
Architecture for Large-Scale Innovation Experiment Systems

Ulrik Eklund and Jan Bosch

Software Engineering Division, Dept. of Computer Science & Engineering
Chalmers University of Technology

Göteborg, Sweden
Email: ulrik.eklund@chalmers.se, jan.bosch@chalmers.se

Abstract—Business and design decisions regarding software
development should be based on data, not opinions among
developers, domain experts or managers. The company running
the most and fastest experiments among the customer base
against the lowest cost per experiment outcompetes others by
having the data to engineer products with outstanding qualities
such as power consumption and user experience.

Innovation experiment systems for mass-produced devices
with embedded software is an evolution of current R&D prac-
tices, going from where innovations are internally evaluated by
the original equipment manufacturer to where they are tried
by real users in a scale relevant to the full customer base. The
turnaround time from developing and deploying an embedded
product to getting customer feedback is decreased to weeks,
the limit being the speed of the software development teams.

The paper presents an embedded architecture for realising
such a novel innovation experiment system based on a set
of scenarios of what to evaluate in the experiments. A case
is presented implementing an architecture in a prototype in-
vehicle infotainment system where comparative testing between
two software alternatives was performed.

Keywords-embedded software; software architecture;
product development

I. INTRODUCTION

Innovative ideas for embedded products are typically col-

lected and prioritized during the roadmapping and require-

ment management process as part of the yearly release cycle,

which usually is determined by manufacturing concerns of

the hardware. Feedbacks on innovations from real customers

are collected only on new product models, if collected at all.

Since more and more embedded products also are con-

nected (e.g. [1]), it is conceivable to develop, deploy and

measure usage on new software in iterations which lengths

are determined by the speed of the software development

teams instead of the setup of the manufacturing process,

going from years to weeks. Such an innovation experiment

system would utilise feedback from real users in a scale

comparable to the entire customer base. This requires an

embedded architecture in each product together with an

infrastructure capable of collecting and analysing the data.

The driver for having such an innovation experiment

system is that business and design decisions should be based

on data, not opinions among developers, domain experts

or managers. The company running the most experiments

among the customer base against the lowest cost per exper-

iment outcompetes the others by having the decision basis

to engineer products with outstanding customer experience.

The main contribution of the paper is architecture to

support innovation experiment systems for mass-produced

devices with embedded software. The architecture consists

of a set of scenarios and the mechanisms that implements

these. In addition, a case implementing the architecture and

performing comparative testing between two software in the

context of prototype vehicle HMI is presented.

II. CONTEXT AND PROBLEM STATEMENT

The approach of having the entire R&D process as an

innovation experiment system has been applied to areas

where software is provided as a service in a cloud-computing

environment, an example being Intuit [2]. Driving the R&D

process as an innovation experiment system in the embedded

domain is a novel approach, and the architecture for the

products must facilitate the short development cycles of de-

fining experiments, develop software, deploy it and evaluate

the results.

A. Innovation Experiment Systems

Developing software in an innovation experiment system

is different from development approaches for traditional

embedded software. First, it frequently deploys new versions

focusing on continuously evolving the embedded software

in short cycles of 2-4 weeks, as seen in Figure 1. Second,

the design decisions are based on customer usage data

throughout the entire development process. Third, the goal

of the development process is to test as many innovations

as possible with customers to enhance customer satisfaction

and, consequently, revenue growth. R&D in this context

can best be described as an experiment system for new

innovations [2].

The innovation experiment system focuses on incremental

innovation according to the framework defined by Hender-

son and Clark [3]. The short iterations of experiments are

aimed to refine and extend established designs. Improvement

occurs in individual software parts, but the underlying design

concept remain mostly unchanged [3], even if there is

nothing that prohibits the evaluation of e.g. architectural

innovations as well.

