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ABSTRACT

We review the effects of source size in interferometric observations and focus on the cases of very compact sources. If a source is
extremely compact and/or weak (so it is not possible to detect signature of source structure in thevisibilities) we describe a test of
hypothesis that can be used to set a strong upper limit to the size of the source. We also estimate the minimum possible size of a source
whose structure can still be detected by an interferometer (i.e., the maximum theoretical over-resolution power of an interferometer),
which depends on the overall observing time, the compactness in the array distribution, and the sensitivity of the receivers. As a result,
and depending on the observing frequency, the over-resolution power of forthcoming ultra-sensitive arrays, like the Square Kilometer
Array (SKA), may allow us to study details of sources at angular scales down to a fewµas.
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1. Introduction

Sensitivity and resolution (both spectral and angular) arethe
main limiting factors in observational Astronomy. In the case
of angular (i.e., spatial) resolution, the strong limitation that
will always affect the observations, regardless of the quality of
our instruments, is thediffraction limit. When an instrument is
diffraction-limited, its response to a plane wave (i.e., to a point
source located at infinity) is the so-calledPoint Spread Function
(PSF), which has a width related to the smallest angular scale
that can be resolved with the instrument.

It is well-known that the diffraction limit decreases with both
an increasing observing frequency and an increasing aperture of
the instrument. Hence, the only way to achieve a higher angu-
lar resolution at a given frequency is to increase the instrument
aperture. In this sense, theaperture synthesis, which is a tech-
nique related to astronomical interferometry (see, e.g., Thomson,
Moran & Swenson 1986), presently seems to be almost the only
way to further increase the angular resolution currently achieved
at any wavelength.

But there is a crucial difference in interferometric observa-
tions, compared to those obtained with other techniques. When
aperture synthesis is performed, an interferometer does not di-
rectly observe the structure of a source, but samples a fractions of
its Fourier transform (the so-calledvisibilities). In other words,
the space from which an interferometer takes measurements is
not the sky itself, but the Fourier transform of its intensity distri-
bution over the whole field of view. This special characteristic of
interferometers strongly affects how these devices behave when
we observe sources of sizes well below the diffraction limit, as
we will see in the following sections.

It is possible, of course, to compute the inverse Fourier trans-
form of a set of visibilities and (try to) recover the intensity dis-
tribution of the observed sources in the sky. When combined

with certain deconvolution algorithms, this approach ofimag-
ing a set of visibilities may be very useful if we are dealing with
relatively extended sources. However, if the sources observed
are very compact (relative to the diffraction limit of the interfer-
ometer), important and uncontrollable effects may arise in the
imaging of the source intensity profiles, either coming fromthe
(non-linear) deconvolution algorithms and/or from the gridding
(pixelation) in the sky plane. These effects may result in strong
biases in the estimate of source sizes, based in measurements
performed in the sky plane.

The over-resolution power of an interferometer is a function
of the baseline sensitivity, and may play an important role in the
analysis of data coming from future ultra-sensitive interferomet-
ric arrays (like the square kilometer array, SKA, or the Atacama
large millimeter array, ALMA).

In this research note, we review several well-known aspects
related to the effect of source compactness in visibility space,
showing that it is possible to find out, from the observed vis-
ibilities, information on the size of sources much smaller than
the diffraction limit achieved in the aperture synthesis. We also
estimate the maximum theoretical over-resolution power ofan
interferometer and discuss a statistical test to estimate upper
bounds to the size of ultra-compact sources observed with high-
sensitivity interferometers. In Lobanov (2005), the reader will
find a detailed discussion of the resolution limits obtainedfor
specific shapes of the brightness distribution. Here, we extend
the discussion to a more general case of super-resolution that
can be achieved with interferometers.

2. Compact sources in visibility space

The size of a source slightly smaller than the diffraction limit
of an interferometer leaves a very clear fingerprint in visibility
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Fig. 1. Source size (in units of the FWHM of the synthesized beam) as
a function of the ratio of the visibility amplitude in the longest baseline
to that in the shortest baseline.

space, although its effect on the sky plane (after all the imaging
and deconvolution steps) may be much less clear. For instance, if
the size of a source is similar to the full width at half maximum
(FWHM) of the PSF, the radial profile in the visibility ampli-
tudes will decrease with baseline length falling down to∼0.5
times the maximum visibility amplitude at the maximum pro-
jected baseline. Hence, a source with a size of the order of the
diffraction limit maps into an amplitude profile in visibility space
that can be well detected and characterized by an interferometer.

