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There has been overwhelming evidence that coherent structures such as vortices, stream-

ers and zonal flows (m = n = 0, where m and n are the poloidal and toroidal modenumbers

respectively) play a critical role in determining the overall transport in magnetically confined

plasmas. [1] Some of these coherent structures, so called streamers, are radially elongated struc-

tures that cause intermittent, bursty events, which can mediate significant transport of heat and

particles, for instance, imposing a large heat load on container walls. Zonal flows on the other

hand may impede transport by shear decorrelation. [1] The Geodesic Acoustic Mode (GAM)

[2, 4, 3, 5] is the oscillatory counterpart of the zonal flow (m = n = 0 in the potential per-

turbation, m = 1, n = 0 in the perturbations in density, temperature and parallel velocity) and

thus a much weaker effect on turbulence is expected. Nevertheless experimental studies sug-

gest that GAMs are related to the L-H transition and transport barriers. The GAMs are weakly

damped by Landau resonances and moreover this damping effect is weaker at the edge suggest-

ing that GAMs are more prominent in the region where transport barriers are expected. [5] In

this work the first demonstration of an electron branch of the geodesic acoustic mode (el-GAM)

driven by electron temperature gradient (ETG) modes is presented. The frequency of the el-

Gam is higher compared to the ion GAM by the square root of the ion-to-electron mass ratio

(Ωq(electron)/Ωq(ion)≈
√

mi/me where Ωq(electron) and Ωq(ion) are the real frequencies of

the electron and ion GAMs, respectively.).

The linear Electron Temperature Gradient Mode

In this section we will describe the preliminaries of the electron-temperature-gradient (ETG)

mode which we consider under the following restrictions on real frequency and wave length:

Ωi ≤ ω ∼ ω? << Ωe, k⊥ci > ω > k||ce. Here Ω j are the respective cyclotron frequencies,

ρ j the Larmor radii and c j =
√

Tj/m j the thermal velocities. The diamagnetic frequency is

ω? ∼ kθ ρece/Ln, k⊥ and k|| are the perpendicular and the parallel wavevectors. The ETG model

consists of a combination of an ion and electron fluid dynamics coupled through the quasineu-

trality including finite β -effects. [6] The electron dynamics for the toroidal ETG mode are gov-
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erned by the continuity, parallel momentum and energy equations adapted from the Braginskii’s

fluid equations. Taking into account the diamagnetic cancellations in the continuity and energy

equations we find,
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⊥Ã|| +

εn

(
cosθ

1
r

∂
∂θ

+ sinθ
∂
∂ r

)
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Extended fluid models treating the gyroviscous cancellations by including the higher order mo-

ments in the Braginskii’s gyroviscous tensor has been presented in [7]. The variables are normal-

ized according to (φ̃ , ñ, T̃e) = (Ln/ρe)(eδφ/Teo,δne/n0,δTe/Te0), Ã|| = (2ceLn/βecρe)eA||/Te0

and βe = 8πnTe/B2
0. Using the Poisson equation in combination with non-adiabatic ions [6] we

then find

ñe =−
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First we will consider the Fourier representation of the linear dynamical equations (1, 2 and 3)

combined with (4) in the same manner as in Ref. [6] and we find a linear semi-local dispersion

relation.

Modeling Electron Geodesic Acoustic modes

The Geodesic Acoustic Modes are the m = n = 0, kr 6= 0 perturbation of the potential field

and the n = 0, m = 1, kr 6= 0 perturbation in the density, temperatures and the magnetic field per-

turbations. In order to find the relevant equations for the electron GAM dynamics we consider

the m = 1 component of Eqs (1) - (3) in the low β limit,
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where superscript (1) over the fluctuating quantities denotes the m = 1 poloidal mode number

and 〈· · · 〉 is the average over the fast time and spatial scale of the ETG turbulence and that

non-linear terms associated with parallel dynamics are small since 1
q2 << 1. Here we have

defined the non-linear term on the RHS in Eqs. (1) - (3) as N(0)
2 = ρ3

e ceẑ×∇φ̃ ·∇∇2
⊥φ̃ . This
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can be written T̃e = 2
3 ñ(1)

e + N1
2 , where the m = 1 component is determined by an integral of

the convective non-linear term as N1
1 = −∫ dtρscsẑ×∇φ̃ (0) ·∇T̃ (1)

e . We now study the m = 0

potential perturbations,
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We will use the wave kinetic equation (WKE) [1] to describe the background short scale ETG

turbulence for (Ωq,~q) < (ω,~k), where the action density Nk = Ek/|ωr| ≈ ε0|φ̃k|2/ωr. Here

ε0|φ̃k|2, is the total energy in the ETG mode with mode number k where ε0 = τ + k2
⊥+ η2

e k2
θ

|ω|2 .

