Symbolic Reduction of Guards in Supervisory Control
Using Genetic Algorithms

S. Miremadi and A. Voronov
Automation Research Group, Department of Signals and Swgste
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
{m remads, voronov}@hal mers. se

Abstract—In the supervisory control theory, a supervisor is tractable. More specifically, the users retrieve the finglesu
generated based on given plant and specification models. Thevisor as a black box, without clearly understanding why some
supervisor restricts the plant in order to fulfill the specifications. events become disabled after synthesis. Finally, for cerpl

A problem that is typically encountered in industrial appli cations . . L
is that the resulting supervisor is not easily comprehensile for systems, exploring all reachable states while synthesitia

the users. To tackle this problem, we previously introducedan SUpervisor is computationally expensive, due to the stptse
efficient method to characterize a supervisor by logic condions, explosion problem.

referred to as guards, generated from the models. The guards An alternative approach is to represent the supervisor sym-
express under which conditions an event is allowed to occurt bolically using binary decision diagrams (BDDs) [5]; use-

fulfill the specifications. By exploiting the structure of the given . . .
models, some techniques were introduced to simplify the guas Ul data structures (directed acyclic graphs) for représgn

and make them tractable. In order to be able to handle complex Boolean functions. BDDs can be used to compactly and
systems efficiently, the models are symbolically represeed by effectively represent a huge state space [2], [6], [7]. Even

binary decision diagrams and thus all computations are performed if the number of states is large, the number of nodes in its
symbolically as well. As a consequence, the size of the guard corresponding BDD can be relatively manageable. In [6] a

becomes very sensitive to the variable ordering in the BDDdn - . thesized i f inutes f i fa i
this paper, by using genetic algorithms, we aim to find the opmal Supervisor IS synthesized In a few minutes for a transte lin

variable ordering for the BDDs that yields the most compact €xample with more tharl0*" states. This is possible due
guard. The approach has been implemented in a supervisory to a special partitioning of the involved BDDs. Neverthsles

control tool and applied to an academic example example. since this approach reformulates and encodes the system’s

| ndex TermS_Supervisory control theory7 deterministic finite Original m0de|, |t iS Cumbersome for the users to Understand
automata, symbolic representation, binary decision diagems, the resulting supervisor. It is more convenient and natioral
propositional formula, genetic algorithms. represent the supervisor in a form similar to the models that
were fed into the synthesis initially.

By considering the theoretical description of a superyisor
it can be represented as a function that restricts the erecut
When designing control functions for discrete event systean of events in the plant in order to satisfy the specification.
model-based approach may be used to conveniently unddrstiihese restrictions can be expressed as logic conditions in
the system’s behavior, easily apply different modificagionform of propositional formulae extracted from the states of
and decrease the testing and debugging time. A well knowe supervisor. We refer to such logic conditionsgasrds.
example of such a model-based approach is, supervisémjuitively, guards can be comprehended easily. However, i
control theory (SCT) [1]. Having a plant (the system to bsome cases the guards could become large and intractable.
controlled) and a specification, SCT automatically syritess To tackle this problem, it is possible to minimize the guard
a control function, calledupervisor, that restricts the conductexpressions using standard minimization methods of Boolea
of the plant to ensure that the system never violates thengieinctions such as Quine-McCluskey [8]; but such methods are
specification. SCT has various applications in differemaar inefficient for large systems, where a more attractive apgho
such as automated manufacturing and embedded systems, s.g¢o perform an approximate minimization in a symbolic
[2]-[4]. manner using BDDs.

Generally, a supervisor is a function that, given a set of There are a number of papers which have tackled the above-
events, restricts the plant to execute some events towheds rhentioned issues. In [9], an implementation of decentsdliz
specification. A typical issue is how to realize such a cdntreupervisory control is presented. This is performed “by edhb
function efficiently and represent it lucidly for the usefs. ding the control map in the plant’s local Finite State Maesin
standard approach is to first synthesize the supervisor amt employing private sets of Boolean variables to encode
then explicitly represent all the states that are alloweth¢o the control information for each component supervisor” [9]
reached in the closed-loop system. However, such an agproAéthough this process will assist the simplicity and clezas
has some drawbacks. For instance, a supervisor with a huwdethe supervisors, the main focus is to solve the problem
number of states may require more memory than availabt#. decentralized communicating controllers and not much
Furthermore, from a user perspective, such supervisonsare attention is paid on how to reduce the final Boolean formulae