If the size of the source decreases, the visibility amplitude in
the longest baseline increases; in the limit case when the size of
the source tends to zero, the visibility amplitude in the longest
baseline tends to be as large as that in the shortest baseline. It
is common, indeed, to compute the amplitude ratio between the
visibilities in the shortest baseline and those in the longest base-
line as a quantitative representation of thedegree of compact-
ness of the observed sources (e.g., Kovalev et al. 2005; Lobanov
2005).

In Fig. 1, we show the size of a source as a function of the
visibility amplitude in the longest baseline divided by that in the
shortest baseline. The size shown in Fig. 1 is given in units of
the FWHM of the synthesized beam (we assume throughout this
paper thatuniform weighting is applied in the gridding of the
visibilities, prior to the Fourier inversion; see Thomson,Moran,
& Swenson 1986 for more details). If the sensitivity of an inter-
ferometer allows us to detect a small decrease in the visibility
amplitudes at the longest baselines, we are able to obtain infor-
mation on the size of sources much smaller than the diffraction
limit of the interferometer (i.e., much smaller than the FWHM
of the PSF). The over-resolution power of an interferometeris,
hence, dependent on the sensitivity of the observations, and can
bearbitrarily large.

Figure 1 has been computed using a different intensity pro-
files for the observed source. It is obvious that the use of different
source shapes (e.g., a Gaussian profile or a ring-like source) in
a fit to the visibilities, results in different size estimates for the
same dataset. Hence, if the structure of the observed sourceis
similar to the model used in the fit to the visibilities (i.e.,if we
have a good a priori information on the real shape of the source),
we can obtain precise estimates of sizes much smaller than the
FWHM of the synthesized beam.

Indeed, the fact that the diffraction limit can be largely ex-
trapolated by model fitting is well known since a long time,
because in these cases the data are fitted with a simple model
(i.e., with a small number of parameters), in contrast to the
image-synthesis approach, where the super-resolution capabil-

ities are much more limited due to the larger parameter space
of the model (i.e., the image pixels). Therefore, it is very dif-
ficult to obtain, from any data analysis based on the sky plane,
size estimates of compact sources with a precision similar to that
achieved in Fourier space. In the former case, the gridding of the
images (i.e, the pixelation of the PSF), together with the par-
ticulars of the deconvolution algorithms, may smear out thefine
details in the intensity profiles that encode the information on the
structures of the underlying compact sources. On the other hand,
compact sources on the sky are seen as very extended structures
in Fourier space. Thus, a direct analysis of the visibilities (e.g.,
as described in Pearson 1999) is the optimum way to work with
data coming from compact sources, since the effects of gridding
in Fourier space will always be negligible.

3. Maximum theoretical over-resolution power of an
interferometer

As it is described in the previous section, the maximum over-
resolution power of an interferometer (i.e., the minimum size of
a source, in units of the FWHM of the synthesized beam, that can
be resolved) depends on how precisely we can measure lower
visibility amplitudes at the longest baselines. Hence, an interfer-
ometer with an arbitrarily large sensitivity will accordingly have
an arbitrarily large over-resolution power.

However, real interferometers have finite sensitivities, which
depend on several factors (e.g., observing frequency, bandwidth,
source coordinates, weather conditions,...). We can therefore ask
the question of what is the minimum size of a source (relativeto
the diffraction limit of an interferometer) that still allows us to
extract a size information from the observed visibilities.

In the extreme case of a very compact (and/or weak) source,
such that it is not possible to estimate a statistically-significant
lowering in the visibility amplitudes at the longest baselines (be-
cause of the noise contribution to the visibilties), the only mean-
ingful statistical analysis that can still be applied to thedata is to
estimate anupper limit to the source size by means of hypothesis
testing.

