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Abstract: New algorithms for estimation of the frequencies of oscillating waveform signals
are described. Model of the signals is presented in the form of linear difference equation with
unknown coefficients, which define the frequencies and amplitudes. Coefficients are estimated
utilizing the property of the persistence of excitation of oscillating signals. Exponentially damped
and oscillating signals are described in a unified framework. A property of excitation is proved
for exponentially damped signal that contains a single frequency via diagonal dominance of an
information matrix. Two applications of this frequency estimation technique are considered.
The first one is filtering of the wind speed signal in wind turbine control applications, and the
second one is the frequency estimation of exponentially damped signal motivated by the engine

knock detection applications.
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1. INTRODUCTION

Oscillating waveform signals appear in a large number
of applications, including active noise, vibration and ro-
tating machinery control, radar/sonar, seismic, audio and
biomedical signal processing and many others. Estimation
of unknown frequencies (frequency contents) of oscillating
signals is an important problem of digital signal processing
which was addressed in many papers.

A discrete-time adaptive estimation algorithm for a multi-
frequency signal based on the gradient update law and
notch filter was proposed in [1]. A convergence analysis
was performed using associated differential equation [2],
[3] which proves a local stability of the system. This
paper was the basis for a globally convergent continuous
time frequency estimator of a single frequency based on
classical adaptive control methods [4]. Continuous time
version of algorithm proposed in [1] is also described in [5].
Recent algorithms of identification of a single frequency are
based on the internal model principle [6], where the model
is transformed and linearized with respect to unknown
frequency [7],[8],[9],[10]. The method is well-discussed for
both continuous and discrete time cases as well as for
exponentially damped signals [11], [12].

Many, if not all, oscillating signals are sufficiently rich
(persistently exciting). Therefore one of the most promis-
ing approaches to frequency estimation in real time ap-
plications is adaptive estimation techniques, where the
parameter convergence is guaranteed by the persistence of
excitation. This often simplifies an estimator and makes
it very attractive for real-time applications. An excitation
based adaptive technique for estimation of a continuous-
time multi-frequency signal was proposed in [13] and ex-
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tended further in [14], [15].

Discrete time estimation of multi-frequency signals is con-
sidered in this paper in a unified framework for both oscil-
lating and exponentially damped signals. The properties of
an information matrix (such as strict diagonal dominance)
are in the main focus of this paper. These properties are
important for both algorithm design and stability analysis
and might be used in different ways depending on a model
of the signal, which in turn, is application oriented.

Two models of the oscillating signals are considered in this
paper. The first one is specified in the form of trigono-
metric polynomial (a sum of sines and cosines of known
frequencies) with unknown coefficients. This model is well-
suited for frequency domain system identification, where
the frequency response of dynamical system is analyzed via
estimation of the parameters [16],[17], and the convergence
of these parameters is guaranteed by the persistence of ex-
citation [18]. The regressor vector consists of trigonometric
functions (sines and cosines) at different frequencies in
this case and corresponding information matrix is an SDD
matrix ! which allows application of new fast convergent
algorithms for parameter estimation [20].

The second model that describes oscillating signal is a
linear difference equation with unknown coefficients to be
estimated. All the roots of the corresponding characteristic
polynomial of this equation are complex and divided into
conjugate pairs, where each pair defines the frequency and
amplitude at this frequency. A regressor vector consists
of the past values of the output in this case, and also
a persistently exciting due to the oscillating properties
of the signal [13]. Those two models described above are

L A matrix is said to be a strictly diagonally dominant (SDD) matrix
if in every row of the matrix, the magnitude of the diagonal entry in
that row is larger than the sum of the magnitudes of all the other
(non-diagonal) entries in that row [19]
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related via the solution of difference equation which con-
tains trigonometric functions. However, the properties of
information matrices based on different regressor vectors
are also different for those two models. It is proved in this
paper that the information matrix of the second model
is an SDD matrix for single-frequency signals and the
properties of this matrix should be further studied for the
case of multi-frequency signals.

Two new applications of the frequency estimation tech-
nique based on the persistence of excitation are described
in this paper in a unified framework. The first one is related
to reduction of the wind speed model in wind turbine
control applications, and the second one is the frequency
estimation of exponentially damped signal (EDS) moti-
vated by the engine knock detection applications.

