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Abstract: This paper describes the instantiation features currently implemented in the
discrete-event systems modelling and analysis tool Supremica. Modules enable users to design
reusable groups of related automata and define clear interfaces to describe their interaction.
Parametrisation and repetition make it easy to design very large models of regular structure. In
combination with its support for extended finite-state automata (EFA), these features enable
Supremica users to develop highly complex models of discrete-event systems using a wide variety

of modelling styles.
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1. INTRODUCTION

One of the key challenges for the acceptance of discrete
event system modelling tools is the development of a
user-friendly modelling language that is accepted by users
in industry. For several years, hierarchical and modular
modelling approaches have been used a means to introduce
structure into discrete event systems (Wong and Wonham,
1998; Leduc et al., 2005), but such methods have only
recently been supported in more general modelling tools.

Other ways of modelling reactive or control systems are
based on extended finite-state automata (EFA) or Stat-
echarts (Harel, 1987), which use guards and actions to
read and update variables while executing transitions.
Several concurrency models are based on these ideas,
e.g., (Hoare, 1985). More recently, (Skoldstam et al., 2007)
combine EFA with discrete event systems, providing a se-
mantics for guards and actions in combination with event-
based automata. This approach introduces signal-based
or program-code based modelling styles, making discrete
event systems more accessible to industrial users.

The modelling of large-scale systems often requires para-
metrisation and instantiation support that is both power-
ful and easy to learn and use. The VALID toolset (Brandin,
2000) introduces templates as a means to maintain multi-
ple copies of similar automata. The idea is to create a single
automaton, called template, which is instantiated multiple
times by applying different event bindings, resulting in
several similar copies of the same automaton. The more
recent tool IDES (Grigorov et al., 2008; Grigorov and
Rudie, 2010) offers a more general template modelling
approach, which supports flexible event bindings and ex-
tended finite-state automata.
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This paper presents the modelling and parametrisation
features presently available in the discrete events systems
modelling tool Supremica (Akesson et al., 2006). Suprem-
ica uses modules, which provide more general ways of in-
stantiation than templates, by grouping several automata
together with defined interfaces. Modules naturally pro-
vide the infrastructure needed for modular and hierarchi-
cal modelling, and in combination with other features such
as event groups and extended finite-state automata, they
also provide for strong parametrisation capabilities.

This paper is organised as follows. Sect. 2 briefly gives
some needed definitions of finite-state automata in the
context of supervisory control theory. It is followed by
sect. 3, which describes the instantiation and parametrisa-
tion features implemented in Supremica, and by sect. 4,
which presents two examples of moderately complex mod-
els that can be conveniently instantiated using Supremica’s
features. Finally, sect. 5 adds some concluding remarks.

2. PRELIMINARIES

The modelling approach used by Supremica is based
on supervisory control theory of discrete event systems
(Ramadge and Wonham, 1989; Wonham, 2009; Cassan-
dras and Lafortune, 1999). System behaviours are repre-
sented using finite-state automata and their languages.
Definition 1. A finite-state automaton is a 5-tuple G =
(£,Q,—,Q%, Q™), where ¥ is a finite alphabet of events,
Q@ is a set of states, — C QQ X X x @ is the state transition
relation, Q° C @ is the set of initial states, and Q™ C Q
is the set of marked or terminal states.

When two ore more automata are executing in parallel,
synchronous composition in the style of (Hoare, 1985) is
used to compose them.

10.3182/20110828-6-1T-1002.00593
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Fig. 1. Supremica IDE.

Definition 2. Let G (X6 Qas—a Q5. Q%) and
H={34,Q4,— 5, Q%, Q") be two automata. The syn-
chronous product of G and H is

G”H = <EGU2H7QGXQHaHaQZC?XQhanLXQTHrW (1)
where

(QTG,?UH) % (yG,yH)

ifoeXanNdy, za i’G Yya, and
TH i>H YH;

ifo € EG\EH and zg i’G Ya;
ifo €Yy \Sg and x5y S5 yn.

