two Party Authentication

The process where one entity (the client) wants to be authenticated by another entity (the
server), can be performed in several ways:
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The easiest way isto have the client send his password to the server who checksit against
hisown records. There are at |east two major drawbacks with this method: the client cannot
know that heis actually talking with the correct server, and even if he does, it may be pos-
sible for athird entity to pick up the password when it is sent to the server. This method is
called an unprotected simple authentication procedure[9].

An improved method isto use a challenge protocol where the client encrypts for example
a random number together with a time-stamp using the its password, and sends it to the
server. The server then repeats the same process and verifies that the client actually did
know the correct password. Thismethod isinsensitive to replaysfrom athird party and can
be extended by having the server authorize himself against the client in asimilar way. This
authentication mechanism is easily built into small "smart-cards" containing a chip which
is able to perform the encryption of arandom number.

A similar method is to apply a one-way function to the random number, the time-stamp
and the password, f(r, t, p), and then to send the result of this computation to the server. The
server then repeats the procedure to verify the password. This method is called a protected
simple authentication procedure[9].

The above solutions still have one drawback: when a secret isknown by many entities, the
security in the system relies on the most insecure entity not to reveal his secrets. A solution
to this problem is to use a strong authentication procedure, e.g. to use an asymmetric
cryptosystem. This cryptosystem has the property that an object (for example a random
number) M encrypted with one key ke, must be decrypted with another key, the decryption
key kd, to retrieve original contents: M = D,4(E,(M)). By keeping the encryption key ke
secret and the decryption key kd public, only one entity can perform the encryption but all
entities can do the decryption. This makes it is possible for any entity to validate the con-
tents and origin of a message since there is only one entity in possession of the encryption
key, i.e. it is possible for an entity to prove his identity to other entities without revealing
any secrets.

7.1.2 Third Party Authentication

The previously mentioned authentication methods still have one drawback: all entities
who want to authenticate clients need to know either the secret or the public key for al cli-
entsin the system, which in alarge system very soon becomes impractical from a manage-
ment point of view. A possible solution isto have aspecial entity, athird party, performing
the authentication process for al entities in the system. One such commercialy available
authentication server is Kerberos, originally developed at MIT in the Athena project [40].
It is acentral authentication server generating keys for use by individual entitiesin a net-
work. In Kerberos the security of the authentication process depends on the security of the
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authentication server only. Each entity hasaprivate key which it shareswith Kerberos. This
key (or password) is presented during the authentication process by a challenge protocol.
To establish connection with another entity, the following process takes place (figure 8):

» Entity 1 contacts Kerberos and asks to be authenticated (1). This authentication can
be performed with one of the previously described mechanisms. If Kerberos accepts
the entity, entity 1 gets aticket (2) that can be used to prove its identity for a special
server, the Ticket Granting Server, TGS.

* When entity 1 asksthe TGS (3), it receives a session key, aticket (4), to be used to-
gether with another entity, for example together with entity 2.

» The session key can be used as an encryption key or as an identification key when
entities are communicating (5).

* If more session keys (tickets) are required for communication with other entities, only
the TGS need to be contacted again (3)(4).

Yoo

Figure 8: The Kerberos Authentication server

When this scheme is executed, both entities know that only the other entity can possess
the same session keys. Also, note that entity 2 may very well deny entity 1 access, since
Kerberosis only an authenticating service, giving entities the possibility to uniquely iden-
tify themselves.

Unfortunately the identification key is disclosed to the local computer when the authenti-
cation takes place, thusthis computer can save the key and useit later on. Another potential
problem isthat Kerberosisin possession of al keysto all entities, and these keys need to
be completely secured.

7.2 Access Control Mechanisms

Within a system objects are protected by an access control mechanism which mediates
all accesses to objects and controls the way in which entities can use them. The basic com-
ponents of an access control mechanism are entities, objects and access rights. The access
rights describe entity privileges and state under what conditions entities can access an
object and how these entities are allowed to access the object.

An access control mechanism is implemented in most multi-user operating systems, and
there are severa demands on agood access control mechanism. Ideally, it should be possi-
ble to specify for each object exactly what entities are allowed to access it, and what kind
of access each entity isallowed (read, write, delete, create, extend, change protection, etc.)
However, existing operating systems do not, for practical reasons, support such a detailed
specification. In addition to this, most systems lack methods for specifying access to net-
work objects, for example, mechanisms making it possible to state for individual objects
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that an object may always be accessible by entity X unlessit is done from system Y. There
have been some attemptsto solvethis problem [37][38], but unfortunately such systemsare
not widely available.