The paper is organized as follows. Excitation based param-
eter estimation technique is described in the next Section
followed by a new filtering technique of the wind speed
signal in the wind turbine application, and frequency esti-
mation of EDS in Sections 3 and 4 respectively. The paper
ends with some discussions in Section 5.

2. FREQUENCY ESTIMATION: EXCITATION
BASED APPROACH

Consider the following oscillating signal described by lin-
ear difference equation with known order and unknown
coefficients:

Yk = —An—1Yk—1 — --- — Q1Yk—n+1 — QOYk—n + Co

(1)

where £k = n,n + 1,... . This equation has the following
characteristic polynomial:
n
H(z —z)=2"+ 12"V a1z +ag
i=1

(2)

where z; are the roots of polynomial (2), and ag =
(=)™ 21 .. zny ooty @p—1 = —(21 + ... + 2,,), are unknown
coefficients of equation (1), and coefficient ¢y determines
a bias of the signal.

If all the roots are complex and divided into m

conjugate pairs then each pair defines the frequency and
amplitude, and equation (1) describes multi-frequency
oscillating signal. Indeed, the solution of equation (1) can

be written in this case as follows:
m

Yk =bo + Z pF [ei1 cos(qik) + i sin(gik)]

i=1

(3)

where ¢; is the frequency, m is the number of frequencies,
p is the damping factor, and the coefficients ¢;1, ¢;2 and
bo are determined from the initial conditions and the
coefficients of equation (1) respectively.

Equation (3) is clearly suitable for description of oscillating
signals with p; = 1 and the roots of (2) on the unit circle,
and exponentially damped signals with p; < 1 and the
roots inside of the unit circle.

Assuming that model (3) with p; = 1 has known frequen-
cies and unknown coefficients, it can be used for frequency
domain system identification and can be written in the
following vector form:

where 1), is the regressor vector

(4)
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v =[1 cos(aik) sin(qik) cos(azk)
sin(gak) ... cos(qmk) sin(qmk)] (5)

and v, is a corresponding vector of constant unknown
j=k+w

> v wf
=k

with regressor (5) is an SDD matrix for a sufficiently large
window size w. This matrix has the following property
[l — D7'B|lx < k < 1, (where D is a diagonal matrix
with diagonal elements of matrix B, x > 0, and the
norm || - || is the maximum row sum matrix norm,
and I is the identity matrix) which allows the design
of fast, robust and computationally efficient algorithms
for estimation of unknown parameters [20]. Model (4) is
suitable for a frequency domain system identification for
example, but the frequencies of the signal can not be
estimated using this model since regressor 1, contains
known trigonometric functions.

Frequencies of the signal can be estimated using equation
(1) which can be written in the following form:

parameters. An information matrix B

(6)

where @, is the regressor and 6, is the vector of constant
unknown parameters defined as follows:

Yr = @59*

(7)
(8)

@k = [Wk-1 - Y-nt1 Ybn 1]
9;{ = [—an,1 .o — a1 —ap Co}

The model of signal (6) can be introduced as follows:

Ok = 1 Ok (9)
where 6 is the vector of adjustable parameters.
It was first discovered in [13] that regressor ¢y, defined
in (7) is persistently exciting i.e., there exist positive
constants 7o, 71 and w such that the following inequality
holds:
j=k+w
0<rol < > ¢ <l
j=k

(10)

where I is the identity matrix. However, an information
j=k+w
matrix Z ;) cp;‘-r in (10) is an SDD matrix for a single-
j=Fk

frequency signal only. This matrix is not an SDD matrix
for multi-frequency signals and therefore fast and compu-
tationally efficient algorithms mentioned above can not be
applied for parameter estimation in this case. Properties
of this matrix should be further studied that might lead
to the performance improvement of the excitation based
estimation algorithms.

