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Abstract—A novel general ready-to-use bit-error rate (BER)
expression for one-dimensional constellations is developed. The
BER analysis is performed for bit patterns that form a labeling.
The number of patterns for equally spacedM -PAM constellations
with different BER is analyzed.

I. I NTRODUCTION AND MOTIVATION

Current wireless communication systems are based on the
bit-interleaved coded modulation (BICM) paradigm introduced
in [1] and later studied in [2], [3]. One key element in these
systems is the calculation of logarithmic likelihood ratios
(LLR, also known as L-values) for the received bits, which are
passed to the channel decoder. The coded performance analysis
of such systems is generally not straightforward, and is usually
carried out either numerically by Monte-Carlo simulation,or
in terms of lower and upper bounds [2, Sec. 4], [3, Ch. 4].
The calculation of LLRs is crucial also in many other coded
systems. In this paper, we analyze theuncodedperformance
over the additive white Gaussian noise (AWGN) channel.

A symbol-based demodulator (SD) is the most natural way
of decoding symbols transmitted through the channel. This
approach is optimal in terms of symbol-error rate (SER). The
bit-error rate (BER) performance of the SD is well documented
in literature, e.g. [4, Ch. 5], [5, Ch. 10], [6]–[11] and references
therein. On the other hand, in a coded system, such as BICM,
soft or hard information on the receivedbits is passed to
the decoder, and thus, bit-wise decisions are more relevant
than symbol-wise decisions. The optimalbit-wisedemodulator
(BD) minimizing the BER implies the calculation of (exact) L-
values for the received bits. The uncoded performance of such
a demodulator has been studied in [12], where closed-form
expressions for the BER for 4-ary pulse amplitude modulation
(PAM) with the binary reflected Gray code (BRGC) [9], [13],
[14] are presented. Due to the complexity of the BD, the
calculation of L-values in practical systems is usually done
based on the so-called max-log approximation [15, eq. (5)],
[16, eq. (1)]. We call this demodulator the approximate BD
(ABD). The three above demodulators (SD, BD, and ABD)
have been recently numerically compared from a mutual
information point of view in [17] for multiple-input multiple-
output BICM systems.
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In this paper, we prove the equivalence of the SD and
the ABD in terms of uncoded BER for any constellation
and labeling. Due to this equivalency, we go on and study
the ABD for one-dimensional constellations. To this end,
we introduce a novel ready-to-use BER expression valid for
any one-dimensional constellation and binary labeling. The
analysis is performed for bit-patterns that form a labeling.

II. PRELIMINARIES

A. Notation Convention

The following notation is used throughout the paper. Lower-
case lettersx denote real scalars and boldface lettersx denote
a row vector of scalars. Blackboard bold lettersX denote
matrices with elementsxi,j in the ith row and thejth column
and (·)T denotes transposition. Calligraphic capital lettersX
denote sets, where the set of real numbers is denoted byR.
The binary complement ofx ∈ {0, 1} is denoted bȳx = 1−x.
Binary addition (exclusive-OR) of two bitsa andb is denoted
by a ⊕ b. Random variables are denoted by capital lettersX
and probabilities byPr{·}. The Gaussian Q-function is defined

asQ(x) , 1√
2π

∫∞
x

e−
t2

2 dt.

B. System Model

In this paper we analyze a system where a vector of
binary datab = [b1, . . . , bm] is fed to a modulator. The
modulator carries out a one-to-one mapping fromb to one
of theM constellation pointsx ∈ X = {s1, . . . , sM}, where
s1 < s2 < . . . < sM , for transmission over the physical
channel, whereM = 2m. The modulator is defined as the
function Φ : {0, 1}m → X with a corresponding inverse
functionΦ−1 : X → {0, 1}m.

