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Abstract—In the supervisory control theory, a supervisor is
generated based on given plant and specification models. The
supervisor restricts the plant in order to fulfill the specifications.
A problem that is typically encountered in industrial appli cations
is that the resulting supervisor is not easily comprehensible for
the users. To tackle this problem, we previously introducedan
efficient method to characterize a supervisor by logic conditions,
referred to as guards, generated from the models. The guards
express under which conditions an event is allowed to occur to
fulfill the specifications. By exploiting the structure of the given
models, some techniques were introduced to simplify the guards
and make them tractable. In order to be able to handle complex
systems efficiently, the models are symbolically represented by
binary decision diagrams and thus all computations are performed
symbolically as well. As a consequence, the size of the guards
becomes very sensitive to the variable ordering in the BDDs.In
this paper, by using genetic algorithms, we aim to find the optimal
variable ordering for the BDDs that yields the most compact
guard. The approach has been implemented in a supervisory
control tool and applied to an academic example example.

Index Terms—Supervisory control theory, deterministic finite
automata, symbolic representation, binary decision diagrams,
propositional formula, genetic algorithms.

I. I NTRODUCTION

When designing control functions for discrete event systems, a
model-based approach may be used to conveniently understand
the system’s behavior, easily apply different modifications,
and decrease the testing and debugging time. A well known
example of such a model-based approach is, supervisory
control theory (SCT) [1]. Having a plant (the system to be
controlled) and a specification, SCT automatically synthesizes
a control function, calledsupervisor, that restricts the conduct
of the plant to ensure that the system never violates the given
specification. SCT has various applications in different areas
such as automated manufacturing and embedded systems, e.g.,
[2]–[4].

Generally, a supervisor is a function that, given a set of
events, restricts the plant to execute some events towards the
specification. A typical issue is how to realize such a control
function efficiently and represent it lucidly for the users.A
standard approach is to first synthesize the supervisor and
then explicitly represent all the states that are allowed tobe
reached in the closed-loop system. However, such an approach
has some drawbacks. For instance, a supervisor with a huge
number of states may require more memory than available.
Furthermore, from a user perspective, such supervisors arenot

tractable. More specifically, the users retrieve the final super-
visor as a black box, without clearly understanding why some
events become disabled after synthesis. Finally, for complex
systems, exploring all reachable states while synthesizing the
supervisor is computationally expensive, due to the state-space
explosion problem.

An alternative approach is to represent the supervisor sym-
bolically using binary decision diagrams (BDDs) [5]; use-
ful data structures (directed acyclic graphs) for representing
Boolean functions. BDDs can be used to compactly and
effectively represent a huge state space [2], [6], [7]. Even
if the number of states is large, the number of nodes in its
corresponding BDD can be relatively manageable. In [6] a
supervisor is synthesized in a few minutes for a transfer line
example with more than10200 states. This is possible due
to a special partitioning of the involved BDDs. Nevertheless,
since this approach reformulates and encodes the system’s
original model, it is cumbersome for the users to understand
the resulting supervisor. It is more convenient and naturalto
represent the supervisor in a form similar to the models that
were fed into the synthesis initially.

By considering the theoretical description of a supervisor,
it can be represented as a function that restricts the execution
of events in the plant in order to satisfy the specification.
These restrictions can be expressed as logic conditions in
form of propositional formulae extracted from the states of
the supervisor. We refer to such logic conditions asguards.
Intuitively, guards can be comprehended easily. However, in
some cases the guards could become large and intractable.
To tackle this problem, it is possible to minimize the guard
expressions using standard minimization methods of Boolean
functions such as Quine-McCluskey [8]; but such methods are
inefficient for large systems, where a more attractive approach
is to perform an approximate minimization in a symbolic
manner using BDDs.

