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Nonadiabatic rectification and current reversal in electron pumps
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Pumping of electrons through nanoscale devices is one of the fascinating achievements in the field of
nanoscience with a wide range of applications. To optimize the performance of pumps, operating them at high
frequencies is mandatory. We consider the influence of fast periodic driving on the average charge transferred
through a quantum dot. We show that it is possible to reverse the average current by sweeping the driving
frequency only. In connection with this, we observe a rectification of the average current for high frequencies.
Since both effects are very robust, as corroborated by analytical results for harmonic driving, they offer a new
way of controlling electron pumps.
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I. INTRODUCTION

The possibility to pump charges or spins through nanoscale
devices despite the absence of a bias voltage,1,2 shows the
intriguing potential of driven nanodevices. It has consequently
led to an increasing interest in such systems over the past
decades. This interest was partly driven by the prospect
of achieving single-electron pumping and thus creating a
unique nanoscale single-electron source. However, it was
soon realized that electron pumps may also help to close
the metrological triangle, because they provide a connection
between frequency and current.3,4 These developments were
substantially aided by the rapid experimental and technological
progress in controlling and fabricating nanoscale devices.
In particular, it recently became possible to realize charge
pumping in the GHz regime,5–8 which leads to a significant
increase of the pumped current.

The adiabatic limit of charge pumping, where the driving
frequency � is much smaller than the typical charging/
discharging rate �, is very well understood.9 In this case, one
can resort to well-established time-independent formalisms
to describe the electron transport.9–13 The opposite limit of
very fast pumping has also been studied;14,15 to a large extent
in the context of photon-assisted tunneling.16–18 However,
the borderland between these limits is lacking a comparably
systematic understanding. Here, one is faced with an inherently
nonequilibrium problem, while due to the similar time-
scales a perturbative description is not possible. To address
this problem, numerical calculations in the time-domain19,20

or methods based on Floquet theory have typically been
used.21–25 Only recently, within the diagrammatic real-time
transport theory, has a summation to all orders in � in the limit
of weak tunnel-coupling and moderate pumping frequencies
been achieved,13 revealing interesting nonadiabatic effects for
spin and charge pumping. Additionally, in particular for low
temperatures, electron-electron interactions become important
and can influence the pumping behavior.26

In this article we demonstrate the drastic consequences of
nonadiabatic driving for the pumped charge per period by
showing that it is possible to reverse the average current
just by sweeping the driving frequency. Such current reversals

have been seen in multilevel systems,22,23 where they are due
resonance effects and as such are sensitive to the respective
couplings and energies. Here the reversal is observed for
a simple and generic system. Since it does not rely on
interference effects and or any particular driving scheme,
the effect is very robust and thus likely to be realized
experimentally. Moreover, the underlying mechanisms of both
the reversal effect and the associated effect of nonadiabatic
rectification of the pumped current for high frequencies, can
be understood in full detail.

II. MODEL AND METHODS

The electron pump is realized using a quantum dot (QD),
which is coupled via tunnel barriers to a left (L) and
a right (R) contact. These are connected to larger elec-
tron reservoirs. The total Hamiltonian is H = Hdot + Hres +
Htun, where the first term describes the QD itself, Hdot =
ε(t)ĉ†ĉ, the second term characterizes the attached contacts,
Hres = ∑

α∈L,R

∑
ks εαkb̂

†
αkb̂αk , and the third term accounts

for the tunnel coupling between QD and contacts, Htun =∑
αk Tαk(t)b̂†αkĉ + H.c. Here, ĉ† and b̂

†
αk create an electron

in the QD state and in the reservoir state αk, respectively. The
transport through the QD is mainly characterized by the tun-
neling rate �α(t) = 2π

∑
k |Tαk(t)|2δ(ε − εαk), which is given

in terms of the time-dependent tunneling amplitudes Tαk(t). In
order to calculate the pumped charge per period, we use the
framework of nonequilibrium Green functions (NEGFs)27,28

in conjunction with an auxiliary mode expansion.29 This
method is very flexible and allows for treating arbitrary
time-dependencies of the parameters entering the Hamiltonian.

