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Experimental investigations has elucidated on the complex dynamics of the low to high (L-H)
plasma confinement mode transition. Evidence of interactions between the the turbulence driven
E⃗ × B⃗ zonal flow oscillation or Geodesic Acoustic Mode (GAM) [1], turbulence and the mean
equilibrium flows during this transition was found. Furthermore, periodic modulation of flow
and turbulence level with the characteristic limit cycle oscillation at the GAM frequency was
present [2]. The GAMs are weakly damped by Landau resonances and moreover this damping
effect is weaker at the edge suggesting that GAMs are more prominent in the region where
transport barriers are expected [3].

During recent years investigations on coherent structures such as vortices, streamers and
zonal flows (m = n = 0, where m and n are the poloidal and toroidal modenumbers respec-
tively) revealed that they play a critical role in determining the overall transport in magnetically
confined plasmas [4]. Zonal flows impede transport by shear decorrelation [4], whereas the
GAM is the oscillatory counterpart of the zonal flow (m = n = 0 in the potential perturbation,
m= 1, n= 0 in the perturbations in density, temperature and parallel velocity) and thus a weaker
effect on turbulence is expected [5, 6].

The electron-temperature-gradient (ETG) mode driven by a combination of electron tem-
perature gradients and field line curvature effects is a likely candidate for driving electron heat
transport [7]. The ETG driven electron heat transport is determined by short scale fluctuations
that do not influence ion heat transport and is largely unaffected by the large scale flows stabi-
lizing ion-temperature-gradient (ITG) modes.

In this work the electron branch of the geodesic acoustic mode (el-GAM) driven by electron
temperature gradient (ETG) modes is presented including finite β -effects [8] in similar way as
in Ref. [9]. The frequency of the el-Gam is higher compared to the ion GAM by the square
root of the ion-to-electron mass ratio (Ωq(electron)/Ωq(ion) ≈

√
mi/me where Ωq(electron)

and Ωq(ion) are the real frequencies of the electron and ion GAMs, respectively.).

1. The linear Electron Temperature Gradient Mode

In this section we will describe the preliminaries of the electron-temperature-gradient (ETG)
mode which we consider under the following restrictions on real frequency and wave length:
Ωi ≤ ω ∼ ω⋆ << Ωe, k⊥ci > ω > k||ce. Here Ω j are the respective cyclotron frequencies,
ρ j the Larmor radii and c j =

√
Tj/m j the thermal velocities. The diamagnetic frequency is

ω⋆ ∼ kθ ρece/Ln, k⊥ and k|| are the perpendicular and the parallel wavevectors. The ETG model
consists of a combination of an ion and electron fluid dynamics coupled through the quasineu-
trality including finite β -effects [7].
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1.1. Ion and impurity dynamics

In this section, we will start by describing the ion fluid dynamics in the ETG mode description.
In the limit ω > k∥ce the ions are stationary along the mean magnetic field B⃗ (where B⃗ = B0ê∥)
whereas in the limit k⊥ci >> ω , k⊥ρi >> 1 the ions are unmagnetized. In this paper we will

use the non-adabatic responses in the limits ω < k⊥cI < k⊥ci, cI =
√

TI
mI

and assume that Ωi <

ω < Ωe are fulfilled for the ions and impurities. In the ETG mode description we can utilize the
ion and impurity continuity and momentum equations of the form,

∂n j

∂ t
+n j∇ · v⃗ j = 0, and (1)

m jn j
∂ v⃗ j

∂ t
+ en j∇ϕ +Tj∇n j = 0, (2)

where j = i for ions and j = I for impurities. Now, we derive the non-adiabatic ion response
with τi = Te/Ti and impurity response with with τI = Te/TI , respectively. We have thus,

ñ j =−

(
zτ j

1−ω2/(k2
⊥c2

j)

)
ϕ̃ , (3)

Here Tj and n j are the mean temperature and density of species ( j = e, i, I), where ñi = δn/ni,
ñI = δnI/nI and ϕ̃ = eϕ/Te are the normalized ion density, impurity density and potential fluc-
tuations. Next we present the electron dynamics and the linear dispersion relation.