I. INTRODUCTION

for more complex systems. no structural conditions are required. The supervisor fisee
Another class of approaches for supervisory synthesisdbasented by a set of guards, that are understandable for the use
on linear algebraic representation of Petri net models ef thather than other data structures such as BDDs. In addition,
plants, has been presented in [10]-[13]. In these methbds, the guards can be easily implemented in a programmable logic
specifications are added to the plants in the form of lineaontroller.
predicates, which can be considered as constraint conditio This work is a continuation of [15]. In [15] since the guards
The resulting controller can also be formulated in a similare directly generated from the BDDs, the size of the guards i
way as suggested in this paper. However, each approach sigsificantly sensitive to the variables ordering of the BDD
some restrictions. The non-blocking problem is not congide In this paper, by using genetic algorithms, we aim to find
in [10]. In addition, in order to employ this approach, théhe optimal variable ordering for the BDDs that yields the
system should satisfy a particular structural conditidme t most compact guard. Usually, more compact guards are more
uncontrollable subnet extracted from the Petri net modedtmwcomprehensible for the users. We have applied the method
be loop free. In [11] the liveness problem is considered btd an example representing a real car manufacturing cell and
only for controlled marked graphs. The approach proposedmpared the results with the results of [15].
in [12] is applicable if the supervisory net has a convex This paper is organized as follows: Section Il provides
reachability set. The focus is mainly on efficient automatisome preliminaries including extended finite automata and
verification. In [13] the request for a minimally restrictiv binary decision diagrams, which are the fundamental cascep
supervisor is abandoned, in favor of a more easily computedour work. Supervisory control theory is briefly described
but also more restrictive control function. in Section lll. In Section IV, we show how the guards are
In [14], the supervisor is represented as a set of contgnerated and how they can be used to represent the superviso
functions expressed by BDDs, which is relatively close tmodularly by the original EFAs. Section V explains how the
our approach. Each control function is connected to an evecwmputed guards can be reduced using genetic algorithnes. Th
which specifies when the event is allowed to be executethole process is applied to a case study in Section VI. Binall
in order to satisfy the specifications. The system is model&&ction VIl provides some conclusions and suggestions for
by hierarchal models called state tree structures. Howeser future work.
stated earlier, for users not familiar with BDDs, having the
supervisor as a number of BDDs would be hard to understand. Il. PRELIMINARIES
Even for users familiar with BDDs, the tree-structured msde
typically become comprehensible for systems where thepla
and specifications consist of a limited number of state%'.
Otherwise, it would be complicated for the users to relate th
BDD-variables to the state trees. Furthermore, it is pdssd A. Extended Finite Automata

obtain simpler conditions in terms of guards by utilizingth 1o modeling formalism used in this work Extended

struc_tures of 'Fhe original mo_dels. Besid_es, the major foous 5 hite Automaton (EFA) [16], which is an augmentation of
[14] is to design a nonblocking supervisor for huge systeMg, orginary finite automaton with discrete variables.
rather than generating comprehensible guards added to the

original automata for characterizing the supervisor. Definition 1.1 (Extended Finite Automaton)
Andersson et al. in [4] propose an algorithm for manufactufn extended finite-state automatdhis a 6-tuple

ing ceI_I con_trollers to extract the relatl_ons betweer_1 theirée E—(LD,Y,—, 0. D0, L™, pm),

operations in the cell from the supervisor. The main adgmta

of these relations is to give an easy-to-read representatighere

pf the _controlifunction, and maI§e the method usable in an _ 7 is 4 finite set of locations,

industrial setting. However, their approach can merely be _ p _ Dy x ... x D, is the domain ofn variables) =

This section provides some preliminaries that are used
roughout this paper.

applied to models with a special structure and the method {v1,...,vs}, whereD; C Z
is not suitable for large systems. The problem formulation _ v, s g nonempty finite set of events
tackled in our paper is inspired from [4]. - -C Lx ¥ xGxAx L is the transition relation,