Specifically, we use the following time dependence for the
QD level and the couplings to the reservoirs:

ε(t) = ε0 + ε1 cos(�t), (1a)

�α(t) = �0
α exp [ηα cos(�t − δα)] . (1b)

This choice reflects the experimental situation of modulated
voltages, which will in general lead to an exponential de-
pendence of the tunnel couplings on this modulation.7,8 The
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FIG. 1. (Color online) Schematic representation of the pumping
device: The level ε and the couplings �L,R to left and right reservoir
oscillate in time, inducing periodic charging and discharging. Time
dependence of ε (black line, left axis) and �L,R (red and blue lines,
right axis) according to Eqs. (1) for a phase delay of δ = 3π/4.

dimensionless parameter η quantifies the dynamic range of
the couplings within one cycle. The value η = 6 used below, is
motivated by estimates for experimental electron pumps.7 The
most important aspect of Eq. (1b) is, however, the inclusion
of the phase shifts δα allowing for an offset of the oscillations
with respect to each other. For δL = −δR = ±π/2 the left
and the right coupling are maximally out-of-phase when the
energy level crosses the Fermi levels of the reservoirs, which
yields an optimal turnstile operation.30 In the following, as in
earlier work,7 we use δL ≡ δ and δR = 0. This corresponds to
a single-gate modulation setup. In Fig. 1 the time dependence
of ε and �α is shown for a specific delay of δ = 3π/4.

The time-dependent driving (1) induces currents JL and
JR from the left and the right reservoir, respectively. The net
charge, pumped from the left to the right reservoir within one
period τ ≡ 2π/�, can be obtained by the integral

Q = 1

2

∫ τ

0
dt ′[JL(t ′) − JR(t ′)]. (2)

In numerical calculations, the respective equations are propa-
gated until the charge per period converges.

Additionally, we analyze the pumping using a simple rate-
equation description of the electron transport. As we will show,
this description is sufficient to reveal the basic mechanisms
behind both effects. The currents JL,R and the dot occupation
n are given by the following equations7:

JL,R(t) = �L,R(t) [f (ε(t)) − n(t)] , (3a)

∂tn(t) = JL(t) + JR(t), (3b)

with f (ε) the Fermi distribution function describing the
occupation in the reservoirs.

The rate-equation approach is valid for weak couplings
�L,R � kBT and large oscillation amplitudes ε1 � kBT as has
been discussed (and termed semiclassical approximation) in a
different context before.31 Note that in our case the couplings
�L,R and the quantum-dot level ε oscillate with the same
frequency.

III. RESULTS AND DISCUSSION

Figure 2 shows the numerical NEGF results for the pumped
charge Q as a function of frequency � and phase shift δ. For
very low frequencies, � � �, one finds the expected behavior
of Q in dependence on δ: For negative shifts the pumped
charge is negative, while for positive shifts it is positive,
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FIG. 2. (Color online) Pumped charge Q per period according
to Eq. (2) as a function of frequency � and phase shift δ obtained
from an NEGF calculation. The parameters defining the driving and
the reservoirs are as follows: ε0 = 0, ε1 = 20�, ηL,R = 6, �0

L,R =
�e−ηα /2, μL,R = 0, and kBT = �/10.

which is known as peristaltic pumping.9 In striking contrast,
one observes for higher frequencies (� � 10−2�) that the
net current always flows in one direction. This implies for
a negative phase delay (δ ≈ −3π/4) that by sweeping the
driving frequency one can change the sign of the pumped
current per period or, in other words, reverse the direction of
the average current. These effects—rectification and current
reversal—are the central result of this article.

We have verified numerically that the pumped charge
obtained within the rate-equation model (3) agrees very well
with the NEGF result as can be seen in Fig. 3, which shows the
current reversal in panel a (Q vs frequency for δ = −3π/4) and
the rectification in panel b (Q vs phase shift for � = �/10).
Thus we can analyze the time evolution by means of the simple
rate equations (3).