(iUG,CUH) o (vaxH)
(CCG,HCH) - (UUG»yH)

In supervisory control (Ramadge and Wonham, 1989),
there are two types of automata, representing the plant,
i.e., the system to be controlled, and the specification, i.e.,
the desired behaviour to be imposed on the plant through
control. The event set ¥ is partitioned into the set ¥, of
uncontrollable events and the set X, of controllable events.
Controllable events are under the control of some supervis-
ing agent or control software, and can be disabled through
control, while uncontrollable events occur spontaneously
in the plant.

3. MODELLING

Supremica (Akesson et al., 2006) is a tool for the modelling
and analysis of finite-state machine models. Discrete event
systems consisting of multiple plant and specification
automata can be modelled graphically using the editor.
Model execution can be visualised using the simulator,
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and the analyser provides a wide range of verification and
synthesis algorithms. All these features are available in the
comfortable graphical interface of Supremica’s Integrated
Development Environment (IDE), shown in fig. 1.

Supremica’s graphical editor is designed to support the
modelling of large-scale discrete event systems models
using a wide variety of modelling styles. The following sub-
sections describe the modelling approach and its features
in more detail.

3.1 Modules and Instances

The main modelling unit in Supremica is a module, which
represents a reusable collection of events and associated
automata. FEvents can be controllable or uncontrollable,
and automata can be classified as plant or specification.
For example, fig. 2 shows a module that describes the
behaviour of a robot, consisting of four events and two
automata. Events and automata are listed to the left, and
the two plant automata are shown to the right.

Each automaton has an event alphabet, which in Suprem-
ica is the set of all events that appear in the graphical
representation. Within a module, automata synchronise
using shared events as per the standard definition of syn-
chronous product.

In addition to its events and automata, a module may
contain instances of other modules. Instantiating a module
means to include copies of all automata and events of
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enable

module Robot turn
events
controllable parameter enable; .
controllable parameter disable;
controllable turn; base

controllable extend;
enable crtend

components
plant base;
plant arm; disable
end
arm

Fig. 2. Robot module.

the used (or instantiated) module within the calling (or
instantiating) module.

Each module has its unique event set, and by default does
not share any events with other modules. Events are local
to their module and are only used for synchronisation
of the automata within the module. When a module A
contains two instances of another module B, this means
that two separate independent copies of all the events and
automata of B are created and placed in A. The two copies
of B neither synchronise with each other nor with A.

To support synchronisation between modules, events can
be defined to be a parameter of their module. When a
module with parameters is instantiated, the instantiating
module needs to provide an actual event from its own event
set for each parameter of the instantiated module. After
instantiation, the parameter event is replaced by the actual
event, which may now synchronise with automata in other
modules.

module Factory,
events
controllable starty;
controllable starts;
controllable stop;
components
Robot; = Robot(enable = starty, disable = stop);
Roboty = Robot(enable = starts, disable = stop);
end

Fig. 3. Factory consisting of two robots.

In fig. 3, two instances of the Robot from fig. 2 are
created to model a factory. This results in two copies
of each of the automata base and arm being placed
in the Factory, module, which then contains automata
Robot;.base, Robot;.arm, Robot;.base, and Robots.arm.
The events turn and extend are not parameters of the
Robot module. These events remain local, and sepa-
rate copies Robot;.turn, Robots.turn, Robot;.extend, and
Robots.extend are created, synchronising only within their
Robot instance.

The parameter events enable are replaced by the events
starty resp. starty of the Factory, module, which may be
shared by other automata of Factory, (not shown in the
example). The parameter events disable of both modules
are replaced by the same event stop, effectively forcing
synchronisation between the two robots. In this way, the
events enable and disable in the robot module are linked
to the factory’s events starty, starts, and stop in a similar

way as proposed in the template approach of (Grigorov et
al., 2008).

8.2 Arrays and Repetition

Many large discrete-event systems models have regular
structure, consisting of several similar automata with sim-
ilar events. Often, the number of components is large or
subject to parametrisation, making it difficult to instan-
tiate the automata or modules individually. Supremica
supports such models using arrays of events and indexed
components.