Also, agood access control system must support revocation of accessrights. It must be
possible to withdraw an entity’ s rights to access an object. Unfortunately, thisis not possi-
ble with most operating systems today since an actual implementation of this would imply
that the access rights have to be checked each time an object is accessed, for example at
each individual read or write operation performed on a file, and not only when afile is
opened.

7.2.1 Access Control Policies
Access control can be divided into two policies:

» Discretionary accesscontrol: the owner of an object hasthe possibility to protect an
object against access from other entities on a need-to-know basis, i.e. an entity can
specify what other entities may or may not access an object, and in what ways these
entities may access the object.

» Mandatory access control: the system always checks an entity’ s rights to access an
object. Neither an entity nor the owner of an object can ever override or change the
decision made by the system. Mandatory access control is often required for systems
with ahigh security level [12].

These two policies can be combined to work simultaneously: the entity owning an object
can have the possibility to specify what other entities are allowed to access it, but only
within certain limits imposed on him by the mandatory access control.

A Trojan Horse (section 4.2.1) may spoof the owner of an object, thus overriding the dis-
cretionary access control, but never the mandatory access control. At the same time, a
mechanism enforcing mandatory access control is insensitive to user mistakes and makes
it possible to make a mathematical description of the information flow in the system, as
opposed to the use of discretionary access control, where information flows can be more or
less arbitrarily [2] [27].
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7.2.2 Access Control Implementations

Thereare different waysto implement access control mechanisms, for exampleto use pro-
tection groups, access lists, capability lists and lock-key mechanisms. Each mechanism can
be used to implement both mandatory and discretionary access control policies.

 Entities and objects can be divided into groups, where all entities and all objects be-
long to one or more of these groups. The access rights to an object are based on group
membership of the entity. For example, it is possible to have an implementation
where an object can be modified only by entitiesthat are members of the same groups
asthe object, or it is possible to state that it is enough to be a member of only one of
the groups. Thislast case is the protection mechanism present in most UNIX operat-
ing systems today.

* Anaccesslist isalist associated with an object and contains the names of al entities
allowed or not allowed to access the object. The list includes the type of access each
entity isentitled to (read, write, create, delete, etc.). Accesslistsaremore general than
groups since each individual entity can be specified in an access list.

» A capability list is similar to an access list, the difference being that each entity is
associated with a list describing what objects it is allowed to access. The advantage
with capability lists over access listsisthat an entity can be granted accessto two ob-
jects but not at the same time, since this can easily be implemented by allowing enti-
ties to choose between different capability lists with different capabilities.

* In alock-key mechanism each object is given a password, a key an entity must be
ableto present before accessis granted to an object. Thisdiffersfrom the other mech-
anisms where access to an object is based only on the identity of an entity. A lock-
key mechanism is used by most operating systems when they determine whether a
user should have access to the system or not, but it can also be used to determine ac-
cesstoindividual objects within the system.

Combinations of these protection mechanisms are also possible. Groups, for example, can
be combined with access lists in order to alow afiner grain of protection than the use of
groups alone would allow.

7.2.3 Formal Modelsfor Access Control

A formal security model is a mathematical description of how objects are allowed to be
accessed. As aresult, it can be used to describe the information flow within a system and
to prove that the integrity and/or the confidentiality of objects at al times can and will be
preserved.

Two especially important models are described in the following sections: the Bell-L aPad-
ula Model [24] enforcing confidentiality of objects, and the Biba Model [33] enforcing
Integrity of objects. Both models are based on set theory that defines secure states and tran-
sitions within a system.

7.2.4 The Bdl-LaPadula M odel

In the Bell-LaPadula model entities are divided into security classification levels (for
example Unclassified, Confidential, Secret and Top Secret). The Bell-LaPadula model
enforces one fundamental rule: no entity should be able to have read-access to an object
classified above its own security level, i.e. the entity’ s security level must be greater than
or equal to the object’s security level. Thisis called the simple security rule and enforces
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“No read-up.” To write to an object, the entity’ s security level must be less than or equal
to the object’s security level. Thisis called the *-property (the star property) and enforces
“No write-down.” Together, these rules can be written as.

read: SL(Entity) > SL(Obj) The simple security rule

where SL denotes the security classification level for an entity or an object.