Many algorithms can be applied for estimation of the
parameter vector 6, where the parameter convergence of
0y to 0, is guaranteed by excitation (10). One of such algo-
rithms is a simple Kaczmarz algorithm where the output
of the model matches the measured signal exactly in each
discrete step and the vector of the parameter mismatch
is orthogonal to the regressor vector. A computational
simplicity and robustness against measurement noise make
Kaczmarz algorithm very attractive for estimation of the
frequency contents of complex signals with a large number
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of frequencies in real-time applications. A parameter con-
vergence is guaranteed by the property of the persistence
of excitation (10). The roots of polynomial (2) can be
calculated as soon as its coefficients are identified and the
frequencies of the signal can then be calculated.
Kaczmarz algorithms are summarized in Table 1 where
a classical Kaczmarz algorithm modified with the gain
matrix I';, is shown on the top of the Table. Three items are
listed for the gain update algorithms. The first item where
the gain matrix is equal to identity matrix corresponds
to a classical Kaczmarz algorithm [21], and the second
and third ones describe Kaczmarz algorithms modified
with least-squares gain updates [20],[22],[23]. The third
item shows the least-squares gain update with a forgetting
factor and forgetting factor of the second one is equal to
one.

These algorithms are applied to the frequency determina-
tion in the next Sections.

KACZMARZ ALGORITHMS

Pr_10k
O = Ok—1 + TFi(yk — 08 1¢k)
Prlk—1¥Pk
N GAIN UPDATE ALGORITHM T
1| =1
Dt =Tk +ewel,
Cro10pe) Tho1
2 | Tp=T%-1— Ti’“,
1 1 + Y5 Fk—10k
Fo=—1I, 7% >0
0
Tt =2l h + Al
1 Tk T
3 | Ty = o Tp_1 — M ;
0
0 (z +eiTh10k)
1
T'o=—1I, %v>0, 0<X<1 A >0
0

Table 1. A family of Kaczmarz algorithms

3. WIND SPEED MODEL REDUCTION:
EXCITATION BASED FILTERING

Future laser sensor technologies will be capable of measur-
ing wind speed at a distance in front of the wind turbine
with relatively high sample rates [24]. Wind speed signal
measured at a distance in front of the turbine allows
preprocessing and generation of a high quality feedforward
control signal [25]. A time series model in the form of (1)
is widely used for prediction of wind speed oscillations at a
distance in front of the wind turbine (see for example [26]
and [27] and references therein). A low frequency com-
ponent should be extracted from the noise contaminated
wind speed measurements in front of the turbine to achieve
a high performance turbine regulation. A low pass filtering
which the simplest solution in this case introduces a phase
lag and might have negative impact on the power efficiency
of the turbine. Excitation based filtering of the wind speed
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FIG 1. Filtering of the wind speed signal. The wind speed signal
that contains three frequencies is plotted with a blue line.
Frequencies are identified using the approach described in
Section 3. The lowest frequency is selected for the filtered signal
plotted with a red line.

signal, described in this paper provides a computationally
efficient solution without a phase lag. It is assumed that
the wind speed is described by linear difference equation
(1) with unknown coefficients. Wind speed model is spec-
ified in the form of (9) with the parameters adapted via

Kaczmarz algorithm 0, = 0,1+ (Y *95_1@@),
Pk

where a gain matrix 'y is adjusted via the second al-
gorithm in Table 1. As soon as the coefficients of poly-
nomial (2) are found, its complex roots are calculated.
Those roots define the frequencies and amplitudes at each
frequency. Filtering of the wind speed signal is performed
via a selection of the lowest frequency. As soon as the low
frequency component of the wind speed signal is extracted,
its derivative which is taken analytically can be used in the
feedforward part of the turbine speed controller [25].
This filtering approach is illustrated in Figure 1, which
shows the wind speed signal that contains three frequencies
filtered via excitation based filtering.

4. FREQUENCY DETERMINATION OF
EXPONENTIALLY DAMPED SIGNAL

Determination of the frequencies of EDS is motivated by
the engine signal processing applications [28]. A knock de-
tection circuit that is based on the signal of an accelerom-
eter installed on the engine block of a spark ignition
automotive engine has a band-pass filter with a certain fre-
quency as a parameter to be calibrated. A determination
of the frequency which is the most suitable for the knock
detection is very important for real-time applications. In
the case of knocking an accelerometer reads exponentially
vanishing oscillating signal. Similar signals also appear in
seismic and audio signal processing applications. Notice
that exponentially damped signals are exciting over some
finite intervals only, and sufficient intensity is required for
frequency estimation.
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FIG 2. Exponentially damped signal that contains three frequen-
cies.