Events can be declared to be arrays with any number
of dimensions, the only restriction being that all events
in an array must have the same controllability status.
Likewise, automata and module instances can be indexed,
also producing an array-like collection of components.

module Factory;
events
controllable start[1..5];
controllable stop;
components
for i =1..5do
Robot[i] = Robot(enable = startli], disable = stop);
end
end

Fig. 4. Factory consisting of five robots.

In fig. 4, start[1..5] is declared as an event array, which is
expanded to five controllable events start[l],..., start[5].
The array elements can be accessed by their index, which
is used in the for construct to instantiate the Robot
module from fig. 2 five times, producing five robot in-
stances Robot[1], ..., Robot[5], each parametrised by dif-
ferent start events, while synchronising on one stop event.

3.3 Extended Finite-State Automata

The pure finite-state machine approach is not suitable
for all modelling tasks in industry, particularly where
PLC programs or variables are involved. To bridge the
gap between the signal-based industrial reality and the
event-based supervisory control framework, (Skoldstam
et al., 2007) propose a form of extended finite-state au-
tomata (EFA). Variables, guard expressions and action
functions enable an alternative style of specification, and
make it possible to parametrise not only the number of
events or automata in a model, but also the number of
states or the transition structure of individual automata.

Supremica supports extended finite-state automata as
proposed in (Skoldstam et al., 2007; Grigorov and Rudie,
2010). Modules can contain variables of finite range, and
all transitions can be associated with guards and actions.
A guard is a formula over the module’s variables with
the meaning that a transition can only be taken when
the guard evaluates to true. Actions associated with a
transition define how the variables are updated when the
transition is taken.

Fig. 5 shows the use of these features to model a buffer with
parametrisable size. The variable ¢, which can assume the
values from 0 to size, stores the number of items currently
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module Buffer(int size) gi:‘%ie
events put
uncontrollable parameter put;
controllable parameter get;
com t c>0
ponents .
variable c¢: 0..size initial O; €=
. . . get
specification spec;
end spec

Fig. 5. Parametrisable buffer module.

in the buffer. Its initial value is 0, i.e., the buffer initially
is empty. The specification automaton is only needed to
associate guards and actions to the events: an item can
only be put into the buffer when it is not yet full, and this
action increases the number of items in the buffer by one;
and an item can only be removed from the buffer when
it is not empty, and this action decreases the number of
items in the buffer by one.

3.4 Event Groups and Aliases

Large discrete-event systems models may contain au-
tomata using a large number of events, and often the same
groups of events appear on different transitions in the same
or in different automata. To facilitate the design and the
readability in such cases, event groups and aliases have
been introduced in Supremica.

An event alias is a placeholder for an event or a group of
events, for example:

events
controllable starty;
controllable starts;
controllable starts;
alias start = {starty, starts, starts};

Here, the events starty, starts, and starts form an event
group and are bound to the alias start. The alias can
be used anywhere where an ordinary event can be used:
it can be placed on transitions of automata or it can
be bound as an actual value to the parameters of an
instantiated module. According to standard discrete-event
systems semantics, a transition labelled with the alias start
will be enabled when one or more of the events in the group
are enabled.

3.5 Group Nodes

Group nodes are a graphical abstraction inspired by State-
charts (Harel, 1987). Their use for modelling discrete event
systems was introduced in VALID (Brandin, 2000) and
extended in (Ma and Wonham, 2005). In Supremica, group
nodes are used to simplify the graphical representation of
an automaton by making it possible to group transitions to
the same target state together. For example, in fig. 6, the
reset transition originating from the group node represents
four transitions to the automaton’s initial state, one from
each state within the group.