There are a number of papers which have tackled the above-
mentioned issues. In [9], an implementation of decentralized
supervisory control is presented. This is performed “by embed-
ding the control map in the plant’s local Finite State Machines
and employing private sets of Boolean variables to encode
the control information for each component supervisor” [9].
Although this process will assist the simplicity and clearness
of the supervisors, the main focus is to solve the problem
of decentralized communicating controllers and not much
attention is paid on how to reduce the final Boolean formulae
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for more complex systems.
Another class of approaches for supervisory synthesis, based

on linear algebraic representation of Petri net models of the
plants, has been presented in [10]–[13]. In these methods, the
specifications are added to the plants in the form of linear
predicates, which can be considered as constraint conditions.
The resulting controller can also be formulated in a similar
way as suggested in this paper. However, each approach has
some restrictions. The non-blocking problem is not considered
in [10]. In addition, in order to employ this approach, the
system should satisfy a particular structural condition: the
uncontrollable subnet extracted from the Petri net model must
be loop free. In [11] the liveness problem is considered but
only for controlled marked graphs. The approach proposed
in [12] is applicable if the supervisory net has a convex
reachability set. The focus is mainly on efficient automatic
verification. In [13] the request for a minimally restrictive
supervisor is abandoned, in favor of a more easily computed
but also more restrictive control function.

In [14], the supervisor is represented as a set of control
functions expressed by BDDs, which is relatively close to
our approach. Each control function is connected to an event,
which specifies when the event is allowed to be executed
in order to satisfy the specifications. The system is modeled
by hierarchal models called state tree structures. However, as
stated earlier, for users not familiar with BDDs, having the
supervisor as a number of BDDs would be hard to understand.
Even for users familiar with BDDs, the tree-structured models
typically become comprehensible for systems where the plants
and specifications consist of a limited number of states.
Otherwise, it would be complicated for the users to relate the
BDD-variables to the state trees. Furthermore, it is possible to
obtain simpler conditions in terms of guards by utilizing the
structures of the original models. Besides, the major focusin
[14] is to design a nonblocking supervisor for huge systems,
rather than generating comprehensible guards added to the
original automata for characterizing the supervisor.

Andersson et al. in [4] propose an algorithm for manufactur-
ing cell controllers to extract the relations between the desired
operations in the cell from the supervisor. The main advantage
of these relations is to give an easy-to-read representation
of the control function, and make the method usable in an
industrial setting. However, their approach can merely be
applied to models with a special structure and the method
is not suitable for large systems. The problem formulation
tackled in our paper is inspired from [4].

Previously, in [15] we presented an approach to characterize
a supervisor by a set of reduced and tractable guards, which are
generated based on states of the original plant and specification
models. The guards can then be attached to the original models
and restrict the plants’ behavior. To obtain more simplified
guards, a set of don’t-care states were exploited and some
heuristic techniques were applied, which were shown to be
crucial in the reduction of the generated guards. To tackle
large and complicated problems, all computations are based
on BDDs. The work in [15] has some main features. The final
representation, i.e., the guards, will preserve all the properties
of the supervisor. The method is applicable to any system and

no structural conditions are required. The supervisor is repre-
sented by a set of guards, that are understandable for the users,
rather than other data structures such as BDDs. In addition,
the guards can be easily implemented in a programmable logic
controller.

This work is a continuation of [15]. In [15] since the guards
are directly generated from the BDDs, the size of the guards is
significantly sensitive to the variables ordering of the BDDs.
In this paper, by using genetic algorithms, we aim to find
the optimal variable ordering for the BDDs that yields the
most compact guard. Usually, more compact guards are more
comprehensible for the users. We have applied the method
to an example representing a real car manufacturing cell and
compared the results with the results of [15].

This paper is organized as follows: Section II provides
some preliminaries including extended finite automata and
binary decision diagrams, which are the fundamental concepts
in our work. Supervisory control theory is briefly described
in Section III. In Section IV, we show how the guards are
generated and how they can be used to represent the supervisor
modularly by the original EFAs. Section V explains how the
computed guards can be reduced using genetic algorithms. The
whole process is applied to a case study in Section VI. Finally,
Section VII provides some conclusions and suggestions for
future work.

II. PRELIMINARIES

This section provides some preliminaries that are used
throughout this paper.

A. Extended Finite Automata

The modeling formalism used in this work isExtended
Finite Automaton (EFA) [16], which is an augmentation of
an ordinary finite automaton with discrete variables.

