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Binding energy constraint on matter radius and soft dipole excitations of 22C
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An unusually large value of the 22C matter radius has recently been extracted from measured reaction cross
sections. The giant size can be explained by a very loose binding that is, however, not known experimentally yet.
Within the three-body cluster model we have explored the sensitivity of the s-motion-dominated 22C geometry to
the two-neutron separation energy. A low energy of a few tens of keV is required to reach the alleged experimental
lower value of the matter radius, while the experimental mean radius requires an extremely tiny binding. The
dependence of the 22C charge radius on the two-neutron separation energy is also presented. The soft dipole mode
in 22C is shown to be strongly affected by the loose binding and should be studied in the process of Coulomb
fragmentation.
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I. INTRODUCTION

The recent claim [1] that the hitherto heaviest known
Borromean two-neutron halo nucleus 22C may have a giant
matter radius of 5.4 ± 0.9 fm would be a breakthrough
observation of drip-line physics if confirmed. To this end
Tanaka with co-authors use a simplified three-body model of
22C, giving a connection between the two-neutron separation
energy S2n and the experimental reaction cross section. They
come to the conclusion that a very small S2n ∼ 10 keV is
needed even if the two halo neutrons are situated in pure s2

configuration.
The value of the two-neutron separation energy is not

experimentally known and the last evaluation [2] assigns for
22C a rather uncertain value, S2n = 0.42 ± 0.94 MeV. Such
an ambiguity has fueled discussions [3,4] about 22C possibly
having an extremely large size.

Halo nuclei are examples of extreme clusterization into
a veil of valence neutrons and a core (C). The most simple
and transparent description of halo nuclear structure can be
obtained within the framework of cluster models. In cluster
models one assumes that the nuclear wave function of a nucleus
with A nucleons is factorized into a product of two parts,
�(r1, . . . ,rA) = φ(r1, . . . ,rAC

) ψ . The first, φ(r1, . . . ,rAC
),

is the core wave function describing the motion of the AC

nucleons within the core. The second, ψ , describes the relative
motion of the core center of mass (c.m.) and the halo nucleons,
the cluster constituents.

For two-body cluster models the wave function ψ depends
on the binary relative coordinate r, while for three-body cluster
models this dependence includes two translational invariant
Jacobi coordinates (x, y), where x is the relative distance
between two constituents and y is a relative distance between
the c.m. of a pair of two constituents and the third fragment.
The matter root-mean-square (r.m.s.) radius of the nucleus
is defined as an average of the sum of squares of intrinsic

(defined relative to the c.m coordinate Rc.m. of nucleus A)
nucleon coordinates over the nuclear wave function:

〈
r2
m

〉
A

= 〈�(r1, . . . ,rA)| 1

A

A∑
i=1

(ri − Rc.m.)
2|�(r1, . . . ,rA)〉.

(1)

Calculation of this observable within cluster models leads to
an expression that connects the r.m.s. matter radius of the core
and an average of squares of relative distances over the wave
function ψ . For a two-body cluster model this expression is, for
example, given in Ref. [4] (the first formula in the article) and
includes the average 〈ψ(r)|r2|ψ(r)〉, while for the three-body
case the following expression is obtained [5]:

〈
r2
m

〉
A

= 1

A
〈ψ(x, y)|ρ2|ψ(x, y)〉 + AC

A

〈
r2
m

〉
C
, (2)

where 〈r2
m〉C is the squared r.m.s. matter radius of the core,

while ρ2 = Axx2 + Ayy2 is the squared hyperradius and Ax,y

are the reduced masses (in units of the nucleon mass) in the
corresponding Jacobian subsystem x and y (additional details
of which are given in the next section). The appearance of the
hyperradius ρ in expression (2) is rather natural for three-body
models where ρ has a meaning similar to that of r in the
two-body case.

It should be noted that estimations of the matter radius
of a three-body halo nucleus using a simple extension of the
two-body cluster model (see Ref. [4] and references therein)
to the three-body case could lead to a larger matter radius
compared to that of the three-body model.

The Hamiltonian that describes the relative motion of
three fragments can only be reduced to the two-body case
if the neutron-neutron interaction and recoil effects in the
system are neglected. Using such approximations is rather
questionable if applied to Borromean systems where binary
bound states for the neutron-core subsystems do not exist.
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Thus, the neutron-neutron interaction is crucial for binding
the total system. In addition, the three-body kinetic energy
operator always includes centrifugal barriers for hyperradial
motion even in the case when all particles are moving with zero
relative orbital angular momenta [5]. As a result, the two-body
(point dineutron) approximations with pure s-state motion lead
to wave functions with larger extensions than found in a true
three-body treatment.