Previously, in [15] we presented an approach to charaeteriz _ 10 - 1 is the set of initial locations,
a supervisor by a set of reduced and tractable guards, wiécha _ o _ DY x ... x DU is the set of initial values of the
generated based on states of the original plant and spé¢icifica variables, "
models. The guards can then be attached to the original sodel _ ;m - [is the set of marked locations that are desired
and restrict the plants’ behavior. To obtain more simplified to be reached, and
guards, a set of don't-care states were exploited and some_ pm is the marked valuations of the variables,
heuristic techniques were applied, which were shown to benereg and A is sets of constraining expressions. called
crucial in the reduction of the generated guards. To tackle d d undating functi Ilattg P " ’I
large and complicated problems, all computations are based o> @nd updating functions, ca 0nS, TESpectively.
on BDDs. The work in [15] has some main features. The findhe guards and actions are associated to the transitiom of t
representation, i.e., the guards, will preserve all theeriles automaton. A transition in an EFA is executed if and only
of the supervisor. The method is applicable to any system aifidts corresponding event occurs and its correspondingdjua

becomes satisfied, which may follow by updates of a set Bf Binary Decision Diagrams

variables. . _ o Binary Decision Diagrams (BDDs) are powerful data struc-
In the EFA framework, an arithmetic expressipiis formed o5 for representing Boolean functions. For large system

according to the grammar where the number of states grows exponentially, BDDs can im-

- _ prove the efficiency of set and Boolean operations performed

pr=wlv| () letele—ploxe| /o] e, on the state sets [8], [L7]-[19].

wherev € V andw € [J;_, D;. We denote arevaluation by Given a set ofin Boolean variableds, a Boolean function

p € D, meaning that a value is assigned to each variable. f: B™ — B (B is the set of Boolean values, i.e., 0 and 1)
A guard g € G is a propositional expression formedcan be expressed using Shannon’s decomposition [20]. This

according to the grammar decomposition can be expressed by a directed acyclic graph,
called a BDD, which consists of two types of noddscision
gu=e<¢lesele>elezelo=9v]| nodes and terminal nodes. A terminal node can either b@-
(9)lghglgvg|T|L, terminal or 1-terminal. Each decision node is labeled by a

Boolean variable and has two edges tddts-child andhigh-
child, corresponding to assigning 0 and 1 to the variable,
respectively. Thesize of a BDD, denoted as$B|, refers to
the number of decision nodes.

The power of BDDs lies in their simplicity and efficiency to
perform binary operations. The time complexity of a binary
operator between two BDDB; and B; is O(|By]| - |Bz]).
However, the quantification operators have exponentiag tim

a(p) £ (ar(p), ..., an(p)). complexity. For a more elaborate and verbose exposition of
. . _ . BDDs and the implementation of different operators, refer t
An action functiona; that does not update variablg is 21, [22].

denoted by¢. The symbol= is used to denote an-tuple In a BDD graph, a variablé; has a lower (higherprder

(5’5’.'"’8’ indicqting that_no variable is updated. The S&han variablebs if by is closer (further) to the root and is
mantics of an action function can also be represented byd&qoted byb; < by (bs < by). The variable ordering will

relation, impact the size of the BDD, however, finding an optimal
SATA(a) 2 {(u, /1) | fo=a(u)}. (1) Vvariable ordering of a BDD is an NP-complete problem [23].

where T and L represent boolean logierue and false,
respectively. All nonzero values are consideredTasThe
semantics of a guard is specified by asatisfaction relation
E, the evaluationu for which of guardg is T; written i1 = g.
An actiona € A is ann-tuple of functions(ay,...,a,),
updating variables. An action functian : D — D; is formed
asv; := . For brevity, we use the following notation:

For modeling purposes, it is often easier to have a modular
representation, specially for complex systems. Then, t@ ha
a monolithic model of the system we need to compose tflpervisory Control Theory (SCT) [1], [24] is a general thyeo
multiple EFAs in the model. The composition is performetp automatically synthesize a control function, referred t
by the full synchronous composition operator, denoted bij, &S supervisor, based on a given plant and specification. A
described in [16]. specification describes the allowed and inhibited behavior

The semantics of an EFA can be represented by its cdihe supervisor restricts the conduct of plant to guararitae t
respondingtransition system that is based on the states, i.ethe system never violates the given specification. However,
locations and variable values, of the model. In the follayinit is often desired, and also in our work, that the supervisor
definition we use theSOS-notation (Structured Operational restricts the plant as least as possible, referred topésnal
Semantics). The notatiop2e™*¢ should be read as: if the Of minimally restrictive supervisor. This gives the developers
proposition above the “solid line” (premise) holds, thee thseveral alternatives to implement the controller and periing

proposition under the fraction bar (conclusion) holds a#i.wefurther analysis such as time or energy optimization.
In the context of SCT, the behavior of a system is usually