4. EXAMPLES

This section presents two examples that demonstrate how
Supremica’s modelling and instantiation features help to
model complex discrete event systems easily and concisely.

start

! start nish
1l B1 B2

|
reject :
|

Fig. 7. Functional block of transfer line.
4.1 Transfer Line

The first example is a parametrised version of the trans-
fer line model originally proposed in (Wonham, 2009).
The model consists of n functional blocks as shown in
fig. 7. Each block consists of a machine Mach and a test
unit TU, linked by two buffers B1 and B2. The machine
can start (startys) and finish (finish ;) operating. Finished
workpieces are placed into buffer B2, from where they
are loaded into the test unit TU (startr), which in turn
accepts (acceptp) or rejects (rejecty) them. If accepted, a
workpiece is released and transferred to the next functional
block, if rejected it is returned to buffer B1 to be processed
by Mach again. The buffer capacities of B1 and B2 are 3
and 1, respectively.

Fig. 8 shows a module representing the transfer line in
Supremica. The model is parametrised by the number n
of functional blocks. Event arrays are declared, so the
events controlling the machines, test units, and buffers can
be indexed by their functional block. The for construct
instantiates the necessary automata for each functional
block 7. The modules Machine and TestUnit contain only
one plant automaton as shown in the figure, with all events
declared as parameters. The buffers are instantiated from
the Buffer module introduced in sect. 3.3, parametrised by
the size of each buffer.

When instantiating the buffers, their events are bound to
the appropriate actions of the machines and test units.
Work pieces can be placed into buffer B1[i] in functional
block i either by releasing them from the previous block
1—1, or by rejecting them from the test unit of the current
block i. Therefore, an event group is bound to the put
event of B1[i], so the corresponding transitions are linked
to both accept[i — 1] and reject,[i]. This also shows the
use of simple arithmetic to link events from the current
functional block 7 to the previous block 7 — 1.

To complete the transfer line model, an initial loading
unit Init, used to load work pieces into the first block of
the transfer line, is instantiated from the Machine module.

Despite its apparent simplicity, the state space of the
transfer line model increases dramatically with the number
of functional blocks. While a model with one functional
block has just 64 reachable states, a model with 10 func-
tional blocks already has 2°' = 2,251,799, 813, 685, 248
reachable states. Due to their regular structure, all these
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module TransferLine(int n)
events

controllable starts[1..n]; start
uncontrollable finish,[1..n];
controllable starty[0..n]; .
uncontrollable accept,[0..n]; finish
uncontrollable reject[1..n]; Machine
components
Init = Machine(start = startr[0], finish = accept[0]); start
for i =1..n do
Mach[i] = Machine(start = start pr[i], finish = finish ,[4]);
TU[i] = TestUnit(start = startr[i], accept = acceptpli], reject = rejectp[i)); Py v
B1[i] = Buffer(size = 3; put = {acceptp|i — 1], rejectp[i]}, get = startar(i]); ’1"6]'662;
B2[i] = Buffer(size = 1; put = finish,;[i], get = startr[i]);
end TestUnit

end

Fig. 8. Transfer line module.

module TicTacToe
events

controllable black[0..2][0..2]; white I%ZZC%[[;’]][%] draw
uncontrollable winner_black_x[0..2]; 4,._>_.<>
uncontrollable winner_black_y[0..2]; Y

uncontrollable winner_black_d1;

uncontrollable winner_black_d2; move square[z][y]
alias winner_black = {winner_black_z, winner_black_y,

winner_black_d1, winner_black_d2};
uncontrollable white[0..2][0..2]; @ ul @ . @ . @
uncontrollable winner_white_z|0..2] p pu pu

.2];
uncontrollable winner_white_y[0..2];
uncontrollable winner_white_d1; Row
uncontrollable winner_white_d2;

alias winner_white = {winner_white_z, winner_white_y, winner_black

. . . . . . ; BLOCKED:
winner_white_d1 , winner_white_d2}; winner_white inmer wuhite
uncontrollable draw; draw \‘.
components —>O0——=0
Ei?_n; 206/3 do game_over white_never_wins
for y=0..2 do
plant square|z][y];
end
end
for  =0..2 do
RowWhiteX[z] = Row(put = {white[z][0], white[x][1], white[x][2]}, win = winner_white_z[x], opp = black);
RowBlackX[z] = Row(put = {black[z][0], black[z][1], black|x][2]}, win = winner_black_x[x], opp = white);
end
for y =0..2 do

