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ABSTRACT

We review the ffects of source size in interferometric observations and focus on tke cfsery compact sources. If a source is
extremely compact ayior weak (so it is not possible to detect signature of source structure iidihdities) we describe a test of
hypothesis that can be used to set a strong upper limit to the size of the sde also estimate the minimum possible size of a source
whose structure can still be detected by an interferometer (i.e., the maxiheoretical over-resolution power of an interferometer),
which depends on the overall observing time, the compactness in tyal@tiibution, and the sensitivity of the receivers. As aresult,
and depending on the observing frequency, the over-resolutionrdfi@thcoming ultra-sensitive arrays, like the Square Kilometer
Array (SKA), may allow us to study details of sources at angular scales do a fewuas.
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1. Introduction with certain deconvolution algorithms, this approachiroég-
ing a set of visibilities may be very useful if we are dealing with
relatively extended sources. However, if the sources obder
are very compact (relative to theflifaction limit of the interfer-
ometer), important and uncontrollabléexts may arise in the

Sensitivity and resolution (both spectral and angular) taee
main limiting factors in observational Astronomy. In thesea
of angular (i.e., spatial) resolution, the strong limiatithat

will always dfect the observations, regardless of the quality aging of the source intensity profiles, either coming frire

our instruments, is thdiffraction limit. When an instrument is (non-linear) deconvolution algorithms god from the gridding

diffraction-limited, its response to a plane wave (i.e., to a{poi,,.. N :

L v ixelation) in the s lane. Thes@&ects may result in stron
source located at infinity) is the so-callBdint Spread Function E)pases in t)he estimlgepof source sizes baged in measuse?nent
(PSF), which has a width related to the smallest anguIaESCﬁ rformed in the sky plane '

thatltc_zn be(la‘lj(ensc?lvr??h‘;"t'tt?]éhér'gg.r:m%].t{ decreases with both . .The over-resolution power of an interferometer is a fumctio
an incI:re\:Z\sin ot\;vservin fre uen(I: arl1d Ian increasinWIa @tu of the baseline sensitivity, and may play an important roléhe
9 glreq y gdap analysis of data coming from future ultra-sensitive irgesmet-

the instrument. Hence, the only way to achieve a higher angi 5 avs (jike the square kilometer array, SKA, or the /Ataa
lar resolution at a given frequency is to increase the instmnt large millimeter array, ALMA) ' '

aperture. In this sense, ti_azqaer_ture synthesis, which is a tech- In this research note, we review several well-known aspects
nique related to astronomical interferometry (see, efgpritson, related to the fect of source compactness in visibility space,
Moran & Swer_lson 1986), presently seems to be aImqst the °od owing that it is possible to find out, from the observed vis-
waly to further increase the angular resolution currentyewed ibilities, information on the size of sources much smalkert

at agﬁtmtlﬁ\éilaeigg;hc.:rucial dierence in interferometric observa—the difraction limit achieved in the aperture synthesis. We also
estimate the maximum theoretical over-resolution powearof

tions, compared to those obtained with other teChn'ques'nvw]ﬁterferometer and discuss a statistical test to estimppe

aperture synthesis is performed, an interferometer QOedino bounds to the size of ultra-compact sources observed wti hi
rectly observe the structure of a source, but samples adresf sensitivity interferometers. In Lobanov (2005), the read@|

![LseFSOU;ICeeI’ Hggsizméétgﬁ ?&gr?greﬁgtlgr'?kég %ersm%f;’mﬁnd a detailed discussion of the resolution limits obtaifed
P §deciﬁc shapes of the brightness distribution. Here, wenekt

Bﬁtighneosvke}lr ',:rs]gl\];\’/r? gltet:}ZIE%L;U?éVU a;‘;gogmeigéﬁsc'ﬁéfggf;g% the discussion to a more general case of super-resolutain th
) P can be achieved with interferometers.