Below we study the influence of the binding energy on the
matter and Coulomb radii and on the soft dipole excitations
of 22C in the framework of a (20C + n + n) three-body model
using the hyperspherical harmonic (HH) method [5,6].

II. THE BOUND-STATE MODEL

Let {i, j, k} enumerate the constituents of the three-body
model, let r1,2 describe the halo neutron coordinates in an
arbitrary system, and let rC denote the position of the core
c.m. Jacobi coordinates for the distance x between the two
constituents {j, k} and y between the c.m. of the pair and
the third fragment {i}, as well as the nuclear center-of-mass
coordinate Rc.m., are given by

x = rj − rk, y = ri − Aj rj + Akrk

Aj + Ak

,

Rc.m. = 1

A
(Airi + Aj rj + Akrk), (3)

A = Ai + Aj + Ak.

Here A1,2 = 1, AC and A = (AC + 2) are masses (in units
of the nucleon mass m) of halo neutrons, the core, and
the halo nucleus, respectively. Below the positions of the
constituents relative to the nuclear c.m. will be denoted by
capital letters, Ri = ri − Rc.m.. For two-neutron halo nuclei
only two different Jacobi coordinate systems exist since two
valence neutrons are identical particles. (To simplify notation
we use the same letters x, y for different Jacobi coordinates.)
One, labeled T (cluster representation), corresponds to the case
when the relative distance x is between two neutrons. In the
second case, called Y (shell-model representation), the relative
distance x is between core C and one of the neutrons.

The bound-state wave function ψ(x, y) that describes
relative motion of the cluster constituents is characterized
by the total angular momentum J and its projection M

on a quantized axis. Than ψJM (x, y) is the solution of the
Schrödinger three-body equation(

T̂ + VCn1 + VCn2 + Vn1n2 − E
)
ψJM (x, y) = 0, (4)

where T̂ is the kinetic energy operator for relative motion of the
constituents and VCni

and Vn1n2 are the binary core-neutron and
neutron-neutron interactions, respectively. Solutions of Eq. (4)
at a negative energy (E = −S2n < 0) define the bound states
of the halo nucleus.

For a description of the wave function ψJM (x, y) we
apply the method of hyperspherical harmonics [5]. In this
method the relative Jacobi coordinates (x, y) are mapped into
(ρ,�ρ

5 ), the hyperradius ρ, and the set of the five-dimensional
angular variables �

ρ

5 = {αρ, x̂, ŷ}. The hyperradius ρ and

hyperangle αρ are introduced by the following relations:

ρ2 = Axx
2 + Ayy

2, Ax = AjAk

Aj + Ak

, Ay = Ai(Aj + Ak)

A
,

αρ = arctan(
√

Ax x/
√

Ay y), 0 � αρ � π/2, (5)

i.e.,
√

Ax x = ρ sin αρ and
√

Ay y = ρ cos αρ . Alternative and
more physical definitions are

ρ2 = 1

A

∑
i>j=1,2,C

AiAj (ri − rj )2 =
∑

i=1,2,C

Ai R2
i . (6)

The hyperradius ρ reflects the size of the three-body system
or more exactly the moment of inertia and is the same in any
system of Jacobi coordinates. The angular variables �

ρ

5 depend
on the selection of the Jacobi coordinate system.

The wave function ψJM is decomposed [5] into hyperspher-
ical harmonics as

ψJM (x, y) = 1

ρ5/2

∑
Kγ

χJ
Kγ (ρ)

[
Y lx ly

KL(�ρ

5 ) ⊗ χS

]
JM

, (7)

which provide a complete orthogonal set on the five-
dimensional sphere of unit hyperradius. Here, K is the
hypermoment, γ = {S,L, lx, ly} is an abbreviation for a set
of quantum numbers, which characterizes the relative motion
of the three fragments (where lx and ly are the relative orbital
angular momenta for x and y motions and L is the total orbital
moment), and χSMS

is the spin function of the halo neutron
pair with spin S and projection MS . The five-dimensional
hyperharmonic Y lx ly

KLML
(�ρ

5 ) has the explicit form

Y lx ly
KLM (�ρ

5 ) = ψ
lxly
K (αρ)

[
Ylx (x̂) ⊗ Yly (ŷ)

]
LM

, (8)

with the hyperangular function ψ
lxly
K (αρ) defined in Ref. [5].