The Bell-LaPadula model enforces secrecy of objects, since an entity cannot read objects
with ahigher security classification level than the entity itself. However, sinceit ispossible
to write to objects with ahigher security classification than the entity itself, it might be pos-
sible for an entity to corrupt objects classified above its own security level, and by that vio-
late the integrity of objects.

A serious problem sometimes arises when the *-property is applied to a system: since
reports generated by a system often concern objectswith ahigh security classification level,
most reports need to be classified at avery high security level. For example, the knowledge
of the number of usersin a system, may have to be classified as Top Secret information. In
general, there is a tendency in a system relying on the Bell-LaPadula model to have an
information flow toward higher security classification levels. This makes it necessary to
have a special mechanism which is able to declassify information, amechanism that allows
acertain trusted entity to decrease or in any other way change the security classification for
objects. Other practical changes to the Bell-LaPadula model can be to alow these trusted
entities to talk freely to entities classified below their own security level (violating the *-
property), for exampleto allow aspecial entity to receive and send mail to other lower clas-
sified systems.

When an entity wants to communicate with another entity, the communication should
obey the rules above as well. In a networking environment, thisis especially cumbersome
since thereis no possibility to reliably send a message to a higher classified entity, without
violating the *-property. This is due to the fact that the receiver is not allowed to send a
reply nor even an acknowledgment back to the sender. For local communication taking
place within a single computer this may be acceptable, since such acommunication can be
made (almost) reliable without acknowledgments [41]. Sometimes a solution using a
trusted intermediary can be used [28].

7.2.5 The Biba M odel

The Biba model is another formal model and it is the counterpart of the Bell-LaPadula
model. This model preserves object integrity rather than object confidentiality. It is done
by alowing only “Write-down”, i.e. it ensuresthat entities can only write to objectswith a
lower security classification than the entity itself. This prevents an untrustworthy entity
from deliberately creating or modifying objects with higher security classification, which
is possible in the Bell-LaPadula model. Also, an entity can only read information from
objectswith ahigher security classification level than the entity itself. Sincethismodel only
preserves integrity, it can be described in terms of having integrity levelsinstead of secu-
rity or sensitivity levels. These rules can be summarized as:

write: IL(Entity) > IL(Obj) The simpleintegrity rule
read: IL(Entity) < IL(Obj) The * property
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Inthe Bibamodel, itispossiblefor all entitiesto read any object classified at ahigher level
than the entity itself, and to send information to all entitiesworking at alower classification
level. Thusit is possible for an entity to deliberately disclose the contents of higher classi-
fied objects.

The Bell-LaPadula model and the Biba model can be combined to work together asasin-
gle system [8]. One possibility is to force normal entities to follow the Bell LaPadula
modél, i.e. to have them follow the confidentiality enforcing rules, and to force trusted enti-
tieswho need to be able to declassify entities to follow the Bibaintegrity enforcing rules.

7.2.6 TheMilitary Security Model

This model is sometimes referred to as the lattice model and sometimes as the military
security model, sinceitisused in US military and government specifications for computer
security [12]. It isagood example of how a mandatory access control policy can be imple-
mented. The example shown in the figure below, has 9 non-hierarchical security levels (A-
I) called compartments, and four hierarchical security levels (Unclassified, Confidential,
Secret and Top Secret) describing an object’s security classification. The figure contains
three objects and, for example, object 2 belongs to compartment F+G+H and is classified
asa“Secret” object. In practice, thisimpliesthat all objects have some information associ-
ated with them, for example |labels attached to them that shows their security classification
and to what compartment they belong.

Top Secret . Object 1
Secret
Security D Object 2
Classification Confidential
Unclassified [:I Object 3

Compartments

Figure 9: Mandatory access control in the military security model

Both the compartment bel onging and the security classification of an object is checked by
the mandatory access policy. To be able to access an object, the entity must be a member
of all the compartments the object belongsto, for example to access object 2, an entity must
(at least) be amember of compartment F+G+H. This can be described aslimiting the access
to an object to those entities with a need to know. Furthermore, only entities alowed to
access Top Secret and Secret objects can access object 2 as it is a secret object. Also, the
mandatory access control policy makes sure an entity cannot change the security classifi-
cation or compartment belonging of an object.