For PAM constellations,si = −d(M − 2i + 1), i =
1, . . . ,M , whered =

√

3/(M2 − 1) to normalize the constel-
lation to unit average energy, i.e.,Es =

1
M

∑M
i=1 s

2
i = 1. We

assume the bits to be independent and identically distributed
(i.i.d.) with Pr{Bj = u} = 0.5,∀j andu ∈ {0, 1}, and thus,
the symbols are equiprobable, i.e.,Pr{X = si} = 1/M , ∀i.

The modulator is defined by the constellation and its binary
labeling. A binary labeling is specified by the matrixC =
[cT1 , . . . , c

T

M ]T of dimensionsM by m, where theith row
ci = [ci,1, . . . , ci,m] is the binary label of the constellation
point si, i.e.,Φ(ci) = si.



In this paper we consider a discrete time memoryless
AWGN channel with outputy = x+ η, wherex ∈ X and the
noise sampleη is a zero-mean Gaussian random variable with
varianceN0/2. The conditional PDF of the channel output is
given by

pY |X(y|x) =

√

ρ

π
e−ρ(y−x)2 , (1)

where the average signal to noise ratio (SNR) is defined as
ρ , Es/N0 = 1/N0.

The observationy is used by the demodulator to decide
on the transmitted binary sequence, i.e., to produceb̂ =
[b̂1, . . . , b̂m].

C. Demodulators

The SD makes a hard decision on the transmitted symbol
and returns the length-m binary label of that symbol, i.e.,

b̂
SD

, Φ−1

(

argmin
x∈X

(y − x)2
)

. (2)

The SD in (2) is optimal in terms of minimizing the SER, but
it does not necessarily minimize the BER.

To minimize the BER the optimal BD should be used. The
BD calculates (a posteriori) L-values for them bits based on
the observationy, i.e.,

lj(y) , log
Pr{Bj = 1|Y = y}

Pr{Bj = 0|Y = y}
(3)

= log

∑

x∈Xj,1
e−ρ(y−x)2

∑

x∈Xj,0
e−ρ(y−x)2

, (4)

wherej = 1, . . . ,m andXj,u , {si ∈ X : ci,j = u, ∀i}. To
pass from (3) to (4) Bayes’ rule was used together with the
i.i.d. assumption of the bits and the conditional PDF in (1).

The implementation of the BD in its exact form (4) is
complicated, especially for large constellations, as it requires
calculation of the logarithm of a sum of exponentials. To
overcome this problem, approximations are usually used in
practice. The most common approximation is the so-called
max-log approximation (log

∑

i e
λi ≈ maxi λi) [1, eq. (3.2)],

[2, eq. (9)], [15, eq. (5)], [18, eq. (8)], which used in (4) gives

l̃j(y) = ρ

[

min
x∈Xj,0

(y − x)2 − min
x∈Xj,1

(y − x)2
]

. (5)

The ABD is defined as the demodulator that applies the
following decision rule

b̂ABD
j =

{

1 if l̃j(y) ≥ 0,

0 otherwise.
(6)

The next theorem gives proof for the equivalence of the
SD and the ABD. This was mentioned in [17, Sec. IV-A],
however, no proof was given there.

Theorem 1:For anyρ, X , andC, b̂SDj = b̂ABD
j for all j =

1, . . . ,m.
Proof: Combining (6) and (5), the decision rule for the

ABD can be written as

b̂ABD
j =

{

1, minx∈Xj,0
(y − x)2 ≥ minx∈Xj,1

(y − x)2,

0, minx∈Xj,0
(y − x)2 < minx∈Xj,1

(y − x)2,

which can be simplified to

b̂ABD
j = argmin

u∈{0,1}

{

min
x∈Xj,u

(y − x)2
}

. (7)

Sinceminu∈{0,1}
{

minx∈Xj,u
(y − x)2

}

= minx∈X (y − x)2

for any X , ρ, andC, the symbol found by the ABD in (7)
will always be the closestx ∈ X to y in terms of Euclidean
distance (ED), regardless of the bit positionj. This is the same
rule used in (2), which completes the proof.

