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The highly-efficient and segmented TIGRESS γ -ray spectrometer at TRIUMF has been used to perform a
reorientation-effect Coulomb-excitation study of the 2+

1 state at 3.368 MeV in 10Be. This is the first Coulomb-
excitation measurement that enables one to obtain information on diagonal matrix elements for such a high-lying
first excited state from γ -ray data. With the availability of accurate lifetime data, a value of −0.110 ± 0.087 eb
is determined for the 〈2+

1 ‖Ê2‖2+
1 〉 diagonal matrix element, which assuming the rotor model, leads to a negative

spectroscopic quadrupole moment of Q
S
(2+

1 ) = −0.083 ± 0.066 eb. This result is in agreement with both
no-core shell-model calculations performed in this work with the CD-Bonn 2000 two-nucleon potential and large
shell-model spaces, and Green’s function Monte Carlo predictions with two- plus three-nucleon potentials.

DOI: 10.1103/PhysRevC.86.041303 PACS number(s): 21.10.Re, 21.60.Cs, 23.20.−g, 27.20.+n

Modern nuclear theory provides numerical methods to
solve the nonrelativistic Schrödinger equation for light nuclear
systems [1,2]. Wave functions of nuclear states can be derived
from a large-scale diagonalization in the no-core shell model
(NCSM) [1] and from variational Monte Carlo methods [2],
enabling nuclear-structure properties to be calculated from
ab initio or first principles. While excitation energies [1,3,4]
and charge radii [5–7] are generally reproduced with high
accuracy, agreement with the experimental data often requires
very large shell-model space sizes [8,9] and the inclusion of
three-nucleon (3N ) forces in the full Hamiltonian [3,10,11].
Major recent breakthroughs of ab initio calculations include
the reproduction of the Hoyle state [12], and the computation
of fusion-reaction cross sections relevant to big bang nucle-
osynthesis and fusion-energy research [13]. With respect to ex-
citation energies and charge radii, electromagnetic-multipole
matrix elements can potentially provide more stringent tests
of wave functions because of the overlap between initial and
final nuclear states.

The nucleus 10Be is an important testing ground for ab initio
calculations of electric-quadrupole matrix elements [8,14,15].
The precise lifetime recently measured for the 2+

1 state at
3.368 MeV has underlined the relevance of constraining and
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constructing better-quality 3N potentials [15]. A reduced
attraction of the spin-orbit interaction in the IL7(3N ) Hamilto-
nian leads to a better reproduction of energies and transitional
matrix elements in Green’s function Monte Carlo (GFMC)
calculations. Stronger evidence regarding the effect of 3N

forces in 10Be is the reordering of nuclear levels predicted by
GFMC calculations. As opposed to using only the AV18(2N )
potential, a reversed level ordering for the first two Jπ = 2+
excited states is predicted by including the IL2(3N ) potential
[14]. Excitation energies of these Jπ = 2+ states calculated
with the NCSM and the CD-Bonn 2000(2N ) potential [8]
obtain the same ordering as the GFMC calculations with the
AV18(2N ) plus the IL2(3N ) interactions. This is probably
because of the stronger spin-orbit interaction generated by
the CD-Bonn 2000 potential, which is a nonlocal interaction
based on a boson-exchange picture, as compared with the
local AV18(2N ) interaction [8]. Nonetheless, GFMC calcu-
lations with the AV18(2N ) + IL7(3N ) Hamiltonian provide
an experimental means to test the reordering of the 2+
levels by predicting different signs for their spectroscopic
quadrupole moment (Q

S
) of the nuclear charge distribution

in the laboratory frame; that is, Q
S
(2+

1 )GFMC = −0.067(1) eb
and Q

S
(2+

2 )GFMC = +0.045(1) eb [16].
In this work, we test these predictions with a Coulomb-

excitation measurement of the 〈2+
1 ‖Ê2‖2+

1 〉 diagonal matrix
element of the electric-quadrupole tensor in 10Be. New NCSM
calculations of matrix elements involving the 2+

1 and 2+
2 states

in 10Be, as well as nuclear polarizabilities for the ground state
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of 9Be and 2+
1 state in 10Be, are also presented. Further details

of both experimental results and the theoretical calculations
will be given in a separate paper [17].