Inserting decomposition (7) into the Schrödinger equation (4)
and projecting out the hyperharmonics Y lx ly

KLM (�ρ

5 ), we can get
the set of coupled K-harmonic equations for the hyperradial
part χJ

Kγ (ρ):
(

− h̄2

2m

[
d2

dρ2
− L(L + 1)

ρ2

]
− E

)
χJ

Kγ (ρ)

= −
∑
K ′γ ′

V J
Kγ,K ′γ ′(ρ) χJ

K ′γ ′ (ρ), (9)

where L = K + 3/2 and the matrix elements are generated
from binary interactions in the following way:

V J
Kγ,K ′γ ′ (ρ) = 〈[

Y lx ly
KL(�ρ

5 ) ⊗ χS

]
JM

∣∣VCn1 + VCn2

+Vn1n2

∣∣[Y l′x l
′
y

K ′L′(�
ρ

5 ) ⊗ χS ′
]
JM

〉
. (10)

The asymptotic behavior for a Borromean three-body halo
system in the hyperradius is similar to that of a two-body
system in the binary separation, and for the bound state they
are determined by the binding energy:

χJ
Kγ (ρ → 0) ∼ ρL+1, χJ

Kγ (ρ → ∞) ∼ exp [−κρ], (11)

where κ =
√

2m | E | /h̄2. The automatic incorporation of the
correct three-body asymptotic of bound-state wave functions
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for Borromean systems is one of the advantages of the
hyperspherical harmonic method.

Usually the system of hyperradial equations (9) is solved
in the T system of Jacobi coordinates since the symmetry
under permutation of two valence neutrons reduces the number
of allowed configurations and leads to smaller dimension of
coupled equations compared with the case of the Y system
where permutation symmetry does not appear explicitly. A
unitary transformation between representations in different
Jacobi systems can be done by using the Raynal-Revai
coefficients [7].

III. DISCUSSION

A. Bound-state properties

Within a cluster three-body (20C + n + n) model the
bound-state properties of 22C are defined by the intercluster
potentials. The main problem in selecting binary potentials
between the constituents is the absence of experimental
information about the neutron-core system, beyond the fact
that a bound state of 21C does not exist. Within the shell-model
picture this implies that the 1s1/2 orbit is unbound. In the single
available realistic three-body calculation of the 22C nuclear
structure [8], deep potentials that also support extra orbits
including 0s1/2 were used, and these forbidden states were
projected out in the process of wave function calculations.
These calculations, by Horiuchi and Suzuki, have been done
within the stochastic variational method [9,10], which is
well suited for solving three-body problems. The authors got
(using different n-20C interactions) S2n = 0.388–0.573 MeV
and, correspondingly, a 22C r.m.s. matter radius of rm =
3.74–3.58 fm (using a 2.98 fm [8] r.m.s. radius of the 20C core).
There are several important findings in this paper: Noncentral
forces give negligible contributions to the results, the (s1/2)2

configuration is predominant, many other components add
only small admixtures, and the ground state of 22C consists
almost entirely of configurations with total spin of halo
neutrons S = 0 (with weight more then 98%), emphasizing
the halo structure of this nucleus. This underpins our model
assumptions.

Since our aim is to explore principal relationships between
binding energies and matter radii of 22C, we use a simpler
approach and apply shallow potentials that do not support
bound states. Using the findings of [8], we neglect noncentral
forces and wave function components with total spin S = 1.
We use a central neutron-core potential of the Woods-Saxon
shape, with diffuseness a = 0.6 fm and radius R = 3.5 fm, the
same geometry as in Ref. [8]. The potential depth is varied
from the deepest possible (that does not support neutron-core
binding) to more shallow ones. The neutron-neutron potential
has a Gaussian shape (depth V = −31 MeV and radius
R = 1.8 fm) and reproduces the basic properties of the n-n
interaction [11]. The number of coupled equations in Eq. (9)
depends on the number of hypermoments K included in the
decomposition; all combinations of orbital angular momenta
(lx, ly) possible for given K are included and only even values
of K are allowed for positive-parity states.

The cutoff Kmax in hyperspherical harmonics included in
the wave function decomposition (7) provides a convenient

FIG. 1. (Color online) Convergence of two-neutron separation
energy calculations relative to the cutoff in hypermoments, Kmax.
The curves correspond to calculations with neutron-core potential
with depth ranging from −4.1 MeV (the upper one) to −3.3 MeV
(the lowest one) with steps of 0.1 MeV, with none giving rise to bound
neutron-core states.

way to control the convergence of calculations. Figure 1
shows the convergence of the 22C ground-state binding with
the number of hypermoments included in the decomposition,
expressed in terms of Kmax. Different curves correspond to
calculations with different depths of neutron-core potentials
given in the caption. Calculations with hypermoment up to
Kmax = 14 are close to convergence, independent of the
potential depth. Thus all exploratory calculations of the bound
state given below will correspond to bases with Kmax = 14
leading to 20 coupled hyperradial Schrödinger equations in
the Jacobi T system.