The Bell-LaPadula model was the base for the US Department of Defence's “orange
book” which describes the lattice model. It can be proven that this model with both hierar-
chical security levels and with compartment belonging, formsapartial order (alattice), and
the model can be used to describe and to prove how information can flow within a system.
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7.2.7 Object Protection in Databases

There is adifference between an operating system and a database protection mechanism:
the database object protection mechanism often need to work with afiner granularity, since
protection of individual recordsin adatabase is not normally offered by operating systems.
Thus, adatabase server may have to implement a protection scheme similar to the operating
system, where the database server needs to enforce both integrity and confidentiality pro-
tection rules.

Also, each record (object) within the database may need a detailed protection mechanism
stating who is and who is not permitted to read, insert, modify, extend, delete, change pro-
tection, etc. This detailed specification may not be supported by the operating system, i.e.
thisis another reason why a database server may have to implement own protection mech-
anisms. Of course, the database itself can be subject to operating system protection mech-
anisms at the same time as it maintains its own protection of individual records within the
database.

One very specific problem to database systems is the prevention of information gener -
ation, i.e. how to implement infer ence control. Inference arises when classified informa-
tionisderived from several other less classified pieces of information, for example the out-
put of asimple operation such as A+B may need a higher security classification level than
theindividual components A and B have. Inference control can beincorporated into adata-
base server which, depending on specific queries, makes the decisions whether an entity
can derive some confidential information from earlier questions and answers or not [17].
However, thisisin general very hard to implement. Other solutions to the inference prob-
lem can be to add auditing of “unusual” questions issued to the database server.

A similar inference problem occurs when direct questions about an object are rejected
because of its classification. However, it may still be possible to ask an indirect question
and from the answer derive information about a classified object. For example it may not
be possible to ask questions about salaries for individual employees, but a list without
names containing all salariesin the company may be possible to get. From thislist, it might
be possible to derive the salaries for at least some of the employees.

7.3 Separation Mechanisms

Computers handling multilevel objects need a mechanism to separate objects of different
security classification levels from each other. There must be no information flow between
objects or between objects and entities without permission from the access control system,
thus we need to have a mechanism separating objects and entities. This separation can be
donein five different ways:

» Physical separation

» Tempora separation

» Cryptographic separation
» Logical separation

* Fragmentation

Note that nothing restricts an actual implementation of a secure system to use any combi-
nation of these mechanisms. A system handling objects of only one security classification
can be made simpler since it does not need to separate them.
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We define a computer connected to a network capable of storing and processing informa-
tion asahost, as opposed to a system which can be one or more hosts connected by a net-
work. A host capable of handling objects belonging to several security levels is often
referred to asamultilevel secure host.

7.3.1 Physical separation

Physical separation isamethod suitable for an environment with several individual hosts
on anetwork. The system is divided into different subsystems where each subsystem has a
different security classification. For example to have a workstation, dedicated to handling
only secret objects, located in a secret environment and only accessible by people autho-
rized to handle secret objects (and whose compartment complies with the usage of the sys-
tem), isavery desirable solution since it eliminates the need to find a trusted operating sys-
tem to implement the access control. The disadvantage with thiskind of solution isthe cost
and inefficiency of dedicating hardware to specific tasks, instead of sharing hardware
among users.

It is also possible to achieve physical separation by using virtual resources. A multilevel
secure host can offer services to several hosts working at different security levels simulta-
neously. One example of physical separation is the use of a virtual machine, where each
user is given their own version of the operating system and of all other programs they are
using. Physical separation makes use of hardware and software to create a secure system.

7.3.2 Temporal separation

Temporal separation is another method that is used frequently. Temporal separation uses
time to separate objects. When a host needsto changeits security level, all old activitiesare
stopped; the machineis completely restored to itsinitial state (memory, disks, etc.) and the
new tasks are started. This method only worksiif it is possible to find a method to restore
the machine safely to itsinitial state and if the waiting time to reinitialize the machine is
acceptable.