Consider the following model of damped signal that con-
tains a single frequency g¢:
(11)

yr = c1p" " cos(q(k — 1)) + cop* " sin(q(k — 1))
where ¢; and ¢y are constants determined from the initial
conditions, k = 1,2... and p < 1. Model (11) can be written
in form (6) with

oF = [Yr—1 yr—al, (12)

93 = [—(11 - ao]

Information matrix A = Z ©rpi is defined as follows:

k=3
_ w w _
2
Zyk—l Zyk—lyk—Q
k=3 k=3
N——
A — ail a2
- w w
2
Z Yk—-1Yk—2 Z Y2
k=3 k=3
~———— N——
L az1 az2 J

Elements of this matrix are calculated explicitly and listed
in Appendix. All the elements have average parts and
periodic parts. An average part of the matrix A for p which
is sufficiently close to one and for a sufficiently large w (so
that the following is true p?(W=2+2 ~ p2(W=3)+2 ) can be
written as follows:

1— p2(w—3)+2
) — 5

1—

1
pcos(q)

peos(q)

1 2
A25(01+ 1

2
which shows that matrix A an SDD matrix.
Adjustable model of signal (6) is specified in form (9)

with the parameters updated via Kaczmarz algorithm
| P

0p = 01+ Tkil(pk

0 L—10k

I'y is adjusted via the second algorithm in Table 1 as

follows:

Ut =T0h +erei

(yx —OF_ 1), where a gain matrix

Iyt =, >0  (13)

This sequence of matrices F,;l, k =1,2,3,...,w can be
written as follows:
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Iyt =l

Fl_l :Fal + gpﬂp?
Iy =T + ol
F;l :F;l

L+ Pupy

Direct substitution yields:
r,!
~—

inverse of gain matrix

+ ) el
k=1
—_———

information matriz A

Yol
—

initial matric

(14)

Relation (14) shows that the matrix T';' can be made an
SDD matrix for several initial steps k = 0,1,2,...,w with
a sufficiently large and positive 7y since all the elements

of ngmpf are bounded. For a sufficiently large w the

k=1
w

matrix Zcpkgpf becomes an SDD matrix with positive

k=1
diagonal entries. Therefore the matrix 1",;1 is also an
SDD matrix for k& = w,...0o since an addition of the

initial matrix voI, 0 > 0 does not destroy a diagonal
dominance. In other words a sufficiently large o ensures a
w

diagonal dominance until the information matrix Z OrPE
k=1

becomes diagonally dominant. Therefore the matrix F,:l is
a positive definite matrix in all the steps k = 0, 1, 2, ... since
it is an SDD symmetric matrix with all positive diagonal
entries.

Therefore, due to arguments similar to [18] the following
transient bound can be established for the estimation error
Gk = Gk — 9*:

Vo

0.l < | —2%
19:]l < Amin(T3 1)

(15)

where Vo = (0o — 0.)TT5" (00 — 0.) and A\pin(T1 1) is a
minimal eigenvalue of the matrix F,:l. This upper bound
can be made sufficiently small since a minimal eigenvalue
of the matrix F,;l increases with a step number and rapidly
reaches a large steady-state value.

Frequency estimation of a single-frequency exponentially
damped signal is plotted in Figure 3, and the frequency
estimation of the signal that contains three frequencies
plotted in Figure 2, using estimation algorithm described
above is shown in Figure 4.