Figure 2 shows the calculated dependence of the 22C matter
radius (2) on the value of the two-neutron separation energy.
The experimental value of 2.98 fm extracted from reaction

FIG. 2. (Color online) The dependence of the 22C r.m.s. matter
radius on the two-neutron separation energy (on a logarithmic scale).
The lower and upper curves correspond to calculations with the radius
of the neutron-core potential equal to 3.5 and 4.5 fm, respectively.
The horizontal solid and dashed lines are the mean value and
lower boundary of the experimental matter radius [1], respectively.
Bars show theoretical estimations of the S2n energy at which the
experimental mean value and lower boundary of the matter radius
can be obtained. The insert shows the same curves, but on a linear
energy scale.
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cross sections [12] was used as the 20C core matter radius. The
lower curve corresponds to calculations with the geometry
mentioned above. The values of matter radii calculated here
are slightly smaller than the ones reported in Ref. [8] at
corresponding energies. One of the reasons for this may be
that at the ground-state energy the width of deep potentials
assumed in Ref. [8] is essentially larger than for our shallow
potentials.

To check the sensitivity of the 22C r.m.s radius to the
potential geometry we also performed calculations (the upper
curve in Fig. 2) with a neutron-core potential having a 1 fm
increased radius of 4.5 fm. As expected, a broader potential
leads to larger radii at the same binding energy. The upper
curve starts from ground-state energies of about 400 keV.
Continuation of this curve to larger binding energies requires
larger depths of the core-neutron potential and leads to the
appearance of two-body bound states. As mentioned above,
such potentials were excluded from consideration.

Concerning the general behavior of the 22C matter radius
with binding energy, we notice that this dependence (see the
insert in Fig. 2) is close to linear at larger separation energies,
becoming strongly nonlinear at smaller energies and diverging
in the vicinity of the breakup threshold. The main frame of
Fig. 2 shows the same curves versus a logarithmic scale of
energy. The figure compares calculations with the values of the
22C matter radius tentatively extracted [1] from experimental
cross sections. Bars show that even the lower experimental
value of this radius would require quite small binding energy
of a few tens of keV, diminishing to a very tiny binding for the
suggested 22C experimental value.

Table I lists different computed radii that characterize
the geometrical properties of the 22C nucleus for a set of
two-neutron separation energies. Here, rm and ρ̄ are the 22C
r.m.s. matter radius and average value of the hyperradius,
respectively. RC and Rn are the average core and neutron
distances, respectively, from the nuclear c.m., while rnn and
rCn are the relative distances between the halo constituents.
The last two columns contain distances between the c.m. of
a constituent pair and the third fragment. All these distances
increase with decreasing binding energy, thus showing the
general swelling of the halo nucleus.

Table II gives main partial weights of HH components of
the 22C ground state as a function of the two-neutron separation
energy S2n in the T and Y Jacobi coordinate systems. At all
energies we observe the strong dominance of the K = 0 compo-
nent with weight larger than 90% and that this weight increases
only slowly when separation energy becomes smaller.

TABLE II. Partial weights (in percent) of the main components
of the 22C ground-state HH wave function for different two-neutron
separation energies S2n. The results correspond to calculations with
the radius of the core-neutron potential equal to 3.5 fm.

S2n (MeV) 0.40 0.20 0.10 0.05 0.01
(K, lx = ly)

T coordinate system
(0, 0) 93.7 93.8 94.0 94.3 94.8
(2, 0) 4.10 3.89 3.64 3.38 2.94
(4, 2) 0.69 0.76 0.81 0.84 0.88
(4, 0) 0.75 0.72 0.67 0.62 0.53
(6, 2) 0.0010 0.0013 0.0015 0.0017 0.0020
(6, 0) 0.39 0.41 0.41 0.40 0.37

Y coordinate system
(0, 0) 93.7 93.8 94.0 94.3 94.8
(2, 1) 4.09 3.88 3.63 3.38 2.93
(2, 0) 0.0093 0.0088 0.0082 0.0077 0.0067
(4, 2) 1.01 1.00 0.96 0.91 0.82
(4, 1) 0.0030 0.0028 0.0027 0.0026 0.0025
(4, 0) 0.43 0.48 0.51 0.54 0.59

Additional insight into the calculations can be obtained by
studying the dependence (shown in Fig. 3) of the matter radius
on the number of hypermoments in the wave function decom-
position. At larger separation energies the convergence of rm is
rather fast, but with decreasing binding it becomes increasingly
slow and may demand inclusion of more hyperharmonics at
very loose binding. For example, at energy S2n 
 10 keV, rm

increases by 2% when Kmax changes from 10 to 14. Since the
Borromean wave functions have asymptotic exponential decay
in the hyperradius, governed by

√
S2n [see Eq. (11)], we note

that, for weakly bound states, the wave functions decay very
slowly with hyperradius ρ and calculations of matter radii can
require knowledge of wave functions to very large distances
of order 500 fm or more.