A Coulomb-excitation study of radioactive 10Be (with a
half-life of 1.51 × 106 years) has been carried out at energies
well below the Coulomb barrier at the TRIUMF/ISAC-II
radioactive-ion-beam facility. A tantalum primary fragmen-
tation/spallation target was bombarded by a 500-MeV, 40-μA
proton beam from the TRIUMF main cyclotron to produce
radioactive 10Be. Singly charged 10Be ions were extracted
using the TRIUMF Resonant Ionization Laser Ion Source
(TRILIS) [18]. Following mass separation the isotopically pure
10Be beam was further stripped to a 2+ charge state before
acceleration to a projectile kinetic energy of T

P
= 41 MeV.

The beam was made to impinge on a 3.0 mg/cm2 194Pt
target (96.5% enriched) at the center of the TIGRESS γ -ray
spectrometer [19]. An average intensity of ≈1.1 × 107 10Be
ions/s was maintained for a period of four days.

Gamma rays emitted following the de-excitation of states in
the beam and target nuclei were detected by eight segmented,
highly efficient, Compton-suppressed TIGRESS clover de-
tectors positioned 152 mm from the target and covering
approximately 15% of 4π . Each clover is comprised of four
eight-fold segmented high-purity germanium (HPGe) crystals
surrounded by a 20-fold segmented Compton suppression
shield [20,21]. Scattered 10Be ions were detected using an
annular, double-sided CD-type silicon detector comprised
of 32 sectors and 24 rings. This detector was mounted
downstream at 19.4 mm from the target, aligned perpendicular
to the beam axis and subtending laboratory polar angles
between 30.6◦ and 61.0◦. The scattered beam was fully stopped
in the 500-μm thick silicon detector.

Background γ rays from the experimental hall and beam-
dump were suppressed by requiring a particle-γ coincidence
condition, i.e., the combination of a TIGRESS hit and a hit in
both the θ ring and φ sector of the Si detector within a time
window of 195 ns. The relative angle between the registered
particle in the silicon detector and the γ ray was determined
using the geometric center of the hit segment in the TIGRESS
clovers. In the case of multiple crystals triggering in the same
module, the crystal with the highest deposited energy was
identified and the center of the segment with the highest energy
within that crystal was used to Doppler correct the add-back
energy.

Typical particle energy spectra at ring angles of θ = 35.6◦
and 60.0◦ are shown in Fig. 1. Particle spectra were calibrated
utilizing α sources of 239Pu, 241Am, and 244Cm together
with kinematics considerations for the scattered 10Be ions;
including energy losses in the 194Pt target and the 0.58-mg/cm2

thick 197Au coating on the silicon strips [24]. An additional
particle-energy condition, |Ering − Esector| � 350 keV, was
applied to account for the energy sharing between the rings
and sectors and dead layers in the Si detector. The 350 keV
restriction was varied to assure no 3368 keV peak counts were
lost. As shown in Fig. 1, this energy condition reduced the
background in the low- and intermediate-energy regions of
the particle spectra enabling a better selection of the 10Be
inelastically scattered particle [17]. The same energy-sharing
condition as well as a broad particle-energy gate, which
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FIG. 1. (Color online) Particle-energy spectrum for rings at
average angles of θ = 35.6◦ (top panel) and 60.0◦ (bottom panel).
The application of |Ering − Esector| � 350 keV permits a good
identification of the 2+

1 inelastic peak in 10Be. The larger background
at θ = 35.6 arises from the higher density of dead layers for innermost
rings in the silicon detector.

included both inelastic and elastic peaks, were employed to
ensure full collection of the 328 keV γ -ray transition in 194Pt.
The resulting γ -ray energy spectra is shown in Fig. 2.

The Q
S

values of excited states with angular momenta
J �= 0, 1

2 can be determined in Coulomb-excitation reactions
using the reorientation effect (RE), a second-order perturbation
that generates a time-dependent hyperfine splitting of the
nuclear levels and changes the population of the different
magnetic substates; hence, modifying the Coulomb-excitation
cross section according to the magnitude and sign of Q

S
[25].
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FIG. 2. (Color online) Gamma-ray energy spectra for the
194Pt(10Be,10Be∗)194Pt∗ reaction at 41 MeV. The main panel shows
Doppler-corrected energy spectra with (black) and without (brown)
a 10Be inelastic-particle-coincidence condition. The former results in
a cleaner background, yet conserves the number of counts for the
3.368 MeV transition depopulating the 2+

1 state in 10Be. The inset
shows a Doppler-uncorrected γ -ray spectrum with the 2+

1 peak at
328 keV in 194Pt.
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The use of reactions with negligible nuclear contributions is
fundamental in such experiments to avoid Coulomb-nuclear
interference [25,26]. Systematic RE studies of light nuclei
suggest a minimum separation between nuclear surfaces of
S(θ )min ≈ 6.4 fm to obtain consistent Q

S
values [25–31].