1.2. The electron model

The electron dynamics for the toroidal ETG mode are governed by the continuity, parallel mo-
mentum and energy equations adapted from the Braginskii’s fluid equations. The electron equa-
tions are analogous to the ion fluid equations used for the toroidal ITG mode,

∂ne

∂ t
+∇ · (ne⃗vE +ne⃗v⋆e)+∇ · (ne⃗vpe +ne⃗vπe)+∇ · (ne⃗v||e) = 0 (4)

3
2

ne
dTe

dt
+neTe∇ · v⃗e +∇ · q⃗e = 0. (5)

Here we used the definitions q⃗e =−(5pe/2meΩe)e||×∇Te as the diamagnetic heat flux, v⃗E is the
E⃗ × B⃗ drift, v⃗⋆e is the electron diamagnetic drift velocity, v⃗Pe is the polarization drift velocity, v⃗π
is the stress tensor drift velocity, and the derivative is defined as d/dt = ∂/∂ t +ρeceê×∇ϕ ·∇.
A relation between the parallel current density and the parallel component of the vector potential
(J∥) can be found using Ampère’s law,

∇2
⊥Ã∥ =−4π

c
J̃∥, (6)
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Taking into account the diamagnetic cancellations in the continuity and energy equations, the
Eqs. (4, 5 and 6) can be simplified and written in normalized form as,

−∂ ñe

∂ t
−∇2

⊥
∂
∂ t

ϕ̃ −
(
1+(1+ηe)∇2

⊥
)

∇θ ϕ̃ −∇||∇2
⊥Ã|| +

εn

(
cosθ

1
r

∂
∂θ

+ sinθ
∂
∂ r

)
(ϕ̃ − ñe − T̃e) = 0, (7)(

(βe/2−∇2
⊥)

∂
∂ t

+(1+ηe)(βe/2)∇θ

)
Ã||+∇||(ϕ̃ − ñe − T̃e) = 0, (8)

∂
∂ t

T̃e +
5
3

εn

(
cosθ

1
r

∂
∂θ

+ sinθ
∂
∂ r

)
1
r

∂
∂θ

T̃e +(ηe −
2
3
)
1
r

∂
∂θ

ϕ̃ − 2
3

∂
∂ t

ñe = 0. (9)

Note that similar equations have been used previously estimating the zonal flow generation in
ETG turbulence and have been shown to give good agreement with linear gyrokinetic calcula-
tions [7]. The variables are normalized according to

(ϕ̃ , ñ, T̃e) = (Ln/ρe)(eδϕ/Teo,δne/n0,δTe/Te0), (10)
Ã|| = (2ceLn/βecρe)eA||/Te0, (11)

βe = 8πnTe/B2
0. (12)

Using the Poisson equation in combination with (3) we then find

ñe =−
(

τini/ne

1−ω2/k2
⊥c2

i
+

(Z2nI/ne)τI

1−ω2/(k2
⊥c2

I )
+ k2

⊥λ 2
De

)
ϕ̃ . (13)

First we will consider the linear dynamical equations (7, 8 and 9) and utilizing Eq. (13) as in
Ref. [7] and we find a semi-local dispersion relation as follows,[

ω2
(

Λe +
βe

2
(1+Λe)

)
+(1− ε̄n(1+Λe))ω⋆ +

k2
⊥ρ2

e (ω − (1+ηe)ω⋆)
](

ω − 5
3

ε̄nω⋆

)
+(

ε̄nω⋆−
βe

2
ω
)(

(ηe −
2
3
)ω⋆+

2
3

ωΛe

)
=

c2
ek2

||k
2
⊥ρ2

e

(1+Λe)
(
ω − 5

3 ε̄nω⋆

)
−
(
ηe − 2

3

)
ω⋆− 2

3ωΛe

ω
(

βe
2 + k2

⊥ρ2
e

)
− βe

2 (1+ηe)ω⋆

 (14)