Theorem 1 states that the SD and the ABD are equivalent
and optimal in terms of minimizing the SER for any constella-
tion1 and any labeling. Because of this, from now on we only
consider the ABD.

III. BER FOR ONE-DIMENSIONAL CONSTELLATIONS

The BER for a given labelingC can be expressed as

PC =
1

m

m
∑

j=1

Pj , (8)

where the BER for thejth bit position Pj , Pr{B̂j 6=
bj|Bj = bj} can be written as

Pj =
1

M

M
∑

i=1

Pr{B̂j 6= ci,j |X = si} (9)

using the law of total probability. The BER for thejth bit
position Pj depends only on the subconstellationsXj,0 and
Xj,1 (cf. (4)–(5)), i.e., on thejth column ofC, such thatPj =
P ([c1,j , . . . , cM,j ]).

We define a bit pattern (or simply pattern) as a length-M
binary vectorp = [p1, . . . , pM ] ∈ {0, 1}M with Hamming
weight M/2. The labelingC can now be defined bym
patterns, each corresponding to one column ofC. We index
the patterns aspw with w being the decimal representation
of the vectorp, i.e., w =

∑M
i=1 2

M−ipi. For example, for
M = 4, the pattern[0, 1, 0, 1] is indexed asp5 (cf. Table I).
The BER for the labelingC does not depend on the order
of its columns, and thus, the BER for the labelingC is fully
determined by a set ofm patternsW = {w1, . . . , wm}.

Based on the previous discussion, from now on we concen-
trate our analysis only on patterns (and not on labelings), i.e.,
on the functionP (p), however, to simplify the notation, the
dependency on the pattern will be omitted.

To analyze the BER of a pattern (PBER), the observation
spaceR is split into two disjoint decision regions, i.e.,Γ0 =
{y ∈ R : b̂ = 0} and Γ1 = {y ∈ R : b̂ = 1} such that
Γ0 ∪ Γ1 = R.

1The proof of Theorem 1 was given for one-dimensional constellations only,
however, its extension to any multi-dimensional constellation is straightfor-
ward.



Using the definition ofΓ0 andΓ1, the PBER for the pattern
p can be rewritten as

P =
1

M

M
∑

i=1

Pr{Y ∈ Γp̄i
|X = si}. (10)

By expressingP as in (10), it is clear that the PBER in (9)
can be calculated using the decision regionsΓ0 andΓ1 only,
as opposed to alternative approaches where (10) is expressed
in terms of the PDF of the L-values (cf. [19, eq. (19)], [20,
Sec. IV]).

Decision thresholds (or simply thresholds), denoted byβk,
where k = 1, 2, . . . stands for the index of the threshold,
are defined as the points that separate the decision regions
for zeros and ones, and thus, they fully determine the PBER
in (10). The thresholds for the ABD are the midpoints between
the constellation points labeled with different bits, which
follows directly from (7).

The BER expression for the ABD and an M-PAM con-
stellation with any labeling is well known and can be found
in [14, eq. (21)]. The PBER expression can easily be obtained
in a similar way. In the following theorem, we generalize the
result in [14, eq. (21)] to non-equally spaced constellations and
derive a general PBER expression for any one-dimensional
constellation.

Theorem 2:The PBER for the ABD using an arbitrary one-
dimensional constellation with a patternp can be expressed as

P =
1

2
+

1

M

M
∑

i=1

M−1
∑

k=1

gi,kQ
(

(βk − si)
√

2ρ
)

, (11)

whereβk = sk+sk+1

2 , k = 1, . . . ,M−1 andgi,k ∈ {0,±1} is

gi,k , (pk+1 − pk)(1− 2pi). (12)

Proof: Let vi,k be the following conditional probabilities

vi,1 , Pr{Y ≤ β1|X = si}

= 1−Q
(

(β1 − si)
√

2ρ
)

, (13)

vi,k , Pr{βk−1 < Y ≤ βk|X = si}

= Q
(

(βk−1 − si)
√

2ρ
)