For the 194Pt(10Be,10Be∗)194Pt∗ reaction at 41 MeV, the
laboratory solid angle subtended by the front silicon detector
corresponded to even more conservative values of S(θ )min =
6.8 fm at 61.0◦.

The Coulomb-excitation analysis has been performed with
the semiclassical coupled-channel Coulomb-excitation least-
squares code, GOSIA [32]. In light nuclei, another second-order
effect that may influence both the magnitude and sign of diag-
onal matrix elements is the virtual electric-dipole excitations
of states around the giant dipole resonance (GDR) [25,33,34].
Because of the large E1 matrix elements, two-step processes
of the type 0+

1 → 1−
GDR → 2+

1 may polarize the shape of the 2+
1

state and affect the determination of Q
S
(2+

1 ). The GOSIA code
accounts for this correction by multiplying the total quadrupole
interaction, V0 (t), by a factor of (1 − z a

r
); where a is the half

distance of closest approach, r the magnitude of the projectile-
target position vector, and z = 0.00563k TP AP

Z2
P (1+AP /AT )

[33]; with
A

P,T
being the projectile and target mass numbers and k the

polarizability parameter [32].
For the case of arbitrary spins, k can be inferred in terms

of E1 and E2 matrix elements [29] from the ratio k = X
X0

,

where X0 = 0.00058A
Z

eMeV−1 arises from a global fit to
the available photoabsorption cross sections [35,36] and X is
given by

X = S(E1)

〈i‖Ê2‖f 〉

=
∑

n W (11JiJf , 2Jn) 〈i‖Ê1‖n〉〈n‖Ê1‖f 〉
En−Ei

〈i‖Ê2‖f 〉 , (1)

where the sum extends over all intermediate states |n〉 con-
necting the initial |i〉 and final |f 〉 states with E1 transitions.
Shell model calculations have been successful in reproducing
k values for ground and excited states in p shell nuclei [29,37].

In the present work, NCSM calculations using the CD-
Bonn 2000 2N potential have been performed to estimate
the nuclear polarizability of the 2+

1 state in 10Be. The
known photoabsorption cross section in 9Be of σ−2 = 370
μb/MeV [36,38] corresponds to a large ground-state value
of k(g.s.) = 2.7. From an equation analogous to Eq. (1) [37],
k(g.s.)NCSM = 2.3 is computed in reasonable agreement with
the experimental value. These ab initio calculations consider
model spaces with basis sizes of Nmax = 4 and Nmax = 5 for
natural and unnatural parity states, respectively, h̄� = 12 MeV
and E1 contributions from about CD-Bonn 2000 intermediate
1/2+, 3/2+, and 5/2+ states. For the 2+

1 state in 10Be, a
smaller k(2+

1 )NCSM = 0.81 is predicted from Eq. (1) using
E1 contributions from all the Jπ = 1− states up to 30 MeV.
A value of k(2+

1 )NCSM = 0.81(20) was used in the GOSIA

calculations, where the adopted 25% theoretical uncertainty
is significantly larger than the 15% difference between the
theoretical and experimental values for k(g.s.) in 9Be.
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FIG. 3. (Color online) Angular distributions showing experimen-
tal and calculated γ -ray yields as a function of particle angle (in the
laboratory frame) for the de-excitation of the 2+

1 states in 10Be (top)
and 194Pt (bottom).