Definition II.1 (Extended Finite Automaton).
An extended finite-state automatonE is a 6-tuple

E = (L, D, Σ,→, L0, D0, Lm, Dm),

where

- L is a finite set of locations,
- D = D1 × . . . × Dn is the domain ofn variablesV =
{v1, . . . , vn}, whereDi ⊆ Z,

- Σ is a nonempty finite set of events,
- →⊆ L × Σ × G ×A× L is the transition relation,
- L0 ⊆ L is the set of initial locations,
- D0 = D0

1 × . . . × D0
n is the set of initial values of the

variables,
- Lm ⊆ L is the set of marked locations that are desired

to be reached, and
- Dm is the marked valuations of the variables,

where G and A is sets of constraining expressions, called
guards, and updating functions, calledactions, respectively.

The guards and actions are associated to the transitions of the
automaton. A transition in an EFA is executed if and only
if its corresponding event occurs and its corresponding guard
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becomes satisfied, which may follow by updates of a set of
variables.

In the EFA framework, an arithmetic expressionϕ is formed
according to the grammar

ϕ ::= ω | v | (ϕ) | ϕ + ϕ | ϕ − ϕ | ϕ ∗ ϕ | ϕ/ϕ | ϕ%ϕ,

wherev ∈ V andω ∈
⋃n

i=1
Di. We denote anevaluation by

µ ∈ D, meaning that a value is assigned to each variable.
A guard g ∈ G is a propositional expression formed

according to the grammar

g ::= ϕ < ϕ | ϕ ≤ ϕ | ϕ > ϕ | ϕ ≥ ϕ | ϕ == ϕ |

(g) | g ∧ g | g ∨ g | ⊤ | ⊥,

where ⊤ and ⊥ represent boolean logictrue and false,
respectively. All nonzero values are considered as⊤. The
semantics of a guardg is specified by asatisfaction relation
|=, the evaluationµ for which of guardg is ⊤; written µ |= g.

An action a ∈ A is an n-tuple of functions(a1, . . . , an),
updating variables. An action functionai : D → Di is formed
asvi := ϕ. For brevity, we use the following notation:

a(µ) , (a1(µ), . . . , an(µ)).

An action functionai that does not update variablevi is
denoted byξ. The symbolΞ is used to denote ann-tuple
(ξ, ξ, . . . , ξ), indicating that no variable is updated. The se-
mantics of an action function can also be represented by a
relation,

SATA(a) , {(µ, µ́) | µ́ = a(µ)}. (1)

For modeling purposes, it is often easier to have a modular
representation, specially for complex systems. Then, to have
a monolithic model of the system we need to compose the
multiple EFAs in the model. The composition is performed
by the full synchronous composition operator, denoted by‖,
described in [16].

The semantics of an EFA can be represented by its cor-
respondingtransition system that is based on the states, i.e.,
locations and variable values, of the model. In the following
definition we use theSOS-notation (Structured Operational
Semantics). The notationpremise

conclusion should be read as: if the
proposition above the “solid line” (premise) holds, then the
proposition under the fraction bar (conclusion) holds as well.

Definition II.2 (Transition System).
Let E = (L, D, Σ,→, L0, D0, Lm, Dm) be an EFA. Its
corresponding explicit state transition relation, denoted by
TS(E) = (Q, Σ, 7→, Q0, Qm), is a 5-tuple where

- Q = L × D, is the finite set of states,
- Σ, is the set of events,
- 7→⊆ Q×Σ×Q, is the explicit transition relation defined

by the following rule:

(l, σ, g, a, ĺ) ∈→ ∧ µ |= g
(

(l, µ), σ, (ĺ, a(µ))
)

∈7→
, (2)

- Q0 = L0 × D0, is the set of initial states,
- Qm = Lm × Dm, is set of marked states.

B. Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are powerful data struc-
tures for representing Boolean functions. For large systems
where the number of states grows exponentially, BDDs can im-
prove the efficiency of set and Boolean operations performed
on the state sets [6], [17]–[19].