RowWhiteY [y] = Row(put = {white[0][y], white[1][y], white[2][y]}, win = winner_white_y[y|, opp = black);
RowBlackY [y] = Row(put = {black[0][y], black[1][y], black[2][y]}, win = winner_black_y[y], opp = white);
end
RowWhiteD1 = Row(put = {white[0][0], white|

1[0 1][1], white[2][2]}, win = winner_white_d1, opp = black);
RowBlackD1 = Row(put = {black[0][0], black[1][

I[2 ]

2] Il

1] 112

], black[2][2]}, win = winner_black_d1, opp = white);
1], white[2][0]}, win = winner_white_d2, opp = black);
], black[2][0]}, win = winner_black_d2, opp = white);

RowWhiteD2 = Row(put = {white[0][2], white[1
RowBlackD2 = Row(put = {black[0][2], black[1
plant game_over;
spec white_never_wins;

end

Fig. 9. Tic Tac Toe module.

[
1
[
1
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transfer lines can be obtained from a single parametrisable
module with three simple automata. Supremica has suc-
cessfully instantiated and analysed transferlines with more
than 100 functional blocks and more than 10'°° reachable
states.

4.2 Tic Tac Toe Game

The second example models the rules of the Tic Tac Toe
game and can be used synthesise a strategy for this game.
Two players, white and black, are taking turns to occupy
the squares of a 3 x 3 board. The winner is the player
who first occupies a horizontal, vertical, or diagonal row
of three squares.

Fig. 9 shows a module representing this game. It uses two
two-dimensional arrays for the moves of the two players.
For example, white[z][y] indicates that square (x,y) is
occupied by the white player. The model is intended to
synthesise a strategy for the black player, so white moves
are uncontrollable and black moves are controllable. The
plant automaton move models the fact that the two players
are taking their moves alternatingly, and white moves first.
Although white and black are event arrays, the automaton
just uses the event labels white and black, which represent
implicitly defined event groups containing all nine events
in their array. This feature makes it possible to model the
alternation of moves concisely and independently of the
exact set of possible moves.

The plant automaton square[z][y] models the rule that each
square can be occupied only once. It is instantiated nine
times, once for each square (z,y).

There are eight possible ways how a player can win, cor-
responding to the eight possible rows that can be formed.
Each winning condition is represented by an uncontrollable
event, using arrays for the three horizontal and vertical
rows. Aliases winner_white and winner_black group the
winning conditions for each player together. To correctly
capture the winning conditions, the Row automaton needs
to be instantiated differently for each row. The automaton
models the fact, that a row is completed (win) when
its three squares are all occupied (put). Once a row is
completed, the game is over and the opponent of the
winning player can now longer move (opp). To instantiate
all the winning conditions, the Row automaton is placed
in a module of its own, which is instantiated 16 times with
appropriate bindings for the events win, put, and opp.

Two final automata complete the model. Plant game_over
uses the aliases winner_white and winner_black to model
the liveness requirement that it must always be possible
for the game to end, either by one player winning, or
by draw. Automaton white_never_wins represents a control
specification that disables all winning events of the white
player. It uses a blocked events list to ensure that all
events of the winner_white group are in the automaton
alphabet although there are no transitions associated with
them. This feature of Supremica enables the modelling of
globally disabled events without the overhead of adding
unreachable states. The specification white_never_wins can
be used to synthesise a least restrictive strategy (Ramadge
and Wonham, 1989) ensuring that the black player never
loses the game.

5. CONCLUSIONS

The modelling features implemented in the discrete events
systems tool Supremica have been presented. The software
is freely available for download! and includes a user-
friendly graphical interface to model complex finite-state
machine models. Module instantiation and event groups
make it easy to create large and parametrised models
by specifying only a small number of automata that are
reused several times. The support for extended finite-state
machines provides for variables, guards, and actions, thus
supporting not only event-based models, but also signal-
based and state-based modelling styles, and styles that are
more closely related to program code.
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