interferometers stronglyfizzcts how these devices behave when
we observe sources of sizes well below thérdction limit, as
we will see in the following sections. _ _ 2. Compact sources in visibility space
Itis possible, of course, to compute the inverse Fouriestra
form of a set of visibilities and (try to) recover the intelysiis- The size of a source slightly smaller than thérdiction limit
tribution of the observed sources in the sky. When combined an interferometer leaves a very clear fingerprint in vigib
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ities are much more limited due to the larger parameter space
of the model (i.e., the image pixels). Therefore, it is veify d
ficult to obtain, from any data analysis based on the sky plane
size estimates of compact sources with a precision sinailidrat
achieved in Fourier space. In the former case, the gridditigeo
images (i.e, the pixelation of the PSF), together with the pa
ticulars of the deconvolution algorithms, may smear oufite
details in the intensity profiles that encode the inforntatia the
0.2 Oniform D sk o \ structures of the underlying compact sources. On the otiredt,h

{ compact sources on the sky are seen as very extended stsictur

Si ze/FVWHM

----Rng in Fourier space. Thus, a direct analysis of the visib#ifje.g.,
0.6 0.7 0.8 0.9 1 as described in Pearson 1999) is the optimum way to work with
Anpl i tude Ratio data coming from compact sources, since tiecas of gridding

Fig. 1. Source size (in units of the FWHM of the synthesized beam) 43 Fourier space will always be negligible.
a function of the ratio of the visibility amplitude in the longest baseline
to that in the shortest baseline.
3. Maximum theoretical over-resolution power of an
interferometer
space, although itsfiect on the sky plane (after all the imaging, . . i ) , , .
and deconvolution steps) may be much less clear. For irest'tfncAs it is described in the previous section, the maximum over-

the size of a source is similar to the full width at half maximu resolution power of an interferometer (i.e., the minimuzesif
(FWHM) of the PSF, the radial profile in the visibility ampli-& SOUrce, in units of the FWHM of the synthesized beam, that can

tudes will decrease with baseline length falling down~@5 P€ resolved) depends on how precisely we can measure lower
times the maximum visibility amplitude at the maximum proViSiPility amplitudes at the longest baselines. Hencepégrfer-
jected baseline. Hence, a source with a size of the ordereof eter W|th an arbitrarily large .sensmwty will accordiy have
diffraction limit maps into an amplitude profile in visibilityape an arbitrarily large over-resolution power. o
that can be well detected and characterized by an interfeterm However, real interferometers have finite sensitivitielsiol

If the size of the source decreases, the visibility amptitid  d€Pend on s(;e_veral factorsh(e.g., %pservmg frequency,vhdtmk
the longest baseline increases; in the limit case when zieedi SOUTCE coordinates, weather conditions,...). We canfireras|
the source tends to zero, the visibility amplitude in thegkest the question of what is the minimum size of a source (reldtive

baseline tends to be as large as that in the shortest baselinde difraction limit of an interferometer) that still allows us to

is common, indeed, to compute the amplitude ratio between gxtract a size information from the observed visibilities.

visibilities in the shortest baseline and those in the Isbgase- I the extreme case of a very compact (@naveak) source,

line as a quantitative representation of thegree of compact- SUch that it is not possible to estimate a statisticallywfigant

ness of the observed sources (e.g., Kovalev et al. 2005: Lobanl@y/ering in the visibility amplitudes at the longest bases (be-

2005). cause of t_he_ noise COHFI’IbUtIOﬂ to th_e VISIbI|tIe_S), thq«mban-
In Fig. 1, we show the size of a source as a function of tHgdful statistical analysis that can still be applied totiaga is to

visibility amplitude in the longest baseline divided bytirathe ©Stimate ampper limitto the source size by means of hypothesis

shortest baseline. The size shown in Fig. 1 is given in urits {gsting. .

the FWHM of the synthesized beam (we assume throughout this Let us observe a source and assume the null hypotttésis,

paper thatuniform weighting is applied in the gridding of the that it _ha_s no structure at all (i.e., the source is poirg;liko

visibilities, prior to the Fourier inversion; see Thomsdfgran, the visibility a_mp_lltudes are constant _through the th’lem_@