7.3.3 Cryptographic separation

Cryptographic separation uses cryptography to separate objects of different security lev-
els. The basic ideais that encrypted information should be of no value to an unauthorized
entity. Cryptographic separation seems to be the separation method which is currently
being most researched. There are several problems that need to be solved: developing
strong, fast and easy encryption/decryption mechanisms, finding easy ways for key distri-
bution among entities, finding where and in what security mechanismsto apply encryption,
etc. Cryptographic separation makes it possible to create separate virtual systemswithin a
larger system, where all entities not in possession of akey are isolated from the rest.

7.3.4 Logical separation

Logical separation, sometimes also called isolation, is based on the idea that all entities
should only be aware of their own environment, i.e. they can only see what they are autho-
rized to see and they should be oblivious of other entitiesworking in the same system. Log-
ical isolation can beimplemented by giving processestheir own address space and by using
virtual memory to separate them from each other.

An exampleof logical separation isto use reference monitorsto separate objectsfrom each
other. A reference monitor isan abstract machine controlling all accessesto objectswithin
the machine, thusit isamonitor protecting objects. The reference monitor only containsthe
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necessary protection mechanisms, thusit makesit possible to keep the protection system as
small and simple as possible, which in turn, makesit possible to create a system that can be
exhaustively tested and which can be formally verified [36].

The actual implementation (or the instantiation) of areference monitor can be donein sev-
eral ways: A local database server can have areference monitor in front of it, checking the
identity and access rights for entities before they are granted access to the database. Only
if the reference monitor accepts arequest, isit passed on to the database server. The entity
using the database does not see anything outside its own world, since the reference monitor
filters the requests and replies from the database server to contain only those objects the
entity is authorized to access.

Reference
ENTITY —® monitor —p»=( OBJECT

Security policy

Figure 10: The Reference Monitor Concept

Reference monitors can also be used by computers to check accessesto various objectsin
the system, instead of having the operating system itself do the checks. A commonly used
instantiation of a reference monitor is a security kernel or a trusted computing base
(TCB). The TCB within asystem is made up of all the protection mechanismsthat enforce
the security policy for that computer, and may consist of both hardware and software. The
trust put on the TCB determines the overall trust of the system. By isolating all the protec-
tion mechanisms of an operating system into a TCB, the protection system is relatively
small and it is easier to analyze the mechanisms used to achieve security, since it may be
possibleto giveformal evidence of asystem’ sability to behave correctly during given con-
ditions. Also, changes to the operating system and penetrations of the operating system do

not have to affect the overall security of the system.
TCB 4—»@

USER 1
Operating
System
USER 2

Security policy

Figure 11: TCB monitoring disk accesses

A reference monitor can also be used between the operating system and anetwork to check
al network traffic. When a reference monitor is implemented as a separate piece of hard-
ware located between a host and the network, this construction is often referred to as a
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trusted network interface (TNI). The use of a TNI alows hosts to internally use an
untrusted version of Unix but still be protected against network attacks, since the TNIs
ensuresthat only authorized transactions are sent and received by the Unix system. By add-
ing encryption to the network (i.e. tothe TNIs), integrity of all objects sent over the network
can be guaranteed and the result is the possibility to have reduced physical security require-
ments for the network cable.

Figure 12 shows three hosts connected to a network, where two hosts are controlled by
TNIstoward the network:

n
Host 1 (|
1

Host 3

X—-Z2C

Host 2 |—

‘ N—Zﬁ‘

Figure 12: Two hosts with TCBs and one host relying on UNIX®

All network communication by host 1 and host 2 in figure 12, aswell as all internal com-
munication between local processes, is controlled by the TNIs (TNI1 and TNI2). When a
process on host 1 wishes to send amessage to a process on host 2, TNI 1 checks what secu-
rity levels TNI2 is alowed to handle. This has to be done before the communication is
established, since a TNI should never receive messages with ahigher security classification
thanitisallowedto handle. Asaresult of this, all TNIsmust know in advance what security
levels the other TNIs are allowed to handle, or at least must be able to figure this out, for
example to have a security server which can be contacted by the TNIs. If TNI2 isworking
at the correct security level, TNI1 contacts TNI2 and verifies the security levelsfor thetwo
processes. In thiscase, TNI1 trusts TNI2 to give the security level of the process and TNI2
trusts TNI1. If the communication is allowed according to the access control rules (i.e. the
security policy), the communication is set up. Note that a TNI needsto make surethat it is
at al timestalking to the intended TNI and not to someone else, which for example can be
assured by cryptographic separation.