A. Fourier analysis

In order to get a better understanding of this surprising
behavior, it is instructive to examine the temporal evolution
of the currents for slow and fast drivings, respectively. This is
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FIG. 3. (Color online) Pumped charge per period Q for the same
parameters as in Fig. 2. NEGF (black lines) and rate-equation (broken
orange) results are indistinguishable. a) Current reversal for the phase
shift δ = −3π/4. b) Current rectification for the driving frequency
� = �/10. Parameters for which the time evolution is shown in Fig. 4
are marked by black points. Result for the harmonic model [Eq. (12)
with �0 = �1 = �/20] are shown as indigo/long-dashed line.
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most conveniently done using a Fourier analysis. By means of
the definition (2) and the equation of motion (3) the pumped
charge per period reads

Q = 1

2

∫ τ

0
dt ′ �(−)(t ′)[f (ε(t ′)) − n(t ′)]. (4)

It is given in terms of the difference of the tunnel couplings
�(−), which is defined (along with the corresponding sum �(+)

which will be used later) as follows:

�(±)(t) ≡ �L(t) ± �R(t) =
∑
m

�(±)
m eim�t . (5)

Here, �(±)
m = �0

LIm(ηL)eimδπ ± �0
RIm(ηR) with Im being the

modified Bessel function of the first kind of order m.
The last expression is the Fourier series of the tunneling-
rate sum/difference. Analogously, the occupation n(t) =∑

m nmeim�t and the Fermi function of the time-dependent
level f (ε(t)) = ∑

m fmeim�t can be expanded in a Fourier
series. For sufficiently low temperatures, kBT � ε1, we can
replace the Fermi function by the step function f (ε(t)) = �( −
ε(t)) and get fm ≡ �m with �0 = 1/2, �m = (−1)(m+1)/2/mπ

for odd m, and �m = 0 for even m �= 0.
Plugging these series into Eqs. (3) yields an algebraic

equation for the Fourier coefficients of the occupation, which
reads in matrix-vector notation

i�D · n = G · [� − n] , (6)

with the time-derivative operator Dkm ≡ k δmk and the cou-
pling matrix Gkm ≡ �

(+)
k−m. The components of the vectors

� and n are given by the Fourier coefficients introduced
above. Additionally, for notational convenience, we will use
the vector �̄

(±) whose components are reversed, �̄(±)
m ≡ �

(±)
−m.

It is important to notice, that neither D nor G contain the
frequency �. This allows for a straightforward expansion in
powers of �, as we will show below. For the charge Q in
Eq. (4) one needs � − n, which can be easily obtained from
Eq. (6) yielding

Q = π

�
�̄

(−)· [� − n] , (7a)

� − n =
[
D − i

�
G

]−1

D�. (7b)

Note that this expression only depends on given quantities,
which are either external parameters (like �̄

(−) or �) or
trivial matrices (like D). With this formulation one can derive
intuitive expressions for low- and high-frequency pumping. In
order to invert the matrix in Eq. (7b) we split the matrixG/� =
G0 + G1 into a diagonal and an off-diagonal component

(G0)km ≡ δkmGkm/� = δkm�0/�, (8a)

(G1)km ≡ (1 − δkm)Gkm/�, (8b)

where we have used in Eq. (8a) that all elements of the
diagonal Gkk = I0(ηL) + I0(ηR) ≡ �0. With the two contri-
butions in Eqs. (8) one can rewrite Eq. (7b) in terms of the

expansion

� − n =
∞∑

k=0

Kk D �, (9a)

Kk ≡ (D−iG0)−1 [G1 (D−iG0)−1]k, (9b)

whereD−iG0 can be easily inverted since it is diagonal. Equa-
tions (9) have a very intuitive interpretation. The Fourier vector
D� describes alternating “δ-kicks” at times �tj = (j+1/2)π .
The expansion in terms of Kk accounts for the response of the
system to these kicks, which is mainly characterized by the
ratio �0/�. The first term K0 = (D−iG0)−1 in the sum is
diagonal and given as

(K0)mm = m + i�0/�

m2+(�0/�)2
. (10)

The Lorentzian decay in the index m accounts for the
exponential charging or discharging of the quantum dot. It
is interesting to consider the following limits:

�0/� � 1 : K0 = i
�

�0
I +

(
�

�0

)2

D + · · · , (11a)

�0/� � 1 : K0 = D̃−1 + i
�0

�
D̃−2 + · · · (11b)

with D̃kk ≡ Dkk for k �= 0 and D̃00 ≡ −i�0/�, which replaces
D to enable the matrix inversion.

B. Time evolution for slow and fast driving

In order to investigate the different limits in Eq. (11) we
show in Fig. 4 the time evolution within one period of the
occupation n(t) and the transferred charge (upper row), as
well as the currents JL(t) and JR(t) (lower row) obtained from
Eqs. (3). Note that the figure shows the time evolution in units
of �−1, which is 103 times larger in Fig. 4(a) compared to
Figs. 4(b) and 4(c), respectively. In absolute times the intervals
when current flows are similar for � = 10−4 and � = 10−1.
However, in units of �−1 the interval for the lower frequencies
is much shorter than the driving period τ .