& Swenson 1986 for more details). If the sensitivity of areint SPace). The likelihoodAo, corresponding to a point-like model

ferometer allows us to detect a small decrease in the \itgibilSOUTCe fitted to the visibilities is

amplitudes at the longest baselines, we are able to obt&in in N

mation on the size of sources much smaller than tkieadition 2\ _ _ kg _

limit of the interferometer (i.e., much smaller than the FWHI\ﬁ\0 * exp( XO) =P Zk: PRV = So)(M = So) @)

of the PSF). The over-resolution power of an interferomister )

hence, dependent on the sensitivity of the observatiomscan |\ nareN is the number of visibilitiesV; = A exp (¢;) is the

bearbitrarily large. , o i-th visibility, So is the maximum-likelihood (ML) estimate of
. Figure 1 has been computed using fieient intensity pro- he source flux density (it can be shown to be equal to the real
files for the observed source. Itis obvious that the useftémdint part of the weighted visibility averagey)), andF is the Fisher

source shapes (e.g., a Gaussian profile or a ring-like spurcematriy of the visibilities (i.e., the inverse of the theinasiance
a fit to the visibilities, results in flierent size estimates for thematrix) ie.

same dataset. Hence, if the structure of the observed s@urce
similar to the model used in the fit to the visibilities (i.g.we
have a good a priori information on the real shape of the gjurc
we can obtain precise estimates of sizes much smaller tiean th In this equationpjy is the correlation ca@cient between the
FWHM of the synthesized beam. j-th andk-th visibility, and o is the uncertainty of thg-th vis-
Indeed, the fact that the filiaction limit can be largely ex- ibility. Equation 1 is generic and accounts for any coriielatn
trapolated by model fitting is well known since a long timethe visibilities (e.g., possible global or antenna-desndm-
because in these cases the data are fitted with a simple madiélide biases). It can be shown that legfollows ay? distribu-
(i.e., with a small number of parameters), in contrast to th®n (close to its maximum) with a number of degrees of freedo
image-synthesis approach, where the super-resolutioabdap equal to the rank of matrik minus unity. In the particular case

F=C™ with Cik = pjkojok.
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when there is no correlation between visibilifigthe number of Since the source is compact in terms of thirdction limit
degrees of freedom equadis— 1. of the interferometer (otherwise, this hypothesis testimogild
Let us model the visibilities with a functioN,™(S, g6), that not be meaningful), the dependence\8t on the distance in
corresponds to the model of a (symmetric) source of éiaed Fourier spaceg, will be small (i.e., the best-fitting mod¥I™ will
flux densityS (the model amplitude/™, depends on the productalmost be constant for the whole set of observations). Ag &
of 6 times the distance in Fourier spagg, Hence, the visibility the decrease iN™ with g is smaller than the standard deviation
V; is modelled by the amplitudlafjfn = V™(S,q;6). The like- of the visibilities (which holds if there is no hint of a dease
lihood of this new modellingAn, Iis also given by Eq. 1, but of visibility amplitudes withg), the quantityk(V — So)V™) will
changingSo by V™. In addition, the distribution of log, (close always approach zero (notice thHd¢ — Sp)) = 0). Hence, from
to its maximum value) also follows g2 distribution, but with Ed. 4, we can finally write
one degree of freedom less than that ofAgg
Let us ask the question of what is the maximum valué of vmy? A
(we call ity) corresponding to a value of the log-likelihood 01< . V) )= 2(SNRY
V™ that is compatible, by chance, with the parent distributbn
the log-likelihood of a point source. We will estimakg by com- where SNR is the signal-to-noise ratio of the weighted ligjb
puting a critical probability for the hypothesis that bothegti- average (i.e{V)/c). If the covariance matrix is far from diago-
ties come from the same parent distribution (this is, indeed nal, Eq. 5 will not apply, since thefiadiagonal elements in Eq.
null hypothesisHo). Critical probabilities of 5% and 0.3% will 3 would be added to the left-hand side of Eq. 5. However, it can
be used in our h ypothesis testing (these values correspdhd t be shown that if all the fi-diagonal elements djc are roughly
20- and 3r cutdfs of a Gaussian distribution, respectively). Thequal andV) ~ (V™ ~ Sg (which is true if both modelsy™
value offy estimated in this way will be the maximum size thaand a point sourc8y, satisfactorily fit to the data) then the com-
the observed source may have, such that the interferontatlef ¢ bined dfect of the df-diagonal elements in Eq. 3 cancels out,
have measured the observed visibilities with a chance diyen and Eq. 5 still applies.
the critical probability oHo. This restriction for the= matrix (and hence for the correla-
The log-likelihood ratio (in our case, thefféirence of chi- tion matrix) can be interpreted in the following way. A distr
squares; see Mood, Franklin, & Duan 1974) between the modbettion of visibilities following a covariance matrix witloughly
of a point source and that of a source with visibilities méstel equal df-diagonal elements implies that all the antennas in the
by V™ follows ay? distribution with one degree of freedom, asnterferometer should have similar sensitivities, and liase-
long asN is large (e.g., Wilks 1938). HencElp will not be dis- lines related to each one of them should cover the full range