When communicating with a system without a TNI, such as with host 3 in the figure, the
TNIs must know the security classification for the hosts working without TNIs and know
what kind of information the host is allowed to handle. Thusthe TNIs know what security
classification messages from such hosts must have, no matter what the hosts themselves
clam.

If several untrusted hosts are connected to a network and the Bell-L aPadula model isused,
these hosts and the network must operate in system high mode, i.e. they must operate at
the same security level asthe highest classified object they may handle or receive from the
network, to prevent “write-down” or declassification of objects. Otherwise these systems
would have the possibility to send and to receive messages from other untrusted hosts at
their own will. Also note that nothing has been done to prevent covert channelsin asystem
like this.
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7.3.5 Fragmentation

Fragmentation is a separation mechanism based on dividing information into fragments or
small pieces of information, where each fragment should contain little or no information at
all. Each fragment should be small enough to be without interest because of lack of infor-
mation. Fragmentation can be done in several ways with different granularity:

With location fragmentation, sensitive objects are divided into intelligible pieces of
information where each piece is sent to its own entity for processing. For example, calcu-
lations could be donein parallel, having each bit processed by its own entity to prevent each
entity to know more than randomly selected bitsfrom the object. Objects can be fragmented
on bit-level, but it might be more feasible to use fragmentation on byte-level or even on
larger segments.

In time-fragmentation, individual pieces of the objects are randomly selected in time,
and they are processed by one host. This host only receives fragments of the object (for
example one bit at a time) and has no way of telling in what order these bits should be
assembled to retrieve the contents of the object.

In the Delta-4 project [8], fragmentation is used to split information (such as files) into
fragments and to store these fragments on randomly selected hosts. The contents of each
file can be randomly reorganized and even encrypted beforeit isfragmented. The fragmen-
tation method is constructed in such a way that several fragments stored on different hosts
are needed to reconstruct the original contents, thus a security violation in asingle host will
not violate the security of a whole system. This, together with existing redundancy, will
guarantee the confidentiality and integrity of objects. If an extra encryption stage before
fragmentation is added, this would be an example where two separation methods are com-
bined to further increase security, in this case cryptographic separation and fragmentation
would be combined into one separation mechanism.

7.4 Communication Security Mechanisms

When objects are being transported, it is especialy cumbersome to preserve integrity and
confidentiality and to eliminate covert channels. When public networks or networks with
little or no physical security are used, objects are very vulnerabl e to both active and passive
attacks. An attacker can insert new messages in a network, he can modify, delay, reorder,
duplicate or delete messages, etc. The use of end-to-end encryption or fragmentation of
objects can, if done correctly, guarantee object integrity and confidentiality. However,
therearestill problemsfrom passive attacks since at |east some information can bereceived
simply by collecting statistics on how objects are being sent between entities. Note that
communication problems do not have to involve networks, but can occur within a single
host, for example when local entities are sending objects to each other.

In many ways the problems of object transportation are similar to the authentication prob-
lems discussed earlier. By adding key distribution centers and access control centers,
such asKerberos, individual keysfor each connection can be established and maintained in
adistributed manner. The key distribution centers manage keys and distribute these keysto
entities which want to be able to communicate. The access control centers check accesses
to objects, e.g. to information and global resources, in the network.

7.4.1 Symmetric Cryptosystems

Both confidentiality and integrity of objects can be preserved by encryption. Before an
object is transmitted, it is encrypted with a suitable encryption agorithm. If a symmetric
cryptosystem such as DESis used, the same key isused for both encryption and decryption.
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A magjor problem with this encryption algorithm is to find a way to distribute keys to enti-
ties, since all entities need one unique encryption key for each entity it needs to communi-
cate with. Y et another complication can beto find a suitable layer for encryption within the
ISO/OSI model in order to do it as efficiently and as securely as possible, since it can be
done in the physical layer as well asin most higher layers. Each layer gives some advan-
tages but also has some disadvantages.

Note that it is often possible for an attacker to guess some parts of a message. This is
important to know, since it eliminates several encryption algorithms because messages
often include predictable information such as frame headers, sequence numbers, etc.