Sometimes it is instructive to know the scattering length
of the neutron-core potential that is used in the three-body
calculations. The dashed line in Fig. 3 shows the absolute
value of the scattering length for potentials used in calculations
with Kmax = 14. The requirement of absence of bound states
restricts the depth of a potential at fixed geometry and accesses
only negative values of the scattering length. The deepest
allowed potentials have largest negative scattering length (of
the order of −1000 fm) and lead to the most bound states. Re-
ducing the potential depth decreases binding and the (absolute)

TABLE I. Dependence of the 22C geometrical properties on the separation energy S2n given in MeV. Radii are given
in units of femtometers. The results correspond to calculations with the radius of the core-neutron potential equal to 3.5
fm.

S2n rm ρ̄ RC Rn rnn rCn rC(nn) r(Cn)n

0.40 3.40 8.73 0.45 6.01 7.87 6.36 4.99 6.29
0.20 3.60 10.36 0.53 7.13 9.45 7.54 5.87 7.47
0.10 3.85 12.19 0.62 8.39 11.27 8.86 6.84 8.79
0.05 4.16 14.23 0.72 9.80 13.32 10.34 7.91 10.27
0.01 5.01 19.36 0.96 13.35 18.52 14.05 10.57 13.98
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FIG. 3. (Color online) Dependence of the 22C r.m.s. matter radius
(left axis) on the number of hypermoments. The solid lines from
lower to upper correspond to calculations with cutoff Kmax = 2, 6,
10, and 14, respectively. The dashed line shows the absolute value
of the scattering length (right axis, logarithmic) of the neutron-core
potential used for calculations with Kmax = 14. All results correspond
to calculations with the radius of the core-neutron potential equal to
3.5 fm.

scattering length is decreased. At weak binding energy rather
small variation of the potential depth is enough to change the
binding, leading to rather small variations in scattering length:
the corresponding curve in Fig. 3 becomes flat.

For the sd-shell nuclei like the heavy carbon isotopes the
competition between the s and d motions is quite important.
We used in our calculations the same core-neutron potential for
all partial waves. It may be that a more refined description will
require different potentials for different partial waves. To check
the sensitivity to this aspect of dynamics some exploratory
calculations (in the T system of Jacobi coordinate) with an
increased role of d-wave interaction were performed. Thus we
increased the depth of the neutron-core potential for d-wave
motion. Simultaneously the potential depth for other partial
waves was slightly decreased to compensate for the enhanced
d-wave attraction and thus avoid change in the 22C binding
energy. This procedure allowed us to decrease the role of s

motion and increase the weight of d-wave components of the
ground-state wave function. The matter radius of 22C now
becomes always smaller compared with that from previous
calculations. This again confirms the dominant role of the s

motion for obtaining extreme sizes of halo nuclei.
The other interesting observable, tightly connected with

the spatial extension of the ground-state wave function, is the
charge radius for pointlike protons:

〈
r2

ch

〉
A

= 〈�(r1, . . . ,rA)| 1

Z

Z∑
i=1

R2
i |�(r1, . . . ,rA)〉, (12)

where summation is over all protons of the nucleus. In
stable nuclei the charge and matter sizes are close to each
other, whereas in neutron halo nuclei they are strikingly
different, with all protons being situated in the core. Within
the three-body model such a concentration of charge leads to a
very simple relation [5,13,14] between the charge radii of the
nucleus and core:〈

r2
ch

〉
A

= 〈
r2

ch

〉
C

+ 〈ψJM (x, y)| R2
C |ψJM (x, y)〉, (13)

FIG. 4. (Color online) Dependence of the 22C charge radius
for pointlike protons on the two-neutron separation energy (on a
logarithmic scale) of the ground state. The lower, middle, and upper
curves correspond to calculations with the 20C core charge radius
equal to 2.25, 2.37, and 2.50 fm, respectively. All results are given
for the core-neutron potential with a radius of 4.5 fm.

where 〈r2
ch〉C is the square of the charge radius for pointlike

protons in the core, and the second term is the square of the
average distance of the core c.m. from the nuclear c.m. For
fixed ρ value, the distance of the core to the nucleus (A) c.m.
defines the distances of halo neutrons to the c.m. and the size of
the three-body system can be deduced. The core motion around
the c.m. of the nucleus leads to a situation where the core
occupies an enlarged space compared to its own size. For an
external viewer it may appear as a swelling of the core. Figure 4
shows the dependence of the 22C point-proton charge radius on
the binding energy, for different values of the 20C charge radius
that are compatible with the mean-field calculations performed
in Ref. [15]. The charge radii are significantly smaller (as
expected) than the matter radii, but they are also growing when
binding becomes weaker. Qualitatively this behavior is similar
to the behavior of matter radii, but quantitatively the rate for the
charge radius increase is smaller than that for the matter radius.
Thus with decreasing binding, the difference between the
charge and matter radii becomes more and more pronounced.