(5)

carded as long as of distances in Fourier space. If these conditions are Ifdifjlit
is always possible to remove any bias in the antenna gaids, an
log Am —10g Ao < Ac/2, (2) produce a set of visibilities with a roughly equal covariambe-

. - _ tween them. If, for instance, the gain at one antenna wasdbjas
where; is the value of the log-likelihood corresponding to thene yisibilities of the baselines of all the other antennasiiy
critical probability of the null hypothesis, assuming’adistribu- pave diterent amplitudes in similar regions of the Fourier space,
tion with one degree of freedom, takes the values 3.84 or 8.81na1ce allowing us to correct for that bias by means of amgitu

(for a 5% and a 0.3% probability cuttoof Ho, respectively). self_calibration. However, if the array was sparse, theightn

Working out Eq. 2, we arrive to be antenna-related amplitude biaséeeting visibilities at dis-
N joint regions of Fourier space, thus preventing the coioadbr
ik _ 4 these biases usirgjoseby measurements from baselines of other
m _ o\, )ym _g2\glk = Z¢ y
Z <(VJ 2Vi)Vic + 2 SoVi SO) F 2" ) antennas. Interferometers with a sparse distributioneshehts

ik may thus produce sets of visibilities withfidirent covariances
We can simplify Eq. 3 in the special case when tig o (_stronger at closer regions in Fourier' space), thus maltid@-i
diagonal elements in the covariance matrix are small (so theult to estimatejy correctly (unless in the very unlikely cases
visibilities are nearly independent). On the one hand, tae-s When thewhole matrix F is known!). This is the case of the
dard deviation¢r, of the weighted visibility average is/a@? = NRAO Very Long Baseline Array (VLBA), where the antennas

>iFii = 2 1/012; on the other hand, the weighted average @it Mauna Kea and St. Croix only appear in the longest basgline

- . . lower visibility amplitudes at these baselines could besthes
_ — 2% . F. A ] oo
any visibility-related quantityd, is (A) = o= 3; Fj;A;. Hence, lated to biased antenna gains, instead of source structure.

if Fjc ~ 0forj # k (i.e., if both matricesF andC = F~* are The new interferometric arrays, made of many similar ele-
diagonal), we have ments with a smooth spatial distribution (as ALMA or the SKA)
o almost fulfill the condition of homogeneous Fourier coverag
((V™M? + S2 - 2VV™) ~ ((Sp - VM?) = i’ (4) described here (i.e., there are almost no antennas exeljsip-
2 pearing at long or short baselines), and are hence verytrfidyus
the over-resolution of compact sources well below thdiirai-

i.e., the critical probability in our hypothesis testingpdads on
the weighted average of the quadratifelience between the two
models being compared (a point source with flux denSify=
(V) and an extended source with a model giverMiy. In this

tion limits.
Equation 5 allows us to estimate the valu@gffrom a given
distribution of baseline lengthsy;, and for a given SNR in the

ian it my m weighted visibility average. Let us now assume that we have a
equation, itis assumed tharV™) ~ (SoV™). Indeed, very large number of visibilities and the sampling of baseli
(VW™ = (SoV™ + ((V — SoV™ lengths g;, is quasi-continuous. We then have