7.4.2 Asymmetric Cryptosystems

If we care for only integrity or confidentiality but not both, it is possible to use an asym-
metric cryptosystem (section 7.1.1). By keeping the encryption key secret and the decryp-
tion key public, it is possible to preserve object integrity. If, on the other hand, the decryp-
tion key is secret, it is possible to enforce object confidentiality. The advantage with an
asymmetric cryptosystemisthat it isenough to give only one private key to each entity, and
still allow all entities to communicate.

To make it possible for the receiver of an object to verify the integrity of an object, it is
necessary to include some redundant information. Thisinformation is used by the receiver
to decide whether amessage makes sense or not. If the result of the decryption always gen-
eratestheresult O or 1, it would not be possible for the receiver to verify the integrity of the
object. Redundant information can be created by combining an asymmetric cryptosystem
with a checksum which can be calculated from the contents of the object. The checksum
can be encrypted with an asymmetric cryptosystem and transmitted together with the object
or transmitted to the receiver over a different network. The checksum mechanism has the
advantage that the object itself does not have to be encrypted, which would save a lot of
time and effort in the communication process.

To select a checksum-generating algorithm is a rather complicated process. There are
many requirements for such an agorithm, for example, the statistical probability that the
checksums for two different texts should be equal, must be zero or aimost zero. There are
specialized codes for this purpose, for example the Quadratic Congruential Manipulation
Detection Code[28][9]. Among others, this code detects permutations, rotations, insertions
and deletions of characterswithin atext. Note that the checksum algorithm should not be a
secret initself. (It isalso possibleto use asymmetric cryptosystem such as DESto generate
the encrypted checksum directly. However, in this case, the effort of generating the check-
sum may be as big as encrypting the whole message.)

7.4.3 Digital Signaturesand Seals

Some systems offer servicesin order to protect the sender and/or the receiver of informa-
tion. A typical service offered isthe ability to afterwards prove that a specific entity has per-
formed an action, for example transmitted or received a message.

An asymmetric cryptosystem can be used as a digital signature to guarantee that a spe-
cific entity has created an object or performed a specific action. When an entity creates a
digital signature, it cannot later on deny having created it. The signature can be a message
(for example a contract or a publicly known number) encrypted with an asymmetric cryp-
tosystem where the encryption key isknown only by the entity itself. The entity cannot later
on deny having created this object because no one el sewould be able to perform the encryp-
tion.
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The following services can be offered by a system [19]:
* Proof of origin of data (digital signature)
 Proof of original content (digital seal)
* Proof of delivery

 Proof of original content received

The first two services protect the receiver and the other two the sender. All four services
are called non-repudiation services since neither the sender nor the receiver can deny hav-
ing sent/received a message or deny the contents of a message. The mechanisms imple-
menting this service are similar to the mechanisms described in the previous paragraphs,
i.e. with the use of asymmetric cryptosystems.

7.4.4 Routing Control and Traffic Padding

The problems with information collection (passive attacks) and denial of service can be
reduced by introducing mechanisms which allow entities to influence traffic routing. If
entities have the possibility to bypass certain hosts or parts of a network, an entity refusing
to forward messages or an unreliable part of a network can be bypassed. Routing control
can be used to ensure that sensitive information is not sent through unreliable hosts or net-
works. It isalso possible to use routing control in combination with fragmentation of mes-
sages, where fragments are transmitted through different networks and possibly in random
order.

To make it harder to collect information from network traffic, traffic padding can be
added to the system. Traffic padding is a mechanism which adds dummy messages which
are transmitted between randomly selected hosts at random intervals. When messages need
to be sent, these dummy messages are substituted with real messages, thus an attacker can-
not differentiate real traffic from dummy messages on the network. Also, real messages can
be sent indirectly to their final destination (i.e. through intermediate hosts) to make use of
dummy messages sent between other hosts. This mechanism is often combined with pad-
ding messages to afixed message length to give even less information to an observer. The
disadvantage of these mechanisms is the possible loss of network bandwidth due to the
transmission of dummy messages and increased message lengths. These methods can be
valuabl e toolsto prevent messages from being used as covert channelsfrom aTrojan horse.

Another interesting solution to the problems above is to use broadcast or multicast
addresses in messages. This can have the advantage of improving the chances of amessage
delivery.