In describing the large scale plasma flow dynamics it is assumed that there is a sufficient spec-

tral gap between the small scale ETG turbulent fluctuations and the large scale GAM flow. The

electrostatic potential is represented as a sum of fluctuating and mean quantities φ(~X ,~x,T, t) =

Φ(~X ,T )+ φ̃(~x, t) where Φ(~X ,T ) is the mean flow potential. The coordinates
(
~X ,T

)
, (~x, t) are

the spatial and time coordinates for the mean flows and small scale fluctuations, respectively.

We will solve the WKE by assuming a small perturbation (δNk) driven by a slow variation

for the GAM compared to the mean (Nk0) such that Nk = Nk0 + δNk. The relevant non-linear

terms can be approximated in the following form, 〈[φ̃k,∇2
⊥φ̃k]〉 ≈ q2

r ∑k krkθ
|ωr|
ε0

δNk(~q,Ωq) For

all GAMs we have qr > qθ . The GAM dispersion relation including the non-linear drive from

the ETG mode is found to be
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Eq. (9) is the sought dispersion relation for the electron GAM and we solve it perturbatively by

assuming Ωq = Ω0 + Ω1 where Ω0 is the solution to the linear part, Ω2
0 = 5

3
c2

e
R2

(
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)
. Now

we find the perturbation Ω1 = iγq which will determine the growth rate of the GAM as,
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Here the main contribution to the non-linear generation of GAMs originates from the Reynolds

stress term. The non-linearly driven electron GAM is unstable with a growth rate depending on

the saturation level
∣∣φ̃ 2

k

∣∣ of the ETG mode turbulence.

Saturation mechanism

We will estimate a new saturation level for the ETG turbulent electrostatic potential (φ̃k) by

balancing the Landau damping in competition with the non-linear growth rate of the GAM

in a constant background of ETG mode turbulence, according to the well known predator-

prey models used, in Ref. ([3]). The Landau damping rate
(

γL = 4
√

2
3
√

π
ce
qR

)
is assumed to be
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balanced by GAM growth rate Eq. (10) modified by the neoclassical damping in stationary

state
(

∂
∂ t → 0

)
. In steady state find the saturation level for the ETG turbulent intensity as (γq =

γL +ν?),
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Here, the saturation level is modified by the neoclassical damping ν? = νe
qR
veth

and the kθ
qr

factor

arises due to the spatial extension of the GAM and we obtain,
∣∣∣eφk

Te

Ln
ρe

∣∣∣∼ 30−40. Note that the

result found using a mixing length estimate with
∣∣∣eφ

Te

Ln
ρe

∣∣∣∼ 1 is significantly smaller. Here in this

estimation we have used Ln = 0.05, q = 3.0, R = 4, εn = 0.025, qrρe = kθ ρe = 0.3 and ηe ∼ 1.

Conclusion

In this paper we have presented the first derivation of an electron branch of the Geodesic

Acoustic Mode (el-GAM). The linear dispersion relation of the el-GAM showed that the new

branch is purely oscillatory with a frequency Ωq ∼ ce
R . To estimate the GAM growth rate, a

non-linear treatment based on the wave-kinetic approach was applied. The resulting non-linear

dispersion relation showed that the el-GAM is excited in the presence of ETG modes with a

growth rate depending on the fluctuation level of the ETG mode turbulence. To estimate the

ETG mode fluctuation level and GAM growth, a predator-prey model was used to describe

the coupling between the GAMs and small scale ETG turbulence. The stationary point of the

coupled system implies that the ETG turbulent saturation level φ̃k can be drastically enhanced

by a new saturation mechanism, stemming from a balance between the Landau damping and

the GAM growth rate. This may result in highly elevated particle and electron heat transport,

relevant for the edge pedestal region of H-mode plasmas.
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