B. Soft dipole excitations

Characteristics of nuclear halos are revealed not only in
the specific structure of the ground state (loosely bound,
abnormal spatial extension with extreme clusterization) but
also in low-energy excitations above the breakup threshold
where a concentration of transition strength is observed. The
most spectacular is the appearance of a soft dipole excitation
mode that dominates the electromagnetic dissociation (EMD)
cross section. In stable nuclei all dipole excitations are usually
concentrated in the giant dipole resonance that corresponds
to high-frequency collective proton-neutron vibrations. In
neutron halo nuclei all charges are concentrated in the core;
thus the charge and matter c.m. do not coincide and low-
frequency dipole oscillations of the halo neutrons against the
core may easily be excited. Historically the large EMD cross
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sections for 11Li incident on heavy targets were predicted [16]
by assuming that the 11Li nucleus is composed of a 9Li core and
a dineutron, and this subsequently confirmed experimentally
(see, for example, Ref. [17]). Existence of a new low-lying
dipole resonance mode (the so-called soft dipole mode) in such
systems was suggested by Ikeda [18]. It should be noted that,
at least for the lightest Borromean halo nuclei 6He and 11Li,
the low-lying dipole excitation mode is not a resonant one but
a more general three-body low-lying continuum response [19].

The electric dipole excitations describe transitions from
ground to continuum states by action of the dipole operator. For
a two-neutron halo nucleus with inert core the E1 excitations
can be expressed by

dB(E1)

dET

= (eZ)2

2J + 1

∑
ν1,ν2,M,μ

∫
dkxdky δ(E − ET )

× |〈ψ (−)
ν1,ν2

(kx, ky ; x, y)| RCY1μ(R̂C)

× |ψJM (x, y)〉|2, (14)

where ψ (−)
ν1,ν2

(kx, ky ; x, y) represents the three-body continuum
wave functions with ingoing wave boundary conditions that
describe the relative motion of the fragments. This motion
is characterized by the Jacobi linear momenta kx and ky

conjugated to the Jacobi coordinates x and y (3). Here
ET = (h̄2/2m) (k2

x/Ax + k2
y/Ay) = (h̄2/2m) κ2

T is the total
continuum energy above the breakup threshold, and ν1,2

are spin projections of halo neutrons and μ = (±1, 0).
The continuum wave function can be decomposed in the
five-dimensional hyperspherical harmonics in (�κT

5 ) defined in
the space of linear Jacobian momenta [20]:

ψ (−)
ν1,ν2

(kx, ky ; x, y)

=
∑

Kf ,γf ,MSf
,MLf

,MJf

ıKf

(
1

2
ν1

1

2
ν2

∣∣∣∣Sf MSf

)

× (
Lf MLf

Sf MSf

∣∣Jf Mf

)
Y l

f
x l

f
y ∗

Kf Lf MLf

× (
�

κT

5

)
ψKf γf Jf Mf

(κT , x, y), (15)

where the spatial part ψKf γf Jf Mf
(κT , x, y) only depends on

spatial coordinates (x, y) and has a hyperspherical decom-
position similar to Eq. (7) for the bound-state wave function
ψJM (x, y) and can be obtained from the solution of the system
of coupled equations (9) with boundary conditions appropriate
for continuum states. Due to the selection rules for the dipole
operator only the dipole excitations with J

πf

f = 1− (with
only odd values of Kf being allowed) will give contributions
to dB(E1)/dET for a ground state with quantum numbers
Jπ = 0+.

The distribution of soft dipole transitions is very sensitive
to the ground-state binding and the total strength is directly
restricted (within the three-body cluster model) by the dis-

placement
√

〈|R2
C |〉 of the charge c.m. against the matter

c.m. [21]:∫
dET

dB(E1)

dET

= 3

4π
(eZ)2 〈ψJM (x, y)| R2

C |ψJM (x, y)〉.
(16)

Formula (16) is the cluster non-energy-weighted sum rule
(CNEWSR) for dipole excitations and values of the core
displacement for the 22C ground state for different separation
energies given in the column RC of Table I. Another useful
relation is the cluster energy-weighted sum rule (CEWSR) [22]
for soft dipole excitations:

∫
dET ET

dB(E1)

dET

= e2 9

4π

h̄2

2m

2Z2

AAC

. (17)

Sum rule (17) is a part of the total energy-weighted sum rule
[with NZ/A replacing 2Z2/(AAC)] and accounts for dipole
excitations due to only relative motion of the core and halo
neutrons, thus excluding dipole excitations within the core.