7.4.5 Secure Protocols

A secure protocol isaprotocol which is especially designed to protect the integrity and/or
confidentiality of all objects that are transported. In general, it is not necessary to preserve
each individual object, but merely to preserve integrity and/or confidentiality of the whole
communication process. Also, provisions may be taken to limit the possibilities of passive
attacks.

First, thereis a need for an authentication mechanism to ensure that communication at all
times is performed between the correct entities, and this authentication mechanism needs
to be protected against replays from the network. Most likely, a method for distributing
encryption keys to entities opening new connections is needed.
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Second, a secure protocol needs to be protected against modification of packets, replays
of old packets and against lost packets. Replays can be especialy cumbersome, since a
replay of an old messageis performed with acompletely valid packet (i.e. avalid checksum
and correct encryption). Therefore, some kind of time stamp or sequence number that can-
not be forged must be contained in all messages. Also, the encryption agorithm must be
ableto deal with retransmission of old packets and to deal with duplicates, i.e. it must have
amechanism to handle resynchronization.

Third, the protocol needsto be protected against denial of service attacks and loss of pack-
ets. It is necessary for the communicating partiesto exchange messages at regular intervals
to make sure that all messages are received.

There is a protocol, "secure IP", that conforms to the requirements above but also to the
DoD military security model [21]. It is based on a normal network layer protocol (1P) but
secure | P adds some security featuresto it, for example an optionsfield containing the secu-
rity classification level of a message. There are also rules stating how both messages con-
taining (and not containing) security classification labels should be handled, for example
what kind of messages a host is allowed to send and receive.

Secure protocols can be placed in any layer within the ISO/OSI model. Another example
of a secure protocol isthe OS| File Transfer Access and Management (FTAM) standard,
which defines both a protocol and at the same time is a standard for a remote file service.
The protocol defines how to perform access control and what attributes a file should have,
for example fields indicating what encryption method is being used. Note that the use of
secure protocols in a network environment can only solve some security problems but it
will not guarantee the overall security of the system. An attacker who wants a specific piece
of information from a database server that uses a secure protocol, may perform an indirect
attack by breaking the security in one of the hosts that uses the database, and then "con-
vince" this host to talk to the database server with the use of the secure protocol.

7.5 Detection and Recovery Mechanisms

Not all mechanismsare used to prevent security violations. Animportant group of security
mechanisms are those used after a security violation has taken place. Detection mecha-
nisms detect a security violation, and recovery mechanisms restore the system to its state
prior to the violation. Ideally, detection mechanisms should detect a security violation
immediately and it should give enough information to enable the tracery of the violation a
specific entity or user.

In many cases, the knowledge of the existence of such mechanisms can be enough to pre-
vent attacks, for example if an attacker knows that the attack will be detected (evenif itis
detected at alater date) and traced back to him/her, thismay be reason enough for not trying
the attack.

An audit trail is a log containing security-related events and transactions. It contains
information about when, how and by whom a transaction was ordered, thusit is avauable
tool for protecting both objects and the integrity of entities. Audit trails should be used to
monitor all sensitive actions, especially those actionsthat affects the security in the system.
The audit trail should be detailed enough to make it possible to trace security violations
back to individual users. It can, for example, contain digital signatures from entities order-
ing transactions, which can be used at a later time to verify (prove) that an entity actually
did order atransaction.
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8. DISCUSSION

Security for information systemsis avery wide and complex subject. This paper creates a
structure reflecting and describing the relations between different topics and areas of secu-
rity. It also discusses the relations between security and the closely related field of depend-
ability, and special concern is given to present aterminology which facilitates the integra-
tion of the two areas. The discussion deals with four major topics: threats, aspects of secu-
rity, forms of security and mechanisms to be used when creating a secure system.

The list of security mechanisms is by no means a complete list, but the list is abstract
enough to cover most type of mechanisms and still detailed enough to describe how most
protection mechanisms work.

The taxonomy described can be used as an aid when designing a secure system. The var-
ious forms and aspects of security as well as the mechanisms described, can be utilized
when a specification for security demandsin a system is developed. It isaso astep toward
a consistent terminology for computer security. Both the terminology and the taxonomy
shows differences against traditional views, but thisisintentional and is necessary asafirst
step toward aterminology which can beincorporated into the field of dependability aswell.
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