2012 Joint Working Conference on Software Architecture & 6th European Conference on Software Architecture

978-0-7695-4827-2/12 $26.00 © 2012 IEEE

DOI 10.1109/WICSA-ECSA.212.38

244

��������
����	�

��������
����	�

��������
����	�

��������
����	�

�������	�
�
��	���	�����

�������	��������
��������	������

��
����������

���������	
	��

Figure 1. Overview of the Innovation Experiment System with the iteration
of experiments.

B. Mass-Produced Embedded Systems

Today original equipment manufacturers (OEM) of

products with embedded software range from focusing on

efficient manufacturing of products with the software as

difficult necessity to seeing software as a key business

differentiator. Software is often an enabler for new innov-

ations in embedded systems, for example in cars [4], and

marketed innovative features are often realised by software.

In many embedded domains the amount of software increase

exponentially over time [5].

A common development approach for embedded systems

is using a traditional stage-gate process, where the gates

are driven by decisions on investment in the manufacturing

of the product, i.e. driven by the hardware. The finalisa-

tion of software artefacts often correspond to process gate

progression, e.g. user requirements, system requirements,

software architecture, component requirements, and software

implementation, i.e. a waterfall process even if the artefacts

are updated as the project progresses.

We define the domain of mass-produced software-

intensive embedded systems by four characteristics:

• Deep integration between hardware and software for

significant parts of the functionality

• Strong focus on manufacturing aspects of the product

in the development (e.g. by development process gates)

• Strong supplier involvement in the form of subcontract-

ors

• Some elements of the system realise safety-critical

functionality

Examples of mass-produced embedded products include

cars and trucks, washing machines and other home utensils,

sewing machines, printers and copying machines [5]. We

will hereafter give general examples from the automotive

industry since cars are arguably the most complex product

of this category, both in terms of conflicting requirements

and subcontractor relationships.

C. Research Problem

Innovation experiment systems are a new concept in

the embedded domain and thus there are no architectural

blueprints available, either from the research community or

in industry. The research presented in this paper aims to

explore implications for the architecture of the embedded

software when products are built as a large-scale innovation

experiment system. The research question is thus:

What are the software architecture principles to

realise a large-scale innovation experiment system

of mass-produced embedded systems?

III. GOALS OF AN INNOVATION EXPERIMENT SYSTEM

The desired goal is for development teams to deploy

updated or new software and collect data based on real

customer usage instead of opinions inside the R&D or-

ganisation. Ideally these data would be directly related to

OEM income revenues, such as increase in sold products

or purchases of related services, but a direct correlation

might be difficult to establish for products which have a

one-time payment from customer to manufacturer. The next

best thing is if the data can be connected to the perceived

customer value of product. This would create a lasting value

for customer since the product would feel “fresh” longer and

indirectly affect brand perception and loyalty.

The simplest experiment cycle would be:

1) The team(s) defines the experimental problem and

produces new software which implements a feature

thought to improve a user perceived quality. In this

case there is just one factor with two levels, present

and new implementation.

2) The response variable(s) are selected and implemented

3) The software is deployed to a statistically relevant

number of devices, with unmodified devices being the

control.

4) The software is run for a period of time.

5) The data is uploaded and analysed through the infra-

structure.

6) The development team draws conclusions about the

new software and decides whether to develop the new

software design further, keep it as it is, or to drop it

and revert to the unmodified software.

A. Experiment Scenarios

The initial focus of the innovation experiments would be

on user interaction, but should be extended to other things,

e.g. power consumption or precision in control systems. The

experiments supported by the architecture could for example

answer the following about real world usage, i.e. these are

potential experiment response variables:

• How long does it take to . . .

• Which of . . . is most often used/accessed/. . .

• Identify behaviour that is not intended, e.g. menu

selection followed by "back" indicates that the user

made a mistake.

• Are there any features that are not used?

• Be able to evaluate competing designs based on the

answers above, i.e. A/B testing (AKA. split testing).

245

��������
����	�

��������
����	�

��������
����	�

��������
����	�

�����������
����

����	�����
	���
���	�

���������	

�	����	��	

�������	
�
�	����
���
���

��	�
���
�	����	��	

�	�����

��������

������	�

����

��	���

�������	
���	�
�	���������������

���������

��	���
��	�

�	������	��

��
���

��
�������

���
����	�����

�������
	����	��
����

Figure 2. The infrastructure enabling the innovation experiment system.