In the adiabatic limit (�/� → 0) given by Eq. (11a), all
matrix elements ofK0 are identical. This implies that � − n ∝
D�, i.e., the “δ-kicks” of the driving mentioned before also
occur in the response of the system. In other words, the electron
in- or outflow is much faster than the external period. Indeed
this can be seen in the lower panel of Fig. 4(a), which shows
that the current flows mainly at the instants of time tj when
the level energy crosses the Fermi level of the reservoirs.
Therefore, Q in Eq. (4) is determined by the couplings at those
specific times �(−)(tj ). For negative phase shifts −π < δ < 0,
as shown in Fig. 4(a), it is �(−) < 0 for the charging at
�t0 = π/2 and �(−) > 0 for the discharging at �t1 = 3π/2. The
opposite applies for positive shifts 0 < δ < +π . As mentioned
before, the pumping is “peristaltic”.9 The simple relation of
Q and the coupling differences �(−)(t0) and �(−)(t1) explains
that the maximal charge Q is obtained for δ = ±π/2 and that
it vanishes for δ = 0, ± π . Because of the prefactor in Eq. (4),
Q becomes independent of � in the adiabatic case and the first
nonadiabatic correction is proportional to �.
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FIG. 4. (Color online) Time evolution within one period τ = 2π/� for three different parameters sets (�,δ). Note that the time is given
in units of �−1, which implies that absolute times in column a) are by a factor of 103 larger than in columns b) and c). Lower row: Currents
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dt ′(JL(t ′) − JR(t ′))/2 with its scale on the right side. The gray area indicates the time span when the dot is charged, i.e., ε(t) < 0. Red/blue
arrows mark the times when left/right couplings are maximal.

On the other hand, in the fast driving limit (�/� → ∞)
given by Eq. (11b), we get � − n ∝ � + const and the
occupation n(t) is constant. Because of Eq. (4) there is no
transfer in this limit and Q ∝ �−1. In between these two
extrema the time scale of the exponential decay is comparable
to the period τ of the external driving. Thus the integral in
Eq. (4) “considers” �(−)(t) over the whole period, not just at
particular instants of time as in the adiabatic case. In the lower
panels of Figs. 4(b) and 4(c) the resulting time-dependence of
the currents can be seen for δ = ±3π/4 and � = �/10. This
explains why the net current flows in the same direction as
long as the peak of the left coupling occurs during charging
of the dot, which is fulfilled for |δ| > π/2. This time-interval
is indicated by the gray areas in Fig. 4. For δ = −3π/4 (or
equivalently δ = +5π/4, cf. Fig. 4(b)) the charging occurs
in the second half of the charging period, for δ = +3π/4
[Fig. 4(c)] in the first half. Thus, in both cases the dot is
charged from the left and discharged to right since the right
coupling �R is locked to the oscillating level ε. This explains
the observed rectification effect.

By means of this interpretation one expects a current
reversal for phase delays −π < δ < −π/2. For these delays
it is �(−)(t0) < 0, relevant for small �, but

∫ t1
t0

dt ′ �(−)(t ′) > 0,
relevant for large �, and the charging occurs either form
the right or the left. Correspondingly, it is �(−)(t1) > 0 and∫ t2
t1

dt ′ �(−)(t ′) < 0 and the dot is discharged to the opposite
direction. Figure 2 indeed shows this behavior in the predicted
range of phase delays δ.

Thus we conclude that the reversal occurs when the current
changes its behavior from being dominated by the couplings at
the instants of time at which the oscillating level ε crosses the
Fermi level of the contacts (adiabatic limit) to being defined
by the couplings during the periods of time in which ε is
below or above the Fermi level (nonadiabatic limit). In order
to estimate the reversal frequency �∗ at which this transition
occurs, we compare � with the couplings �L,R at the crossing

times �t0 =π/2 and �t1 = 3π/2. If � is significantly smaller
than these couplings the behavior is adiabatic, since the dot is
loaded or unloaded in a small fraction of the driving period τ .
In the opposite limit the behavior is nonadiabatic. Notice that
this crossover may occur at different frequencies for charging
and decharging.