In the following we will use the notation Λe = τi(ni/ne)/(1−ω2/k2
⊥c2

i )+ τI(Ze f f nI/ne)/(1−
ω2/k2

⊥c2
I ) + k2

⊥λ 2
De. Note that in the limit Ti = Te, ω < k⊥ci, k⊥λDe < k⊥ρe ≤ 1 and in the

absence of impurity ions, Λe ≈ 1 and the ions follow the Boltzmann relation in the standard
ETG mode dynamics. Here λDe =

√
Tc/(4πnee2) is the Debye length, the Debye shielding

effect is important for λDe/ρe > 1. The dispersion relation Eq. (14) is analogous to the toroidal
ion-temperature-gradient mode dispersion relation except that the ion quantities are exchanged
to their electron counterparts.
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2. Modeling Electron Geodesic Acoustic modes

The Geodesic Acoustic Modes are the m = n = 0, kr ̸= 0 perturbation of the potential field and
the n = 0, m = 1, kr ̸= 0 perturbation in the density, temperatures and the magnetic field pertur-
bations. The el-GAM (q,Ωq) induced by ETG modes (k,ω) is considered under the conditions
when the ETG mode real frequency satisfies Ωe > ω > Ωi at the scale k⊥ρe < 1 and the real
frequency of the GAM fulfills Ωq ∼ ce/R at the scale qr < kr.

2.1. Linear Electron Geodesic Acoustic Modes

We start by deriving the linear electron GAM dispersion relation, by writing the m= 1 equations
for the density, parallel component of the vector potential, temperature and the m = 0 of the
electrostatic potential

−τi
∂ ñ(1)eG

∂ t
+ εn sinθ

∂
∂ r

ϕ̃ (0)
G −∇||∇2

⊥Ã(1)
||G = 0, (15)

(βe/2−∇2
⊥)

∂
∂ t

Ã(1)
||G −∇||(ñ

(1)
eG + T̃ (1)

eG ) = 0, (16)

∂
∂ t

T̃ (1)
eG − 2

3
∂
∂ t

ñ(1)eG = 0, (17)

−∇2
⊥

∂
∂ t

ϕ̃ (0)
G − εn sinθ

∂
∂ r

(ñ(1)eG + T̃ (1)
eG ) = 0. (18)

We will derive the linear GAM frequency as follows by using Eq. (16) and by eliminating the
density m = 1 component using a time derivative of Eq. (18).Finally by utilizing Eq. (15) we
find,

ρ2
e

∂ 2

∂ t2 ∇2
⊥ϕ̃ (0)+ εnv⋆⟨sinθ

∂
∂ r

εnv⋆ sinθ
∂ ϕ̃ (0)

∂ r
+∇||

J(1)||
en0

⟩= 0. (19)

Here ⟨· · · ⟩ is the average over the poloidal angle θ . In the simplest case this leads to the disper-
sion relation,

Ω2
q =

5
3

c2
e

R2

(
2+

1
q2

1
1+βe/(2q2

r )

)
. (20)

Note that the linear electron GAM is purely oscillating analogously to its ion counterpart c.f.
Refs. [5].

2.2. The Non-linearly Driven Geodesic Acoustic modes

We will now study the system including the non-linear terms and derive the electron GAM
growth rate. The non-linear extension to the evolution equations presented previously in Eqs
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(7) - (9) are

−∂ ñe

∂ t
−∇2

⊥
∂
∂ t

ϕ̃ −
(
1+(1+ηe)∇2

⊥
)

∇θ ϕ̃ −∇||∇2
⊥Ã|| +

εn

(
cosθ

1
r

∂
∂θ

+ sinθ
∂
∂ r

)
(ϕ̃ − ñe − T̃e) = [ϕ̃ ,∇2ϕ̃ ], (21)(

(βe/2−∇2
⊥)