−Q
(

(βk − si)
√

2ρ
)

, (14)

vi,M , Pr{βM−1 < Y |X = si}

= Q
(

(βM−1 − si)
√

2ρ
)

, (15)

where i = 1, . . . ,M , k = 2, . . . ,M − 1, andβk = sk+sk+1

2
for k = 1, . . . ,M − 1. The PBER in (10) can be rewritten as

P =
1

M

M
∑

i=1

Pr{Y ∈ Γp̄i
|X = si}

=
1

M

M
∑

i=1

M
∑

k=1

ei,kvi,k, (16)

whereei,k , pi ⊕ pk ∈ {0, 1}.

Using (13)–(15) the PBER in (16) can be expressed as

P =
1

M

[ M
∑

i=1

ei,1 +
M
∑

i=1

M
∑

k=2

ei,kQ
(

(βk−1 − si)
√

2ρ
)

−
M
∑

i=1

M−1
∑

k=1

ei,kQ
(

(βk − si)
√

2ρ
)

]

=
1

2
+

1

M

M
∑

i=1

M−1
∑

k=1

(ei,k+1 − ei,k)Q
(

(βk − si)
√

2ρ
)

,

(17)

where
∑M

i=1 ei,1 =
∑M

i=1 pi⊕p1 = M/2 was used. To obtain
the expression in (11), we expressei,k+1 − ei,k in (17) as

ei,k+1 − ei,k = pk+1 ⊕ pi − pk ⊕ pi (18)

= (pk+1 − pk)(1 − 2pi), (19)

where the identitypi ⊕ pj = pip̄j + p̄ipj was used together
with p̄i = 1− pi.

The thresholdβk between the constellation points labeled
with the same bit does not affect the PBER in (11) asgi,k =
0, ∀i in (12).

Remark 1:Theorem 2 gives an expression for the PBER
for the ABD. However, (11) can be used for calculating the
PBER when the thresholdsβk are not midpoints or, moreover,
when they are dependent on the SNR, for example, when the
BD is used. Analytical expressions for thresholds for the BD
are in general unknown.

To illustrate Remark 1, consider 8-PAM labeled by
the BRGC, which is formed by the patternsp15 =
[0, 0, 0, 0, 1, 1, 1, 1], p60 = [0, 0, 1, 1, 1, 1, 0, 0], and p102 =
[0, 1, 1, 0, 0, 1, 1, 0]. From (11)–(12), whenevergi,k = 0, the
value of βk does not influence the PBER and can be set to
any value. The thresholds forgi,k 6= 0 can be numerically cal-
culated setting the L-value in (4) to zero. The obtained results
are shown in Fig. 1. Using these thresholds in (11) and (8),
the BER for the patterns and for the BRGC are calculated.
The results for the BD and the ABD are presented in Fig. 2
and show no notable difference between the demodulators for
ρ > 0 dB.

IV. BER FORM -PAM

In this section, we study the BER for equally spacedM -
PAM constellations. We concentrate on classifying patterns
and comparing their performance. ForM -PAM, (11) can be
expressed as a bit-wise version of [14, eq. (21)]:

P =
1

M

M−1
∑

n=1

anQ
(

(2n− 1)d
√

2ρ
)

, (20)

where

an ,

M−1
∑

k=n

(pk+1 − pk)(1 − 2pk+1−n)

− (pk+2−n − pk+1−n)(1− 2pk+1). (21)
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Fig. 1. Thresholds for 8-PAM with different patterns vs. SNR. Due to the
symmetry of the patterns the thresholds are symmetric with respect to zero.
Only positive thresholds are shown. Squares represent the constellation points.
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Fig. 2. The BER for 8-PAM with patternsp15, p60, p102, and the BRGC.
Solid lines correspond to the BD and dashed lines correspondto the ABD.