The convergence of the dB(E1)/dET calculations for
different number of hypermoments Kf included in the de-
composition (15) of the continuum wave function is shown
in Fig. 5 for two of the cases given in Table I for the 22C
bound state, those with S2n = 400 keV and 50 keV. Within
the hyperspherical harmonics method the electric dipole
transitions can only couple the spatial components of bound
and continuum states with hypermoments that differ by one.
The dominance of the K = 0 bound-state component (see, for
example, Table II) leads in the dipole strength functions to the
prevalence of transitions with Kf = 1. Inclusion of additional
continuum components increases the height of dipole peaks
(about 5% when Kf,max increases from 9 to 13 while CNEWSR
is changed by 0.3%). The rate of convergence depends on

(a)

(b)

FIG. 5. (Color online) Calculations for 22C dipole strength func-
tion distributions over total continuum energy ET above the breakup
threshold. Calculations for 22C two-neutron separation energies
S2n = 400 keV (a) and 50 keV (b) are shown. The solid lines from
upper to lower correspond to calculations of the dipole continuum
wave functions with Kf,max = 13, 9, 5, and 1, respectively. The
dashed lines show distributions for three-body plane wave (no FSI)
continuum states.
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TABLE III. The cluster non-energy-weighted sum rule of the 22C dipole strength functions calculated for different separation energies S2n

of the ground state. The sum rule is given for two ranges of the total continuum energy ET and measured in percent of the computed (16)
total sum rule (the column CNEWSR). Columns marked FSI (PW) show results of calculations with (without) inclusion of the final-state
interactions. The column labeled CEWSR gives the calculated cluster energy-weighted sum rule measured in percent of the total value (17) of
2.43 (e2 fm2 MeV).

S2n ET � 5 MeV ET � 10 MeV CNEWSR

(MeV) FSI (%) PW (%) FSI (%) PW (%) CEWSR (%) (e2 fm2)

0.40 92.7 75.0 93.5 87.0 72.8 1.77
0.20 91.5 80.3 92.1 88.0 81.9 2.45
0.10 90.1 82.9 90.5 87.9 87.9 3.32
0.05 88.7 83.8 89.0 87.1 92.0 4.44
0.01 83.9 81.9 84.0 83.5 96.0 7.94

the spatial extension of the bound ground state. Progressively
weaker ground-state binding can require more components of
continuum states in calculations of dipole excitations. This
is also supported by the CNEWSR calculations presented in
Table III. The percentage of a sum rule exhausted within
the given energy ranges becomes smaller for more weakly
bound ground states but in all cases it is larger than 80%
and reaches more than 90% for the most bound case. Such a
level of a convergence is quite reasonable for our exploratory
calculations.

It is rather instructive to make comparisons of dipole
strength calculations that take into account the final-state
interactions (FSI) with calculations that neglect them, i.e.,
use the three-body plane waves (PW) as continuum wave
functions. The PW calculations shown in Fig. 5 by the dashed
lines isolate and clearly reveal the properties of dipole strength
function that are connected to the bound ground state (like
a Fourier transform). We see that the position of the dipole
peak is mostly defined by the separation energy of the bound
state and moves close to the threshold with decreasing binding.
Inclusion of the FSI leads to redistribution of dipole transitions
and forms more narrow and stronger bumps with only modest
change of the peak position.

Figure 6 shows the 22C dipole strength functions for bound
ground states (described in Table I) with different two-neutron
separation energies from 400 to 50 keV. The peak of the
dipole strength function moves closer to the breakup threshold
with decreasing separation energy and simultaneously rapidly
grows in absolute value. To highlight this feature, the insert
compares the strength function for separation energies 10 and
50 keV (but note the different scales for two axes compared
with the main figure). This remarkable enhancement clearly
reflects the strong dependence of the soft dipole modes on
the looseness of the halo systems and, respectively, on the
difference between the charge and matter r.m.s. radii that
increases with weakening of the binding.