Let us observe a source and assume the null hypothesis,H0,
that it has no structure at all (i.e., the source is point-like, so
the visibility amplitudes are constant through the whole Fourier
space). The likelihood,Λ0, corresponding to a point-like model
source fitted to the visibilities is

Λ0 ∝ exp
(
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0
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whereN is the number of visibilities,V j = A j exp (iφ j) is the
j-th visibility, S 0 is the maximum-likelihood (ML) estimate of
the source flux density (it can be shown to be equal to the real
part of the weighted visibility average,〈V〉), andF is the Fisher
matrix of the visibilities (i.e., the inverse of the their covariance
matrix), i.e.

F = C−1 with C j,k = ρ jkσ jσk.

In this equation,ρ jk is the correlation coefficient between the
j-th andk-th visibility, andσ j is the uncertainty of thej-th vis-
ibility. Equation 1 is generic and accounts for any correlation in
the visibilities (e.g., possible global or antenna-dependent am-
plitude biases). It can be shown that logΛ0 follows aχ2 distribu-
tion (close to its maximum) with a number of degrees of freedom
equal to the rank of matrixF minus unity. In the particular case
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when there is no correlation between visibilities1, the number of
degrees of freedom equalsN − 1.

Let us model the visibilities with a function,Vm(S , q θ), that
corresponds to the model of a (symmetric) source of sizeθ and
flux densityS (the model amplitude,Vm, depends on the product
of θ times the distance in Fourier space,q). Hence, the visibility
V j is modelled by the amplitudeVm

j = Vm(S , q j θ). The like-
lihood of this new modelling,Λm, is also given by Eq. 1, but
changingS 0 by Vm. In addition, the distribution of logΛm (close
to its maximum value) also follows aχ2 distribution, but with
one degree of freedom less than that of logΛ0.

Let us ask the question of what is the maximum value ofθ
(we call it θM) corresponding to a value of the log-likelihood of
Vm that is compatible, by chance, with the parent distributionof
the log-likelihood of a point source. We will estimateθM by com-
puting a critical probability for the hypothesis that both quanti-
ties come from the same parent distribution (this is, indeed, our
null hypothesis,H0). Critical probabilities of 5% and 0.3% will
be used in our h ypothesis testing (these values correspond to the
2σ and 3σ cutoffs of a Gaussian distribution, respectively). The
value ofθM estimated in this way will be the maximum size that
the observed source may have, such that the interferometer could
have measured the observed visibilities with a chance givenby
the critical probability ofH0.

The log-likelihood ratio (in our case, the difference of chi-
squares; see Mood, Franklin, & Duan 1974) between the model
of a point source and that of a source with visibilities modelled
by Vm follows aχ2 distribution with one degree of freedom, as
long asN is large (e.g., Wilks 1938). Hence,H0 will not be dis-
carded as long as

logΛm − logΛ0 < λc/2, (2)

whereλc is the value of the log-likelihood corresponding to the
critical probability of the null hypothesis, assuming aχ2 distribu-
tion with one degree of freedom.λc takes the values 3.84 or 8.81
(for a 5% and a 0.3% probability cuttoff of H0, respectively).
Working out Eq. 2, we arrive to

N
∑

jk

(

(Vm
j − 2V j)V

m
k + 2S 0Vk − S 2

0

)

F jk =
λc

2
. (3)

We can simplify Eq. 3 in the special case when the off-
diagonal elements in the covariance matrix are small (so the
visibilities are nearly independent). On the one hand, the stan-
dard deviation,σ, of the weighted visibility average is 1/σ2 =
∑

j F j j =
∑

j 1/σ2
j ; on the other hand, the weighted average of

any visibility-related quantity,A, is 〈A〉 = σ2 ∑

j F j jA j. Hence,
if F jk ∼ 0 for j , k (i.e., if both matrices,F andC = F−1 are
diagonal), we have

〈(Vm)2
+ S 2

0 − 2VVm〉 ∼ 〈(S 0 − Vm)2
〉 =
λcσ

2

2
, (4)

i.e., the critical probability in our hypothesis testing depends on
the weighted average of the quadratic difference between the two
models being compared (a point source with flux densityS 0 =

〈V〉 and an extended source with a model given byVm). In this
equation, it is assumed that〈VVm〉 ∼ 〈S 0Vm〉. Indeed,

〈VVm〉 = 〈S 0Vm〉 + 〈(V − S 0)Vm〉.