∂
∂ t

+(1+ηe)(βe/2)∇θ

)
Ã||+∇||(ϕ̃ − ñe − T̃e) = [ϕ̃ ,∇2

⊥Ã||],(22)

∂
∂ t

T̃e +
5
3

εn

(
cosθ

1
r

∂
∂θ

+ sinθ
∂
∂ r

)
1
r

∂
∂θ

T̃e +(ηe −
2
3
)
1
r

∂
∂θ

ϕ̃ − 2
3

∂
∂ t

ñe = −[ϕ̃ , T̃e]. (23)

In order to find the relevant equations for the electron GAM dynamics we consider the m = 1
component of Eqs (21) - (23),

−
∂ ñ(1)eG

∂ t
+ εn sinθ

∂
∂ r

ϕ̃ (0)
G −∇||∇2

⊥Ã(1)
||G = ⟨[ϕ̃k,∇2ϕ̃k]⟩(1) = 0, (24)

(βe/2−∇2
⊥)

∂
∂ t

Ã(1)
||G −∇||(ñ

(1)
eG + T̃ (1)

eG ) = ⟨[ϕ̃k,∇2
⊥Ã||k]⟩(1) = 0, (25)

∂
∂ t

T̃ (1)
eG − 2

3
∂
∂ t

ñ(1)eG = −⟨[ϕ̃k, T̃ek]⟩(1) = N(1)
1 , (26)

where superscript (1) over the fluctuating quantities denotes the m = 1 poloidal mode number
and ⟨· · · ⟩ is the average over the fast time and spatial scale of the ETG turbulence and that
non-linear terms associated with parallel dynamics are small since 1

q2 << 1. We now study the
m = 0 potential perturbations,

−∇2
⊥

∂
∂ t

ϕ̃ (0)
G − εn sinθ

∂
∂ r

(ñ(1)eG + T̃ (1)
eG ) = ⟨[ϕ̃k,∇2ϕ̃k]⟩(0) = N(0)

2 . (27)

Here we have defined the non-linear term on the RHS in Eqs. (24) - (27) as N(0)
2 = ρ3

e ceẑ×∇ϕ̃ ·
∇∇2

⊥ϕ̃ . This can be written T̃e =
2
3 ñ(1)e +N1

2 , where the m = 1 component is determined by an

integral of the convective non-linear term as N1
1 = −

∫
dtρscsẑ×∇ϕ̃ (0) ·∇T̃ (1)

e . This leads to a
relation between the m = 1 component of the density and temperature fluctuations modified by
a non-linear term. Here, the non-linear terms can be written in the form,

N(1)
1 = ∑

k
k2

θ
ηeγ
|ω |2

∇r|ϕ̃k|2 (28)

N(0)
2 = q2

r ∑
k

krkθ |ϕ̃k|2. (29)

We continue by considering the Equations (24) and (27) for the m = 1 component and m = 0
component, respectively,

∂ ñ(1)eG
∂ t

−
∇||J̃

(1)
||

en0
− εn sinθ

∂ ϕ̃ (0)
G

∂ r
= N(1)

1 , (30)

∂
∂ t

∇2
⊥ϕ̃ (0)

G + εn⟨sinθ
∂
∂ r

(
5
3

ñ(1)eG

)
⟩= N(0)

2 . (31)
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We keep the N(1)
1 non-linear term in order to quantify the effects of the convective non-linearity.