Due to the dependence of �L on the delay δ, the reversal
frequency �∗ also depends on δ. We will estimate its value
for δ = −3π/4, the case shown in Fig. 3(a). According to
Eq. (1b) the relevant couplings are �R(t0) = (�/2) exp(−η) ≈
10−2.9� and �L(t1) = (�/2) exp((1/

√
2−1)η) ≈ 10−1.1� with

�L(t0) � �R(t0) and �R(t1) ��L(t1). Indeed we find different
reversal frequencies and use as an upper estimate �∗ �
[�R(t0)�L(t1)]1/2. For the parameters used in the numerical
calculations one obtains �∗ � 10−2�, which is a good esti-
mate for the numerical value �∗ ≈ 10−2.4� seen in Fig. 3(a).

We would like to stress that the apparent reversal frequency
�∗ and the frequency range over which the pumped current is
reversed depend on the time dependence of the couplings, in
particular on the dynamic-range parameter η. For smaller η the
reversal frequency decreases and the frequency range shrinks.

C. Harmonic driving

To show that the current reversal is not specific to our
driving scheme, we turn to the case of purely harmonic
driving, i.e., �(t) = �0 + �1 cos(�t−δ). More importantly,
the basic mechanism of the current reversal can be understood
analytically in this case. Harmonic driving at a frequency �

is characterized by having three Fourier components �L =
{�1e+iδ,�0,�1e−iδ} and �R = {�1,�0,�1}, where �0 > �1

guarantees positive couplings and δ is the time shift of the left
and right coupling. If the calculation in Eq. (9a) is restricted
to K0, only three Fourier components of the step function
are needed, which are � = {−1/π,1/2, − 1/π}. Using these

035330-4



NONADIABATIC RECTIFICATION AND CURRENT . . . PHYSICAL REVIEW B 86, 035330 (2012)

expressions in Eqs. (7)–(10) one gets

Q = �1

�0
2+�2

[� (1− cos δ) + �0 sin δ] . (12)

This simple expression contains all the basic features for
periodic pumping including the current reversal. Moreover,
it allows us to analyze the respective regimes in detail.

For � � �0 (adiabatic limit) one obtains from Eq. (12)
Q = (�1/�0) sin δ. As discussed earlier, the sign of Q depends
on the order of the “door openings”. Optimal transfer is
attained for �1 = �0. In the opposite limit, � � �0, one finds
Q = (�1/�)(1− cos δ). Most interestingly and in contrast to
the adiabatic case, in this limit the sign of Q is independent
of the phase shift δ, which is the nonadiabatic rectification
effect. Consequently, for δ < 0 one gets negative Q in the
adiabatic and positive Q in the nonadiabatic limit: the average
current can be reversed by tuning the driving frequency.
These findings are confirmed by Fig. 3, where we compare the
harmonic driving to the scenario considered initially [Eqs. (1)].
Qualitatively, the behavior of Q is quite similar in both cases,
which underlines the robustness of the discussed effects.

Finally, the simple expression (12) is also in qualitative
agreement with the time-dependent behavior for the
driving scheme discussed in detail in Sec. III B. A current
reversal is expected for −π <δ < −π/2 since for these
delays 1− cos δ > 1 and sin δ < 0. According to Eq. (12)
the reversal occurs for δ = −3π/4 at the frequency

�∗ = (
√

2−1)�0 ≈ 10−1.7�, which is in good agreement
with the result shown in Fig. 3(a).

IV. SUMMARY

In summary, we have studied the influence of non-adiabatic
driving on the charge pumping through a quantum dot in
the Coulomb-blockade regime. Our numerical calculations,
based on a NEGF method, showed that the average pumped
current can be reversed by sweeping the driving frequency. The
origin of this effect was found to be the qualitatively different
response to slow and fast driving, rendering the difference
of the left and right tunneling rates matter only at specific
instants of time (adiabatic case) or during a time-interval
(nonadiabatic case). By means of a description with rate
equations, we derived for the case of harmonic driving an
analytical expression for the transferred charge per cycle,
which confirms our analysis. Furthermore this shows that the
observed effects are generic and quite robust with respect to
the specific form of the external driving. Therefore they could
be useful for realizing frequency filters or frequency-selected
switches.
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