Ill. SUPERVISORYCONTROL THEORY

Definition 1.2 (Transition System) represented by its language, i.e. the sets of strings tfeat th
Let E = (L,D,%,—,L°% D L™, D™) be an EFA. lIts system may generate. Conventionally, automata has been use
corresponding explicit state transition relation, dedo® 55 the modeling formalism to generate the language. In this
TS(E) = (Q,%,—,Q° Q™), is a 5-tuple where work, the problems are modeled by EFAs, and the result, i.e.,
- Q = L x D, is the finite set of states, the supervisor, is represented by EFAs as well. As mentioned
- X, is the set of events, earlier, we assume that the systems are deterministic,ein th
- —C QXX xQ,is the explicit transition relation definedsense that at each moment, the supervisor knows the current
by the following rule: and next state of the system. Therefore, we only consider

(Lo.ga l') e A pl deterministic EFAs.
99,8 rFE9 @) A plant P can be described by the synchronization of a

(L, w),0,(alp)) €~ number of sub-plant® = P, || P]| ... || F;, and similarly for
- Q0 = L% x D, is the set of initial states, a specificationSp = Sp1||Spz|| - - . [|Spm. There are different
- Q™ = L' x D™, is set of marked states. ways of computing a supervisor such as monolithic [1], modu-

lar [25], and compositional [26] synthesis. In our approaeh

apply monolithic synthesis, which is performing fixed-poinour purpose, we use an IDD with two terminals, O-terminal
computations on the single composed autom&ips- P||Sp. and 1-terminal.

After the synthesis procedure, sorbiocking states may be To represent a statg“:, ¢2,...,¢"») in the closed-loop
identified, which are the states from where no marked stagtomatonA; || ... | A,, each IDD-variable is associated
can be reached. In SCT, the events can be divided into ttean automatond; that hasQ“ as its domain. This domain
disjoint subsets:controllable events, that can be preventedcan be mapped to an integer that is represented as an IDD.
from executing by the supervisor; amgcontrollable events, In other words, each outgoing edge from nadlerepresents
which cannot be influenced by the supervisor [1], [24]. la state inA;. Hence the maximum number of edges from a
addition to the blocking states, the synthesis procedurg maodeA; is |Q¢!|. As for BDDs the number of edges and nodes
also identify someincontrollable states, which are states fromfor an IDD can also be reduced. For simplicity, we use the
where the plant executes an uncontrollable event thattemlanames of the states on the IDD-edges rather than integers in
the specification. By removing the blocking or controllabléhe sequel.

states fromSy, a nonblocking or controllable supervisor is Using IDDs to generate guards has some advantages in
obtained, respectively. For a more formal description of SCcomparison to BDDs: 1) they make it easier to handle and

refer to [1], [24]. manipulate propositional formulae; 2) they exploit somé¢hef
common subexpressions in a guard yielding a more factorized
IV. REPRESENTATION OF THESUPERVISOR ASEFAS and smaller formula; 3) they depict a more understandable

I._r'r&odel of the state set, since the nodes and edges represent
names of the automata and states, respectively. On the other
) side different manipulations can be carried out more effitye

1) Compute a BDD representing the safe states. on BDDs compared to IDDs. The procedure of converting a

2) Transform the computed BDD to guard expressions. gpp to an IDD is presented in [15].

3) Attach the guards to the original EFAs. The last step of obtaining the guard is to convert the
Initially, the set of the safe states is computed by fixed PoilDDs to propositional formulae. For a given IDD, a top-
computations based on the synthesis algorithm describeddiswn depth first search is used to traverse the graph and
[6]. generate its corresponding propositional formula. The al-

In stage 2, based af;.,, we create two sets of states [15]gorithm starts from the root and visits the nodes whilst

« QJ: The set of states in the supervisor where the execgenerating the expression and ends at the 1-terminal.