Given a set ofm Boolean variablesB, a Boolean function
f : B

m → B (B is the set of Boolean values, i.e., 0 and 1)
can be expressed using Shannon’s decomposition [20]. This
decomposition can be expressed by a directed acyclic graph,
called a BDD, which consists of two types of nodes:decision
nodes and terminal nodes. A terminal node can either be0-
terminal or 1-terminal. Each decision node is labeled by a
Boolean variable and has two edges to itslow-child andhigh-
child, corresponding to assigning 0 and 1 to the variable,
respectively. Thesize of a BDD, denoted as|B|, refers to
the number of decision nodes.

The power of BDDs lies in their simplicity and efficiency to
perform binary operations. The time complexity of a binary
operator between two BDDsB1 and B2 is O(|B1| · |B2|).
However, the quantification operators have exponential time
complexity. For a more elaborate and verbose exposition of
BDDs and the implementation of different operators, refer to
[21], [22].

In a BDD graph, a variableb1 has a lower (higher)order
than variableb2 if b1 is closer (further) to the root and is
denoted byb1 ≺ b2 (b2 ≺ b1). The variable ordering will
impact the size of the BDD, however, finding an optimal
variable ordering of a BDD is an NP-complete problem [23].

III. SUPERVISORYCONTROL THEORY

Supervisory Control Theory (SCT) [1], [24] is a general theory
to automatically synthesize a control function, referred to
as supervisor, based on a given plant and specification. A
specification describes the allowed and inhibited behaviors.
The supervisor restricts the conduct of plant to guarantee that
the system never violates the given specification. However,
it is often desired, and also in our work, that the supervisor
restricts the plant as least as possible, referred to asoptimal
or minimally restrictive supervisor. This gives the developers
several alternatives to implement the controller and performing
further analysis such as time or energy optimization.

In the context of SCT, the behavior of a system is usually
represented by its language, i.e. the sets of strings that the
system may generate. Conventionally, automata has been used
as the modeling formalism to generate the language. In this
work, the problems are modeled by EFAs, and the result, i.e.,
the supervisor, is represented by EFAs as well. As mentioned
earlier, we assume that the systems are deterministic, in the
sense that at each moment, the supervisor knows the current
and next state of the system. Therefore, we only consider
deterministic EFAs.

A plant P can be described by the synchronization of a
number of sub-plantsP = P1‖P2‖ . . . ‖Pl, and similarly for
a specificationSp = Sp1‖Sp2‖ . . . ‖Spm. There are different
ways of computing a supervisor such as monolithic [1], modu-
lar [25], and compositional [26] synthesis. In our approachwe
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apply monolithic synthesis, which is performing fixed-point
computations on the single composed automatonS0 = P‖Sp.
After the synthesis procedure, someblocking states may be
identified, which are the states from where no marked state
can be reached. In SCT, the events can be divided into two
disjoint subsets:controllable events, that can be prevented
from executing by the supervisor; anduncontrollable events,
which cannot be influenced by the supervisor [1], [24]. In
addition to the blocking states, the synthesis procedure may
also identify someuncontrollable states, which are states from
where the plant executes an uncontrollable event that violates
the specification. By removing the blocking or controllable
states fromS0, a nonblocking or controllable supervisor is
obtained, respectively. For a more formal description of SCT
refer to [1], [24].

IV. REPRESENTATION OF THESUPERVISOR ASEFAS

The last step is to compute the supervisor represented as EFAs.
This computation is performed in three steps:

1) Compute a BDD representing the safe states.
2) Transform the computed BDD to guard expressions.
3) Attach the guards to the original EFAs.

Initially, the set of the safe states is computed by fixed point
computations based on the synthesis algorithm described in
[6].

In stage 2, based onQsup, we create two sets of states [15]:

• Qσ
a : The set of states in the supervisor where the execu-

tion of σ is defined for the supervisor.
• Qσ

f : The set of states in the supervisor where the execu-
tion of σ is defined forS0, but not for the supervisor.