Depending on the embedded domain there are other

data that are interesting to get measurements on. In the

automotive domain some examples could be real-world fuel

consumption, how often active safety systems are activated

to avoid accidents, or electrical power consumption in dif-

ferent driving situations. The architecture should support

comparative or A/B-testing, where qualities of two or more,

different application delivering similar features are tested

against each other.

IV. ARCHITECTURE FOR EXPERIMENTS

The embedded devices is only one part of the innovation

experiment system, the other two being the development

environment and the experiment infrastructure, as seen in

Figure 2. The experiment infrastructure allows developers

to deploy new software and collect data how it behaves

in areal-world settings being used by actual users. The

infrastructure support deployment of software experiments

and collection of data over-the-air on a scale comparable

to the entire customer base, for an automotive developer

this means devices in the order of 105. The infrastruc-

ture supports with automated randomisation and factorial

designs [6] sufficient to draw statistical conclusions from

the experimental scenarios.

A. Unit of Replacement

The unit of replacement is constrained by what the infra-

structure can handle both in terms of deployment, e.g. size,

and in terms of distinction between versions (it becomes

a problem of numbers with devices in the order of 105

and unique units of replacements in the order of 102).

But the size of the unit of replacement is also constrained

by the microcontroller architecture, e.g. through the size

of separately flashable sectors in an automotive electronic

control unit (ECU). In Android the unit of deployment is

typically the app, which is supported by e.g. the Android

marketplace. In the download framework of the ROBOCOP

�������	
�
�������

����������

��������
�����	

������������
��	
��
��
��
��

����
�
����
�

����
�����
�������	
������

�	����
	

��
��
��
����

��

�������
�
����

��

����

� �

��������
����

!��������
�������
������

"��
��
��
����
�

����

"��
��
��
�����
�

�

�

����

Figure 3. The architecture for managing experiments on-board.

architecture it is the component [7]. In the Automotive Open

System Architecture (AUTOSAR) the software components

are integrated for each ECU before delivery [8].

In many cases the unit of replacement is larger than

what is desired upon from an experiment perspective, with

the experiment ideally only encompassing a single user-

initiated task or use case, while the unit of replacement can

encompass many user tasks or features. In these cases the

small part included in the experiment will be updated but

all other parts are kept invariant.

The embedded devices must allow over-the-air deploy-

ment of new applications as well of updating the necessary

parts of the software running the experiments.

B. Experiment Management Architecture

The experiment manager architecture, seen in Figure 3,

supports the deployment of multiple experimental software

parts to the same device and autonomously controls when to

run which experiment, even allowing for local A/B-testing.

Measurements and analysis is done on-board in real-time.

The experiment scenario to be answered is implemented on

the embedded device (i.e. how long does it take to . . .)

The experiment software, besides the part under exper-

imentation, consists of 4 parts: The replaceable software

unit experiments deployed to each device, seen in Figure 3,

consists of several parts besides the application being exper-

imented upon, and the underlying embedded platform:

• The experiment manager which is responsible for de-

ciding which experiment(s) to run, running the experi-

ment, and assemble and analyse the collected data.

• The wrapper for the parts under experimentation, which

enable the manager to decide in run-time which soft-

246

ware part to run, allowing for A/B testing or to revert

to the default software part.

• The probe software fused with the application(s) that

is evaluated.

• The logger which utilises the on-board storage.

• The on-board data storage provided by the embedded

platform.

• The connection provided by the platform, e.g. 3G

mobile connection.

The last two parts are part of the general embedded

platform and is not specific to the innovation experiment

system. The data logger can be general for all experiments

and don’t need to be updated in each experiment cycle,

while the wrapper and probe software is very dependent

on the application. The experiment manager is specific to

the type of answers wanted. The actual probing can be done

either through sampling or event-driven logging, depending

on domain and type of application to be evaluated.