The angular distributions of the eight clover yields for the
lowest 2+ states in 10Be and 194Pt are shown in Fig. 3. Since the
10Be 2+

1 distribution had low statistics, the 〈2+
1 ‖Ê2‖0+

1 〉 and
〈2+

1 ‖Ê2‖2+
1 〉 matrix elements were determined from the ratio

of the integrated yields [39] of the 3.368 MeV γ ray in 10Be and
the 328.5 keV γ ray in 194Pt. Integrated yields were calculated
with GOSIA and normalized to the experimental yields. As
shown in Fig. 3, the shape of the angular distribution predicted
by GOSIA for both 10Be and 194Pt are in good agreement
with experiment. The theoretical yields shown in Fig. 3 were
calculated using 〈2+

1 ‖Ê2‖0+
1 〉 = 0.069 eb and 〈2+

1 ‖Ê2‖2+
1 〉 =

−0.110 eb, i.e., the intersection point of the centroid of the
two bands in Fig. 4. In the GOSIA integration of γ -ray yields,
angular limits, bombarding energy, and stopping-power mesh
points account for the solid angle subtended by the silicon
detector and the energy loss of the beam through the target
thickness. Further corrections include the γ -ray efficiencies for
eight TIGRESS clovers measured using known 152Eu, 133Ba,
60Co, and 56Co calibration sources [17], internal-pair forma-
tion processes [40] and angular-distribution attenuation factors
for the finite size of the detectors [22,32]. The integrated yield
calculations were constrained with available spectroscopic
information concerning level lifetimes, branching ratios and
matrix elements for all significant couplings up to the 4+

2 state
in 194Pt [41] and the 2+

1 state in 10Be [15,42,43]. The effect of
higher-order couplings in 10Be and 194Pt is negligible.

The calculated integrated yields for projectile, YP
calc, and

target, Y T
calc, are related by Y T

calc/YP
calc = 1.036NT

γ /NP
γ ; where

the factor 1.036 accounts for the 96.5% enrichment of the 194Pt
target and NT

γ and NP
γ are the experimental number of counts

for target and projectile, respectively. Total experimental yields
of 386(22) and 141 545(380) counts are observed for the 3,368-
and 328-keV γ rays depopulating the 2+

1 states in 10Be and
194Pt, respectively. The statistical uncertainty of 5.4% from the
measured 3,368-keV peak area dominates the quoted error on
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FIG. 4. (Color online) The parabolic lines indicate the cen-
tral value (dashed) and 1-σ limits (solid) of 〈2+

1 ‖Ê2‖0+
1 〉 versus

〈2+
1 ‖Ê2‖2+

1 〉 matrix elements in 10Be for k(2+
1 ) = 0.81. The horizon-

tal band represents the 1-σ boundary for 〈2+
1 ‖Ê2‖0+

1 〉 = 0.0690(15)
[15,42,43]. The extrapolated NCSM results are given by the square
data point; see the text for details.

this measurement. Other contributions include 〈2+
1 ‖Ê2‖0+

1 〉 =
1.281 ± 0.009 eb in 194Pt [44,45], which gives an error in
the cross section of ±1.4%, the spread in polarizability k =
0.81 ± 0.20, γ -ray efficiencies ≈2.5%, and the φ asymmetry
of the TIGRESS detectors, <0.5% [22,23]. Doppler-shift
effects on the γ -ray efficiency are negligible for the 3.368 MeV
region.

The variation of 〈2+
1 ‖Ê2‖0+

1 〉 as a function of 〈2+
1 ‖Ê2‖2+

1 〉
for k(2+

1 ) = 0.81 in 10Be is represented by the diagonal
band in Fig. 4. Data points in the Coulomb-excitation curve
(a dashed line for the central value and solid lines for
the 1-σ limits) are obtained by fixing 〈2+

1 ‖Ê2‖2+
1 〉 and

determining the corresponding value of 〈2+
1 ‖Ê2‖0+

1 〉 required
to obtain the experimental ratio of the γ -ray yields. The
horizontal band in Fig. 4 represents the 1-σ boundary
for 〈2+

1 ‖Ê2‖0+
1 〉 = 0.0690(15) eb as derived from previous

lifetime measurements [15,42,43]. Assuming no uncertainty
in 〈2+

1 ‖Ê2‖0+
1 〉, the overlap region gives an uncertainty

in 〈2+
1 ‖Ê2‖2+

1 〉 of ±0.067 eb. Similarly, if we assume
no uncertainty in the Coulomb-excitation measurement, an
uncertainty in 〈2+

1 ‖Ê2‖2+
1 〉 of ±0.050 eb is determined

from the intersection of the dashed diagonal line with the
lifetime limits; adding these two errors in quadrature yields
±0.084 eb. Finally, on the k interval [0.6,1.0], 〈2+

1 ‖Ê2‖2+
1 〉 =

−0.108 ± 0.0225 eb, and adding the 0.0225 and 0.084 errors in
quadrature gives the final 〈2+

1 ‖Ê2‖2+
1 〉 = −0.110 ± 0.087 eb.