One direct consequence of (20) is that the vectora ,

[a1, . . . , aM−1] with an given by (21) completely defines
the performance of the ABD forM -PAM and allows us to
compare the performance of different patterns. From (20),
the PBER for high SNR can be predicted by the coefficient
multiplying the Q-function with the smallest argument, that is,
a1. If for two patterns the coefficients are identical, the next
coefficientsa2 are checked, and so on.

We observe that, for instance, for 4-PAM, the pattern

p5 = [0, 1, 0, 1] and the patternp10 = [1, 0, 1, 0] have
identical PBER performance because of the symmetry of the
constellation. It is therefore interesting to find all the patterns
with different performance. This will allow us to predict the
performance of any possible labeling. We therefore group all
the patterns with identical performance into one class. The
next theorem gives a closed form expression for the number
of classes for length-M patterns.

Theorem 3:ForM -PAM, all the length-M patterns can be
grouped intoQ classes, where the patterns within each class
have identical PBER, and

Q =
1

4

(

(

M
M/2

)

+
(M/2
M/4

)

+ 2M/2
)

. (22)

Proof: We define two operations that can be applied to
a pattern that will be used in the proof. Areflectionof p is
defined asp′ = refl(p) with p′i = pM+1−i for i = 1, . . . ,M .
An inversion of p is defined asp′ = inv(p) with p′i = p̄i
for i = 1, . . . ,M . Both these functions are self-inverse, i.e.,
p = refl(refl(p)) and p = inv(inv(p)), and they commute,
i.e., refl(inv(p)) = inv(refl(p)). Note also that for any pattern
p, we have thatp 6= inv(p).

We introduce three special types of patterns. The pattern
p is said to bereflected(RE) if refl(p) = p, the patternp
is said to beanti-reflected(ARE) if inv(refl(p)) = p, and
the patternp is calledasymmetric(ASY) if it is neither RE
nor ARE. For example,p60 = [0, 0, 1, 1, 1, 1, 0, 0] is an RE
pattern,p43 = [0, 0, 1, 0, 1, 0, 1, 1] is an ARE pattern, and
p216 = [1, 1, 0, 1, 1, 0, 0, 0] is an ASY pattern.

From (9)–(10), we note that the PBER is not affected by
reflections and/or inversion of the patterns, since the PBER
is averaged over both transmitted zeros and ones. Because of
this, we group all patterns that are connected via reflection
or inversion into one class of patterns that all have identical
PBER. Each class contains either two patterns (p and inv(p)
becausep 6= inv(p), ∀p) or four patterns (p, inv(p), refl(p),
and inv(refl(p))).

Any patternp must containM/2 zeros andM/2 ones,
hence, the total number of patterns is equal to

(

M
M/2

)

. For
a pattern to be RE,pi = pM−i+1, i.e., the positions of the
M/4 ones in [p1, . . . , pM/2] fully describe the pattern, and
thus, the number of RE patterns is

(M/2
M/4

)

. There are two
members in every class of RE patterns,p = refl(p) and
inv(refl(p)) = inv(p), which gives1

2

(M/2
M/4

)

classes.
For a pattern to be ARE,pi = p̄M−i+1, i.e., the positions of

the ones in[p1, . . . , pM/2] fully describe the pattern, where the
number of ones in[p1, . . . , pM/2] is between 0 andM/2. From
that, it follows that there are2M/2 ARE patterns. There are
two members in every class of ARE patterns (p = inv(refl(p))
and refl(p) = inv(p)), which gives2M/2−1 classes.