The last step is to compute the supervisor represented as.E
This computation is performed in three steps:

tion of o is defined for the supervisor. For each node in the IDD, the
« Qf: The set of states in the supervisor where the exeaterresponding expressions of the
tion of o is defined forSy, but not for the supervisor. edges belonging to the same level ?
By utlizing Q7 and Qf a guard expression (the children of that node)are log-
G ({¢"1, qP2,...,qP)) is generated for each controllabldcally dlSJun_cted and if the edges pi/@D\zjz
events € ¥ belong to different levels they are
logically conjuncted. Hence, the
G7 (g™ g™, ... q")) = propositional formula for the IDD SU@
true if ((¢Fr,q%2,...,¢5")) € QF in Fig. 1 is Fig. 1: Recursive represen-
false if ((¢F,q"2,...,¢")) € QF tation of an IDD.

don’t — care otherwise A ((p1 A S1)V (p2 A S2)),

where ¢ represents the current state of EFA; wherep; is the corresponding expression of the edge that lead
(. A . .
G7((¢",¢"2, ..., qP)) evaluates tarue if o is allowed to to one of A’s children ands; is the corresponding expression

be executed from the state”:,¢"2, ..., ¢"). The size of a from the node to the 1-terminal, that is recursively comgute

guardg, denoted byG|, is defined by the number of atomic”A Pseudo-algorithm of this process is presented in [15].
equality and nonequality terms in the guard expression.

B. Guard Attachment

A. Guard Generation Since ¢¥ € LP: x V, the generated guard will be a
The guards are computed in the following consequent stepsmbination of (% = ¢F+ (or ¢5: # ¢F) andv* = vi (or
« Compute the corresponding BDDs fQg and Q7. v' # vl) expressions. Each variablé’ holds the current
« Convert the BDDs to integer decision diagrams. location of EFA E;. However, since they are not defined
o Convert the integer decision diagrams to guards_ in the mOdel, they should be declared and added to the set

81‘ variables in the model. Thus, the variahleis extended
o vt = (vi,..., 0" ¢F1 ... EN). Hence, the transition
function of each automatoB; is extended as follows:

First, the corresponding BDDs for the state sets are cordput
Next, the BDDs are converted to their correspondintgger

decision diagrams (IDDs) [7], which will be used to generate
the guards in the last step. An IDD is an extension to a BDD_)E — (B % /B
where the number of terminals is arbitrary and the domain of ™ - g 1 N B B B
the variables in the graph is an arbitrary set of integers. Fo a”(v7) = (a(v),...,a" (V) €7, 07),

veE: gg/a (5 €E—E,,

Nevertheless, this extension can be performed implicitly s | | l -

T

|
that it becomes transparent to the user. Finally, for each EF
E; in the model, each generated gu&d is conjuncted with \ /

the guards |n—>}5 that include event; forming a new EFA
E?"? where

pu , (a) Conventional crossover
—>E:up:{f —gt/at 14 |

Ve Dgsar L€—5, 9T =g NG}
Consequently, the supervisor can be represented in a modula \ /
manner, deducing that;™” || ... || EN? satisfies the
specification without any forbidden states.

(b) Order crossover
V. GUARD REDUCTION USING GENETIC ALGORITHMS Fig. 2: Crossover operation.

A genetic algorithm (GA) is a search heuristic that mimics

the process of natural evolution. Genetic algorithms bglon

to the larger class of evolutionary algorithms (EA), whiclthe variable ordering encoded by the individ was used. The

generate solutions to optimization problems using teakesq computation of the guard is performed based on the procedure

inspired by natural evolution, such as inheritance, motati mentioned earlier in the paper, described in more detail &j. [

selection, and crossover. In a genetic algorithm, a pojouat Additionally, some of the best individs of the old generatio

of strings (callecchromosomes), which encode candidaselu- are also included in the new generation, to ensure that tte be

tions (calledindividuals) to an optimization problem, evolveselement is never lost.