The behavior of the dipole strength functions has a strong
influence on EMD cross sections when the halo nucleus
collides with the heavy target. An estimation of the Coulomb
fragmentation can be obtained within the framework of first-
order perturbation theory [23,24]. According to the virtual
photon method, the electromagnetic excitation of the halo
nucleus can be described as absorption of virtual photons
generated by the target nucleus and defined by the product

of the dipole strength function and the spectrum of the
virtual photons that peaks at low excitation energies. In
this approximation the reaction mechanism depends on the
minimum impact parameter, bm. At impact parameter smaller
than bm, excitations are dominated by strong nuclear forces
while at larger distances they are produced by electromagnetic
interactions only and lead to Coulomb fragmentation. The
minimum impact parameter bm depends on the considered
process, but it is often taken equal to the sum of the two
nuclear radii. In our estimation we used a target size equal to
1.2 A

1/3
T (where AT is the number of nucleons in the target)

while for the halo size we applied the average distance of
a halo neutron from the core c.m. (column RCn in Table I).
Table IV gives cross sections for the 22C Coulomb frag-
mentation (integrated up to 10 MeV total continuum energy)
caused by the collision with a 208Pb target at different collision
energies. The cross section is rather sensitive to energy and,
for each collision energy, to the two-nucleon separation energy
of the 22C nucleus. Especially remarkable are very small
binding energies when the respective EMD cross sections
may be very large. If the r.m.s matter radius (column rm in

FIG. 6. (Color online) Calculated 22C dipole strength function
distributions for separation energies S2n = 50, 100, 200, and
400 keV (upper to lower curves). The insert compares dipole strength
distributions for S2n = 10 keV (upper line) and 50 keV (lower line).
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TABLE IV. Estimation of the E1 EMD cross sections σEMD

(measured in barns) for the reaction 22C + 208Pb for different collision
energies (per one nucleon). Estimations are given for different
22C two-neutron separation energies S2n. The minimum impact
parameters bm employed are also given.

S2n (MeV) 0.40 0.20 0.10 0.05 0.01
bm (fm) 13.5 14.6 16.0 17.5 21.2

E/A (MeV) σEMD σEMD σEMD σEMD σEMD

240 1.2 1.8 2.7 3.9 8.1
140 1.6 2.5 3.7 5.5 11.3
40 3.2 5.4 8.5 12.9 28.3

Table I) is used for estimations of the minimum impact
parameter instead of the distance between a halo neutron and
core, bm become smaller and this leads to an enhanced EMD
cross section by 10–20% depending on collision and separation
energies.

IV. CONCLUSION

Investigations of radioactive drip-line nuclei are now in
the forefront of nuclear physics and spectacular progress
has been made in this field. The breakthrough discovery of
nuclear halos in some drip-line nuclei, in particular Borromean
halos, is an important example. By now a substantial amount
of information has been accumulated about the structure of
such nuclei; cardinal examples have been 6He, 11Li, and now
recently 22C. These nuclei are characterized by having p-shell,
mixed sp-shell, and s-shell structures, respectively. All halo
nuclei are examples of weakly bound systems and their specific
structure has an important influence on spatial extension. We
may expect that if the s motion plays the larger role in the
nuclear structure, the respective system should have the bigger
size. Thus it is to be expected that the 22C size is increased
more relatively to its core than what was observed for 6He and
11Li nuclei. However, the 22C matter radius [1], extracted from
experiment, if confirmed, is so large that the question about
how it may be realized must be put forward. A possible answer

certainly resides in the two-neutron separation energy S2n of
22C, which is experimentally unknown.

In this article, we explored how the separation energy S2n

influences the spatial extension of an s-dominated Borromean
halo nucleus and also other observables that are directly con-
nected to the large size of the ground state. For that purposes we
have applied the cluster three-body hyperspherical harmonic
model that gives the most simple and physically transparent
description of the two-neutron halo structure. To simulate
the absence of a bound 21C we used a shallow 20C-neutron
potential that does not allow 21C to bind, and we fixed its
strength to the required binding energy of 22C.

These simulations show that, to reach the experimentally
suggested lower boundary of the extracted matter radius, the
separation energy S2n of two neutrons in 22C should be of the
order of tens of keV, while to reach the mean value the binding
must be much weaker. Within the cluster model the matter
extension of the nucleus is directly connected to the distance
between the matter and charge c.m. positions. This leads to
a swelling of the 22C pointlike charge radius due to the core
motion about the nuclear c.m., compared with the original
charge size of the 20C core. Also, the strength and position
of soft dipole excitations are very sensitive to the separation
energy and thus to the system’s spatial extension. The position
of the soft dipole peak moves closer to the three-body threshold
with decreasing separation energy S2n. Correspondingly, the
separation between the average position of matter and charge
distributions becomes larger and the height of the dipole peak is
increased in accordance with the non-energy-weighted dipole
sum rule. Since the flux of virtual photons peaks at small
excitation energies, this results in EMD cross sections that are
very sensitive to the separation energy and can reach rather big
values for the weak binding. Experimental excitation (breakup)
measurements may clarify this open question, and these are
urgently called for.
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