All the remaining classes include only ASY patterns. The
number of ASY patterns can be obtained by subtracting the
number of RE and ARE patterns from the total number of
patterns. There are four patterns in each class, asp 6= refl(p)
and p 6= refl(inv(p)) (or equivalently,refl(p) 6= inv(p)).
Using this, the total number of classes in (22) is obtained
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Fig. 3. The PBER for the patterns for 8-PAM and 16-PAM. All thecurves
merge intoM − 1 groups at high SNR as predicted by Remark 2.

as sum of classes of RE, ARE, and ASY patterns.
For example, Theorem 3 states that there are 3 classes of

patterns for 4-PAM, 23 classes for 8-PAM, and 3299 classes
for 16-PAM. The PBER for 8-PAM and 16-PAM for all the
patterns is shown in Fig. 3. All the classes of patterns for
4-PAM and 8-PAM are shown in the first and the second
parts of Table I, respectively. For each class, Table I shows
the representative of the classp, the decimal indices of class
membersw (the index of the representative is shown with
boldface), and the vectora that defines the PBER. The patterns
are ordered from best to worst PBER at high SNR.

Remark 2:The elementa1 in (21) is equal to twice the

TABLE I
CLASSES OF PATTERNS FOR4-PAM AND 8-PAM WITH THEIR

CORRESPONDING REPRESENTATIVESp , DECIMAL REPRESENTATIONS OF

THE PATTERNSw, AND VECTORSa DEFINING THEIR PBER

p w a

[0, 0, 1, 1] 3 12 [2, 2, 0]
[0, 1, 1, 0] 6 9 [4, 2,−2]
[0, 1, 0, 1] 5 10 [6,−4, 2]

[0, 0, 0, 0, 1, 1, 1, 1] 15 240 [ 2, 2, 2, 2, 0, 0, 0]
[0, 0, 0, 1, 1, 1, 1, 0] 30 120 135 225 [ 4, 3, 3, 2,−2,−1,−1]
[0, 0, 1, 1, 1, 1, 0, 0] 60 195 [ 4, 4, 2, 2,−2,−2, 0]
[0, 0, 0, 1, 0, 1, 1, 1] 23 232 [ 6,−2, 2, 0, 2, 0, 0]
[0, 0, 0, 1, 1, 1, 0, 1] 29 71 184 226 [ 6, 1, 2,−3, 1, 0, 1]
[0, 0, 0, 1, 1, 0, 1, 1] 27 39 216 228 [ 6, 2,−3, 1, 1, 1, 0]
[0, 1, 1, 1, 0, 0, 0, 1] 113 142 [ 6, 4, 4,−4,−2,−2, 2]
[0, 0, 1, 1, 1, 0, 0, 1] 57 99 156 198 [ 6, 5, 0,−3,−3, 2, 1]
[0, 0, 1, 1, 0, 0, 1, 1] 51 204 [ 6, 6,−4,−4, 2, 2, 0]
[0, 0, 1, 0, 1, 1, 1, 0] 46 116 139 209 [ 8,−1, 2,−1, 3,−2,−1]
[0, 0, 1, 1, 1, 0, 1, 0] 58 92 163 197 [ 8,−1, 3,−2, 2,−1,−1]
[0, 1, 0, 0, 1, 1, 1, 0] 78 114 141 177 [ 8, 2,−1,−1,−1, 3,−2]
[0, 0, 1, 1, 0, 1, 1, 0] 54 108 147 201 [ 8, 3,−6, 3, 3,−2,−1]
[0, 1, 1, 0, 0, 1, 1, 0] 102 153 [ 8, 6,−6,−4, 4, 2,−2]
[0, 0, 1, 0, 1, 0, 1, 1] 43 212 [10,−6, 4,−2, 0, 2, 0]
[0, 0, 1, 0, 1, 1, 0, 1] 45 75 180 210 [10,−3,−3, 6,−4, 1, 1]
[0, 0, 1, 1, 0, 1, 0, 1] 53 83 172 202 [10,−3, 1, 0,−2, 1, 1]
[0, 1, 0, 0, 1, 1, 0, 1] 77 178 [10, 0,−6, 2, 4,−4, 2]
[0, 1, 1, 0, 1, 0, 0, 1] 105 150 [10, 0,−4, 6,−4,−2, 2]
[0, 1, 0, 1, 1, 0, 0, 1] 89 101 154 166 [10, 0,−3, 1, 1,−3, 2]
[0, 1, 0, 1, 1, 0, 1, 0] 90 165 [12,−6, 0, 6,−6, 4,−2]
[0, 1, 0, 1, 0, 1, 1, 0] 86 106 149 169 [12,−6, 3,−1,−1, 3,−2]
[0, 1, 0, 1, 0, 1, 0, 1] 85 170 [14,−12, 10,−8, 6,−4, 2]