Embedded systems have a layered architecture, and the

experiment manager thus needs to be in the same layer as

the observed application, otherwise it does not know about

what it is observing. If placed in a lower layer it can only

draw conclusion about the hardware devices like “button is

pushed” but don’t know the meaning of a pushed button.

Collected and analysed data is stored on-board to be

up-loaded for further analysis in batches, e.g. when the

connection is not utilised for other things. This can be

implemented as a push, i.e. the data set is uploaded when the

measurement manager decides sufficient data is collected or

the storage buffer is full. Or as a pull, the data is uploaded

when requested for by the infrastructure.

C. Safety pattern

If the application experimented upon is potentially safety-

critical the architecture must include mechanisms to mitigate

any risks. If the experiment should run out-of bounds of what

is considered safe it must be disabled and a fall-back, safe,

version of the software application runs instead.

The safety pattern to satisfy this, seen in Figure 4, consists

of 4 parts, and is based on well-known safety architectures

for embedded systems [9]:

• The application(s) involved in the experiment.

• The monitor who evaluates that the application stays

within safe boundaries.

• The fail-safe software, which operates within safe

boundaries.

• The safety executive which controls the setup.

V. CASE: VEHICLE HMI

The case implementing an embedded architecture for an

innovation experiment systems was a development project of

a prototype to establish a proof-of-concept for some radically

different development strategies compared to current soft-

ware development in the automotive industry. The system

���������
�	�
����

��������

�	�
�����

����
�
�����
���

�����������	�
��

����
����

���

�������

�

�

�

����

�	��
	�����
���

�

�

�

�

��	���
��������

Figure 4. The safety pattern when the application software involved in
the experiment is potentially safety-critical.

was an infotainment system based on an open platform,

Android. The project was executed in an industrial setting,

but the resulting system was not intended to go into mass

production and be sold to customers.

The primary goal of the project was to establish whether

it was possible to do feature development with extremely

short lead-times from decision to implementation compared

to present industrial projects, from a nominal lead-time of

1-3 years to 4-12 weeks. The short lead-times were accom-

plished by a small development team using Scrum from

a consultancy firm with automotive software experience,

which had a supplier relationship to Volvo car Corporation as

product owner. Working software was continuously validated

in “real” environments, i.e. the infotainment system was

installed in both a driving simulator and real test cars and

users evaluated the system during the project.

A. Experimentation

A user story in the first sprint covered measure-

ment/logging how the user uses the system with the purpose

to provide input to backlog and future sprints, in terms of

tuning of current features and new ideas. In a subsequent

sprint an A/B experiment was defined evaluating two layouts

of the start screen of the infotainment system, implemented

as two different launchers in Android. The system was

mounted in a vehicle and test drivers were requested to

perform some common task with the intent to measure which

launcher “worked best”.

Even though the test sample was too small to draw any

conclusions, 7 drivers in total, the test drives showed that the

on-board innovation experiment system worked as intended

and collected the required data, which was then analysed

off-board.

B. Architecture

The first generation of the system implemented a simpli-

fied experiment architecture from Section IV-B. The system

used a logger in the same layer as the observed application,

in this case the launcher, both residing in the Applications

layer of Android, as seen in Figure 5. The data from the

247

���������	
�

���������	
������	��

���������

��
������
��

�
��	��
��
����

��������

�	

��

��	��

Figure 5. The experiment architecture of the prototype infotainment
system.

logger was stored in a text-file with a batch upload of the

data pulled by the developers. The logger kept track of the

user’s actions by storing different strings in the text-file,

describing the actions that the user has performed, such

as adding widgets to the workspace or starting an applic-

ation. The logger was initiated from within the Android

launcher at startup by creating the logger variable and call

the constructor of the generic logger-class available on the

Open Infotainment Labs platform. Since the software was

only deployed to a single vehicle the management of the

experiment was done off-line, i.e. only a single software

variant was deployed at any time, and no wrapper was used.
The probe software consists of a single line of code at

the appropriate place(s) in the launcher application, which
defines the string to be stored in the log file, e.g:

2011-09-21, 10:14:20, DEBUG, Wdgt,
Analog clock started at screen: 3

The off-board analysis software (written in Python) de-

termined the following based on the logged data:

• Calculates the time spent in each launcher screen

• How many applications are installed?