1 Indeed, this also holds when thereis correlation, unless in the
pathological cases when the covariance matrix may be degenerate.

Since the source is compact in terms of the diffraction limit
of the interferometer (otherwise, this hypothesis testingwould
not be meaningful), the dependence ofVm on the distance in
Fourier space,q, will be small (i.e., the best-fitting modelVm will
almost be constant for the whole set of observations). As long as
the decrease inVm with q is smaller than the standard deviation
of the visibilities (which holds if there is no hint of a decrease
of visibility amplitudes withq), the quantity〈(V − S 0)Vm〉 will
always approach zero (notice that〈(V − S 0)〉 = 0). Hence, from
Eq. 4, we can finally write

〈

(

1−
Vm

〈V〉

)2

〉 =
λc

2(SNR)2
(5)

where SNR is the signal-to-noise ratio of the weighted visibility
average (i.e.,〈V〉/σ). If the covariance matrix is far from diago-
nal, Eq. 5 will not apply, since the off-diagonal elements in Eq.
3 would be added to the left-hand side of Eq. 5. However, it can
be shown that if all the off-diagonal elements ofF jk are roughly
equal and〈V〉 ∼ 〈Vm〉 ∼ S 0 (which is true if both models,Vm

and a point sourceS 0, satisfactorily fit to the data) then the com-
bined effect of the off-diagonal elements in Eq. 3 cancels out,
and Eq. 5 still applies.

This restriction for theF matrix (and hence for the correla-
tion matrix) can be interpreted in the following way. A distri-
bution of visibilities following a covariance matrix with roughly
equal off-diagonal elements implies that all the antennas in the
interferometer should have similar sensitivities, and thebase-
lines related to each one of them should cover the full range
of distances in Fourier space. If these conditions are fulfilled, it
is always possible to remove any bias in the antenna gains, and
produce a set of visibilities with a roughly equal covariance be-
tween them. If, for instance, the gain at one antenna was biased,
the visibilities of the baselines of all the other antennas would
have different amplitudes in similar regions of the Fourier space,
hence allowing us to correct for that bias by means of amplitude
self-calibration. However, if the array was sparse, there might
be antenna-related amplitude biases affecting visibilities at dis-
joint regions of Fourier space, thus preventing the correction for
these biases usingcloseby measurements from baselines of other
antennas. Interferometers with a sparse distribution of elements
may thus produce sets of visibilities with different covariances
(stronger at closer regions in Fourier space), thus making it dif-
ficult to estimateθM correctly (unless in the very unlikely cases
when thewhole matrix F is known!). This is the case of the
NRAO Very Long Baseline Array (VLBA), where the antennas
at Mauna Kea and St. Croix only appear in the longest baselines;
lower visibility amplitudes at these baselines could be thus re-
lated to biased antenna gains, instead of source structure.

The new interferometric arrays, made of many similar ele-
ments with a smooth spatial distribution (as ALMA or the SKA)
almost fulfill the condition of homogeneous Fourier coverage
described here (i.e., there are almost no antennas exclusively ap-
pearing at long or short baselines), and are hence very robust for
the over-resolution of compact sources well below their diffrac-
tion limits.

Equation 5 allows us to estimate the value ofθM from a given
distribution of baseline lengths,q j, and for a given SNR in the
weighted visibility average. Let us now assume that we have a
very large number of visibilities and the sampling of baseline
lengths,q j, is quasi-continuous. We then have

∫ Q

0
n(q) (1−

1
〈V〉

Vm(S , q θM))2 dq =
λc

2(SNR)2
, (6)
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Fig. 2. Minimum detectable size of a source (in units of the FWHM of
the synthesized beam) as a function of the source model (for a constant
density of baseline lengths).

wheren(q) is the (normalized) density of visibilities at a distance
q in Fourier space andQ is the maximum baseline length of the
interferometer. Usually,n(q) is large for small values ofq and
decreases with increasingq (i.e., the number of short baselines
is usually larger than the number of long baselines)2. The effect
of n(q) on θM is such that an interferometer with a large num-
ber of long baselines has a higher over-resolution power than
another interferometer with a lower number of long baselines,
even if the maximum baseline length,Q, is the same for both in-
terferometers. The over-resolution power can also be increased
if we decrease the right-hand sides of Eqs. 5 and 6. This can
be achieved by increasing the sensitivity of the antennas and/or
the observing time,even if the maximum baseline length is un-
changed.