toward better solutions. The evolution usually starts fram

populati_on of randomly gene_rated ind_ividuals and ha_pp_ansﬂ)' Crossover

generations. In each generation, the fitness of every ithaali) i

in the population is evaluated, multiple individuals arechias- ~ FOT €ach néw solution to be produced, a pair of “parent”

tically selected from the current population (based onrtheiolutions is selected for breeding from the mating poolctete

fitness), and modified (recombined and possibly randorTﬂWeV'OUSW- Two parents are comblnec_i with each other using

mutated) to form a new population. The new population GOSSOver operation to produce a “child”. New parents are

then used in the next iteration of the algorithm. selected for _each new c_hlld, and the process Contlnuesalnt|l
In this paper, a GA is used to optimize the size of generat8§W Population of solutions of appropriate size is genekate

guards by changing the variables ordering of the underlyiﬁ@ a traditionall im.plementation of the crossover operatn_
BDD. random cut point is selected, and the chromosome of the first

parent is taken up to the cut point, and chromosome of the
, second parent is taken from cut point to the end. This however
A. Representation would produce invalid variable orderings. Instead, we use a
Traditionally, GA works on binary strings of 0's and 1's.crossover illustrated in Fig. 2 [28], [29], where genes a th
However, such encoding require a special repair operatiohromosome of the first parent are taken up to the cut point,
to avoid creation of invalid solutions. Another encodingswawhile from the second parent all other missing genes arentake
introduced for solving Traveling Salesmen Problem [27] arid the order they appear. This preserves relative order mso
later used for minimization of BDDs [28], which represents af the variables of both parents, and always generates valid
variable ordering as an integer string of lengthwheren is solutions.
the number of variables in a BDD, and each integer appears

in the string once. E. Mutation

Mutation helps diversifying solutions and escaping local

minima. We implemented swapping of two genes in an in-
The population is initialized by generating random indsvid djvidual as a mutation operation.

Each individ is generated by randomly permutating chromo-
somes in initially sorted individ. If a new individ alreadyists
in the population, it is discarded. Individs are added un

B. Initialization

l'ﬁ' Termination

population size reaches a predefined size. We terminated the algorithm after a predefined number of
iterations, or when no better individuals were producedraft
C. Sdlection several consecutive iterations.

The selection of the individuals for mating pool is per-
formed by roulette wheel selection, where each individ is
chosen with a prbability proportional to its fithess. As adita The guard generation procedure discussed in the previous
measure of an individ, the size of the guard generated usisgctions will be applied to the classic Dining Philosophers

VI. ACADEMIC EXAMPLE

problem, which was designed by Dijkstra to illustrate thelpr ~ The closed-loop automaton consists of 1973 reachablesstate
lem of deadlock in parallel processes with shared resouraeisere 2 of those are blocking. After the synthesis, the non-
[34]. The popularity of this model for explaining deadlock i blocking supervisor consists of 1971 states and 7985 transi
probably due to its very illustrative way of explaining “cidar tions. Table | compares the sizes of the guards between the
wait” and “starvation”. The original problem consists of Smplementation in [15] and the implementation including GA
philosophers sitting around a table. The philosopherseeitiThe events that are always enabled by the supervisor (when
think or eat. In order to eat, each philosopher will neethe guard becomesue) are not included in the table. The
two forks, which are placed to the left and right of eachupervisory synthesis, which is merely computed once for al
philosopher. As the forks are shared between the philossphevents, was performed by BDD operations and was completed
(there are only n forks on the table), a circular wait sitati in less than a second. The computation time for generatimg th
may arise. There are in fact two deadlocks in this systemuards for all events with and without considering GA was 6
when each philosopher have taken his left fork and is waitimginutes and 1 second, respectively. It can be observed that
for the right fork, and vice versa. What make this particylar it takes much longer time for the GA-based implementation.
interesting is that all processes participate in the dekdloThe reason is the time consuming operation for changing the

situation. variable ordering of the BDDs during the computation of the
The program is implemented in JAVA programming lanfitness value.
guage using Supremica libraries [30], [31], which usesa- With respect to the sizes of the guards, we can see a clear

BDD [32] as the BDD package. The example was conductegduction when considering GA. As an example, following
on a standard PC (Intel Core 2 Quad CPU @ 2.4 GHz astlows the guard for eveidke4:5,

3GB RAM) running Windows XP.
The model consists of an automaton (plant) for eachF1 # IVPS #ruV (PL#ruf Pl # eat)

philosopher and an automaton (specification) for each fork. V P4 # think V (P2 # rd A P2 # ru)
AutomataPhilo : 1 and Fork : 1 are shown in figures 3 and VFA#£1V P3=eatV P3=readyV P3=1d
4. EachPhilo : ¢ automaton consists of the following states: 3)

think, lu, ready, eat, wherelu means that the philosopher
has lifted up the left work. The interpretations for the othe p3 £ ry v P2 + ru v P5 # ru

states are st_raightforward. The_ events for philosopleee: V (P1 # eat A P1 # ready A P1 # ru) @)
take:j: Philosopher takes (lifts) forkj.
start eating: Philosopher: starts eating. where (3) and (4) are the guards before and after applying
puti:j: Philosopheri puts down forkj. GA. Pi and F are variables representing the current location

of philosopheri and forki, respectively.