By utilizing Qσ
a and Qσ

f a guard expression
Gσ(〈qE1 , qE2 , . . . , qEn〉) is generated for each controllable
eventσ ∈ ΣS0

c :

Gσ(〈qE1 , qE2 , . . . , qEn〉) =






true if (〈qE1 , qE2 , . . . , qEn〉) ∈ Qσ
a

false if (〈qE1 , qE2 , . . . , qEn〉) ∈ Qσ
f

don′t − care otherwise

where qEi represents the current state of EFAEi.
Gσ(〈qE1 , qE2 , . . . , qEn〉) evaluates totrue if σ is allowed to
be executed from the state〈qE1 , qE2 , . . . , qEn〉. The size of a
guardG, denoted by|G|, is defined by the number of atomic
equality and nonequality terms in the guard expression.

A. Guard Generation

The guards are computed in the following consequent steps:

• Compute the corresponding BDDs forQσ
a andQσ

f .
• Convert the BDDs to integer decision diagrams.
• Convert the integer decision diagrams to guards.

First, the corresponding BDDs for the state sets are computed.
Next, the BDDs are converted to their correspondinginteger
decision diagrams (IDDs) [7], which will be used to generate
the guards in the last step. An IDD is an extension to a BDD
where the number of terminals is arbitrary and the domain of
the variables in the graph is an arbitrary set of integers. For

our purpose, we use an IDD with two terminals, 0-terminal
and 1-terminal.

To represent a state〈qA1 , qA2 , . . . , qAn〉 in the closed-loop
automatonA1 ‖ . . . ‖ An, each IDD-variable is associated
to an automatonAi that hasQAi as its domain. This domain
can be mapped to an integer that is represented as an IDD.
In other words, each outgoing edge from nodeAi represents
a state inAi. Hence the maximum number of edges from a
nodeAi is |QA

i |. As for BDDs the number of edges and nodes
for an IDD can also be reduced. For simplicity, we use the
names of the states on the IDD-edges rather than integers in
the sequel.

Using IDDs to generate guards has some advantages in
comparison to BDDs: 1) they make it easier to handle and
manipulate propositional formulae; 2) they exploit some ofthe
common subexpressions in a guard yielding a more factorized
and smaller formula; 3) they depict a more understandable
model of the state set, since the nodes and edges represent
names of the automata and states, respectively. On the other
side different manipulations can be carried out more efficiently
on BDDs compared to IDDs. The procedure of converting a
BDD to an IDD is presented in [15].

The last step of obtaining the guard is to convert the
IDDs to propositional formulae. For a given IDD, a top-
down depth first search is used to traverse the graph and
generate its corresponding propositional formula. The al-
gorithm starts from the root and visits the nodes whilst
generating the expression and ends at the 1-terminal.

R

A

B B

1

r

p1 p2

S1 S2

Fig. 1: Recursive represen-
tation of an IDD.

For each node in the IDD, the
corresponding expressions of the
edges belonging to the same level
(the children of that node) are log-
ically disjuncted and if the edges
belong to different levels they are
logically conjuncted. Hence, the
propositional formula for the IDD
in Fig. 1 is

r ∧ ((p1 ∧ S1) ∨ (p2 ∧ S2)),

wherepi is the corresponding expression of the edge that lead
to one ofA’s children andSi is the corresponding expression
from the node to the 1-terminal, that is recursively computed.
A pseudo-algorithm of this process is presented in [15].

B. Guard Attachment

Since qEi ∈ LEi × V , the generated guard will be a
combination ofℓEi = ℓEi

ı (or ℓEi 6= ℓEi
ı ) and vi = vi

 (or
vi 6= vi

) expressions. Each variableℓEi holds the current
location of EFA Ei. However, since they are not defined
in the model, they should be declared and added to the set
of variables in the model. Thus, the variablev is extended
to v+ = (v1, . . . , vn, ℓE1, . . . , ℓEN ). Hence, the transition
function of each automatonEi is extended as follows:

→+

Ei
= {ℓEi

σ
→g/a+ ℓ́Ei | ∀ℓEi

σ
→g/a ℓ́Ei ∈→Ei

,

a+(v+) = (a1(v), . . . , an(v), ℓE1 , . . . , ℓ́Ei , . . . , ℓEN ).
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Nevertheless, this extension can be performed implicitly so
that it becomes transparent to the user. Finally, for each EFA
Ei in the model, each generated guardGσ is conjuncted with
the guards in→+

Ei
that include eventσ; forming a new EFA

Esup
i where

→Esup

i
={ℓ

σ
→g+/a+ ℓ́ |

∀ℓ
σ
→g/a+ ℓ́ ∈→+

Ei
, g+ = g ∧ Gσ}.