Assuming an ideal rotor, QS(2+
1 ) = 0.75793〈2+

1 ‖Ê2‖2+
1 〉,

we obtain a negative value of QS(2+
1 ) = −0.083 ±

0.066 eb.
New NCSM calculations with the CD-Bonn 2000 2N

potential of the transitional and diagonal matrix elements for
the 2+

1 and 2+
2 states in 10Be are presented in Fig. 5, as a

function of the harmonic-oscillator frequency h̄� and the size
of the many-body model space Nmax. For the smallest model
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FIG. 5. (Color online) Calculated transitional (top panel) and
diagonal (bottom panel) matrix elements involving the first two
J π = 2+ states using NCSM with the CD-Bonn 2000 2N potential
at different h̄� and Nmax.

space, Nmax = 4, and lowest h̄� = 10 MeV, the spin-orbit
interaction is underestimated and the NCSM results agree
with GFMC calculations using only the AV18 potential. As
Nmax increases and/or h̄� increases, the spin-orbit interaction
becomes effectively stronger and the order of the levels
is restored. As shown in Fig. 5, the magnitude of the 2+

1
E2 matrix element increases with increasing Nmax. Clearly,
QS(2+

1 )NCSM < 0 and QS(2+
2 )NCSM > 0, in agreement with

GFMC calculations using 2N and 3N forces [16].
Infinite-space results will, however, be independent on

the choice of h̄�. We employ this property to perform
constrained polynomial fits [5,46] to all calculated data points
at large model spaces. These yield QS(2+

1 )NCSM = −0.059(5)
eb, or 〈2+

1 ‖Ê2‖2+
1 〉NCSM = −0.078(7) eb, and B(E2; 2+

1 →
0+

1 )NCSM = 9.8(4) e2fm4, or 〈2+
1 ‖Ê2‖0+

1 〉NCSM = 0.0700(14)
eb. These results are in agreement with the experimen-
tal data and recent no-core Monte Carlo shell-model
[47] and GFMC [16] calculations. The inclusion of
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3N forces in the NCSM calculations was not investi-
gated because of computational limitations at large model
spaces.

In summary, we have demonstrated the feasibility of
reorientation-effect Coulomb-excitation studies of high-lying
2+

1 states in light nuclei using accelerated radioactive ion
beams and a high-efficiency γ -ray spectrometer such as TI-
GRESS. This work assigns a negative sign to the 〈2+

1 ‖Ê2‖2+
1 〉

diagonal matrix element in 10Be. A more precise measurement
requires higher statistics for the population of the 2+

1 state as
well as the measurement of the k(2+

1 ) polarizability parameter.
Assuming an ideal rotor, QS(2+

1 ) < 0; we are in agreement
with ab initio calculations based on large-basis NCSM
calculations with the CD-Bonn 2000 2N potential and GFMC
calculations including 3N forces in the full Hamiltonian. Such
experiments play an important role in achieving a deeper

understanding of the contributions of 2N and 3N potentials to
the nuclear spin-orbit interaction, and how these contributions
affect electric-quadrupole matrix elements motivates further
experimental, as well as theoretical, investigations in this
region of light nuclei.
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[13] P. Navrátil and S. Quaglioni, Phys. Rev. Lett. 108, 042503

(2012).
[14] S. C. Pieper, Nucl. Phys. A 751, 516c (2005).
[15] E. A. McCutchan et al., Phys. Rev. Lett. 103, 192501

(2009).
[16] E. A. McCutchan et al., Phys. Rev. C 86, 014312 (2012).
[17] J. N. Orce et al., in preparation.
[18] J. Lassen et al., Hyperfine Interact. 162, 69 (2005).
[19] C. E. Svensson et al., J. Phys. G 31, S1663 (2005).
[20] C. E. Svensson et al., Nucl. Instrum. Methods Phys. Res. A 540,

348 (2005).
[21] H. C. Scraggs et al., Nucl. Instrum. Methods Phys. Res. A 543,

431 (2005).
[22] M. A. Schumaker et al., Phys. Rev. C 78, 044321 (2008).
[23] M. A. Schumaker et al., Phys. Rev. C 80, 044325 (2009).

[24] J. F. Ziegler et al., Nucl. Instrum. Methods Phys. Res. B 268,
1818 (2010).
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