1 Indeed, this also holds when therg correlation, unless in the Q 1 P Ac
pathological cases when the covariance matrix may be degenerate. fo n(a) (1 - mvm(s’ q6m))”dq = 2(SNRY’ (6)
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In the cases of ultra-sensitive interferometric arrays tike
SKA, where dynamic ranges of even®1@ill be eventually
achieved in the images, the over-resolution power in olaserv
tions of strong and compact sources can be very large. As an
example, a dedicated observation with the SKA (let us assume
200 antennas) during one hour (with an integration time of 2
seconds), and an SNR of 100 for each visibility, results irire m
imum resolvable size of only2 x 10-2 times the FWHM of the
synthesized beam (Eq. 7). As a result, and depending on the ob

P serving frequency, the over-resolution power of the SKA ldou
. allow us to study details of sources at angular scales doven to
-9 -8 -7 -6 -5 -4 -3 few uas. This is, indeed, a resolution higher than theraition
Log (A /2 (SNR)?) limit achieved with the current VLBI arrays (i.e., using nuc
Fig. 2. Minimum detectable size of a source (in units of the FWHM ofonger baselines).
the synthesized beam) as a function of the source model (for a constan
density of baseline lengths).

4. Summary

i . ) R . We have reviewed thefiects of source compactness in inter-
wheren(q) is the (normalized) density of visibilities at a distancgerometric observations. The analysis of visibilities iouFier
qin Fourier space an@ is the maximum baseline length of thespace allows us to estimate sizes of very compact sourcesghi(mu
interferometer. Usually(q) is large for small values of and = smaller than the diiraction limit achieved in the aperture synthe-
decreases with increasing(i.e., the number of short baselinesis)_ As the sensitivity of the interferometer increasks,rhini-
is usually larger than the number of long baselifeBhe d@fect mum size of the sources that can still be resolved decreases (
of n(q) on 6y is such that an interferometer with a large NUMhe over-resolution power of the interferometer increpskes
ber of long baselines has a higher over-resolution powar thijs sense, the analysis of observations of very compactssu
another interferometer with a lower number of long basslingn Fourier space is more reliable (and robust) than altamat
even if the maximum baseline lengtky, is the same for both in- analyses based on synthesized images of the sky intensity di
terferometers. The over-resolution power can also be &se® tribytion (and &ected by beam gridding, deconvolution biases,
if we decrease the right-hand sides of Eqs. 5 and 6. This ca@ ).
be achieved by increasing the sensitivity of the antennean e study the case of extremely compact sources observed
the observing timegven if the maximum baseline length is un-yith an intereferometer of finite sensitivity. If the souisesuch
changed. _ _ compact angr weak that it is not possible to detect structure in

We show in Fig. 2 the value dfy (in units of the FWHM the visibilities, we describe a test of hypothesis to seranst
of the synthesized beam) corresponding tfedent array sensi- ypper limit to the size of the source. We also compute the min-
tivities (i.e., diferent SNR in the visibility average) and sourc@mum possible size of a source whose structure can still be re
models (i.e., Gaussian, uniform-disk, sphere, and ring)htlve  solved by an interferometer (i.e., the maximum theoretiwal-
used a baseline-length distribution with constant derfsityon- resolution power of an interferometer, computed from Eqnd a
stantn(q)). In all cases, the over-resolution power of the interfegpproximated in Eq. 7). The over-resolution power depemds o
ometer can be very well approximated by the following expreghe number of visibilities, the array sensitivity, and thpatal
sion distribution of the baselines, and increases if 1) the nurobe
long baselines increases (i.e., not necessarilyrdémum base-
line length, but only thenumber of long baselines relative to
the number of short baselines); 2) the observing time ira®a
andor 3) the array sensitivity increases.
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A 1/4
Om = (m) x FWHM, )

2 This statement may not hold in special cases where the array con-
sists of a few distant compact subarrays, whose elements are aedside
as independent parts of the interferometer.