number of pairs of constellation points at minimum ED whose
bits are different (for a given pattern). Using this, it can be
shown that forM -PAM there areM − 1 different values of
a1. This means that the PBER of all the patterns merge into
M − 1 groups at high SNR. For example, for 8-PAM and 16-
PAM the number of groups of patterns at high SNR is 7 and
15, respectively, as illustrated by Fig. 3.

Using (8) and (20), the average BER forM -PAM with
labelingC can be expressed as [14, eq. (21)]:

PC =
1

mM

M−1
∑

n=1

αnQ
(

(2n− 1)d
√

2ρ
)

, (23)

whereα , [α1, . . . , αM−1] is the sum of vectorsa for the
m patterns used inC. The value ofαn is a scaled version
of the so-called differential average distance spectrumδ̄(n, λ)
in [14, eq. 21], i.e.,αn = 2Mδ̄(n, λ).

Remark 3:The value ofα1 corresponds to twice the sum of
Hamming distances between binary labelings of constellation
points at minimum ED. It can be shown thatAφ = 2m(M −
1)−α1, whereAφ was recently shown to determine the BICM
mutual information in the high SNR regime [21].

By listing the vectorsα for all the possible labelings for
8-PAM, we found 12 differentα1, which is in agreement with
the 12 classes of labelings (with differentAφ) shown in [21,
Fig. 2(b)]. The BER for all the labelings for 8-PAM is shown
in Fig. 4, where the 12 classes are visible for high SNR.

To conclude, we present the vectorsα for 4-PAM and
8-PAM with some common labelings, including the BRGC,
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Fig. 4. The BER for all the 460 labelings with different BER for 8-PAM.

TABLE II
SOME COMMON LABELINGS FOR4-PAM AND 8-PAM WITH THEIR

CORRESPONDING PATTERN INDICESW AND VECTORSα DEFINING THEIR
BER

M Labeling W α

4 BRGC {3, 6} [6, 4,−2]

4 NBC {3, 5} [8,−2, 2]

4 AG {5, 6} [10,−2, 0]

8 BRGC {15, 60, 102} [14, 12,−2, 0, 2, 0,−2]

8 FBC {15, 60, 90} [18, 0, 4, 10,−8, 2,−2]

8 NBC {15, 51, 85} [22,−4, 8,−10, 8,−2, 2]

8 BSGC {105, 60, 102} [22, 10,−8, 4,−2,−2, 0]

8 AG {90, 105, 85} [36,−18, 6, 4,−4,−2, 2]

the natural binary labeling (NBC) [22, Sec. II-B], the folded
binary code (FBC) [10] [22, Sec. II-B], the binary semi-Gray
code (BSGC) [22, Sec. II-B], and the so-called anti-Gray (AG)
labeling [23]. These labelings are shown in Table II together
their pattern indicesW and vectorsα, in the first part for
4-PAM, and in the second part for 8-PAM. The labelings are
also ordered from best to worst BER at high SNR. By listing
the vectorsα for all the possible labelings, we found three
labelings with different BER for 4-PAM listed in Table II. For
8-PAM we found 460 labelings as shown in Fig. 4.

V. CONCLUSIONS

A novel general expression for the uncoded BER of one-
dimensional constellations has been introduced. For equally
spacedM -PAM constellations, a classification of the patterns
has been performed and a closed form expression on the
number of patterns that give different BER has been derived.
The rule for combining patterns into a labeling remains for
future investigation. Establishing this rule will allow usto
define a number of labelings with different BER for an

arbitrary constellation sizeM and also a number of groups
of labelings at high SNR.
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