We show in Fig. 2 the value ofθM (in units of the FWHM
of the synthesized beam) corresponding to different array sensi-
tivities (i.e., different SNR in the visibility average) and source
models (i.e., Gaussian, uniform-disk, sphere, and ring). He have
used a baseline-length distribution with constant density(a con-
stantn(q)). In all cases, the over-resolution power of the interfer-
ometer can be very well approximated by the following expres-
sion

θM = β

(

λc

2(SNR)2

)1/4

× FWHM, (7)

whereβ slightly depends on the shape ofn(q) and the intensity
profile of the source model. It usually takes values in the range
0.5–1.0 (it is larger for steepern(q) and/or for source intensity
profiles with higher intensities at smaller scales). This equation
is very similar to Eq. A.9 in Lobanov (2005), although we no-
tice that in the more general case,θM should be solved directly
from Eq. 5 (or even from Eq. 3, if the array was sparse and/or
the covariance matrix was far from homogeneous or diagonal).
We notice thatθM in Fig. 2 can be interpreted in two different
ways; either as the maximum possible size of a source that gen-
erates visibilities compatible with a point-like source oras the
true minimum size of a source that can still be resolved by the in-
terferometer. Any of these two (equivalent) interpretations ofθM
lead us to the conclusion that an interferometer is capable of re-
solving structures well below the mere diffraction limit achieved
in the aperture synthesis.

2 This statement may not hold in special cases where the array con-
sists of a few distant compact subarrays, whose elements are considered
as independent parts of the interferometer.

In the cases of ultra-sensitive interferometric arrays like the
SKA, where dynamic ranges of even 106 will be eventually
achieved in the images, the over-resolution power in observa-
tions of strong and compact sources can be very large. As an
example, a dedicated observation with the SKA (let us assume
200 antennas) during one hour (with an integration time of 2
seconds), and an SNR of 100 for each visibility, results in a min-
imum resolvable size of only∼2× 10−3 times the FWHM of the
synthesized beam (Eq. 7). As a result, and depending on the ob-
serving frequency, the over-resolution power of the SKA would
allow us to study details of sources at angular scales down toa
few µas. This is, indeed, a resolution higher than the diffraction
limit achieved with the current VLBI arrays (i.e., using much
longer baselines).

4. Summary

We have reviewed the effects of source compactness in inter-
ferometric observations. The analysis of visibilities in Fourier
space allows us to estimate sizes of very compact sources (much
smaller than the diffraction limit achieved in the aperture synthe-
sis). As the sensitivity of the interferometer increases, the mini-
mum size of the sources that can still be resolved decreases (i.e.,
the over-resolution power of the interferometer increases). In
this sense, the analysis of observations of very compact sources
in Fourier space is more reliable (and robust) than alternative
analyses based on synthesized images of the sky intensity dis-
tribution (and affected by beam gridding, deconvolution biases,
etc.).

We study the case of extremely compact sources observed
with an intereferometer of finite sensitivity. If the sourceis such
compact and/or weak that it is not possible to detect structure in
the visibilities, we describe a test of hypothesis to set a strong
upper limit to the size of the source. We also compute the min-
imum possible size of a source whose structure can still be re-
solved by an interferometer (i.e., the maximum theoreticalover-
resolution power of an interferometer, computed from Eq. 5 and
approximated in Eq. 7). The over-resolution power depends on
the number of visibilities, the array sensitivity, and the spatial
distribution of the baselines, and increases if 1) the number of
long baselines increases (i.e., not necessarily themaximum base-
line length, but only thenumber of long baselines relative to
the number of short baselines); 2) the observing time increases;
and/or 3) the array sensitivity increases.
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