VIl. CONCLUSIONS ANDFUTURE WORKS

In this paper, we introduced an evolutionary-based method
to find the optimal variable ordering for the BDDs that will
yield small guards. The approach can be divided into two
components: guard generation and genetic algorithms. The
algorithm starts by an initial population, where the indivi
uals represent different variable orderings. The fitnedseva
for each chromosome will be computed by generating its
corresponding guard based on the algorithm in [15], briefly
described in this paper. The remaining parts of the approach
follows the regular steps of genetic algorithms, i.e., @,
crossover and mutation. The algorithm terminates when no

takel:1

putl:2

Fig. 3: Plant model for Philo:1.

TABLE I: The size of the generated guards for the dining philoso-
phers example.

Event Without GA With GA

take3:3 9 4

takel:1 take4:5 11 6

takes:1 take3:4 9 5

putl:1 take4:4 9 4

put5:1 take5:5 11 5

take5:1 11 6

take2:2 11 4

! take2:3 10 4

takel:2 10 4

Fig. 4: Specification model for Fork:1. takel:1 12 5

better individuals were produced after several conseeutii2o]
iterations.

Finally, the guards can be added to the original modéﬁsl]
by creating EFAs with a modular structure. This step often
makes it easier and more memory efficient to implement ti]
supervisor in a controller. The approach was applied to an
academic example, the dining philosophers problem. [23]

As a future work we desire to improve the procedure
of computing the fitness value, which is due to the timgy;
consuming operation of changing the variable ordering ef th
BDDs. This is currently the bottleneck of the algorithm. [29]

26
REFERENCES [26]

(1]
(2]

P. Ramadge and W. Wonham, “The control of discrete evegstess,”
Proceedings of the IEEE, vol. 77, no. 1, pp. 81-98, 1989.

S. Balemi, G. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. ifkhn,
“Supervisory control of a rapid thermal multiprocessoAttomatic
Control, |IEEE Transactions on, vol. 38, no. 7, pp. 1040-1059, 1993.
L. Feng, W. Wonham, and P. S. Thiagarajan, “Designing momicating
transaction processes by supervisory control thedfgrm. Methods
Syst. Des., vol. 30, no. 2, pp. 117-141, 2007.

K. Andersson, J. Richardsson, B. Lennartson, and M. dmgbiCoor-
dination of Operations by Relation Extraction for Manutagig Cell
Controllers,”|EEE Transactions on Control Systems Technology, vol. 18,
no. 2, pp. 414-429, Mar. 2010.

S. B. Akers, “Binary Decision DiagramsfEEE Transactions on Com-
puters, vol. 27, pp. 509-516, Jun. 1978.

A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supisory synthe-
sis of large systemsControl Engineering Practice, vol. 14, no. 10, pp.
1157-1167, Oct. 2006.

J. Gunnarsson, “Symbolic Methods and Tools for Discrgtent Dy-
namic Systems,” Ph.D. dissertation, Electrical EngimegriLinkoping
University, Linkdping, Sweden, 1997.

E. J. McCluskey, “Minimization of Boolean functionspBell System
Technical Journal, vol. 35, no. 5, pp. 1417-1444, 1956.

A. Mannani, Y. Yang, and P. Gohari, “Distributed exteddénite-
state machines: communication and control,Piroceedings of the 8th
international Workshop on Discrete Event Systems, WODES 06, 2006,
pp. 161-167.

Y. Li and W. Wonham, “Control of vector discrete-eventstems. II.
Controller synthesis,TEEE Transactions on Automatic Control, vol. 39,
no. 3, pp. 512-531, Mar. 1994.

L. E. Holloway and B. H. Krogh, “On closed-loop liveness discrete
event systems under maximally permissive contri®#EE Transactions
on Automatic Control, vol. 37, no. 5, pp. 692-697, 1992.