Similar to the operations performed to find the linear electron GAM frequency we eliminate the
m = 1 component of the electron density by taking a time derivative of Eq. (31) this yields,

∂ 2

∂ t2 ∇2
⊥ϕ̃ (0)

G + εn⟨sinθ
∂
∂ r

(
εn sinθ

∂ ϕ̃ (0)
G

∂ r
+N(1)

1 +
∂
∂ t

N(1)
1

)
⟩= ∂

∂ t
N(0)

2 . (32)

Note that the el-GAM wave equation will be modified by the effects of the parallel current den-
sity (J̃||) and the m = 1 non-linear terms in the general case, however we see by inspection that

on average the term N(1)
1 does not contribute whereas the N(0)

2 non-linearity may drive the GAM
unstable. We will use the wave kinetic equation [4, 5] to describe the background short scale
ETG turbulence for (Ωq, q⃗)< (ω ,⃗k), where the action density Nk = Ek/|ωr| ≈ ε0|ϕk|2/ωr. Here

ε0|ϕk|2, is the total energy in the ETG mode with mode number k where ε0 = τ +k2
⊥+

η2
e k2

θ
|ω |2 . The

electrostatic potential is represented as a sum of fluctuating and mean quantities ϕ(X⃗ , x⃗,T, t) =
Φ(X⃗ ,T )+ ϕ̃ (⃗x, t) where Φ(X⃗ ,T ) is the mean flow potential. The coordinates

(
X⃗ ,T

)
, (⃗x, t) are

the spatial and time coordinates for the mean flows and small scale fluctuations, respectively.
The wave kinetic equation can be written as,

∂
∂ t

Nk(r, t) +
∂

∂kr

(
ωk + k⃗ · v⃗g

) ∂Nk(r, t)
∂ r

− ∂
∂ r

(⃗
k · v⃗g

) ∂Nk(r, t)
∂kr

= γkNk(r, t)−∆ωNk(r, t)2. (33)

We will solve Equation (33) by assuming a small perturbation (δNk) driven by a slow variation
for the GAM compared to the mean (Nk0) such that Nk = Nk0 + δNk. The relevant non-linear
terms can be approximated in the following form,

⟨[ϕ̃k,∇2
⊥ϕ̃k]⟩ ≈ q2

r ∑
k

krkθ
|ωr|
ε0

δNk(⃗q,Ωq). (34)

For all GAMs we have qr > qθ , with the following relation between δNk and ∂Nk0/∂kr,

δNk =−iq2
r kθ ϕ 0

GR
∂N0k

∂kr
+

kθ qrT̃
(1)

eG N0k

τi
√

(ηe −ηeth)
, (35)

where we have used δωq = k · vEq ≈ i(kθ qr − krqθ )ϕ
(0)
G in the wave kinetic equation and the

definition R = 1
Ωq−qrvgr+iγk

. Using the results from the wave-kinetic treatment we can compute
the non-linear contributions to be of the form,

⟨ϕ̃ ,∇2
⊥ϕ̃⟩ = −iq4

r ∑krk2
θ
|ωr|
ε0

R
∂Nk

∂kr
ϕ̃ (0)

G +
2
3

q3
r ∑krkθ

|ωr|
ε0

RN0

τ(ηe −ηthe)1/2 ñ(1)eG . (36)

In order to find the non-linear growth rate of the electron GAM we need to find relations between
the variables ñ(1)eG , T̃ (1)

eG and ϕ̃ (0)
G ,

ñ(1)eG = −
εnqr sinθΩq

Ω2
q − 5

3
q2
∥q2

r

q2
r+βe/2

ϕ̃ (0
G . (37)
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Using Eq. (37) and the Fourier representation of Eq. (32) resulting in,

q2
r Ω3

q −
5
3

q2
∥q4

r

βe/2+q2
r

Ωq −
5
6

ε2
n q2

r Ωq =

(
Ω2

q −
5
3

q2
∥q2

r

βe/2+q2
r

)
q2

r ∑krk2
θ
|ωr|
ε0

R
∂Nk

∂kr
. (38)

Eq. (38) is the sought dispersion relation for the electron GAM. In the electrostatic limit we
find a perturbative solution of the form,

γq

ce/R
≈ 1

2
q2

r ρ2
e kθ ρe√

εn(ηe)

1
1+1/2q2

∣∣∣∣ϕ̃k
Ln

ρe

∣∣∣∣2 . (39)