5. DISCUSSION

Richness of oscillating signals can successfully be used for
frequency estimation. Those signals are modeled using lin-
ear difference equations with unknown coefficients, which
define the frequencies and amplitudes. The convergence of
estimated coefficients to their true values is guaranteed by
the persistence of excitation that also simplifies estimation
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FIG 3. Frequency estimation of EDS that contans a single frequency
with the second algorithm in Table 1 described in Section 2.
Estimated frequency is plotted with a red line and actual
frequency is plotted with a blue line.
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FIG 4. Frequency estimation of the signal plotted in Figure 2 with
the third algorithm in Table 1, described in Section 2. Three
estimated frequencies are plotted with blue, red and green lines.
Actual frequencies are plotted with black lines.

algorithms. Strictly diagonally dominance of the informa-
tion matrix together with the property of persistence of
excitation might successfully be used for the performance
improvement of existing estimation algorithms. It is shown
that information matrix (in the case of frequency estima-
tion) is an SDD matrix for single-frequency signals only.
Information matrix is not an SDD matrix in the case where
the number of frequencies is greater than or equal to two.
The properties of this information matrix and gain matrix
T, with different forgetting factors (see Table 1) should be
further studied for multi-frequency signals, aiming to the
performance improvement of the excitation based estima-
tion algorithms.

Besides, frequency determination using this technique re-
quires very high accuracy of estimation of the coefficients
of the difference equations. Such an accuracy can not be
achieved in the presence of unmodeled frequencies and
significant measurement noise. Therefore this estimation
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technique should be applied together with the preprocess-
ing methods which can clean up the signal sufficiently. On
the contrary the coefficients of the trigonometric polyno-
mials with known frequencies in frequency domain identi-
fication can be estimated with acceptable accuracy in the
presence of significant measurement noise and unmodeled
frequencies.

APPENDIX

Elements of the matrix A are evaluated explicitly using
the following relations:

i 2(k-—m) _ 1 — prl e
P = 1_ 2
k=n P

- 1 — p?cos(2
S 2 cos(a(l — n)g) = — g £ Co5(20)
k=n

14 p* —2p%cos(29)

—p*( T2 cos((2(w — n) + 2)q)
1+ p* —2p% cos(2q)
2(w—n)+4

+

cos(2q(w — n))

P
14 p* — 2p? cos(2q)

w

2 .
2k—n) _ p” sin(2q)

> PP sin(2(k — n)g) = ——— -

= 1+ p* —2p* cos(2q)

—p* "M 2 sin((2(w — n) + 2)g)

1+ pt—2p°
2(w—n)+4

+

cos(2q)
sin(2g(w — n))
1+ p* —2p% cos(2q)

forw >n, n=1,2,..., where w is a window size and n is
a parameter, and

LP

w
1 1— p2(w72)+2
an = Zy%—l = 5(0% +c3) T2
k=3

average part

Lo o 1 — p® cos(2q)
+ 2 (1-a) | 1+ p* —2p? cos(2q)
L =P R cos((2(w = 2) +2)q)

1+ p* — 2p2 cos(2q)
P22+ cos(2q(w — 2))
1+ p* — 2p2 cos(2q) )
p°sin(2g) — p* =2+ sin((2(w — 2) + 2)q)
1+ p* —2p2? cos(2q)
p* 2 sin(2g(w — 2))
1+ p* —2p? cos(2q)

+

+ cr1co [

2

|-

+

1— p2(w—3)+2

1—

- 1
azy = Zyifz = §(C§ +c3) 3
k=3 P

average part

[ 1 — p?cos(2q)
1+ p* —2p2? cos(2q)
P cos((2(w — 3) + 2)g)
1+ p* — 2p2 cos(2q)

(i —

+
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L PP cos(2g(w — 3)) ]
1+ p* — 2p? cos(2q)
p®sin(2q) — p* =2 sin((2(w — 3) + 2)q)
1+ p* — 2p? cos(2q)
p* =3+ sin(2g(w - 3))

T + p* —2p? cos(2q) ]

+creo [

w
G12 = Q21 = Zyk—lyk—Z
k=3
1— pQ(w—3)+2

1—p2

(¢ +¢3) p cos(q)

N =

average part
oL [ 2la) = o203
2 1+ p* —2p? cos(2q)
—p® cos(q) + p** ! cos((2w — 5)q)
1+ p* — 2p? cos(2q) )
psin(g) — p** % sin((2w — 3)q)
1+ p* — 2p2 cos(2q)
| PPsin(g) + p*" " Tsin((2w — 5)q) ]
1+ p* — 2p? cos(2q)

+

+creo [
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