Consequently, the supervisor can be represented in a modular
manner, deducing thatEsup

1 ‖ . . . ‖ Esup
N satisfies the

specification without any forbidden states.

V. GUARD REDUCTION USINGGENETIC ALGORITHMS

A genetic algorithm (GA) is a search heuristic that mimics
the process of natural evolution. Genetic algorithms belong
to the larger class of evolutionary algorithms (EA), which
generate solutions to optimization problems using techniques
inspired by natural evolution, such as inheritance, mutation,
selection, and crossover. In a genetic algorithm, a population
of strings (calledchromosomes), which encode candidatesolu-
tions (called individuals) to an optimization problem, evolves
toward better solutions. The evolution usually starts froma
population of randomly generated individuals and happens in
generations. In each generation, the fitness of every individual
in the population is evaluated, multiple individuals are stochas-
tically selected from the current population (based on their
fitness), and modified (recombined and possibly randomly
mutated) to form a new population. The new population is
then used in the next iteration of the algorithm.

In this paper, a GA is used to optimize the size of generated
guards by changing the variables ordering of the underlying
BDD.

A. Representation

Traditionally, GA works on binary strings of 0’s and 1’s.
However, such encoding require a special repair operation
to avoid creation of invalid solutions. Another encoding was
introduced for solving Traveling Salesmen Problem [27] and
later used for minimization of BDDs [28], which represents a
variable ordering as an integer string of lengthn, wheren is
the number of variables in a BDD, and each integer appears
in the string once.

B. Initialization

The population is initialized by generating random individs.
Each individ is generated by randomly permutating chromo-
somes in initially sorted individ. If a new individ already exists
in the population, it is discarded. Individs are added until
population size reaches a predefined size.

C. Selection

The selection of the individuals for mating pool is per-
formed by roulette wheel selection, where each individ is
chosen with a prbability proportional to its fitness. As a fitness
measure of an individ, the size of the guard generated using

(a) Conventional crossover

3 2 4 1 5 5 3 1 4 2

3 2 4 5 1
(b) Order crossover

Fig. 2: Crossover operation.

the variable ordering encoded by the individ was used. The
computation of the guard is performed based on the procedure
mentioned earlier in the paper, described in more detail in [15].
Additionally, some of the best individs of the old generation
are also included in the new generation, to ensure that the best
element is never lost.

D. Crossover

For each new solution to be produced, a pair of “parent”
solutions is selected for breeding from the mating pool selected
previously. Two parents are combined with each other using
crossover operation to produce a “child”. New parents are
selected for each new child, and the process continues untila
new population of solutions of appropriate size is generated.
In a traditional implementation of the crossover operation, a
random cut point is selected, and the chromosome of the first
parent is taken up to the cut point, and chromosome of the
second parent is taken from cut point to the end. This however
would produce invalid variable orderings. Instead, we use a
crossover illustrated in Fig. 2 [28], [29], where genes of the
chromosome of the first parent are taken up to the cut point,
while from the second parent all other missing genes are taken
in the order they appear. This preserves relative order of some
of the variables of both parents, and always generates valid
solutions.

E. Mutation

Mutation helps diversifying solutions and escaping local
minima. We implemented swapping of two genes in an in-
dividual as a mutation operation.

F. Termination

We terminated the algorithm after a predefined number of
iterations, or when no better individuals were produced after
several consecutive iterations.

VI. A CADEMIC EXAMPLE

The guard generation procedure discussed in the previous
sections will be applied to the classic Dining Philosophers
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problem, which was designed by Dijkstra to illustrate the prob-
lem of deadlock in parallel processes with shared resources
[34]. The popularity of this model for explaining deadlock is
probably due to its very illustrative way of explaining “circular
wait” and “starvation”. The original problem consists of 5
philosophers sitting around a table. The philosophers either
think or eat. In order to eat, each philosopher will need
two forks, which are placed to the left and right of each
philosopher. As the forks are shared between the philosophers
(there are only n forks on the table), a circular wait situation
may arise. There are in fact two deadlocks in this system:
when each philosopher have taken his left fork and is waiting
for the right fork, and vice versa. What make this particularly
interesting is that all processes participate in the deadlock
situation.