• What apps are launched?

• Which widgets are installed in which launcher screen?

VI. CONCLUSION

Innovative ideas for embedded products are typically col-

lected and prioritized during the roadmapping and require-

ment management process as part of the yearly release cycle,

which usually is determined by manufacturing concerns of

the hardware. Feedbacks on innovations from real customers

are collected only on new product models, if collected at

all. We argue that business and design decisions regarding

software development should be based on data, not opinions

among developers, domain experts or managers.

Innovation experiment systems is an evolution of current

R&D practices, going from where innovations are internally

evaluated by the original equipment manufacturer to where

they are tried by real customers. Since more and more

embedded products also are connected, it is conceivable

to develop, deploy and measure usage on new software

in iterations which length is determined by the speed of

the software development teams instead of the setup of the

manufacturing process, going from years to weeks.

Since innovation experiment systems are a new concept in

the embedded domain there are no architectural blueprints

available, either from the research community or in in-

dustry. The paper explored necessary architecture principles

to realise a large-scale innovation experiment system of

mass-produced embedded systems. The result was a novel

embedded architecture based on what to evaluate in the

experiments, together with how the embedded architecture

fits into a larger infrastructure. The evolution of such an

architecture is described, going from simple measurements

on a single software part to composite experiments involving

different software parts involved in comparative A/B testing.

A case implementing the architecture in a prototype in-

vehicle infotainment system where A/B testing was per-

formed is also presented.

ACKNOWLEDGEMENT

This work has been financially supported by the Swedish

Agency for Innovation Systems (VINNOVA) and Volvo

Car Corporation within the partnership for Strategic Vehicle

Research and Innovation (FFI).

REFERENCES

[1] T. Koslowski, “Your connected vehicle is arriving,”
Technology Review, Jan. 2012. [Online]. Available:
http://www.technologyreview.com/business/39407/

[2] J. Bosch, “Building products as innovation experiment sys-
tems,” in Proceedings of the International Conference on
Software Business, ser. Lecture Notes in Business Information
Processing. Cambridge, MA, USA: Springer, 2012.

[3] R. M. Henderson and K. B. Clark, “Architectural innovation:
The reconfiguration of existing product technologies and the
failure of established firms.” Administrative Science Quarterly,
vol. 35, no. 1, pp. 9–30, 1990.

[4] M. Broy, “Challenges in automotive software engineering,”
in Proceedings of the International Conference on Software
Engineering. Shanghai, China: ACM, 2006, pp. 33–
42. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1134285.1134292

[5] C. Ebert and C. Jones, “Embedded software: Facts, figures,
and future,” Computer, vol. 42, no. 4, pp. 42–52, 2009.
[Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=5054871&isnumber=5054856

[6] D. C. Montgomery, Design and Analysis of Experiments,
3rd ed. Wiley, 1991.

[7] J. Muskens, M. R. V. Chaudron, and J. J. Lukkien, “A
component framework for consumer electronics middleware,”
in Component-Based Software Development for Embedded
Systems, ser. Lecture Notes in Computer Science. Springer,
2005, vol. 3778, pp. 164–184. [Online]. Available: http:
//www.springerlink.com/content/f172600116688114/

[8] AUTOSAR, “Methodology,” AUTOSAR development
partnership, Auxiliary document 068, 2011. [Online].
Available: http://www.autosar.org/download/R4.0/AUTOSAR_
TR_Methodology.pdf

[9] B. P. Douglass, Doing Hard Time: Developing Real-Time Sys-
tems with UML, Objects, Frameworks, and Patterns. Addison-
Wesley, 1999.

248