A. Giua and F. DiCesare, “Blocking and controllabilibf Petri nets in
supervisory control,1EEE Transactions on Automatic Control, vol. 39,
no. 4, pp. 818-823, Apr. 1994.

K. Yamalidou, J. O. Moody, M. D. Lemmon, and P. J. Antéskl
“Feedback control of Petri nets based on place invarigstbmatica,
vol. 32, no. 1, pp. 15-28, 1996.

C. Ma and W. Wonham, “Nonblocking supervisory contrbistate tree
structures,”l EEE Transactions on Automatic Control, vol. 51, no. 5, pp.
782-793, May 2006.

S. Miremadi, K.A kesson, and B. Lennartson, “Symbolic computation
of reduced guards in supervisory controlZEE Transactions on Au-
tomation Science and Engineering, vol. 8, no. 4, pp. 754-765, 2011.
M. Skoldstam, K Akesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variableBgcision and Control,
2007 46th IEEE Conference on, pp. 3387-3392, 2007.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and LJ. Hwang,
“Symbolic Model Checking:102° States and Beyond,” iRroceedings

of the Fifth Annual |EEE Symposium on e Logic in Computer Science,
1990., Jun. 1990, pp. 428-439.

S. Miremadi, K.Akesson, M. Fabian, A. Vahidi, and B. Lennartson,
“Solving two supervisory control benchmark problems us8gprem-
ica,” in 9th International Workshop on Discrete Event Systems, 2008,
WODES 08., May 2008, pp. 131-136.

C. Ma and W. Wonham, “STSLib and its application to twonble-
marks,” in9th International Workshop on Discrete Event Systems, 2008,
WODES 08., May 2008, pp. 119-124.

[27]

(3] 28]

(4] [29]

(5]
(6]

[30]

[7] [31]

(8]

32
] [32]

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

C. E. Shannon, “A Mathematical Theory of Communicafiofhe Bell
System Technical Journal, vol. 27, pp. 379-423,625-656, 1948.

R. E. Bryant, “Symbolic Boolean manipulation with ordd binary-
decision diagrams,ACM Comput. Surv., vol. 24, no. 3, pp. 293-318,
1992.

H. Andersen, “An introduction to binary decision diagrs,” Department
of Information Technology, Technical University of DenrkafTech.
Rep., 1999.

B. Bollig and I. Wegener, “Improving the Variable Oritgy of OBDDs
Is NP-Complete,"I[EEE Trans. Compuit., vol. 45, no. 9, pp. 993-1002,
1996.

C. G. Cassandras and S. Laforturiefroduction to Discrete Event
Systems, 2nd ed. Springer, 2008.

W. Wonham and P. Ramadge, “Modular supervisory cordfaliscrete-
event systems,Mathematics of Control Sgnals and Systems, vol. 1,
no. 1, pp. 13-30, 1988. 3

H. Flordal, R. Malik, M. Fabian, and KAkesson, “Compositional
Synthesis of Maximally Permissive Supervisors Using Suip&m
Equivalence, Discrete Event Dynamic Systems, vol. 17, no. 4, pp. 475—
504, Aug. 2007.

L. D. Whitley, T. Starkweather, and D. Fuquay, “Scheédglproblems
and traveling salesmen: The genetic edge recombinationatmpg in
Proceedings of the 3rd International Conference on Genetic Algorithms,
1989, pp. 133-140.

R. Drechsler, “Genetic algorithm for variable orderiof OBDDs,” in
IEE Proceedings of Computers and Digital Techniques, 1996, pp. 364—
368.

D. Goldberg and R. Lingle, “Alleles, loci, and the tréimg salesman
problem,” in Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, Pittsburgh, PA, USA, 1985,
pp. 156-159.

K. Akesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—ite-
grated environment for verification, synthesis and sinmaof discrete
event systems,” irProceedings of the 8th international Workshop on
Discrete Event Systems, WODES 06, Ann Arbor, MI, USA, 2006, pp.
384-385.

K. Akesson, M. Fabian, H. Flordal, and A. Vahidi, “Supremica¥Feml
for Verification and Synthesis of Discrete Event Supenggoin 11th
Mediterranean Conference on Control and Automation, Rhodos, Greece,
2003.

“JavaBDD.” [Online]. Available: http://javabdd.smeeforge.net