The program is implemented in JAVA programming lan-
guage using Supremica libraries [30], [31], which usesJava-
BDD [32] as the BDD package. The example was conducted
on a standard PC (Intel Core 2 Quad CPU @ 2.4 GHz and
3GB RAM) running Windows XP.

The model consists of an automaton (plant) for each
philosopher and an automaton (specification) for each fork.
AutomataPhilo : 1 andFork : 1 are shown in figures 3 and
4. EachPhilo : i automaton consists of the following states:
think, lu, ready, eat, where lu means that the philosopher
has lifted up the left work. The interpretations for the other
states are straightforward. The events for philosopheri are:

takei:j: Philosopheri takes (lifts) forkj.
start eatingi: Philosopheri starts eating.
puti:j: Philosopheri puts down forkj.

rd

ld

ready

eat

ru

lu

think

put1:2

take1:2

put1:2
take1:1

start_eating1

take1:1

take1:2

put1:1
put1:1

Fig. 3: Plant model for Philo:1.

1

0

put5:1
put1:1

take1:1
take5:1

Fig. 4: Specification model for Fork:1.

The closed-loop automaton consists of 1973 reachable states
where 2 of those are blocking. After the synthesis, the non-
blocking supervisor consists of 1971 states and 7985 transi-
tions. Table I compares the sizes of the guards between the
implementation in [15] and the implementation including GA.
The events that are always enabled by the supervisor (when
the guard becomestrue) are not included in the table. The
supervisory synthesis, which is merely computed once for all
events, was performed by BDD operations and was completed
in less than a second. The computation time for generating the
guards for all events with and without considering GA was 6
minutes and 1 second, respectively. It can be observed that
it takes much longer time for the GA-based implementation.
The reason is the time consuming operation for changing the
variable ordering of the BDDs during the computation of the
fitness value.

With respect to the sizes of the guards, we can see a clear
reduction when considering GA. As an example, following
shows the guard for eventtake4:5,

F1 6= 1∨P5 6= ru ∨ (P1 6= ru ∧ P1 6= eat)

∨ P4 6= think ∨ (P2 6= rd ∧ P2 6= ru)

∨ F4 6= 1 ∨ P3 = eat ∨ P3 = ready ∨ P3 = ld
(3)

P3 6= ru ∨ P2 6= ru ∨ P5 6= ru

∨ (P1 6= eat ∧ P1 6= ready ∧ P1 6= ru) (4)

where (3) and (4) are the guards before and after applying
GA. Pi and Fi are variables representing the current location
of philosopheri and fork i, respectively.

VII. C ONCLUSIONS ANDFUTURE WORKS

In this paper, we introduced an evolutionary-based method
to find the optimal variable ordering for the BDDs that will
yield small guards. The approach can be divided into two
components: guard generation and genetic algorithms. The
algorithm starts by an initial population, where the individ-
uals represent different variable orderings. The fitness value
for each chromosome will be computed by generating its
corresponding guard based on the algorithm in [15], briefly
described in this paper. The remaining parts of the approach
follows the regular steps of genetic algorithms, i.e., selection,
crossover and mutation. The algorithm terminates when no

TABLE I: The size of the generated guards for the dining philoso-
phers example.

Event Without GA With GA

take3:3 9 4
take4:5 11 6
take3:4 9 5
take4:4 9 4
take5:5 11 5
take5:1 11 6
take2:2 11 4
take2:3 10 4
take1:2 10 4
take1:1 12 5
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better individuals were produced after several consecutive
iterations.

Finally, the guards can be added to the original models
by creating EFAs with a modular structure. This step often
makes it easier and more memory efficient to implement the
supervisor in a controller. The approach was applied to an
academic example, the dining philosophers problem.

As a future work we desire to improve the procedure
of computing the fitness value, which is due to the time
consuming operation of changing the variable ordering of the
BDDs. This is currently the bottleneck of the algorithm.
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