Here the main contribution to the non-linear generation of el-GAMs originates from the Reynolds
stress term. The non-linearly driven electron GAM is unstable with a growth rate depending on
the saturation level

∣∣ϕ̃k
∣∣2 of the ETG mode turbulence. In Fig. 1, we display the el-GAM Ωq (in
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FIG. 1. Eq. (38) is solved numerically for ηe = 4.0, εn = 0.909, β = 0.01 kr = 0.6 = kθ and q = 1 in the
strong ballooning limit g(θ) = 1 and k2

⊥(θ) = k2
r +k2

θ with ETG saturation level |ϕ̃k| ≈ (γk/ω⋆)(1/kxLn).

blue) as a function of ηe (left) and as a function of q (right) in comparison with the solution to
the linear el-GAM dispersion relation Eq. (20 in red). It is found that q has a stabilizing effect
on the el-GAM however the quantitative results are strongly dependent on the parameters. Note
that, in the dispersion relation a set-off non-linear drive is present below which the el-GAM is
stable.

3. Saturation mechanism

In this section we will estimate a new saturation level for the ETG turbulent electrostatic po-
tential (ϕ̃k) by balancing the Landau damping in competition with the non-linear growth rate
of the GAM in a constant background of ETG mode turbulence, according to the well known
predator-prey models used, c.f. Eq. (4) in Ref. [6],

∂Nk

∂ t
= γkNk −∆ωN2

k − γ1UGNk (40)

∂UG

∂ t
= γqUG − γLUG −ν⋆UG. (41)
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Here we have represented the ETG mode turbulence as Nk = |ϕk|2 L2
n

ρ2
e

and UG = ⟨eϕ (0)
G

Te

Ln
ρe

sinθ⟩
with the following parameters: γ is the ETG mode growth rate, γ1 is the coupling between the
ETG mode and the GAM. The Landau damping rate

(
γL = 4

√
2

3
√

π
ce
qR

)
is assumed to be balanced

by GAM growth rate Eq. (39) modified by the neoclassical damping in stationary state ∂N
∂ t → 0

and ∂UG
∂ t → 0. In steady state find the saturation level for the ETG turbulent intensity as (γq =

γL +ν⋆), ∣∣∣∣eϕk

Te

Ln

ρe

∣∣∣∣2 ≈ 2Ln

qR

(
1+

1
2q2

)
√

εnηe

(
4
3

√
2
π
+ν⋆

)(
kθ
qr

)2( 1
kθ ρe

)3

. (42)

Here, the saturation level is modified by the neoclassical damping ν⋆ = νe
qR
veth

and the kθ
qr

factor
arises due to the spatial extension of the GAM and we obtain,∣∣∣∣eϕk

Te

Ln

ρe

∣∣∣∣∼ 30−40. (43)

Note that the result found using a mixing length estimate with
∣∣∣ eϕ

Te

Ln
ρe

∣∣∣∼ 1 is significantly smaller.

Here in this estimation we have used Ln = 0.05, q = 3.0, R = 4, εn = 0.025, 1/qr ∼ (ρ2
e LT )

1/3,
kθ ρe = 0.3 where kθ/qr ≈ 4 and ηe ∼ 1.

4. Conclusion

In this work the electromagnetic effects on the electron Geodesic Acoustic Mode (el-GAM) are
investigated. The linear dispersion relation of the el-GAM is purely oscillatory with a frequency
Ωq ∼ ce

R whereas the GAM growth rate, is estimated by a non-linear treatment based on the
wave-kinetic approach. The non-linear dispersion relation is solved numerically. To estimate
the ETG mode fluctuation level and GAM growth, a predator-prey model was used to describe
the coupling between the GAMs and small scale ETG turbulence. The stationary point of the
coupled system implies that the ETG turbulent saturation level ϕ̃k can be drastically enhanced
by a new saturation mechanism, stemming from a balance between the Landau damping and
the GAM growth rate. This may result in highly elevated particle and electron heat transport,
relevant for the edge pedestal region of H-mode plasmas.
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